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Abstract

When drug resistance is suspected to be in a region, patients in the region are sampled
and the suspicion is confirmed. This biased sampling limits our ability to capture
underlying dynamics, meaning strategies to lengthen the lifespan of drugs are
reactionary, not proactive.

Testing for drug resistant infections is becoming easier and cheaper, therefore we
should revisit sampling decisions. We present a hierarchical mechanistic Bayesian model,
and apply it to a simulated dataset, where we sample between 5% and 30% of the
population in a biased and unbiased manner. We show that unbiased spatiotemporal
data on the presence of drug resistant infections, combined with our model, highlights
underlying dynamics.

Our mechanistic model is more accurate than a generalised additive model with
space and time components. Moreover, highlighting underlying dynamics creates novel
strategies that lengthen the lifespan of drugs. In low to middle income countries,
generally, drug resistance emerges into a population from hotspots such as treatment
centres (perhaps the use of sub-standard drugs), or major transport hubs, and then
resistance spreads throughout the population. Using our model, we rank resistance
hotspots, enabling resources to be targeted - such as verifying the quality of drugs at a
particular health care centre.

Keywords: drug resistance hotspots, hierarchical mechanistic Bayesian model,
generalised additive model.

Introduction 1

Pathogens such as bacteria, viruses and parasites are continually evolving. When a drug 2

resistant mutation occurs by chance, it is given a survival advantage if selection pressure 3

(from antimicrobials, such as antibiotics, antivirals and antimalarials) kills drug sensitive 4

pathogens, leaving the drug resistant pathogens within a host. These pathogens can 5

spread throughout a population, thereby leading to additional deaths and treatment 6

costs. To safeguard the efficacy of drugs, capturing the underlying transmission 7

dynamics at the population level is a priority, and mechanistic models are an important 8

tools to achieve this [12]. 9

In the early 2000s, hierarchical mechanistic models were developed for predicting the 10

spread of ecological process [24,25]. Based on careful assumptions which influence the 11

spatiotemporal dynamics and data collection process, each model is tailored to the 12
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specific problem and dataset, making them sophisticated and powerful models [3]. 13

Using previous detailed documentation [9, 26] of such models, this paper demonstrates 14

the potential of hierarchical mechanistic models to capture the underlying transmission 15

dynamics of drug resistant pathogens. The authors believe this is the first time such a 16

model is applied in this field. 17

Over 70% of the 273 modelling studies on antimicrobial resistance (AMR) focussed 18

on five diseases: human immunodeficiency virus (HIV), influenza virus, Plasmodium 19

falciparum (malaria), Mycobacterium tuberculosis (TB), and methicillin-resistant 20

Staphylococcus aureus (MRSA) [16]. Three of these diseases, HIV, malaria, and TB, 21

mostly affect people who live in countries where the health care received varies in 22

factors that affect drug resistance, such as using low quality drugs or out of date 23

recommendations, making identifying hotspots a critical part of the strategy. 24

Identifying hotspots for clinical investigation may have prevented the spread of 25

artemisinin resistance in Africa [22]. Modelling the transmission dynamics at the 26

population level requires spatiotemporal data. With regards to resistance to 27

Plasmodium falciparum, the predominant malaria parasite, there is a solid 28

understanding of the mutations responsible for resistance to different antimalarials. For 29

example, resistance to artemisinin, the latest antimalarial in use, occurs when there is a 30

mutation on the Kelch-13 gene. Such mutations are identified within infected patients 31

by molecular marker studies. 32

WorldWide Antimalarial Resistance Network (WWARN) [27] has assembled a 33

database of molecular marker studies for resistance to artemisinin, and another current 34

antimalarial, sulphadoxine pyrimethamine (SP). This global spatiotemporal data, from 35

141 studies (for artemisisin) and 165 studies (for SP), is provided as an opensource 36

spreadsheet and interactive map. By focussing on molecular marker studies, WWARN 37

uses the most up to date antimalarial drug resistance surveillance as the prevalence of a 38

mutation can be readily quantified from an analysis of fingerprick blood samples from 39

infected humans [19]. 40

Despite WWARN covering antimalarial resistance surveillance, the data is still 41

insufficient to capture underlying mechanisms because currently molecular marker 42

studies are only carried out in a region when we suspect drug resistance is present. 43

When drug resistant pathogens are present it is likely already too late to mitigate their 44

spread [2]. Meaning that once drug resistance is detected, the course of the spread of 45

drug resistant infections is largely determined already. Early detection and response to 46

antimalarial drug resistance is imperative to eliminate malaria [18]. Thus predicting 47

ahead will support mitigation measures. 48

As the surveillance improves, we will be able to use mechanistic models to answer 49

pertinent questions regarding the underlying transmission dynamics of drug resistant 50

pathogens. Critical thought regarding the sampling approach can support surveillance 51

and optimise resource use. Therefore to maximise the potential of molecular monitoring 52

we should address the questions we can answer, and demonstrate the learning potential 53

through modifying leading mechanistic models currently in use in other fields. Here we 54

provide a specific question, and demonstrate how mechanistic models can answer such a 55

question. 56

When a new drug is introduced into a region, it is necessary to monitor at the same 57

time so that action is preemptive, not reactive. This stance is shared by many 58

epidemiologists. When resistance to artemisinin, the latest antimalarial, was present in 59

South East Asia but not yet in Africa, a paper called for early warning and detection 60

systems in Africa that targeted hotspots for clinical investigations [22]. A hotspot of 61

resistant pathogens can be defined as a location such as health care centre, a hospital, 62

or a major transport hub, that largely contribute to the emergence of the resistant 63

pathogen in a region. 64
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We developed a hierarchical mechanistic Bayesian model that quantifies which 65

hotspots are contributing the most resistant pathogens into the population, and the 66

spread of these pathogens. The model accounts for spatial factors which affect the 67

spread of the resistant pathogens, such as disease prevalence. The model is an 68

adaptation of a model on the spread of chronic wasting disease in white tailed deer in 69

the southwestern portion of Winconsin [7]. 70

Ranking the hotspots can be used for strategy decisions with regards to checking the 71

quality and procedures of a given health care centre, or, in the case of a transport hub 72

being a major contributor of resistant pathogens, determining that drug resistant 73

infections are being imported into the region. As well as quantifying the hotspots, the 74

model can predict and forecast the true density of drug resistant infections in the region. 75

To investigate who is sampled for data collection, we investigated how different 76

patient sampling approaches capture spatiotemporal dynamics of resistant pathogens. 77

Namely, we compared an unbiased (random) approach with the current approach, which 78

is biased towards sampling patients who are likely to have drug resistant infections. 79

Unbiased sampling is inline with recent recommendations to mitigate antimalarial drug 80

resistance, which recommends routine surveillance to complement the often sparse and 81

outdated data from therapeutic efficacy studies [17]. 82

Although this modelling study focussed on drug resistant Plasmodium falciparum, 83

detecting hotspots is relevant more broadly. For example, consider that until 2015 the 84

WHO recommended that a woman living with HIV takes antiretrovirals during 85

pregnancy (to prevent their babies from becoming infected), but stops after delivery [14]. 86

This recommendation was dropped because surveys conducted in nine countries in 87

sub-Saharan Africa between 2012 and 2018 found that over half of the infants newly 88

diagnosed with HIV carry a virus that is resistant to the standard class of drugs [23]. 89

Clearly, a health care centre that is not up to date with these recommendations needs to 90

be detected. 91

The methods presented here are not limited to a particular drug resistant pathogen. 92

The model is general to any drug resistant pathogen where there is spatiotemporal data 93

about its occurrence, whether the data is from molecular markers studies in the case of 94

malaria, or by genome sequencing in the case of resistance to antivirals [13], or by 95

analysing multiplication bacteria rates from samples [4]. 96

Materials and Methods 97

We modify the hierarchical mechanistic model from [7], which modelled the spread of 98

chronic wasting disease in white tailed deer in the southwestern portion of Winconsin. 99

This model uses presence/absence data, with a single origin hotspot based on where the 100

disease was first detected. This model assumes the hotspot only contributed the disease 101

to the population at the first time interval. In our modified model, we allow for multiple 102

hotspots, which continually contribute drug resistant pathogens into the population. 103

Furthermore we use count data (not presence/absence), as in [3, 10]. 104

The model uses an aggregate of resistance surveillance studies. For each study, there 105

is the number of infected patients, and from these tested patients, the number who 106

carry drug resistant pathogens (identified by means such as a carrying a mutation). For 107

brevity, we refer to sampled patients who carried drug resistant pathogens as positive 108

patients, and those who did not carry drug resistant pathogens as negative patients. 109

We assume that each location, s = (s1, s2), has a weight that depends on its distance 110

from a hotspot. This weight is greater when there is a greater chance that an infected 111

person develops a mutation that infers resistance to treatment. The weights, ω(s), are 112
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defined by 113

ω(s) =
N∑
n=1

θne
−(|s−dn|2)/φ2

n∫
S e
−(|s−dn|2)/φ2

n ds
, (1)

where the magnitude of resistant pathogens contributed by hotspot n is θn, and these 114

resistant pathogens disperse at rate φn from the hotspot. Eq. 1 is the sum, over n, of 115

scaled bivariate Gaussian kernels with compact (truncated) support centred at a point 116

with coordinate dn where |s−dn| is the distance. The units of this distance depends on 117

the size of the region being investigated, for example, 10 km by 10km. An example of 118

ω(s), where there are five hotspots (N = 5) is shown in Fig. 1.

Figure 1. An example of the spatial weightings which are greater (red) where drug-
resistant infections are more likely via five hotspots with magnitude θ1 ≥ θ2 ≥ θ3 ≥
θ4 ≥ θ5 and dispersal φ4 ≥ φ5 ≥ φ3 ≥ φ2 ≥ φ1 (see the definition of ω(s) from Eq. 1).

119

We now provide details of the hierarchical mechanistic model which has separate 120

components to capture uncertainty in data collection, the spatiotemporal transmission 121

dynamics, and uncertainty in the parameters. Following this, we provide details of the 122

numerical implementation, beginning with the algorithm. Then, to thoroughly 123

demonstrate our model, we simulate data over a region that is split into 10,000 grid 124

points (a square that is 100 by 100). 125

For comparison, we applied a generalised additive model (GAM) to the same 126

simulated data. Generalised additive models are a well-developed and sophisticated 127

statistical tool, where spatial and temporal components can be explicitly included, and 128

the effect of covariates are readily quantified. As with the hierarchical mechanistic 129

model, the GAM produces an estimate for the density of positive patients over the 130

whole region over different times. However, unlike the hierarchical mechanistic model, it 131

cannot explicitly provide magnitude and dispersion measures for the resistance hotspots. 132

The hierarchical mechanistic Bayesian model 133

The model comprises three levels. First, the data level which states that the data is 134

depends on the sampling probability and the density of positive patients. Second, the 135

process level which captures the spatiotemporal mechanisms of the density of positive 136

patients. Third, the parameter level which estimates the model parameters. 137

Data level 138

The data is an aggregate of M studies, which each have a unique location and time. 139

The M studies are indexed by i = 1, 2, . . . ,M . We represented the data as yi ∈ Z, 140
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which is the number of positive patients in study i. We model this as 141

yi ∼ Poisson(λi), (2)

where λi > 0 is a latent spatiotemporal process defined by 142

λi = u(si, ti)e
x′
iβ , (3)

where u(si, ti) is the density of positive patients, at the location and time of study i 143

(determined by the Process level). The total record of observed counts of positive 144

patients is Y . A patient at the location and time of the study i has a probability of 145

being sampled. This probability depends on patient covariates, such as age, which are 146

captured by xi. The β in Eq. 3 are the regression coefficients (determined by the 147

Parameter level) for the individual covariates xi. Therefore, the data level, Eq. 2 and 148

Eq. 3, states that the data yi depends on the density of positive patients, and a 149

probability of being sampled. 150

Process level 151

The density of positive patients is a dynamic process captured by the partial differential 152

equation (PDE) 153

∂

∂t
u(s, t) =

(
∂2

∂s21
+

∂2

∂s22

)[
µ(s)u(s, t)

]
+ ρ(s)u(s, t) + ω(s), (4)

where the diffusion rate log(µ(s)) = α0 + a(s)′α depends on spatial covariates captured 154

by a(s), and the growth rate ρ(s) = γ0 + c(s)′γ depends on spatial covariates captured 155

by c(s). The α0, α, γ0, and γ are the regression coefficients (determined by the 156

Parameter level) for the spatial covariates a(s) and c(s). The first two terms of Eq. 4, 157

the diffusion and growth terms, make up the ecological diffusion equation, which is 158

often used to model animal movement using abundance data [6, 8, 11]. 159

For our application here, we no longer use the terminology ‘diffusion’ and ‘growth’ 160

rate because they are misleading. In terms of the spread of drug resistant pathogens, 161

µ(s) relates to transmission to neighbouring regions and the ρ(s) relates to transmission 162

within a local area, see Fig. 2. With regards to the choice of spatial covariates, the 163

transmission of drug resistant pathogens depends on the prevalence of the disease, 164

thus a(s) and c(s) include the disease prevalence. 165

The last term of Eq. 4, ω(s), is an additional term we added to account for the 166

underlying time-independent component which assumes mutations associated with 167

resistance originates from hotspots, see Eq. 1. We use zero boundary conditions, and 168

initial conditions u(s, 0) = ω(s), meaning that initially, the only influence on the 169

emergence of drug resistant pathogens is the distance from a hotspot. 170

Parameter level 171

To complete the Bayesian specification of the spatiotemporal model, we describe the 172

probability models for the parameters discussed in the data and process levels. The 173

parameters which require prior distributions include the magnitude and dispersal of the 174

resistance hotspots, θ and φ, which we assign priors θn ∼ TN(0, 106) and 175

φn ∼ TN(0, 106) where n ∈ [1, N ] and TN refers to a normal distribution truncated 176

below zero). 177

For regression coefficients β, α and γ we used priors drawn from a normal 178

distribution with mean 0 and variance 10, as in [7]: β ∼ N(0, 10I), α0 ∼ N(0, 10), 179

α ∼ N(0, 10I), γ0 ∼ N(0, 10), and γ ∼ N(0, 10I), where I is the identity matrix. 180
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Figure 2. Visual description of each of three terms in Eq. 4 in relation to the spread of
resistant pathogens. The highlighted boxes indicate the locations that affect the density
at location X.

Numerical implementation 181

The parameters are determined using a Monte Carlo Markov Chain (MCMC), coded in 182

R. From these parameter values, we can recover the spatiotemporal density of positive 183

patients. The model algorithm is provided below, followed by details about the creation 184

of the simulated data we used to demonstrate the model application. All codes are 185

provided on GitHub. They are built upon the codes provided by [7]. We run the model 186

for 250,000 iterations and remove the first 1,000 iterations due to burn-in. 187

The algorithm 188

For each MCMC iteration, the estimates for the parameters are updated using 189

Metropolis Hastings. The algorithm is, 190

1. Set initial values for α, β, γ, θ, φ 191

2. while l < m do 192

3. update u(s, t) 193

4. sample [θ,φ|α, β,γ] 194

5. update u(s, t) 195

6. sample [α|β,γ,θ,φ] 196

7. update u(s, t) 197

8. sample [β|α,γ,θ,φ] 198

9. sample [γ|α, β,θ,φ] 199

10. end while 200

Updating u(s, t) requires solving a PDE (Eq. 4) over a fine-scale grid, which is very 201

computationally expensive. We apply the homogenisation technique [6, 8, 20] which 202

means that each time u(s, t) is updated (steps 3, 5, and 7 above), the process is 203
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(a) Calculate µ(s), ρ(s) and ex
′
iβ using current estimates for the regression 204

coefficients. 205

(b) Convert µ(s) and ρ(s) to a coarser grid. 206

(c) Solve the PDE (Eq. 4) on the coarser grid. 207

(d) Convert the solution on the coarse grid to the original fine-scale grid. 208

Creating the simulated data 209

To demonstrate the utility of the model we created simulated data over a unit square 210

with five resistance hotspots. We assume that the hotspot locations are known, but this 211

is not a restriction of the model. The locations are d1 = (0.1, 0.9), d2 = (0.1, 0.1), 212

d3 = (0.5, 0.5), d4 = (0.6, 0.2) and d5 = (0.9, 0.5). 213

We set the magnitudes of the hotspots to θ1 = 80, θ2 = 70, θ3 = 65, θ4 = 60 and 214

θ5 = 60. We set the dispersal of each hotspot to φ1 = 0.08, φ2 = 0.09, φ3 = 0.1, 215

φ4 = 0.15 and φ5 = 0.12. These values were chosen to include an example where the 216

hotspot with the greatest magnitude (hotspot 1) is isolated so resistance does not 217

disperse far, see Fig. 1. 218

In our demonstration, the covariates a(s) and c(s) are each a single covariate that 219

varies in space. When estimating drug resistance, the main covariate should be the 220

prevalence of the disease which has a non-random spatial pattern. To simply represent 221

this, both a(s) and c(s) are set to values between -0.5 and 0.5 which are ordered so that 222

the greater values are at the bottom of the square, graduating towards the top of square, 223

see Fig. 3. Although we generated a(s) and c(s) in exactly the same manner for our 224

demonstration, we continue with distinct notation for clarity, and to serve as a reminder 225

that the model allows for two distinct spatial covariates which affect neighbouring and 226

local transmission differently. 227

The transmission to neighbouring regions µ(s) depends on the spatial covariate a(s), 228

log(µ(s)) = α0 + a(s)′α, (5)

where we set the coefficients to α0 = −8 and α1 = 1. The local transmission ρ(s) 229

depends on the spatial covariate c(s), 230

ρ(s) = γ0 + c(s)′γ, (6)

where we set the coefficients to γ0 = 0.2 and γ1 = 0.1. The simulated density of positive 231

patients for 20 years, using Eq. 4, gives Fig. 4. Notice that although hotspot 1 (the top 232

left hotspot) has the highest magnitude, the region surrounding hotspot 3 (the middle 233

hotspot) has the highest density of positive patients. This demonstrates that simply 234

observing the presence of positive patients can mask underlying spatial dynamics. 235

The probability that a positive patient is sampled is given by 236

ex
′
iβ , (7)

where xi contains patient information, such as the patient age. In our demonstration, 237

xi is a single covariate containing random values between -0.5 and 0.5, and β = −10 238

(note that there is not an intercept term in xi). With biased sampling, as is the current 239

approach, we set the sampling probability to be one where resistance is present, and 240

random otherwise, see the top plot of Fig. 5. With unbiased sampling, each location is 241

equally likely to be sampled, see the bottom plot of Fig. 5. We assume that the same 242

proportion of the region is sampled each year, either 5%, 10%, 15% 20% and 30%, 243

however this is not a restriction of the model. 244
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Figure 3. The transmission of drug resistant pathogens depends on spatial covariates
a(s) and c(s), which represent covariates such as disease prevalence. Left: The trans-
mission to neighbouring regions, µ(s), where log(µ(s)) = α0 + a(s)′α. Right: The local
transmission, ρ(s), where ρ(s) = γ0 + c(s)′γ. Since this is a demonstration, the pattern
is relevant (transmission of drug resistant pathogens is easier in the south than in the
north), but the actual values are not, so they are omitted for clarity.

t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10

t = 11 t = 12 t = 13 t = 14 t = 15

t = 16 t = 17 t = 18 t = 19 t = 20

none

high

Figure 4. The simulated density of drug resistant infections. The values are not relevant
for this simulated example so they are omitted for clarity.
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t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10

t = 11 t = 12 t = 13 t = 14 t = 15

t = 16 t = 17 t = 18 t = 19 t = 20

t = 1 t = 2 t = 3 t = 4 t = 5

t = 6 t = 7 t = 8 t = 9 t = 10

t = 11 t = 12 t = 13 t = 14 t = 15

t = 16 t = 17 t = 18 t = 19 t = 20

Figure 5. Bias and unbias sampling where 10% of region is sampling. For biased
sampling, patients who are assumed to have a drug-resistant infection are more likely to
be sampled. Red dots refer to a patient testing positive for a drug-resistant infection.
Blue dots refer to a patient testing negative for a drug-resistant infection.
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Comparison with generalised additive models 245

As with the hierarchical mechanistic model, a spatiotemporal generalised additive model 246

(GAM) produces an estimate for the whole region over different times, but it cannot 247

explicitly provide magnitude and dispersion measures for the resistance hotspots. Our 248

GAM assumes that the data, yi ∈ Z being the number of positive patients in study i, is 249

modelled such that 250

yi ∼ Poisson(λi) where g(λi) = xiβ + ηs + ηt. (8)

The probability that a patient is positive, λi, is transformed using a link function g(·) 251

and depends on both the individual data (such as the patient age), and spatial 252

covariates (such as disease prevalence) which are included in the vector xi. Note that 253

unlike the hierarchical mechanistic model, the individual and spatial covariates are 254

treated the same. However, we can still explicitly include the effect of time, ηt, and 255

spatial location, ηs, albeit they are modelled individually and do not depend on the 256

covariates. To illustrate the importance of explicitly including the effect of time and 257

space, we also used a GAM that did not explicitly state these components, 258

g(λi) = xiβ. (9)

Model assessment 259

To evaluate the hierarchical mechanistic model and the GAM we use a standard 260

measure of accuracy: the root mean squared error (RMSE) of the predicted true density 261

of positive patients in space and time. We also examine the accuracy of the models by 262

comparing the estimated regression coefficients with the actual values used when 263

creating the simulated data. 264

Of most interest for drug resistance, with the hierarchical mechanistic model, we 265

recover the magnitudes and dispersals of the hotspots. For strategic decisions, such as 266

checking the quality and procedures of a particular health care centre, the actual 267

magnitude of the hotspot is irrelevant. Only the ranking of this hotspot compared to 268

the others is required. Therefore we focus on recovering the ranking of the magnitudes 269

of the hotspots. For completeness, we also recover the ranking of the dispersals of the 270

hotspots. 271

To highlight the ranking of hotspots, and not the actual magnitude, in Results we 272

present the normalised values: θ̂1 = 1, θ̂2 = 0.5, θ̂3 = 0.25, θ̂4 = 0, θ̂5 = 0, and φ̂1 = 0, 273

φ̂2 = 0.14, φ̂3 = 0.29, φ̂4 = 1, φ̂5 = 0.57, where the ( ·̂ ) denotes the normalised value. 274

See Creating the simulated data for the original magnitude and dispersal values. We do 275

not recover the magnitudes and dispersals of the hotspots when applying the GAM 276

because the GAM cannot recover this information. 277

Results 278

The predicted density of the positive patients, from our model, is compared to the ‘true’ 279

density used to generate the simulated data. We calculated the RMSE for the total 280

period, 20 years, thereby testing the overall prediction ability of the model, see Fig. 6. 281

We found that with biased sampling, the RMSE is much greater. Even sampling 5% of 282

the region with unbiased sampling, is more accurate than sampling 30% of the region 283

with biased sampling. Moreover, with a small amount of samples collected in a biased 284

manner, 5% of the region, our model was unable to converge. This raises concerns 285

regarding the suitability of this method, even when more patients are sampled. 286

The estimates for the regression coefficients (β, α1 and γ1), from the MCMC, are 287

recovered when unbiased sampling is used, but not when biased sampling is used, see 288
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Fig. 7. This is especially true for β, the regression coefficient which quantifies the 289

probability that an individual is sampled based on an individual covariate such as the 290

age. This is expected since biased sampling ignores the individual covariates, and 291

focuses only on whether it is believed that the patient carries drug resistant pathogens. 292

With unbiased sampling, the accuracy of the regression coefficients is not greatly 293

improved when more patients are sampled, although the interquartile range of the 294

estimates is smaller, see Fig. 7. For the transmission regression coefficients, α1 and γ1, 295

the median estimate is actually slightly closer to the actual value when 10% of the 296

region is sampled. Nonetheless, the accuracy for all cases is so high that the difference is 297

insignificant. This demonstrates that we can accurately capture the spatiotemporal 298

transmission dynamics, separating for neighbouring transmission and local transmission, 299

and quantify the relationship with spatial covariates such as disease prevalence. 300

The most novel application of our model is the ability to rank N resistance hotspots, 301

see Fig. 8. Hotspot 1 has the greatest magnitude (normalised magnitude of one), 302

meaning that it contributes the most resistant pathogens into the population. However, 303

looking only at the density of positive patients (Fig. 4), the high disease prevalence in 304

the lower part of the region (Fig. 3) incorrectly implies that hotspot 4 has the greatest 305

magnitude, see Fig. 4. With unbiased sampling, the model recovers that hotspot 1 has 306

the greatest magnitude, θ1 = 80. Even when only sampling 5% of the region, the model 307

generally recovers the true ranking of hotspots. However, because the difference in 308

magnitude between the second and third hotspots is small, θ2 = 70 and θ3 = 65), the 309

model struggled to get this ordering correct and reversed their importance in the case of 310

5% of the region being sampled. 311
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Figure 6. The root mean squared error (RMSE) over the 20 year period for different
sampling techniques (bias, unbias), using the hierarchical mechanistic model.

Comparison with generalised additive models 312

The GAMs had a lower accuracy when compared to our hierarchical mechanistic model. 313

We first discuss how the GAM which explicitly accounted for the effect of space and 314

time (with ηs and ηt, Eq. 8), compared with the hierarchical mechanistic model, and 315

then briefly discuss results from the GAM which did not explictly account for the effect 316

of space and time, Eq. 9. 317

The GAM, Eq. 8, with unbiased sampling had RMSEs greater than the hierarchical 318

mechanistic model with unbiased sampling. The GAM produced results where the 319

RMSE is consistently around 0.48 irrespective of the proportion that was sampled (the 320
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Figure 7. The estimates from the MCMC for the regression coefficients: β relating to
the sampling probability, α1 relating to transmission to neighbouring regions, and γ1
relating to local transmission. The actual value is indicated by a solid line. The model
fails when only sampling 5% of the region in a biased manner.
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Figure 8. The normalised estimates from the MCMC for the magnitudes of the
hotspots (left) and disperal of the hotspots (right) with biased sampling (red) and
unbiased sampling (purple). The actual normalised value is indicated by the dashed line.
The proportion of the region sampled is indicated by the intensity of the colour. The
model fails when only sampling 5% of the region in a biased manner.
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explained deviance is around 65.5%). Whereas, even when sampling only 5% of the 321

region, the hierarchical mechanistic model, with unbiased sampling had a lower RMSE 322

of 0.21, see Fig. 6. The GAM, Eq. 8, with biased sampling, had RMSEs that decreased 323

slightly, from 0.77 to 0.53, as the proportion which is sampled increased from 5% to 30% 324

(the explained deviance increased from 59% to 70.1%). This is actually better than the 325

hierarchical mechanistic model, which had an RMSE that varied between 1.22 and 0.90 326

as the proportion which is sampled increased from 5% to 30%, see Fig. 6. 327

The regression coefficient estimate for the individual covariate (such as age), when 328

using unbiased sampling, was approximately -10 irrespective of the proportion that was 329

sampled, which corresponds exactly to the value used for the simulated data. This is 330

unsurprising since the probability that a patient is sampled, given patient information 331

(such as age), is given by Eq. 7 which corresponds exactly with the GAM, see Eq. 8. 332

However, when using biased sampling, this coefficient was not recovered. Instead the 333

coefficient estimate ranged between -3.6 and -6.6, dependent on the proportion that was 334

sampled. Therefore, although the exact value is not recovered, the negative relationship 335

is consistent. 336

The regression coefficient estimate for the local transmission, which depended on a 337

spatial factor (such as disease prevalence), when using unbiased sampling, varied 338

between 16.3 and 53.4, dependent on the proportion that was sampled. The regression 339

coefficient estimate for neighbouring transmission, which also depended on a spatial 340

factor (such as disease prevalence), when using unbiased sampling, varied between 2.4 341

and 23.5, dependent on the proportion that was sampled. This range is relatively larger 342

than the corresponding range for local transmission, reflecting the model struggling 343

more to capture this relationship (which was generated using a logarithm relationship, 344

see Eq. 5 compared to Eq. 6). Generally, the coefficients for the spatial covariates 345

increased as the proportion sampled increased, meaning that their influence on the 346

spread of drug resistance is more appropriately accounted for when the unbiased sample 347

size is increased. 348

When using biased sampling, the regression coefficient estimate for the local 349

transmission, which depended on a spatial factor (such as disease prevalence), varied 350

between 3.5 and 13.4, dependent on the proportion that was sampled. The regression 351

coefficient estimate for neighbouring transmission, which also depended on a spatial 352

factor (such as disease prevalence), when using biased sampling, varied between -1.4 and 353

8.3, dependent on the proportion that was sampled. When sampling 10% or 20%, the 354

coefficient estimate is negative, and for 5%, 15% and 30% it is positive. This switch 355

between positive and negative fundamentally alters our interpretation on the effect of 356

disease prevalence on the spread of drug resistance to neighbouring regions. A model 357

where such an important learning is sensitive to the sampled size is unsuitable, 358

highlighting the dangers of biased sampling, especially with a GAM. 359

When we removed the spatial and temporal components from the GAM, Eq. 9, the 360

RMSEs are greater and the explained deviance is less, indicating that including spatial 361

and temporal effects increased the predictive ability of the model. When using unbiased 362

sampling, the RMSE is around 0.71 irrespective of the proportion that was sampled (the 363

explained deviance is around 26.3%). When using biased sampling, the RMSE ranges 364

between 1.07 and 0.82 as the proportion which is sampled increased from 5% to 30% 365

(the explained deviance increased from 19.8% to 30.3%). Since the GAM without 366

spatial and temporal components was only included to demonstrate the importance of 367

explicitly accounting for space and time, we do not discuss the regression coefficient 368

estimates from these models. 369
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Discussion 370

In the long term, to combat the emergence and spread of drug resistant diseases we 371

must (i) use models that explicity include underlying dynamics, such as the distance 372

from a resistance hotspot (which may be a health care centre of transport hub); and (ii) 373

move beyond monitoring drug resistance, since monitoring involves only conducting 374

studies when and where we suspect drug resistance is present. 375

Hierarchical mechanistic models are powerful tools in ecology, modelling species 376

invasion and the spread of disease within a species [3, 7–11]. Although these models can 377

support epidemiology, they have not yet been widely adopted in the field. We modified 378

an existing model of disease spreading through a species [7], to model drug resistant 379

pathogens spreading throughout a region. There are three levels to our model. First, 380

the data level of our model accounted for individual factors, such as age, influencing the 381

probability of being include in a study on drug resistance. Second, the process level of 382

our model used a PDE to capture spatiotemporal mechanistic components, which 383

quantified the relationship of transmission of resistance pathogens with spatial factors, 384

such as the prevalence of the disease. To modify the PDE (from the previous 385

hierarchical mechanistic model [7]) so that it is suited for modelling drug resistance, we 386

added a new term which accounts for the possibility of resistance emerging within 387

individuals based on their distance from resistance hotspots. Third, the parameter level 388

included uncertainty in our model parameters. Our model accurately recovered the 389

model parameters used to generate our simulated data. 390

Phenomenological regression models, such as GAMs, cannot include mechanistic 391

components. Even recent sophisticated models, such as the logistic Gaussian processes 392

in [5] and the stacked Gaussian process model in [1], cannot account for mechanistic 393

causes of disease spread. 394

Another limitation of regression models, such as a GAM, is apparent when 395

comparing the estimate for the density of positive patients. The GAM, with 396

spatiotemporal components, provided estimates that are less accurate than the 397

hierarchical mechanistic model, when sampling is unbiased. This difference in accuracy 398

highlights the need to include mechanisitic components. 399

We proved that biased data cannot recover underlying dynamics. With biased 400

sampling of 5% of the region, the hierarchical mechanistic model failed to converge. 401

With larger sample sizes, biased sampling does not recover the ranking of hotspots, and 402

could lead to inefficiently focusing resources on a wrong hotspot because of misleading 403

factors. For example, assuming this wrong hotspot is a health care centre, our model 404

demonstrated that the high density of positive patients is not necessarily due to low 405

quality medicine or poor adherence, or other factors which enhance selection pressure, 406

but could actually be due to the high disease prevalence in this region, and the close 407

proximity of this hotspot to other hotspots. Consequently, investigating this hotspot 408

would be a waste of resources. 409

Data collection is rapidly changing, and our model confirms that we need to 410

reconsider how the data is gathered. Gathering data early, and unbiasedly (random), 411

provides an opportunity to gain new understanding into the mechanisms of the spread 412

of drug resistant pathogens, which ultimately leads to prolonging the life span of drugs. 413

This is highlighted when comparing the predicted density of positive patients from using 414

our model with using the GAM. When sampling is biased, the GAM is more accurate 415

even though it fails to reliably capture the direction of the dependence of resistant 416

pathogen presence and disease prevalence. Essentially, when the data is biased, our 417

modelled relationships between spatiotemporal factors and the density of of the resistant 418

pathogen are unreliable, whether using a hierarchical mechanistic model or a GAM. 419

The hierarchical mechanistic model is not limited to drug resistant pathogens. 420

Hotspots are also a concern for diseases in general. For example, regression models have 421
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been used to identify hotspots for lower respiratory infection morbidity and mortality in 422

African children [21]. The demonstration of our model required spatiotemporal 423

knowledge of the prevalence of the disease. If this is unknown, it can be estimated 424

through current methods, such as multinomial regression [15]. Or alternatively, our 425

model can be used to estimate the disease prevalence, and that outcome used as a 426

covariate to estimate the spread of the drug resistant pathogen. Our model is flexible to 427

features such as adding or removing hotspots over time (by changing the last term of 428

Eq. 4). Or our model can determine hotspot locations by adding the coordinates as 429

unknown model parameters in the parameter level. With this added flexibility, it could 430

be interesting to compare the hotspots for the disease, and compare these with the 431

hotspots for the corresponding drug resistant pathogens. 432
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