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�t+1
i =

√
1
ρ
I +

1
4

(Ut − Zt + ��i)T (Ut − Zt + ��i)

− 1
2

(Ut − Zt + ��i)

��i =
1
ρ

n∑
j=1

K(i, j )�̂j

(4)

We can also calculateZt+1 by setting the gradient of ρ2‖�
t+1
i −Z + Ut‖2F + λ‖Z‖1 to 0, which corresponds

to soft-thresholding formula sign(�t+1
i + Ut)

(
|�t+1

i + Ut| − λ
ρ

)
+

.
We can derive the updating rule of algorithm 2 following similar procedure as above.

Note S3: Pseudo-code of CeSpGRN and CeSpGRN-TF

Algorithm 1 Infer cell-speci�c GRN
1: function CeSpGRN(K, {�̂i}ni=1, tmax) // tmax is the max number of iterations
2: � = {} // store GRN for all cells
3: for i in 1,2, · · · , n do
4: Initialize ��i = 1

ρ

∑n
j=1 Kij · �̂j ; U1 = 0

5: Initialize Z1 = diag( ��i) // make sure symmetric positive de�nite
6: for t in 1,2, · · · , tmax do

7: �t+1
i =

√
1
ρI + 1

4 (Ut − Zt + ��i)T (Ut − Zt + ��i) − 1
2 (Ut − Zt + ��i)

8: Zt+1 = sign(�t+1
i + Ut)

(
|�t+1

i + Ut| − λ
ρ

)
+

9: Ut+1 = Ut + �t+1
i − Zt+1

10: � = � ∪ Zt+1

11: return �

Algorithm 2 Infer cell-speci�c GRN with TF information
1: function CeSpGRN-TF(K, {�̂i}ni=1, M, tmax) // tmax is the max number of iterations
2: � = {} // store GRN for all cells
3: for i in 1,2, · · · , n do
4: Initialize ��i = 1

ρ

∑n
j=1 Kij · �̂j ; U1 = 0

5: Initialize Z1 = diag( ��i) // ensure symmetric positive de�nite
6: for t in 1,2, · · · , tmax do

7: �t+1
i =

√
1
ρI + 1

4 (Ut − Zt + ��i)T (Ut − Zt + ��i) − 1
2 (Ut − Zt + ��i)

8: Zt+1 = sign(�t+1
i + Ut)

(
ρ|Θt+1

i +Ut|−λ
ρ+2βM2

)
+

9: Ut+1 = Ut + �t+1
i − Zt+1

10: � = � ∪ Zt+1

11: return �

Note S4: Simulating multivariate Gaussian gene expression data

(1) Calculate the covariance matrix of each graph. A positive bias is added on the diagonal values in the
adjacency matrix of the graph to make sure that the adjacency matrix is positive de�nite, following [1, 3].
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Then the covariance matrix is calculated as the inverse of the adjacency matrix. (2) Gene expression data
is sampled from multivariate Gaussian distribution defined by the covariance matrix. After we obtain the
gene expression data Xt for cell t, we set Xt to be the mean used in the multivariate Gaussian for generating
Xt+1. We generated single cell gene expression data in this manner following a predefined bifurcating cell
trajectory.

Note S5: Simulating scRNA-Seq data from modified BoolODE
model

Extending the regulation function. We explain the extension using an example where gene A is con-
trolled by P, Q, R according to the GRN G(t). Denoting

HP =

(
P

KP

)NP

HQ =

(
Q

KQ

)NQ

HR =

(
R

KR

)NR

(5)

where NP , NQ, NR are gene-specific hill threshold, and KP , KQ, KR are gene-specific hill coefficient. Then
the extended regulation function is

f(P,Q,R) =
α0 + αPHP + αQHQ + αPQHPHQ + αPRHPHR + αQRHQHR + αPQRHPHQHR

1 +HP +HQ +HPHQ +HPHR +HQHR +HPHQHR
(6)

In the original BoolODE simulator, α are binary values denoting different binding cases, i.e. P, Q, R not
binding; P binding, Q, R not binding; Q binding, P, R not binding; etc. The value of α can be calculated
through the boolean regulatory formula, by give the corresponding regulator 1 if binding happens, and 0 if
binding not happens. For example, if the regulating relationship is denoted as A = (P ∨ Q) ∧ R, then α0,
denoting the case where all three bindings not happen, can be calculated as α0 = (0 ∨ 0) ∧ 1 = 0.

To make the formula account for the regulation strength, the straightforward way is to change α from
boolean to soft value. We make the inhibitor has α value close to 0, the activator has α value close to 1.
And we make the combinatorial regulation to the sum or product of individual regulation value (replace ∨
with +, ∧ with ·).

Generating datasets with different trajectory backbones. The simulation procedure above is
only able to generate single-cell dataset with linear trajectory structure. In order to make the simulator to
generate the datasets with different trajectory structures like bifurcating structure, we create anchor time
points along the simulation time. When the evolved GRN hits a anchor time point, it will branch into two
or more evolving directions from the anchor time point, which will guide the gene expression dynamics to
branch into multiple directions and thus create datasets with different trajectory structures.

Simulation parameters. The simulation parameters are selected based on BoolODE [2]. Hill threshold
is set to be 10 for all genes, hill coefficient is set to be 10 for all genes, gene transcription rate is set to be 200,
and degradation rate is set to be 10. Simulation time step is set to be 0.001, and the number of changing
edges for each interval is set to be 4.
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Supplementary Figures and tables

Simulation interval T = 25

Simulation interval T = 5

b

a

Figure S1

Figure S1: (a-b) Performance of CeSpGRN with different hyper-parameters. Datasets with both fast chang-
ing graphs (upper) and slow changing graphs (lower) are used.
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a Gene-expression Cell-specific GRNsb

Genes Variance

Sox2 5.14e-5

Esrrb 3.13e-5

Nanog 2.19e-5

Stat3 1.88e-5

Etv5 1.34e-5

Pou5f1

Genes Variance

Pou5f1 5.14e-5

Tcf7 2.93e-5

Sall4 2.90e-5

Nr5a2 6.58e-6

Otx2 4.64e-6

Sox2

Genes Variance

Otx2 1.15e-4

Esrrb 7.62e-4

Nr5a2 3.92e-5

Pou5f1 2.19e-5

Etv5 3.44e-6

Nanogc

Figure S2

Figure S2: (a) PCA visualization of gene expression, where each cells correspond to one dot, and cells are
colored by the cluster label. (b) PCA visualization of cell-specific GRNs, where each GRN correspond to
one dot, and GRNs are colored by the cluster label. (c) Ranking of the variances of edges that connect to
Pou5f1, Sox2, and Nanog.
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Gained through time Lost through time
BCL6-TCF3 EGR2-FOSB
EGR2-SNAI1 EGR2-HOXA13
ETS1-PPARD EGR2-MAFB
HOXA13-SPIB EGR2-NFATC1
MAFB-PPARD FOSB-MAFB
MAFB-PPARG JUN-MAFB
MAFB-SNAI3 MAFB-TCFL5

MYB-SP3 MYEF2-UHRF1
MYB-NFATC2

Table S1: List of differentially rewired edges in human THP-1 cells dataset.Table S2

gaining losing

Upstream

SP3 NFATC1

TCF3 UHRF1

JUN

Midstream

PPARD FOSB

SNAI1 MYEF2

SPIB TCFL5

Downstream

SNAI3 NFATC2

PPARG

ETS1

BCL6

Table S2: The table of the genes that are gaining interactions and losing interactions in human THP-1 cells
dataset. Genes are categorized into Upstream, Midstream and Downstream genes.
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