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Abstract 10 

While biological invasions are recognized as a major threat to global biodiversity, determining 11 

species’ abilities to invade new areas (species invasiveness) and the vulnerability of those areas 12 

to invasions (community invasibility) are still poorly understood. Here, we used trait-based 13 

analysis to profile invasive species and quantify the community invasibility for >1,800 North 14 

American freshwater fish communities. We show that species with higher reproduction rates, 15 

longer life spans and larger sizes tend to be more invasive. Community invasibility peaked 16 

when the functional distance among native species was high, leaving unoccupied functional 17 

space for the establishment of potential invaders. Invasion success is therefore governed by 18 

both the functional traits of non-native species determining their invasiveness, and by the 19 

functional characteristics of the invaded community determining its invasibility. Considering 20 

those two determinants together will allow better predictions of invasions. 21 

MAIN TEXT 22 

Introduction 23 

Freshwater systems are among the most threatened ecosystems and most of the world’s 24 

river basins have been severely altered by human activities (1, 2). Among them, habitat 25 
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fragmentation and non-native fish introductions are the most pervasive (2).  In particular, fish 26 

introductions have markedly changed fish community structure and composition in  rivers 27 

worldwide (3, 4). Nevertheless, our ability to predict invasions remains meager considering 28 

both non–native species’ invasiveness (i.e., the capacity of a species to colonize areas where it 29 

does not naturally belong), and native communities’ invasibility (i.e., the vulnerability of native 30 

communities to non-native species establishment) (5) are poorly understood properties.  31 

Invasiveness has frequently been assessed by comparing functional traits or life history 32 

strategies between non-native and native species from the recipient communities (e.g., 6, 7-10). 33 

Non-natives have been reported to belong to higher trophic levels and have distinct swimming 34 

capacities compared to natives (10, 11). However, few studies have tested which among these 35 

differential traits actually help a species to colonize areas where it does not naturally belong. 36 

In other words, while it is clear that invasive species often feature different traits, the 37 

relationship between functional traits and species invasiveness per se remains to be explored. 38 

Moreover, species invasiveness is likely coupled with the functional traits of  recipient 39 

communities (12), which could determine their vulnerability to non-native species 40 

establishment. Two mutually exclusive ecological hypotheses have been frequently invoked to 41 

explain community invasibility. First, the biotic acceptance hypothesis predicts that the number 42 

of successful invasive species is positively related to native species richness in the recipient 43 

community, as favorable environmental conditions sustaining high native species richness 44 

should also benefit  non-native species (13). In contrast, the biotic resistance hypothesis 45 

predicts a negative relationship between native and non-native species richness, because 46 

competitive interactions between native and non-native species will increase with native 47 

species richness,  thus excluding most  non-native species (14). However, neither of these two 48 

hypotheses explained non-native species richness in  river basins around the world, and only 49 
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anthropogenic disturbances – non-native species releases and environmental degradation – 50 

were responsible for increased non-native species richness  (4). 51 

The lack of clear relationships between recipient community properties and invasibility 52 

might stem from the use of taxonomic diversity metrics such as richness or identity of the 53 

species. Those metrics may not accurately predict invasibility because the diversity in species 54 

does not predict the diversity of the functions they support (15). In fish communities most 55 

species are functionally redundant, whereas a few have unique functional traits (16, 17). Such 56 

functional uniqueness makes the communities and the functions they support vulnerable to 57 

environmental changes, implying that so-called ecosystem insurance (18) is only true for a few 58 

redundant functions. Thus, community invasibility might not be explained by the diversity of 59 

the functions experienced by a community but by the functional redundancy among species 60 

from the focal community. Communities with functions supported by unique species, should 61 

therefore be more vulnerable to invasions than communities with strong functional packing.  62 

Our aim was therefore to characterize the functional structure of communities by 63 

considering the range (e.g., functional richness) and the partitioning (e.g., functional evenness, 64 

functional divergence) of functions within each community (15, 16). Understanding whether 65 

the functional structure of local communities and functional similarity (or distinctness) between 66 

non-native and native species affect the invasion process could help identify whether 67 

community invasibility is primarily governed biotic acceptance or by biotic resistance. For 68 

instance, the unsaturation of local communities ensures establishment of new species without 69 

native species exclusion (19, 20), thus suggesting a dominance of biotic acceptance. But even 70 

in unsaturated communities, if the introduced non-native species are functionally similar to 71 

natives it might still generate competitive effects, and lead to biotic resistance (16, 21). We 72 

therefore predict that the functional similarity between non-native and native assemblages, as 73 
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well as the functional structure of local communities constitute important determinants of the 74 

invasion process.  75 

Here, we examined how functional trait analysis can unify the species-centered and 76 

community-focused views of the invasion process and yield new insights into both the 77 

invasiveness of particular species, and the invasibility of recipient communities. We used fish 78 

occurrence data from more than 1,800 watersheds across the United States coupled with 20 79 

fish life-history traits (i.e., morphological, physiological, behavioral) to compute two distance 80 

metrics between nonnative and native species (Fig. 1), and six complementary functional 81 

diversity indices for recipient fish communities at the watershed level. Our goal is not only to 82 

profile the functional characteristics of invaders, but also to quantify the vulnerability of 83 

recipient communities based on their functional attributes. We therefore expect that the 84 

invasion risk posed by a non-native species results from the combination of its own functional 85 

attributes and of the functional characteristics of the recipient community. 86 

Results 87 

Spatial distribution of non-native species 88 

Among the 1,873 considered watersheds, covering most of the continental US, we 89 

identified 1,720 watersheds that have at least one record of a non-native species. 1,560 90 

watersheds that had translocated species (i.e., species that were native to the continental US 91 

but translocated to watersheds from which they were historically absent), and 1,353 watersheds 92 

that had exotic species (i.e., species that were historically absent from the continental US) . The 93 

1,873 focal watersheds contain 862 fish species, including 562 native species that have never 94 

invaded other watersheds, 227 translocated species, and 73 exotic species. Native and non-95 

native species richness spatial patterns were contrasted, with the highest native fish richness in 96 

the watersheds belonging to the Mississippi drainage, whereas non-native species richness 97 

peaked east and west of the Mississippi (Fig. 2).  98 
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Functional difference between native and non-native fishes 99 

Both translocated and exotic species showed different distributions along most of the 20 100 

functional traits from native species. Moreover, some of the traits’ average values changed 101 

gradually from native, to translocated and to exotic species (Fig. S1, S2). Indeed, among the 102 

10 morphological traits, values of maximum body length and relative eye size gradually 103 

increased, while body elongation gradually decreased from native, to translocated, and to exotic 104 

species. Among the other 10 ecological and life-historical traits, average values of longevity, 105 

percent of euryhaline species, and percent of diet breadth also showed gradually increasing 106 

trends across the three groups. The translocated and exotic species both showed higher 107 

fecundity than the native species (K-S test, P < 0.001). However, parental care for exotic 108 

species is significantly more frequent than for the native and translocated species (Chi-square 109 

test, P < 0.001)., while the latter two groups did not differ (Fig. S1, S2). 110 

Species invasiveness 111 

Species invasiveness was significantly influenced by a set of five predictors, each 112 

contributing more than 6.25% in the boosted regression trees model (hereafter BRT). 113 

According to the cross-validation procedure, the model explained 34.7% of the total deviance. 114 

Partial dependency plots in Fig. 3 showed that the PCA axis (Repro_PCA1) combining 115 

maximum body length, fecundity, longevity and age at maturity contributed the most (39.2%) 116 

to invasion frequency, followed by body elongation (17.7%), diet breadth (10.5%), trophic 117 

level (9.8%) and the PCA axis (Temp_PCA1, 7.4%) combining the three temperature variables. 118 

Neither the other traits nor the type of the non-native species had a significant influence on the 119 

patterns (Fig. 3). Despite a few outliers, invasiveness is positively correlated to the 120 

reproduction-related traits, diet breadth, and trophic level. However, invasiveness reached its 121 

highest values at mid-high trophic levels and then decreased slightly thereafter. In contrast, the 122 
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invasiveness is negatively correlated with body elongation and temperature-related traits (Fig. 123 

3).  124 

Community invasibility  125 

The BRT model explained 67.6% of the total deviance for the patterns of community 126 

invasibility. Partial dependency plots presented in Fig. 4 show the effect of a particular variable 127 

on the invasibility after accounting for the average effects of all other variables in the model. 128 

Fitted functions by the BRT model were frequently nonlinear and varied in shape. Six variables 129 

related to trait-based distance, functional structure, environment and human activities were 130 

found to be the best predictors of community invasibility, with relative contributions ranging 131 

from 9% to 17% (Fig. 4). Among them, the functional distinctness between non-native species 132 

and native fish assemblages, measured as the centroid distance between the non-native and 133 

native species assemblages, was the most influential predictor (16.8%) and was negatively 134 

related to community invasibility. In contrast, mean functional distance between non-native 135 

species and their nearest neighbors (9.6%) was positively related to the community invasibility. 136 

Functional specialization (9.8%) was found to be the most influential among the six functional 137 

diversity indices and had a positive influence on community invasibility. As expected, number 138 

of invasions increased significantly with the intensity of human activities, especially for the 139 

human footprint variable (9.1%, Fig. 4).  140 

Discussion 141 

Fish morphological traits are different between native and non-native species. Specifically, 142 

studies considering morphological differences between natives and non-natives at the river 143 

basin scale showed that non-native species had larger size and less elongated bodies than their 144 

native counterparts. This general trend holds throughout the globe, and indicates that most non-145 

native species are adapted to live in lentic or slow flowing habitats (8, 17, 22). Within river 146 
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basins, (9) also revealed that established non-native fish species exhibited distinct life-history 147 

strategies compared to the native species in the Colorado River basin. Our regional (watershed) 148 

approach over the continental US revealed that functional traits, including morphological, 149 

physiological and life-historical aspects differ between native and non-native species 150 

(including translocated and exotic species), therefore paralleling previous studies at both local 151 

and global scales (2, 9, 10). 152 

However, our findings also show that not all of the traits differing between native and non-153 

native species contribute to the invasiveness of non-native species. Instead, species’ 154 

invasiveness was only predicted by a few traits, among which high reproduction rates, long life 155 

spans and large sizes are the most influential. High reproduction rate is considered as an 156 

advantage to establish and spread in a novel environment, as shown by (23) for the common 157 

carp (Cyprinus carpio) invasion in Australia. Moreover, life span and body size are positively 158 

linked to the dispersal ability of the species, and therefore favor the post establishment spread 159 

of large and long-lived species (7, 22). In addition, large species are often preferred for 160 

aquaculture and angling, which are among the most efficient pathways of introduction, and 161 

generate massive and widespread fish releases in natural environments (24, 25) that contribute 162 

to the invasiveness of those species. 163 

In contrast, although other traits of non-native species also significantly differed from those 164 

of native species, their contribution to species invasiveness remained negligible. This could be 165 

explained by the complexity of the invasive process (including introduction, establishment and 166 

spread steps, each determined by distinct drivers) and the variety of factors that might affect  167 

invasion success (including difficult to measure factors such as propagule pressure or temporal 168 

dynamics of introduction) (26, 27). Indeed, (17) revealed that environmental filtering acts 169 

together with human preference for particular fish morphologies to jointly determine the 170 

morphological characteristics of introduced non-native species. Intriguingly, our results show 171 
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that top predators with a relatively narrow diet breadth, are not among the best invaders. Instead, 172 

omnivorous fish with a wide diet breadth appear to be more invasive. For instance, top 173 

predators feeding only on fishes such as peacock bass (Cichla ocellaris, exotic) and 174 

Muskellunge (Esox masquinongy, translocated), have been recorded to invade 4 and 25 175 

watersheds in the US, respectively. In contrast, the common carp (Cyprinus carpio, exotic) and 176 

yellow bullhead (Ameiurus natalis, translocated), with a moderate trophic level but a wide diet 177 

breadth, have been recorded to invade 1,131 and 452 watersheds in the US, respectively. In 178 

addition, although the distributions of most traits significantly differed between the 179 

translocated and exotic species (table S2), the type of invasion (exotic/translocated) did not 180 

influence the species invasiveness models, demonstrating that species identity or native origin 181 

is a poor proxy of invasiveness compared to functional traits. 182 

Community invasibility of US watersheds was more influenced by the functional structure 183 

of the communities than by human disturbances. Surprisingly, human footprint and the degree 184 

of river fragmentation had only small effects on community invasibility, whereas they are 185 

recognized as major predictors of the number of non-native species (4, 28, 29). For instance, 186 

(2) revealed that  patterns of change in global fish biodiversity were dominated by the 187 

introduction of non-native species in anthropized areas with high human footprint and intense 188 

river fragmentation. Our regional findings contrast with these global results as we report a weak 189 

influence of human activities on community invasibility patterns across the US watersheds. 190 

This inconsistency might be rooted in the different spatial scales considered. At the watershed 191 

scale, the measurement of river fragmentation only accounts for dams located on the focal 192 

watershed, while hydrologically mediated effects might spread far downstream (30). Our 193 

findings also tend to support the biotic acceptance hypothesis, which is verified by the positive 194 

correlation between the watershed area (and thus the native species richness) and invasibility, 195 
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therefore confirming that species rich native assemblages are not insured against non-native 196 

species establishment. 197 

More importantly, by considering the functional diversity metrics of the local community 198 

and the trait-based distance metrics between local and non-native assemblages, we were able 199 

to highlight a novel mechanism explaining community invasibility. The highest invasibility 200 

was indeed recorded when native and non-native species pools from a watershed share the 201 

same functional diversity (low centroid distance between non-native and native species 202 

assemblages), and individual native and non-native species within that assemblage are not 203 

functionally redundant (high mean distance between the non-native species and their nearest 204 

neighbors). This indicates that most non-native species pack into the center of the native species’ 205 

functional space, but keep distance from their native neighbors, thereby avoiding competitive 206 

interactions that are prone to reduce the chances of establishment. Such a process can therefore 207 

be viewed as an environmental filtering effect that increases the overall functional similarity 208 

between native and non-native species pools in the same watershed (thus resulting in an 209 

apparent biotic acceptance effect). Then, among the species that successfully passed the 210 

environmental filter, only those occupying an available functional niche can establish and not 211 

suffer from biotic resistance. The interplay between environmental filtering at the community 212 

scale and biotic resistance at the species scale therefore represents a novel process that may 213 

solve the long-standing debate about the environmental vs biotic determinants of biological 214 

invasions (e.g., 4, 31). We here show that both processes act together but the former at the 215 

community level and the latter at the species level. Thus, communities with lower density in 216 

species in their functional center will be the most sensitive to invasions, which is confirmed by 217 

the positive correlation between community invasibility and functional specialization. Indeed, 218 

functional specialization represents the proportion of generalist species (i.e., species close to 219 

the center of the functional space, (16)) in a community, and high functional specialization 220 
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indicates that more gaps are available around the functional center. In contrast, the size of the 221 

functional space (i.e., functional richness) and other metrics representing functional structure 222 

of assemblages do not facilitate invasions. At least for the US fish fauna, functional 223 

specialization can be considered as proxy for vulnerability to non-native species (i.e., 224 

community invasibility), and it could therefore be of major interest when designing 225 

management actions to avoid further invasions of the most sensitive watersheds. This is of 226 

particular importance given the current spread of non-native species throughout the world, as 227 

well as the predicted emergence of new invaders (32, 33). We thus implore future studies to 228 

evaluate the relevance of the functional specialization metric as a proxy of invasion 229 

vulnerability in other regions and on other taxa. 230 

To conclude, our study shows the importance of functional traits in the analysis of species 231 

invasiveness and community invasibility. We confirm that functional differences between 232 

native and non-native fish species exist, but species invasiveness is dominated by only a few 233 

functional traits among them. Our results also provide new insights into the mechanisms 234 

promoting community invasibility. Though our findings tend to support the human activity and 235 

biotic acceptance hypotheses, in essence, community invasibility cannot be simply driven by 236 

one of them or by their joint effect. Instead, the original mechanisms unveiled in our study 237 

suggest that functional similarity between the non-native and native species and the local 238 

community functional structure are more influential than human activity and biotic acceptance 239 

in shaping community invasibility patterns. Communities with higher levels of functional 240 

redundancy or denser functional centers would have stronger resistance to invasive species (i.e., 241 

lower invasibility). This could explain why the speciose fish communities in the Amazon river 242 

basin, which are highly redundant in functions (34, 35), have received few non-native species 243 

(36). Our study also raises a new question as to why most species, whether native or non-native, 244 

tend to gather in or invade the crowded center of the functional space, even if the space near 245 
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the border is almost empty. We expect that the distribution of resources and the relative position 246 

of species niches are the key factors, but further evidence is needed to confirm this. 247 

Materials and Methods 248 

Species occurrence data: Native species occurrence records (804 species considered) at the 249 

watershed scale (i.e., Hydrologic Unit Code 8; HUC8) were obtained through NatureServe 250 

(https://www.natureserve.org) and included both extant and extinct species to account for 251 

species historically present in a given watershed but extirpated as a potential consequence of 252 

various human activities such as species invasions. Occurrence records of the naturalized or 253 

established non-native fish species (321 species considered) were obtained through the U.S. 254 

Geological Survey (USGS) Non-indigenous Aquatic Species (NAS) database 255 

(http://nas.er.usgs.gov) at the watershed scale (i.e., Hydrologic Unit Code 8; HUC8). Non-256 

native species data includes exotic species that were historically absent from the continental 257 

US, and translocated species that were native to the continental US but translocated to 258 

watersheds from which they were historically absent. This dataset only considered the 259 

identified species that locally create self-sustaining populations, thus we excluded records of 260 

non-self-sustaining or eradicated populations, vagrant species detected in only one sampling 261 

occasion, and non-identified or hybrid species. 262 

Functional traits: We collected ten morphological traits related to fish locomotion and food 263 

acquisition and ten additional traits related to life-history and physiological functions from 264 

FISHMORPH database (37), the Fish Traits database for North American freshwater fishes 265 

(38), and FishBase (39). The ten morphological traits are maximum body length, body 266 

elongation, relative eye size, oral gape position, relative maxillary length, vertical eye position, 267 

body lateral shape, pectoral fin vertical position, pectoral fin size, and caudal peduncle 268 

throttling. The ten additional ecological traits are longevity, fecundity, mature age (i.e., age of 269 

sexual maturity), trophic level, temperature range, minimum temperature, maximum 270 
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temperature, euryhaline (yes, no), parental care (non-guarders1: open substratum spawners, 271 

non-guarders2: brood hiders, guarders1: substratum choosers, guarders2: nest spawners, 272 

bearers), and diet breadth (from 1 to 9). See Table S1 for details on the 20 functional traits. 273 

Due to insufficient information on some species, some values were missing in the raw 274 

functional trait data. Overall, 21% of the values were missing in the raw trait dataset of 959 275 

fish species. We statistically imputed these missing values (NA) with a machine learning 276 

algorithm called ‘missForest’ (40, 41). This method uses a random forest trained on the 277 

observed values of a data matrix to predict the missing values and automatically calibrates the 278 

filling values by a set of iterations. In the imputation process, after each iteration the difference 279 

between the previous and the new imputed data matrix is assessed for the continuous and 280 

categorical parts, and the algorithm stops once both differences become larger (40). It can be 281 

used to impute continuous and/or categorical data and is not biased by complex interactions or 282 

nonlinear relationships. We included the evolutionary relationships between species in the 283 

imputation process by including the first ten phylogenetic eigenvectors in the matrix to be 284 

imputed (42). We tested the accuracy of this method in filling in missing values on a random 285 

set of 350 species with complete values for all traits. We randomly deleted 20% of the values 286 

for the 350 species, and then imputed them with missForest. We then compared the simulated 287 

values to the actual values, and repeated this procedure 100 times. Finally, we quantified 288 

imputation accuracy by calculating the Spearman correlation coefficient between the actual 289 

and imputed data, which varied from 0.86 to 0.95. In contrast, the classical imputation method 290 

of filling in missing observations with the average trait value of the 80% species with data, 291 

produced average correlation coefficients that ranged from 0.79 to 0.85, confirming the 292 

improved performance of missForest (Fig. S3). 293 

Predictors used in the invasibility models 294 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 6, 2022. ; https://doi.org/10.1101/2022.03.04.481515doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.04.481515
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 
 

a. Functional diversity indices 295 

First, we calculated trait dissimilarity between species pairs in the communities using the 296 

Gower pairwise distance (43). This metric can handle multiple types of data (e.g., categorical, 297 

ordinal and continuous traits). We then used principal coordinate analysis (PCoA) to build the 298 

functional space on the first 5 principal coordinate axes, which explained over 80% of the total 299 

variance. We removed watersheds with fewer than 6 species to meet the criteria for calculating 300 

functional diversity indices, which resulted in 1,873 watersheds for the following analyses. 301 

Then we computed six complementary functional indices that are frequently used in functional 302 

diversity studies (16, 44-46): functional richness (FRic), functional evenness (FEve), 303 

functional divergence (FDiv), functional dispersion (FDis), functional specialization (FSpe), 304 

and functional originality (FOri). These six metrics were used to represent the functional size 305 

and structure of the recipient fish community in each watershed.  306 

FRic measures the size (i.e. convex hull) of the functional space; FEve measures the 307 

regularity of traits in the functional space; FDiv measures the proportion of species with the 308 

most extreme trait values; FDis measures deviation of species trait values from the center of 309 

the functional space; FSpe measures the mean distance of a species from the rest of the species 310 

pool; and FOri measures the distance between each species and its nearest neighbor (16, 47). 311 

b. Trait-based distance between invasive and native species 312 

We computed two novel metrics to represent the distance between the non-native species 313 

assemblage and recipient community for each watershed in the five-dimensional functional 314 

space, which thus reflect the degree of functional redundancy between them. First, the centroid 315 

distance (cd) is the distance between the centroids of non-native and native species assemblages, 316 

which reflects the overall relative positions of the two groups. Second, the mean distance (md) 317 

is the distance between all non-native species and their nearest native neighbors, which reflects 318 
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the average position of individual non-native species relative to their nearest neighbors. See 319 

Fig. 1 for details about how these two metrics were calculated.  320 

c. Environmental and human related variables 321 

We also included the variables widely used in testing the three main hypotheses relevant to 322 

community invasibility (4). Variables related to biotic acceptance/resistance hypotheses were 323 

selected as the native species richness (NSR), net primary productivity (NPP) and watershed 324 

area (Area). Variables related to human activity hypothesis were selected as human footprint 325 

(FPT), gross domestic product (GDP), and degree of fragmentation (DOF).  326 

If community invasibility is strongly and positively correlated to NSR, NPP and Area, the 327 

biotic acceptance hypothesis will be supported. Otherwise, if community invasibility is 328 

strongly and negatively correlated to NSR, the biotic resistance hypothesis will be supported 329 

(4). Human activity hypothesis will be supported if community invasibility is highly correlated 330 

to the FPT, GDP and DOF.  331 

NPP was taken from an online data repository (http://files.ntsg.umt.edu/), using the mean 332 

annual NPP from 2000 to 2015. FPT is a comprehensive representation of anthropogenic 333 

threats to biodiversity, which cumulatively accounts for eight human pressures—built 334 

environments, croplands, pasture lands, human population density, night lights, railways, major 335 

roadways, and navigable waterways. The FPT dataset (resolution: 1 km2) was taken from (48). 336 

GDP measures the size of the economy and is defined as the market value of all final goods 337 

and services produced within a region in a given period. The GDP dataset (1 square degree 338 

resolution) was taken from (49). DOF measures the degree to which river networks are 339 

fragmented longitudinally by infrastructure, such as hydropower and irrigation dams (1). The 340 

DOF dataset (resolution: 500 m2) was taken from (1). 341 
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We mapped NPP, FPT, GDP and DOF by their relative resolution grid data over the 342 

watershed-scale map and then calculated the mean value of all the cells covered by each 343 

watershed using QGIS. 344 

Statistical analysis: We compared the distributions of 20 traits among the three assemblages 345 

(i.e. native, translocated and exotic species) via the Kolmogorov–Smirnov test (hereafter K–S 346 

test) for continuous traits and the Chi-square test for categorical traits.  347 

Since maximum body length, fecundity, longevity, and age at maturity are highly correlated 348 

(Pearson r > 0.7, Fig. S4A), we used principal component analysis (PCA) and chose the first 349 

PC axis as a combined reproductive trait (Repro_PCA1), which represents 71.9% of the total 350 

variance (Fig. S4B). Similarly, we did a PCA for the three temperature related traits and chose 351 

the first PC axis (Temp_PCA1), which represents 74.9% of the total variance (Fig. S4C). We 352 

used the invasion frequency (i.e., the frequency of occurrence of a species in the watersheds 353 

where it is not historically present) of each established non-native species across the 1,873 354 

watersheds as a proxy of species invasiveness. Then, we employed boosted regression trees 355 

(BRT) to identify which functional traits or trait combinations determine species invasiveness. 356 

We also included the type of invasion (i.e., exotic or translocated) in the BRT model to test 357 

whether the different categories of non-native species behaved differently. Therefore, 16 358 

predictors were considered in this BRT model. We applied the methodology proposed by (50) 359 

using a BRT model that assumes a Poisson distribution of the response variable. 360 

We then quantified the correlations among the above predictors for the community 361 

invasibility model and found that NSR and GDP were highly correlated (Spearman rho>0.7, 362 

Fig. S5) with FRic and FPT, thus we removed NSR and GDP from the following models. We 363 

computed the established non-native species number for each of the 1,873 watersheds as the 364 

community invasibility, and applied the Poisson BRT model to assess the relative importance 365 
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of each of the 12 above-described predictors on the observed invasibility of the watershed-level 366 

communities.  367 

The BRT models were fitted using the 'gbm.step' function in 'dismo' package in R (50), 368 

which allows for the specification of four main parameters: bag fraction (bf), learning rate (lr), 369 

tree complexity (tc) and the number of trees (nt). bf is the proportion of samples used at each 370 

step, lr is the contribution of each fitted tree to the final model, tc is the number of nodes of 371 

each fitted tree determining the extent to which statistical interactions were fitted, and nt 372 

represents the number of trees corresponding to the number of boosting iterations. The optimal 373 

setting of the parameters was chosen using 10-fold cross validation (CV). The procedure 374 

provides a parsimonious estimate, CV – D2 (i.e., the cross validated proportion of the deviance 375 

explained), representing the expected performance of the model when fitted to new data (50). 376 

Using CV, we explored different combinations of the parameters to be set and retained the 377 

optimal model showing the highest CV – D2. We used the contribution of predictors to the 378 

model to quantify the significance and applied the significant threshold as 1/number of 379 

predictors*100% ((51). Thus, the significant thresholds for BRT on species invasiveness (16 380 

predictors) and community invasibility (12 predictors) were 6.26% and 8.33%, respectively.  381 

As BRT accounts for spatial autocorrelation in neither the dependent nor predictor variables, 382 

we also ran an autoregressive error (SARerror) model for the community invasibility patterns 383 

and compared these results with those of the BRT, to check if spatial autocorrelation affected 384 

the results. We scaled all predictor variables to have zero mean and unit variance to ensure 385 

equal weighting in the model. Quadratic terms were included in the SARerror model to consider 386 

non-linear responses. The spatial autocorrelation analysis was performed using the 'spatialreg' 387 

and 'spdep' packages (52). We used Nagelkerke's R2 (53) as the pseudo R-squared to qualify 388 

the SARerror model's performance. After model fitting, we checked for broad spatial 389 

autocorrelation in model residuals by computing the Moran’s I statistic (54). The results of 390 
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SARerror models are provided in the supplementary material (Table S3). The core drivers 391 

identified by the BRT models were confirmed by the SARerror analysis, suggesting spatial 392 

autocorrelation did not have an important effect on our results. 393 

All statistical analyses were performed with R software version 4.1 (55). 394 
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 533 

Fig.1. An example showing how centroid distance (cd) and mean distance (md) are 534 

computed. The p and q individual native and non-native species in a n-dimensional trait space 535 

(here n=2) are represented by blue and red circles. Vectors Yj and Xj represent the positions of 536 

non-native species j and its nearest native species j. dj is the distance between Xj and Yj. CX and 537 

CY (triangles) are the centroids of the p native species and q non-native species.  In that case, 538 

CX = [CXi] and CY = [CYi], where CXi and CYi are the mean value of trait i for native and non-539 

native species cd is the distance between CX and CY. md is the mean distance between all non-540 

native species and their nearest native neighbors.541 
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 542 

Fig.2. Number of native and non-native species in the 1,873 watersheds in the US. A) native 543 

species; B) non-native species.544 
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 545 

Fig.3. Results of boosted regression trees showing the partial dependency between species 546 

invasiveness and fish functional traits. Repro_PCA1: first PCA axis of maximum body length, 547 

longevity, fecundity, and mature age traits; BEl: body elongation; DBt: diet breadth; TLl: 548 

trophic level; Temp_PCA1: first PCA axis of temperature range, minimum and maximum traits; 549 

PFv: pectoral fin vertical position; BLs: body lateral shape; OGp: oral gape position; RMl: 550 

relative maxillary length; PCr: parental care; REs: relative eye size; PFs: pectoral fin size; EVp: 551 

eye vertical position; CPt: caudal peduncle throttling; EHl: euryhaline. The value in parentheses 552 

in each panel shows the percentage of contribution of each trait considered in the model, and 553 

contributions > 6.26% are significant.554 
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 555 

Fig.4. Results of boosted regression trees showing the partial dependency between 556 

community invasibility and predictors related to recipient community functional structure, 557 

distance between invasive and native species, environment, and human activities. cd: centroid 558 

distance; Area: watershed area; NPP: net primary productivity; FSpe: functional specialization; 559 

md: mean distance; FPT: human footprint; FDiv: functional divergence; FRic: functional richness; 560 

DOF: degree of river fragmentation; FOri: functional originality; FDis: functional dispersion; 561 

FEve: functional evenness. The value in parentheses in each panel shows the percentage of 562 

contribution of each predictor considered in the model, and contributions > 8.33% are significant. 563 
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