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Abstract: 14 

Open-population spatial capture-recapture (OPSCR) models use the spatial information 15 

contained in individual detections collected over multiple consecutive occasions to estimate 16 

occasion-specific density, but also demographic parameters. OPSCR models can also estimate 17 

spatial variation in vital rates, but such models are neither widely used nor thoroughly tested. 18 

We developed a Bayesian OSPCR model that not only accounts for spatial variation in survival 19 

using spatial covariates, but also estimates local density-dependent effects on survival within a 20 

unified framework. Using simulations, we show that OPSCR models provide sound inferences 21 

on the effect of spatial covariates on survival, including multiple competing sources of 22 

mortality, each with potentially different spatial determinants. Estimation of local density-23 

dependent survival was possible but required more data due to the greater complexity of the 24 

model. Not accounting for spatial heterogeneity in survival led to positive bias in abundance 25 

estimates (up to 10% relative bias). We provide a set of features in R package nimbleSCR that 26 

allow computationally efficient fitting of Bayesian OPSCR models with spatially varying 27 

survival. The ability to make population-level inferences of spatial variation in survival is an 28 
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essential step towards a fully spatially-explicit OPSCR model that can disentangle the role of 29 

multiple spatial drivers on population dynamics. 30 

1. Introduction 31 

Spatial capture recapture (SCR) models are hierarchical models that explicitly use the spatial 32 

information contained in repeated individual detections to account for imperfect detection and 33 

estimate density (Efford 2004, Borchers and Efford 2008, Royle et al. 2014). Because SCR 34 

models are spatially explicit and accommodate various types of data (e.g., physical capture, 35 

photographic, non-invasive genetic, acoustic), they are now routinely used to analyze wildlife 36 

monitoring data. When data are collected over several consecutive occasions, open-population 37 

SCR (OPSCR) models can be used to estimate demographic rates and movement of individuals 38 

between occasions in addition to densities (Bischof et al. 2020a).  Modelling individual 39 

movement between occasions can help distinguish between the different causes of individual 40 

disappearances from the population (Gardner et al. 2018). These properties make OPSCR 41 

models well-suited for drawing population-level inferences about the drivers of demographic 42 

processes.  43 

Demographic rates, such as survival, are known to vary in time (Gaillard et al. 2000), with 44 

individual attributes (de Valpine et al. 2014), and across space (DeCesare et al. 2014). 45 

Temporal and individual variation of demographic parameters can be readily integrated in 46 

OPSCR models (Augustine et al. 2019, Bischof et al. 2020a), and the possibility of inferring 47 

spatial heterogeneity in survival using OPSCR models has been suggested (Royle et al. 2014) 48 

and applied (Chandler et al. 2018). However, the performance of models that estimate spatially-49 

variable survival has not been thoroughly tested and their potential remains under-exploited. 50 

Estimation of spatially varying vital rates is a key step in the development of OPSCR models 51 
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(Royle et al. 2014) as it will lead to a better understanding of the processes driving the spatial 52 

distribution of individuals (Pulliam 1988).  53 

At their core, OPSCR models account for imperfect detection by using an observation process 54 

which assumes that an individual’s probability of detection is a function of distance from its 55 

activity center (AC) (Borchers and Efford 2008, Royle et al. 2014). The location of individual 56 

ACs is a latent quantity and is a representation of the center of the individual’s home range. 57 

AC locations are a key quantity of OPSCR models as they allow the estimation of density and 58 

inter-annual movement. AC locations also provide the spatial information necessary to 59 

characterize the environment in which individuals are located, and therefore its influence on 60 

survival (Chandler et al. 2018). 61 

Density itself can be a key driver of survival (Gaillard et al. 2000). The study of density-62 

dependent survival has often been limited to estimating the average population response to 63 

variation in overall population size through time (Bonenfant et al. 2009). However, variation 64 

in density is a spatiotemporal process and individuals within the population may not experience 65 

the same density. OPSCR models, by estimating spatio-temporal variation in density, offer a 66 

unique opportunity to study density-dependence in survival at the local scale while accounting 67 

for variation and uncertainty in both density and survival within a unified framework. 68 

Here, we present a Bayesian OPSCR model that accounts for spatial variation in survival as a 69 

function of spatial covariates (e.g., characteristics of the landscape, resources availability) and 70 

density. We model survival using a hazard rate formulation to allow inferences on spatial 71 

variation  in competing risks of mortality (Ergon et al. 2018). We quantify model performance 72 

by simulating OPSCR datasets under a wide range of scenarios. In addition, we quantify the 73 

consequence of ignoring spatial heterogeneity in mortality for OPSCR inferences. All 74 

functionalities are made available in R package nimbleSCR which provides tools for fitting 75 
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efficient Bayesian (Markov chain Monte Carlo) MCMC models (de Valpine et al. 2017, 76 

NIMBLE Development Team 2019, Bischof et al. 2020b, Turek et al. 2021).  77 

2. Methods 78 

2.1. OPSCR model 79 

To estimate spatial variation in mortality from live encounter and dead recoveries collected 80 

over several consecutive occasions (hereafter “years”), we built a Bayesian hierarchical state-81 

space OPSCR model. The model is composed of four sub-models for 1) density and inter-82 

annual movement, 2) demography, 3) live detections, and 4) dead recoveries. (Royle et al. 83 

2014, Bischof et al. 2020a, Milleret et al. 2020, 2021, Dupont et al. 2021). We created two 84 

versions of the model. The first version can distinguish between two spatially-variable and 85 

competing causes of mortality. For example, it is possible to distinguish between culling and 86 

other causes of mortality in the case that all individuals culled are recovered dead (Bischof et 87 

al. 2020a). The second model version only considered one cause of mortality. This reflects a 88 

realistic limitation because dead recoveries are not always available in OPSCR datasets and 89 

distinguishing between multiple causes of death may not be possible. 90 

2.1.1. Spatial distribution and movement submodel  91 

In SCR models, the location of individuals is represented by their activity centers (ACs) within 92 

the spatial domain (S). We used a Bernoulli point process with spatial intensity 𝜆(𝒔) to model 93 

the distribution of ACs, where s is a vector of spatial coordinates of ACs (Zhang et al. 2020). 94 

For t>1, the probability density of 𝒔𝑖,𝑡 is conditional on the Euclidean distance to 𝒔𝑖,𝑡−1: 95 

𝜆(𝒔𝑖,𝑡|𝒔𝑖,𝑡−1, 𝜏) ∝  𝑒
−

‖𝒔𝑖,𝑡−𝒔𝑖,𝑡−1‖
2

2𝜏2         eqn 1 96 
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where τ is the standard deviation of a bivariate normal distribution centered on 𝒔𝑖,𝑡−1. This 97 

represents movement between t-1 and t and helps distinguish between mortality and emigration 98 

(Gardner et al. 2018). 99 

2.1.2. Demographic submodel  100 

We used a multistate formulation (Lebreton and Pradel 2002) where each individual life history 101 

is represented by a succession of up to four discrete states zi,t: 1) “unborn” if the individual has 102 

not been recruited in the population; 2) “alive” if it is alive; 3) “culled” if it was culled and 103 

therefore recovered dead between the start of the previous and current occasion; or 4) “dead”: 104 

if it has died but was not recovered dead. We used data augmentation, whereby additional, 105 

undetected individuals are available for inclusion in the population at each time step (Royle et 106 

al. 2007, Royle and Dorazio 2012). 107 

During the first year, individuals can only be designated as “unborn” (zi,1=1) or “alive” (zi,1=2) 108 

so that zi,1 ~ dcat(1-𝛾1 , 𝛾1 , 0, 0) where 𝛾1 represents the probability to be “alive” at time t=1.  109 

For t≥2, zi,t is conditional on the state of individual i at t-1:  110 

• If zi,t-1 = 1, individual i can be recruited (i.e., transition to state 2) with probability 𝛾t, 111 

or remain unborn with probability 1- 𝛾t , so zi,t ~dcat(1- 𝛾t , 𝛾t , 0 , 0).  112 

• If zi,t-1 = 2, individual i can survive with probability 𝜙𝑖 and remain zit=2. If it does not 113 

survive, it can either die due to culling and be recovered (transition to zi,t=3) with 114 

probability hi, or die from other causes without being recovered (transition to zi,t =4) 115 

with probability wi, so that zi,t ~ dcat(0, 𝜙𝑖, hi, wi), where Φi = 1−hi −wi.  116 

• All individuals in dead states (zi,t-1 = 3 or 4) transition to zi,t-1 = 4, the absorbing state, 117 

with probability 1 , so that zi,t ~ dcat(0, 0, 0, 1) 118 

Abundance estimates are obtained by 𝑁̂𝑡 = ∑ 𝐼(𝑧𝑖,𝑡 = 2)𝑀
𝑖=1 , where 𝐼(𝑧𝑖,𝑡 = 2 ) is an indicator 119 

function to count alive individuals, and M is the number of detected and augmented individuals.  120 
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Parameterization with mortality hazard rates When an individual dies from a specific 121 

cause, it is no longer available to die from another cause. Therefore, mortality causes are 122 

competing and non-independent (Ergon et al. 2018). Following the recommendation of (Ergon 123 

et al. 2018), we parameterized the model using mortality hazard rates instead of mortality 124 

probabilities. We expressed survival and mortality probabilities as functions of the culling 125 

hazard rate (mh) and the hazard rate associated with to all other causes of mortality combined 126 

(mw). For simplicity, we assumed that the hazard rate from culling and other causes remained 127 

proportional within time intervals: 128 

𝜙𝑖 = exp (− (𝑚ℎ𝑖  
+  𝑚𝑤𝑖

))       eqn 2 129 

ℎ𝑖 = (1 − 𝜙𝑖) (
𝑚ℎ𝑖 

𝑚𝑤𝑖 
+𝑚𝑤𝑖

)          eqn 3 130 

𝑤𝑖 = (1 − 𝜙𝑖) (
 𝑚𝑤𝑖

𝑚ℎ𝑖 
+ 𝑚𝑤𝑖

)         eqn 4 131 

Spatial and individual variation in mortality We accounted for spatial variation in cause-132 

specific mortality by modelling mortality hazard rates (mH and mW) as functions of a spatial 133 

covariate 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑣𝑠𝑖,𝑡
 at the location of the AC (𝒔𝑖,𝑡): 134 

𝑙𝑜𝑔(𝑚𝐻𝑖,𝑡
) = log(𝑚0ℎ) +  𝛽ℎ ∗ 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑣𝒔𝑖,𝑡

      eqn 5 135 

𝑙𝑜𝑔(𝑚𝑊𝑖,𝑡
) = log(𝑚0𝑤) +  𝛽𝑤 ∗ 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑣𝒔𝑖,𝑡

      eqn 6 136 

Where 𝛽ℎ and 𝛽𝑤 are the coefficients of the relationship between the spatial covariate on 137 

culling and other mortality, respectively. 𝑚0ℎ and 𝑚0𝑤 represent the intercept for culling and 138 

other mortality hazard rate, respectively. 139 

Density dependent survival At each occasion, local density within any habitat cell r of S (r 140 

=1, .., R) can be obtained as 𝑑𝑟,𝑡= ∑ 𝐼(𝒔𝑖,𝑡 = 𝑟,  𝑧𝑖,𝑡 = 2)𝑀
𝑖=1 , where 𝐼(𝒔𝑖,𝑡 = 𝑟, 𝑧𝑖,𝑡 = 2 ) is an 141 

indicator function denoting whether the individual AC falls within cell r and it is alive. 142 
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By replacing the SpatialCov in Eqn.5-6 with the  logarithm of the local density log(𝑑𝒔𝑖,𝑡,𝑡), we 143 

can estimate the effect of local density-dependence on individual mortality between occasion 144 

(t-1) and t. Note that since (Eqn 5-6) are on the log scale, transformation of 𝑑𝑟,𝑡, such as 𝑑𝑟,𝑡
′ =145 

𝑓(𝑑𝑟,𝑡) = 𝑑𝑟,𝑡 + 1, is necessary to avoid 𝑑𝑟,𝑡̂ = 0. 146 

2.1.3. Live detection submodel 147 

We used the half-normal function to model detection probability of individuals alive, whereby 148 

the probability pi,j,t of detecting individual i at detector j and time t decreases with distance 149 

between the location x of detector j and the AC (si,t): 150 

𝑝𝑖,𝑗,𝑡 = 𝑝0 ∗ 𝑒𝑥𝑝 (−
1

2𝜎2 ‖𝒔𝑖,𝑡 − 𝑥𝑗‖
2
)         eqn 7 151 

where p0 is the baseline detection probability, and σ the scale parameter. 152 

The detection yi,j,t of alive individual i at detector j and time t, is modelled as the realization of 153 

a Bernoulli process conditional on both the “alive” individual state (i.e., zi,t=2) and the 154 

individual and detector-specific detection probability pi,j,t: 155 

𝑦𝑖,𝑗,𝑡 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖,𝑗,𝑡 ∗  𝐼(𝑧𝑖,𝑡 = 2 ))       eqn 8 156 

2.1.4. Dead recovery model 157 

To model dead recoveries within S, we used a Bernoulli point process with a bivariate normal 158 

density model, where: 159 

𝜆(𝑦. 𝑑𝑒𝑎𝑑𝑖,𝑡|𝒔𝑖,𝑡, 𝑧𝑖,𝑡, σ) ∝  𝑒
−

‖𝑦.𝑑𝑒𝑎𝑑𝑖,𝑡−𝒔𝑖,𝑡‖
2

2σ2 ∗  𝐼(𝑧𝑖,𝑡 = 3).      eqn 9 160 

where y.deadi,t is the vector of spatial coordinates of the dead recovery locations. The indicator 161 

function is used to condition dead recoveries on the individual being culled and recovered dead. 162 

The detection probability function represents space use, we therefore assume that σ, the shape 163 
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parameter of the detection probability function, is identical for live detections and dead 164 

recoveries.  165 

2.2. OPSCR model with a single cause of mortality 166 

To provide an example of the OPSCR model where dead recoveries (y.dead) are not available 167 

and cause-specific mortality is not estimable, we built an OPSCR model with only three 168 

demographic states z. Individuals could be unborn (𝑧𝑖,𝑡 = 1), alive (𝑧𝑖,𝑡 = 2), or dead (𝑧𝑖,𝑡 =169 

3). For t>1, alive individuals (𝑧𝑖,𝑡−1 = 2) can survive with probability 𝜙𝑖,𝑡−1 and remain 𝑧𝑖,𝑡 =170 

2 or die with probability (1 − 𝜙𝑖,𝑡−1) and transition to 𝑧𝑖,𝑡 = 3, the dead absorbing state. We 171 

modelled the effect of density at occasion t on individual survival between occasion t and t+1: 172 

𝑙𝑜𝑔(𝑚𝑖,𝑡) = log(𝑚0 ) + 𝛽𝑑 ∗ log (𝑑𝒔𝑖,𝑡
+ 1)                                      eqn 10 173 

𝜙𝑖,𝑡 = 1 − exp(−𝑚𝑖,𝑡)                                                                 eqn 11 174 

2.3. Simulations 175 

We conducted simulations to quantify the performance of 1) the OPSCR model in estimating 176 

spatial variation in cause-specific mortalities with a deterministic spatial covariate; of 2) the 177 

version of the OPSCR model with integrated density-dependent survival. Finally, we tested the 178 

consequences of ignoring spatial variation in survival for abundance estimates.  179 

2.3.1. Using deterministic covariate  180 

We created a spatial domain (S) of 28 x 28 distance units (du) subdivided in R=49 cells of 4x4 181 

du. We centered in S a 16 x 16 detector grid (with a minimum distance of 1 du between 182 

detectors). This configuration left a 6 du buffer around the detector grid where individuals 183 

cannot be detected alive. We set 𝑝0=0.1, 𝜎=2, 𝜏 = 3 and considered five consecutive occasions. 184 

This set-up led to an average of 2 (95% quantiles=1.5-2.3) detections per individual detected, 185 

and on average 43% (95% quantiles=34%-51%) of individuals alive detected at each occasion 186 
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(Appendix 1, table 1). We created a spatially autocorrelated covariate following a diagonal 187 

gradient (𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑣, ranging from (-2 to 2); Figure 1A). 188 

We set M=650 and N1= 250 individuals during the first occasion leading to 𝛾1 =
𝑁1

𝑀
=

250

650
. For 189 

t>1, we assumed a constant 0.3 per capita recruitment rate. We set baseline mortality hazard 190 

rates to 𝑚0ℎ
=-2.25 and 𝑚0𝑤

=-1.75 and created four different scenarios with all combinations 191 

of 𝛽ℎ = (1, −1) and 𝛽𝑤 = (1, −1).  192 

We repeated the simulation scenarios described above, but with 1) lower population size, 193 

N1=120 (M=370), and 2) a spatially random covariate 𝑆𝑝𝑎𝑡𝑖𝑎𝑙𝐶𝑜𝑣r ~ Uniform(-1, 1) 194 

(Appendix 1, table 1). We expected estimation performance for such scenarios to be more 195 

challenging due to 1) sparser OPSCR data sets (Appendix 1, table 1), and 2) lower level of 196 

spatial autocorrelation and overall variation in mortality. In total, we simulated 100 replicated 197 

OPSCR data sets from each of the 16 scenarios (Appendix 1, table 1). We used NIMBLE’s 198 

simulation feature (de Valpine et al. 2017, NIMBLE Development Team 2019) to simulate 199 

OPSCR data sets directly from the nimble OPSCR model (Appendix 4-5). 200 

2.3.2. Using density dependent survival 201 

To illustrate how to estimate density-dependent survival, we used the OPSCR model with a 202 

single source of mortality. Preliminary analyses showed that, computationally (convergence, 203 

mixing), OPSCR models performed more poorly when survival was modeled as dependent on 204 

latent density rather than deterministic spatial covariates. covariate. To counter this, we used a 205 

larger spatial domain (S) to increase the number of habitat cells (R) and thus provide the model 206 

with more variable latent density points to serve as covariate on the mortality hazard rate. This 207 

led to  habitat of 40x40 distance units (du) subdivided in R = 64 cells of dimension 5x5 du and 208 

in which we centered a 30 x 30 detector grid. We set M=650 and N1 = 250. We set 𝑚0 =1.6 209 
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and 𝛽𝑑 = -1 to simulate negative density-dependence on survival and simulated 100 replicated 210 

OPSCR data sets (Appendix 1, Table 12). 211 

2.3.3. Ignoring spatial heterogeneity in mortality 212 

To evaluate whether ignoring spatial variation in mortality leads to biased parameter estimates, 213 

especially abundance (𝑁̂), we fitted all simulated datasets described above with OPSCR models 214 

that assumed constant survival across space and time. As in the earlier simulations, we fitted 215 

models with two competing risks for the deterministic spatial covariate scenarios and a single 216 

cause of mortality for the density dependent scenario.  217 

2.4. Model fitting 218 

We fitted the Bayesian OPSCR models using Markov chain Monte Carlo (MCMC) simulation 219 

with NIMBLE in R version 4.1.0 (R Core Team 2021). We used R package nimbleSCR 220 

(Bischof et al. 2020b, Turek et al. 2021) which implements the local evaluation approach 221 

(Milleret et al. 2019) to increase MCMC efficiency. For each simulation, we ran three chains 222 

of 30,000 (60,000 for density-dependent survival) iterations, including a 2000-iteration burn-223 

in. We considered models as converged when the Gelman-Rubin diagnostic (R̂, (Gelman and 224 

Rubin 1992)) was < 1.1 for all parameters and by visually inspecting trace plots from a 225 

randomly selected subset of simulations. We also computed the prior-posterior distribution 226 

overlap, and used overlap ≥35% as an indicator of weak identifiability (Gimenez et al. 2009). 227 

2.5. Evaluation of model performance 228 

We summarized the posterior 𝜃 for each parameter and each simulation using relative error of 229 

the mean posterior (
𝜃̅−𝜃

𝜃
) and relative precision as the coefficient of variation (CV=

𝑆𝐷(𝜃̂)

|𝜃|̅̅ ̅̅ ), 230 

where 𝜃 is the true (simulated) parameter value, 𝜃̅ the mean of the posterior, and 𝑆𝐷(𝜃) the 231 

standard deviation of the posterior. We quantified accuracy of the estimators across many 232 
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simulations using relative bias of the average of the mean posteriors and the coverage accuracy 233 

of 95% credible intervals.  The latter was determined as the rate of correct inferences, which is 234 

the probability that the 95% credible interval of the parameter estimate contains the true value 235 

of that parameter. In addition, we used results from a few of the simulated scenarios with a 236 

deterministic covariate (as described above) to quantify the ability of the model to predict the 237 

spatial pattern in mortality (see further details in Appendix 3). 238 

3. Results 239 

3.1.  Spatial heterogeneity using a deterministic spatial covariate 240 

All model parameters converged and were identifiable for scenarios with the spatial gradient 241 

covariate and large population size (N1=250) (Appendix 1, table 2). The combination of the 242 

spatially random covariate and low population size (N1=120) led to the poorest parameter 243 

convergence and identifiability (28-57%; Appendix 1, table 2).  244 

All model parameters had low bias (≤6% relative bias) for all scenarios with large population 245 

size and a gradient covariate (Figure 1, Appendix 1, table 3-6). Accurate estimates were more 246 

challenging to obtain for scenarios with low population size and a spatially-random covariate 247 

(Appendix 1, table 3-6). For example, relative bias of  𝛽𝑤 reached 44% for the scenario with 248 

low population size (N1=120), a spatially-random covariate and 𝛽ℎ =-1; 𝛽𝑤=1; (Appendix 1, 249 

table 5). For the same scenario, but with a larger population size (N1=250), relative bias for 𝛽𝑤 250 

was substantially lower (RB= 2%). Coverage remained relatively high (>90%) for all scenarios 251 

(Appendix 1, table 3-6). Across all scenarios, the effect of spatial covariates on mortality cause 252 

with no dead recovery information (𝛽𝑤) was more challenging to estimate, with lower precision 253 

(approx. 2 times larger CV) than (𝛽ℎ) (Fig 1.C, Appendix 1, table 3-6). 254 

3.2.  Density-dependent survival 255 
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Across the 100 replicated datasets, 86 models reached convergence and showed no 256 

identifiability issues (Appendix 2, table 13). We detected a 13% positive relative bias in 𝜙0 257 

and 𝛽𝑑 but coverage was >92% for all parameters (Figure 2 A, table 14).  258 

3.3.  Ignoring spatial heterogeneity in mortality 259 

Apart from not being able to provide robust inferences on mortality, not accounting for spatial 260 

heterogeneity in mortality can lead to bias in abundance estimates. The relative bias (up to 10% 261 

for our simulated scenarios) and lower coverage were especially pronounced for scenarios with 262 

a spatial gradient in mortality (Figure 2 B, Appendix 1, table 7-11). 263 

4. Discussion 264 

We described and tested an OPSCR model that explicitly models and estimates spatial variation 265 

in survival. The model is versatile enough to allow survival to be modelled as a function of any 266 

spatial covariate, including local density estimated within the same model. Survival is modeled 267 

as a function of the location of the AC of both detected and undetected individuals which allows 268 

population-level and spatially-explicit inferences. Using simulations, we show that the model 269 

produces sound inferences on the role of spatial covariates and density dependence in 270 

explaining spatial variation in survival. In addition, the model allows for integrating spatial 271 

dead recoveries (Dupont et al. 2021) and estimates multiple competing sources of mortality 272 

with potentially different spatial determinants. The model overcomes a challenge faced by 273 

other methods, namely to a obtain population-level assessment of spatial determinants of 274 

variation in survival (Royle et al. 2018). 275 

Despite the recognized potential of OPSCR models to estimate spatial variation in vital rates 276 

(Royle et al. 2014), few studies have attempted to use them for this purpose (Chandler et al. 277 

2018)., Furthermore, we are not aware of any study that has evaluated the performance of 278 

OPSCR models that include spatially-explicit vital rates. Our simulations show that sound 279 
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inferences in the spatial variation of cause-specific mortality can be obtained when survival is 280 

modelled as a function of a deterministic spatial covariate, even with relatively small OPSCR 281 

datasets (5 occasions, ~50 individuals detected per occasion). OPSCR model performance 282 

(convergence, precision) was significantly higher for simulations with spatially autocorrelated 283 

survival (gradient) compared with spatially-random survival (Appendix 1, table 3-6). 284 

One of the main advantages of SCR models is that they can estimate spatial variation in density. 285 

We showed that OPSCR models can simultaneously estimate local density and its effect on 286 

survival. This has the advantage that the uncertainty in both the number of individuals alive 287 

and their location is propagated when estimating the spatially link with survival. However, 288 

density being both a latent variable and a covariate used to explain variation in survival, it is 289 

computationally challenging (i.e., due to the increased number of model dependencies) to fit 290 

density dependent-survival OPSCR models. In Appendix 5, we showcase how centering the 291 

density covariate (𝑑) can improve the mixing of MCMC chains of different model parameters. 292 

Future research should focus on building and testing models that estimate spatial variation in 293 

other demographic parameters, i.e., recruitment, emigration and immigration, as it is an 294 

essential step to fully understand the mechanisms driving spatial heterogeneity in density and 295 

therefore population dynamics (Chandler et al. 2018). Meanwhile, it is possible to use a spatial 296 

covariate on the intensity parameter in the spatial point process submodel for the ACs to help 297 

account for spatial heterogeneity in recruitment (Zhang et al. 2020).  298 

The OPSCR model described here can identify spatial variation in mortality and its 299 

determinants from spatial capture-recapture data, which are collected by many monitoring 300 

programs (Royle et al. 2018). Climatic conditions, resources, human activities, hunting, 301 

predation risk, and intra- and inter- specific competition are some examples of the pressures 302 

that are inherently spatial and known to impact survival and that could be studied with the 303 
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model presented here. We also show that estimates of density obtained from OPSCR models 304 

can be biased (reached up to 10% in the scenarios tested) when spatial variation in survival is 305 

not accounted for. The Bayesian model written in NIMBLE and the set of features available in 306 

the nimbleSCR package will allow users to fit efficient and flexible OPSCR models. This 307 

development represents an essential step towards a fully spatially-explicit OPSCR model that 308 

can disentangle the role of spatial drivers on population dynamics (Chandler et al. 2018). 309 
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Figure caption 396 

Figure 1: A) Maps depicting the simulated spatial variation in cause-specific mortality (h and 397 

w) within the spatial domain (S) for the scenario with a gradient covariate 𝛽ℎ=-1 and 𝛽𝑤 =1 398 

(Table 5 Appendix 1 ). White points represent detectors. Violin plots show the distribution of 399 

the relative error (left; points: relative bias) and coefficient of variation (CV; right, points: 400 

median) in B) occasion-specific abundances, and C) cause-specific mortality parameters 401 

obtained after fitting the OPSCR model accounting for spatial variation in mortality to 100 402 

replicated datasets. Results from scenarios with small (N1=120) and large (N1=250) population 403 

size are presented.  404 

Figure 2: A) Violin plots (points: medians = relative bias) representing the distribution of the 405 

relative error in occasion-specific abundances (𝑁̂) and parameters controlling for the effect of 406 

density in survival (𝛽𝜙, 𝜙0). Abundance estimates and associated relative error were obtained 407 

by fitting an OPSCR model that did not account for spatial variation in survival (“without”) 408 

and a model that accounted for density-dependent survival (“with”) to 100 replicated datasets 409 

simulated with a negative effect of density on survival 𝛽𝜙= -1. B) Violin plots of distribution 410 

of the relative error (left; points: medians= relative bias) and coverage (right) of occasion-411 

specific abundances obtained by fitting an OPSCR model that accounted for spatial variation 412 

in mortality (“with) and a model did not (“without”). Results are presented for 100 replicated 413 

datasets simulated with a spatial gradient in mortality,  𝛽ℎ=-1, 𝛽𝑤=1 and N1=250.  414 
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