
 Effects  of  somatic  mutations  on  cellular  differentiation  in  iPSC 
 models of neurodevelopment 

 Pau Puigdevall  1  #, Julie Jerber  2  , Petr Danecek  3  , Sergi  Castellano  1  , Helena Kilpinen  1,3,4,5  # 

 1.  UCL Great Ormond Street Institute of Child Health, University College London, 
 London, UK 

 2.  Open Targets, Wellcome Genome Campus, Cambridge, UK 
 3.  Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK 
 4.  Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Finland 
 5.  Faculty of Biological and Environmental Sciences, University of Helsinki, Finland 

 # Corresponding author 

 Abstract 
 The  use  of  induced  pluripotent  stem  cells  (iPSC)  as  models  for  development  and  human 
 disease  has  enabled  the  study  of  otherwise  inaccessible  tissues.  A  remaining  challenge  in 
 developing  reliable  models  is  our  limited  understanding  of  the  factors  driving  irregular  in  vitro 
 differentiation  of  iPSCs,  particularly  the  impact  of  acquired  somatic  mutations.  We  leveraged 
 data  from  a  pooled  dopaminergic  neuron  differentiation  experiment  of  238  iPSC  lines  profiled 
 with  single-cell  and  whole-exome  sequencing  to  study  how  somatic  mutations  affect 
 differentiation  outcomes.  Differentiation  was  tracked  at  three  time  points  corresponding  to 
 neural  progenitors,  early  neurons  and  mature  neurons.  We  found  that  deleterious  somatic 
 mutations  in  key  developmental  genes,  notably  the  BCOR  gene,  are  strongly  associated  with 
 failure  in  dopaminergic  neuron  differentiation,  with  lines  carrying  such  mutations  also 
 showing  larger  proliferation  rate  in  culture.  We  further  identified  broad  differences  in  cell  type 
 composition  between  failed  and  successfully  differentiating  lines,  as  well  as  significant 
 changes  in  gene  expression  contributing  to  the  inhibition  of  neurogenesis,  a  functional 
 process  also  targeted  by  deleterious  mutations  in  failed  lines.  Our  work  highlights  the  need 
 to  routinely  measure  the  burden  of  deleterious  mutations  in  iPSC  lines  and  calls  for  caution 
 in interpreting differentiation-related phenotypes in disease-modelling experiments. 

 Introduction 
 Induced  pluripotent  stem  cells  (iPSC)  are  widely  used  to  model  human  diseases  as  they  can 
 differentiate  to  other  cell  types,  including  those  from  tissues  that  are  otherwise  not 
 accessible.  However,  in  vitro  differentiation  is  subject  to  substantial  technical  and  biological 
 confounders  that  often  lead  to  variable  differentiation  outcomes,  a  challenge  to  scaling  and 
 interpreting  results  from  these  models  of  disease  1  .  The  underlying  reasons  for  this  variability 
 are  not  well  understood,  but  different  factors  have  been  proposed:  protocol  optimisation  2  , 
 culture  maintenance  3  ,  passage  number  4  ,  molecular  determinants  5  ,  inter-laboratory 
 variation  6  , cell line intrinsic properties  7  or the loss of iPSC heterogeneity in culture  8  . 

 The  genetic  background  of  an  individual  has  been  shown  to  account  for  8-23%  of 
 phenotypic  variation  in  iPSCs  7  .  While  this  donor  effect  was  driven  primarily  by  common 
 variants,  rare  variants  and  somatic  mutations  acquired  either  in  vivo  in  the  parental  tissue  or 
 in  vitro  during  the  iPSC  reprogramming  process  and  culture  maintenance  9  are  likely  to  also 
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 contribute  to  the  observed  variation.  For  example,  it  has  been  shown  that  sub-clonal 
 cancer-associated  mutations  might  provide  a  growth  advantage  to  stem  cells  in  culture, 
 given  their  increase  in  frequency  10  .  Also,  the  reprogramming  of  parental  cells,  such  as 
 skin-derived  fibroblasts,  can  act  as  a  bottleneck,  leading  to  variants  increasing  or  decreasing 
 in  frequency  in  the  resulting  population  of  iPSCs  11  .  This  can  be  particularly  pronounced  if  the 
 parental  cells  contain  a  higher-than-average  amount  of  mutations,  as  can  be  the  case  with 
 skin-derived,  UV-exposed  cells.  Although  such  acquired  mutations  might  not  cause  a 
 phenotype  in  iPS  cells,  they  have  the  potential  to  impact  specific  differentiated  cell  types  12  , 
 altering  both  their  functionality  and  the  overall  cell  type  composition.  Still,  the  contribution  of 
 somatic mutations to cellular differentiation has not been systematically explored. 

 In  this  study,  we  hypothesised  that  somatic  mutations  in  individual  iPSC  lines  might 
 affect  their  ability  to  differentiate.  To  test  this  hypothesis,  we  leveraged  data  from  the  HipSci 
 project  7  and  analysed  differentiation  outcomes  from  four  independent  experiments 
 producing  different  iPSC-derived  cell  types:  dopaminergic  neurons,  DN  8  ,  macrophages  13  , 
 sensory  neurons  14  and  definitive  endoderm  tissue  15  (  Fig.  1A  ).  We  analysed  the  exome-wide 
 burden  of  mutations  acquired  in  vitro  during  reprogramming  and  more  generally,  all 
 deleterious  variants  in  the  iPSCs,  which  also  include  germline  variants  and  mutations 
 acquired  in  vivo  (  Fig.  1B  ).  Leveraging  single-cell  transcriptomics  from  the  dopaminergic 
 neurons  8  ,  we  studied  how  deleterious  mutations  influence  the  proliferation  rate  of  iPSC  lines 
 during  differentiation,  shifting  cell  type  composition  and  gene  expression  that  compromised 
 the success of differentiation. 

 We  found  that  the  acquisition  of  deleterious  mutations  in  developmental  genes  can 
 compromise  the  success  of  iPSC  differentiation.  Lines  with  such  mutations,  notably  in  the 
 BCOR  gene,  are  impaired  in  their  capacity  to  produce  dopaminergic  neurons  and  show  a 
 faster  proliferation  rate  in  culture.  This  leads  to  large  differences  in  cell  type  composition 
 between  failed  and  successful  lines,  and  changes  in  gene  expression  that  modulate 
 neurodevelopment.  Further,  we  observed  that  the  proliferation  rate  of  lines  is  predictive  of 
 their  cell  type  composition  throughout  neuronal  differentiation.  Our  work  highlights  somatic 
 mutations  as  an  important  source  of  variation  in  iPSC-based  models,  and  calls  for  caution 
 when interpreting differentiation-related phenotypes to understand disease. 

 Results 

 1.  The  genome-wide  burden  of  acquired  mutations  does  not  explain  differentiation 
 outcome 
 To  test  whether  the  overall  burden  of  somatic  mutations  acquired  by  iPSC  lines  in  vitro 
 influenced  their  differentiation  ability,  we  studied  384  cell  lines  (251  individual  donors)  from 
 the  HipSci  project.  Exomes  were  sequenced  for  both  the  parental  fibroblast  of  donors  and 
 their  derived  iPSC  lines  7  ,  allowing  us  to  distinguish  between  variants  present  already  in  the 
 donors  from  those  acquired,  or  positively  selected  for,  in  the  subsequent  reprogramming 
 process  (hereon  ‘  in  vitro  -acquired  mutations’)  11  (  Methods  )  A  median  of  35  mutations  (37 
 when  including  CNV)  was  observed  per  exome  in  the  iPSCs,  of  which  14  were  annotated  as 
 deleterious.  In  line  with  previous  publications  16  ,  half  (50.5%)  of  the  mutations  (SNVs  and 
 dinucleotides)  were  predicted  to  be  missense  or  LoF.  We  then  considered  differentiation 
 outcomes  from  four  different  tissues  and  cell  types  derived  from  the  same  HipSci  donors: 
 dopaminergic  neurons  (DN;  N=128  observed  differentiations  and  N=349  predicted 
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 differentiations,  see  Methods,  Supp.  Table  1  )  8  ,  sensory  neurons  (N=85)  14  ,  macrophages 
 (N=102)  13  and  definitive  endoderm  (N=86)  15  .  For  each  of  the  cell  types,  we  split  the  cell 
 lines  to  those  that  differentiated  successfully  and  those  that  failed,  including  those  with 
 impaired capacity (from hereon ‘successful’ and ‘failed’ differentiators) (  Methods  ). 

 We  then  tested  for  association  between  the  genome-wide  mutational  burden  and 
 differentiation  outcomes  (  Fig.  2A  ,  Supp.  Fig.  1A  ),  and  found  no  difference  between  lines 
 that  failed  and  lines  that  differentiated  successfully,  neither  considering  all  mutations, 
 deleterious  mutations  (  Fig.  2A  )  or  other  variant  classes  (  Supp.  Fig.  1A,B  ).  Similarly,  no 
 association  was  found  between  mutational  burden  and  endoderm  differentiation  efficiency, 
 which was defined as a continuous trait (  Fig. 2B  ). 

 2.  The  burden  of  deleterious  variants  in  BCOR  is  linked  to  differentiation  failure  in 
 dopaminergic neurons 
 Mutations  that  impair  the  function  of  developmental  genes  might  have  a  critical  role  in 
 defining  cell  line  differentiation  efficiency,  even  when  they  do  not  compromise  cell  survival  in 
 culture.  We  analysed  how  burden  differences  in  individual  genes  were  linked  to  the 
 differentiation  outcome  in  the  DN  dataset.  We  focused  on  the  burden  of  deleterious 
 mutations  carried  by  each  iPSC  line,  which  includes  mutations  acquired  in  vitro  and  in  vivo  , 
 as  well  as  germline  variants  (  Methods  ).  We  found  that  only  one  gene,  BCOR,  was 
 significantly  more  mutated  in  failed  lines  compared  to  the  successful  lines  (Wilcox.test, 
 p.Adj<0.05,  log2FC>2.5)  (  Fig.  2C  ).  This  effect  was  consistently  observed  with  all 
 deleterious  variants  as  well  as  LoF  variants  alone,  and  with  both  observed  (N=183  cell  lines; 
 48  failed,  135  successful)  and  predicted  (N=793  cell  lines;  99  failed,  694  successful)  DN 
 differentiation  outcomes  8  .  Importantly,  none  of  the  lines  that  differentiated  successfully  in 
 culture  carried  a  LoF  mutation  in  the  BCOR  gene,  while  22  out  of  the  48  failed  lines  carried 
 at  least  one  in  BCOR  (  Supp.  Fig.  1C  ).  The  association  between  the  mutational  burden  in 
 BCOR  and  DN  differentiation  failure  was  also  seen  with  the  observed  differentiation 
 efficiency  (pAdj=1.06·10  -8  ),  defined  as  the  fraction  of  dopaminergic  and  serotonergic  neurons 
 at  day  52,  and  with  the  predicted  model  scores  8  (pAdj=7.22·10  -57  )  (  Methods  ).  Although  the 
 mechanism  for  this  association  is  unknown,  the  BCOR  gene  (a  BCL6  repressor)  is  a  known 
 epigenetic  regulator  17  and  oncogenic  driver  gene  18  ,  as  well  as  a  developmental 
 disorder-causing  gene  19  ,  highlighting  its  role  as  a  key  developmental  gene.  The  gene  is 
 under  strong  mutational  constraint,  with  only  two  predicted  LoF  SNVs  (pLoF)  observed  in 
 gnomAD  (446  expected;  LOEUF  mutational  constraint  score  0.141)  20  .  In  addition,  we  did  not 
 find  any  BCOR  LoF  variants  among  the  parental  fibroblasts  of  the  iPSC  lines,  although  they 
 could  still  be  present  at  very  low  frequency  as  subclones.  Pathogenic  mutations  in  the  BCOR 
 gene  have  been  found  to  be  recurrently  mutated  in  blood-derived  iPSC  lines  and  positively 
 selected  for  under  iPSC  culture  conditions  11  .  In  this  regard,  we  cannot  determine  whether  the 
 BCOR  mutations  driving  the  impaired  DN  differentiation  originated  in  vivo  or  in  vitr  o,  but  they 
 also expanded during iPSC reprogramming. 

 3.  Genes  disproportionately  impacted  by  deleterious  mutations  in  failed  lines  are 
 enriched in key neurodevelopmental functions 
 A  fraction  of  the  lines  that  were  classified  as  failed  (26/48,  differentiation  efficiency  <  0.2)  do 
 not  carry  any  deleterious  BCOR  mutation,  which  likely  indicates  that  other  genes  also 
 contribute  to  DN  differentiation  failure  but  are  not  identified  in  our  analysis  due  to  limited 

 3 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.04.482992doi: bioRxiv preprint 

https://paperpile.com/c/4KOnA3/V5onX
https://paperpile.com/c/4KOnA3/P2z0R
https://paperpile.com/c/4KOnA3/h9Hni
https://paperpile.com/c/4KOnA3/cbzwZ
https://paperpile.com/c/4KOnA3/V5onX
https://paperpile.com/c/4KOnA3/V5onX
https://paperpile.com/c/4KOnA3/gYdYx
https://paperpile.com/c/4KOnA3/SOUtn
https://paperpile.com/c/4KOnA3/IPFoF
https://paperpile.com/c/4KOnA3/tUCjN
https://paperpile.com/c/4KOnA3/2pmCH
https://doi.org/10.1101/2022.03.04.482992
http://creativecommons.org/licenses/by/4.0/


 sample  size.  To  overcome  this,  we  focused  on  the  biological  processes  that  control  cellular 
 differentiation  and  performed  a  gene  ontology  (GO)  enrichment  analysis  on  those  genes  that 
 presented  the  largest  mutational  burden  differences  between  failed  and  successful  cell  lines 
 (top-5%  and  bottom-5%  in  fold-change  (FC),  corresponding  to  933  genes  for  each  outcome, 
 Methods  ).  We  found  an  overrepresentation  of  neurodevelopmental  GO  terms  (adjP<0.05) 
 among  the  set  of  genes  disproportionately  mutated  in  failed  lines  consistent  with  the  failed 
 differentiation  (Fig.  2D,  Supp.  Table  2)  ,  including  the  negative  regulation  of  neuron 
 differentiation  (GO:0045665,  hit  45  in  observed  failed  lines)  or  the  regulation  of  neuron 
 apoptotic  process  (GO:0043523,  hit  82  in  predicted  failed  lines).  The  most  mutated  genes 
 (log  2  FC>1.5)  contributing  to  the  enrichment  of  those  biological  processes  in  failed  lines  are 
 well-known  disease  associations:  NSUN5  in  William  Beuren  Syndrome  21  ,  FOXG1  in 
 FOXG1-syndrome  22  ,  DRD1  in  Autism  Disorder  23  or  ASCL1  in  neuropsychiatric  disorders  24  . 
 In  other  cases,  those  genes  are  key  regulators  of  neuron  differentiation  like  NRBP2  for 
 neural  progenitor  cell  (NPC)  survival  25  ,  DMRTA2  for  NPC  maintenance  26  ,  S100A8  involved 
 in microglial inflammation  27  or SOX14, essential for the initiation of neuron differentiation  28  . 

 Alternatively,  we  focused  on  a  subset  of  iPSC  lines  that  were  derived  from  the  same 
 donor  (replicate  pairs,  N=49)  but  were  predicted  to  have  a  discordant  differentiation  outcome 
 8  .  We  filtered  out  those  mutations  that  were  shared  between  the  replicates  and  tested 
 whether  the  remaining  mutations  were  enriched  in  two  curated  gene  sets,  both  including  the 
 BCOR  gene,  known  to  influence  organismal  development  and  cellular  proliferation:  the 
 developmental  disorders  genes  (DDD,  N=1,938)  29  and  cancer-associated  genes 
 (Cosmic-Tier1,  N=558)  30  (  Methods  ).  We  found  an  enrichment  of  LoF  variants  in 
 cancer-associated  genes  when  comparing  the  most  mutated  genes  in  the  failed  replicates 
 with  the  most  mutated  genes  in  the  successful  replicates  (empirical  p=0.033,  proportion 
 test).  Also,  among  failed  replicates,  we  found  an  enrichment  of  DDD  burden  for  deleterious 
 (p=0.039) and synonymous variants (p=0.015) (  Supp Fig. 1D  ). 

 4.  Differentiation  failure  is  driven  by  increased  proliferation  rate  and  BCOR  LoF 
 mutations 
 One  of  the  concerns  in  pooled  differentiation  experiments,  where  cell  lines  are  grown  and 
 differentiated  together,  is  the  potential  acquisition  of  mutations  in  genes,  such  as 
 cancer-associated  genes,  that  confer  growth  advantage  to  certain  lines  in  culture  and  lead  to 
 an  imbalanced  representation  of  the  pooled  lines.  We  leveraged  the  DN  experiment  8  to 
 assess  the  in  vitro  growth  dynamics  of  pooled  DN  differentiation.  We  reanalysed  846,841 
 cells  from  238  cell  lines  that  were  assayed  with  single-cell  RNA-sequencing  at  three 
 differentiation  time  points  (days  11,  30  and  52,  corresponding  to  progenitors,  young  neurons 
 and  mature  neurons,  respectively)  (  Methods,  Fig.1,  Supp.  Fig.  2A-J  ).  The  dataset  consists 
 of 19 different pooled differentiations, including 7 to 24 cell lines per pool (  Supp. Table 3  ). 

 First,  we  analysed  the  reproducibility  of  cell  line  abundance  within  each  time  point 
 across  different  types  of  replicates:  cell  line  replicates  from  different  pools  or  within  the  same 
 pool,  including  biological  replicates,  technical  replicates,  and  10x  channel  replicates 
 (  Methods,  Supp.  Fig.  3A  ).  Poor  correlation  was  observed  between  replicates  from  different 
 pools  (R  2  =0.136),  which  suggests  that  the  specific  combination  of  samples  in  the  pool 
 background  can  impact  the  growth  dynamics  of  individual  cell  lines  (  Fig.  3A)  .  The  correlation 
 improved  significantly  when  comparing  biological  replicates  having  the  same  pool 
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 background  (R  2  =0.693)  and  as  expected,  was  highest  between  technical  and  channel 
 replicates (R  2  =0.996). 

 We  then  evaluated  how  the  cell  line  proportions  changed  during  the  DN 
 differentiation,  assuming  initial  equal  amounts  of  each  iPSC  line  (  Fig.  3B  )  (  Methods  ). 
 Specifically,  we  calculated  an  in  silico  proliferation  rate  for  each  line  in  a  given  pool  by 
 contrasting  cell  line  proportions  at  specific  timepoints  to  day  0.  Although  the  Day52/Day0 
 proportion  remained  constant  for  most  of  the  lines  (mean=1.0,  95%  confidence  interval  (CI) 
 0.8-1.2)  (  Supp.  Fig.  3B  ),  almost  every  pool  contained  at  least  one  overrepresented  line  (up 
 to  3-10x  depending  on  the  pool),  with  a  small  fraction  of  lines  being  underrepresented  (down 
 to  7-700x).  Interestingly,  those  lines  that  failed  to  differentiate  into  neurons  showed  on 
 average  larger  proliferation  rates  than  successful  lines,  with  the  difference  being  most 
 significant  at  the  last  time  point  (p=2.8·10  -3  ,  Wilcox-test)  (  Supp.  Fig.  3C  ).  When  we 
 correlated  this  behaviour  with  the  mutational  burden,  we  found  that  increased  proliferation 
 rates  were  driven  by  BCOR  LoF  mutations  (  Fig.  3C  ).  Specifically,  failed  lines  with  BCOR 
 LoF  mutations  had  a  significantly  higher  proliferation  rate  than  successful  lines  across  the 
 time  points,  a  difference  that  was  not  observed  with  failed  lines  with  no  BCOR  LoF 
 mutations.  Consistent  with  this,  we  found  that  the  BCOR  gene  had  the  highest  ratio  of 
 annotated  cancer  driver  mutations  (LoF  pathogenic  Cosmic-Tier1  mutations,  N=5)  in  failed 
 lines  compared  to  successful  ones  (N=0)  (  Methods  ).  Taken  together,  these  results  suggest 
 that  proliferation  advantage,  caused  by  recurrent  somatic  mutations  in  key  developmental 
 genes like  BCOR  , has a negative effect on differentiation  efficiency. 

 5.  Poor  differentiation  outcomes  manifest  as  shifts  in  cell  type  composition  already 
 present at the progenitor stage 
 Next,  we  studied  how  early  in  the  differentiation  process  cell  type  composition  differences 
 between  failed  and  successful  lines  appear  (  Methods  ).  To  that  purpose,  we  processed  119 
 10x  samples  (  Supp.  Table  4  )  that  underwent  quality  control  filtering  (  Supp.  Fig.  2B-D  ), 
 dimensionality  reduction,  batch  correction  31  and  Leiden  clustering  (  Methods  ).  In  order  to 
 better  characterise  the  cell  type  composition  of  cell  lines  across  the  three  time  points,  we 
 processed  and  clustered  all  cells  in  the  DN  dataset  together  (  Methods  ),  in  contrast  to  the 
 original  study  8  .  Using  the  same  literature-curated  markers  (  Methods  ,  Supp.  Fig.  2E-G  ),  we 
 successfully  annotated  10  cell  types  out  of  the  12  identified  clusters  (  Supp.  Fig.  2H-J  ), 
 compared with the 12 out of the 26 identified in the original study. 

 We  used  a  negative  binomial  regression  model  to  evaluate  cell  type  composition 
 changes  between  failed  (N=58)  and  successful  (N=163)  lines  (  Methods  ).  The  analysis 
 revealed  significant  shifts  in  abundance  for  all  major  cell  types  (>2%  fraction)  as  early  as  day 
 11,  except  for  floor-plate  progenitors  type  1  (FPP-1)  and  ependyma  (Epend-1)  (  Fig.  4A  ). 
 Interestingly,  cell  lines  that  failed  to  generate  mature  neurons  at  day  52,  showed  an  earlier 
 commitment  to  either  the  dopaminergic  (DA,  pAdj=9.9·10  -47  )  or  the  serotonergic  (Sert-like, 
 pAdj=6,1·10  -14  )  fate  at  day  11,  represented  by  neuroblasts  clustering  in  such  cell  types. 
 Similar  evidence  of  accelerated  neuronal  maturation  in  vivo  ,  caused  by  a  heterozygous 
 nonsense  mutation  in  KMT2D  ,  has  been  observed  in  an  iPSC  model  of  Kabuki  syndrome  32  . 
 The  overall  lower  fraction  of  neurons  in  failed  lines  is  accompanied  by  a  significantly  larger 
 proportion  of  astrocytes  (pAdj=1.5·10  -36  ),  ependymal-like  cells  (pAdj=7.7·10  -14  )  and  of  the 
 unknown cell type 1 (pAdj=1.1·10  -19  ). 
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 In  agreement  with  such  observations,  iPSC  lines  with  deleterious  BCOR  mutations 
 also  presented  an  altered  cell  type  composition  compared  to  lines  without  BCOR  mutations, 
 with  a  significant  depletion  of  neuronal  cell  types  (DA,  p.Adj=5,3·10  -6  ;  Sert-like, 
 p.Adj=8.9·10  -8  ,  Wilcoxon  rank  sum  test)  accompanied  by  a  significant  excess  of  astrocytes 
 (p.Adj=1.3·10  -5  ),  proliferative  floor-plate  progenitors  (FPP-1,  p.Adj=1.9·10  -3  )  and  one 
 unknown  cell  type  (Unk-1,  p.Adj=6.9·10  -3  )  (  Supp.  Fig.  3D,  Methods  ).  Similarly,  we  found  an 
 association  between  the  proliferation  rate  and  the  abundance  of  those  cell  types,  with  lines 
 proliferating  faster  showing  a  depletion  of  DA  neurons  (p.Adj=0.01,  Pearson  correlation)  and 
 an  excess  of  astrocytes  (p.Adj=0.004)  and  proliferating  progenitors  (pro-FPP1,  p.Adj=0.004) 
 (  Fig.  3D,  Methods  ).  This  suggests  that  differentiation  failure  is  a  consequence  of  a  global, 
 early  shift  in  cell  type  composition  among  cell  lines  that  proliferate  faster  and  carry  damaging 
 mutations in key developmental genes such as  BCOR  . 

 6.  Functional  enrichment  of  gene-expression  is  consistent  with  mutational  differences 
 between failed and successful lines. 
 We  then  tested  whether  differences  in  cell  type  composition  between  differentiation 
 outcomes  also  manifest  in  their  gene  expression.  For  this,  we  performed  a  differential  gene 
 expression  (DE)  analysis  between  failed  and  successful  cell  lines  within  cell  types  and  time 
 points  (  Methods  ).  We  identified  between  50  to  500  DE  genes  per  test  (  Fig.  4B  )  that, 
 importantly,  were  not  correlated  with  the  number  of  cells  observed  per  outcome  (  Supp.  Fig. 
 4A  ).  While  the  number  of  DE  genes  was  relatively  constant  throughout  differentiation  in 
 certain  lineages  (dopaminergic,  astrocytes,  floor  plate  progenitors  type  1),  others  showed 
 time-point-specific  differences.  Remarkably,  in  most  of  the  cell  types  at  the  progenitor  stage, 
 the  DE  genes  included  a  significantly  larger  proportion  of  DDD  genes  than  non-DE  ones 
 (adj.P<0.05,  chi-squared  test),  in  particular  if  only  dominant  DDD  genes  were  considered. 
 Likewise,  cancer-associated  genes  (Cosmic-Tier1)  were  overrepresented  among  the  list  of 
 DE genes in five cell types at day 11, one at day 30, and another at day 52 (  Fig. 4B  ). 

 We  then  performed  a  GO  enrichment  analysis  (  Methods  )  on  the  ten  cell  types  with  a 
 significant  proportion  of  differentially  expressed  DDD  genes.  We  found  several  biological 
 processes  related  to  neurodevelopment  among  the  top-25  enriched  terms  (adj.P<0.05, 
 ordered  by  odds  ratio)  (  Fig.  4C,  Supp.  Table  5  ),  including  the  regulation  of  glial  cell 
 differentiation  (GO:0045685,  day  11)  and  cerebral  cortex  development  in  progenitors 
 (GO:0021987,  day  11),  as  well  as  the  neuron  projection  extension  in  ependymal-like  cells 
 (  GO:1990138  ,  day  11).  When  aggregating  all  the  detected  DE  genes  in  the  analysis  (any  cell 
 type),  we  found  processes  strongly  linked  to  failed  differentiation,  the  positive  regulation  of 
 neuron  apoptotic  process  (GO:0043525)  and  the  negative  regulation  of  neuron  differentiation 
 (GO:0045665).  We  also  analysed  the  changes  in  pathway  regulation  on  the  seven  cell  types 
 with  an  excess  of  cancer-associated  DE  genes  (  Methods,  Supp.  Fig.  4B  ),  and  consistently 
 identified  hallmarks  of  proliferation:  upregulation  of  the  tumour  suppressor  P53,  activation  of 
 MYC  targets  and  exacerbated  oxidative  phosphorylation.  This  functional  enrichment  of  DE 
 genes is consistent with that of somatic mutations in failed lines. 

 7. Proliferation rate predicts cell type outlier status of cell lines 
 Cellular  differentiation  is  a  dynamic  process  with  global  changes  in  the  composition  of  cell 
 populations  over  time.  Although  differentiation  success  is  usually  defined  by  the  final  yield  of 
 the  desired  cell  type,  this  can  give  an  incomplete  picture  of  the  variability  in  the  differentiation 

 6 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 4, 2022. ; https://doi.org/10.1101/2022.03.04.482992doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.04.482992
http://creativecommons.org/licenses/by/4.0/


 process.  In  an  attempt  to  characterise  such  variability,  we  aimed  to  identify  cell  lines  that 
 were  differentiation  outliers  in  terms  of  their  cell  type  composition.  We  analysed  all  pooled 
 cell  lines  with  confident  cell  fraction  estimates  (day  11,  N=195;  day  30,  N=212;  day  52, 
 N=246)  to  evaluate  their  outlier  status.  For  this  purpose,  we  computed  the  Z-score  per  line 
 (  Methods  )  for  each  cell  type  and  time  point  combination  and  assigned  as  outliers  those  cell 
 lines  with  |Z-score|>2  (  Fig.  5A  ).  Under  this  classification,  we  identified  175  cell  lines  that 
 were  an  outlier  in  at  least  one  of  the  combinations  (day  11,  N=58;  day  30,  N=82;  day  52, 
 N=114),  most  of  which  had  abnormally  large  cell  type  fractions.  Only  on  day  11,  16  cell  lines 
 showed  abnormally  low  fractions  of  progenitors  and  astrocytes,  which  were  compensated  by 
 abnormally  large  fractions  of  other  cell  types.  We  also  observed  an  overall  increase  in  cell 
 type fraction variability at later stages of differentiation. 

 We  further  explored  the  correlation  of  the  somatic  mutational  burden  acquired  in  vitro 
 with  the  outlier  behaviour.  Unexpectedly,  we  observed  a  significant  reduction  of  burden 
 (p<0.01,  Wilcoxon  test)  in  the  outlier  group  (  Fig.  5B  ,  upper).  This  difference  was  observed 
 for  both  total  and  deleterious  mutations,  but  when  detaching  the  outlier  status  per  time  point, 
 the difference remained significant only at day 30 (  Supp. Fig. 5, Methods  )  . 

 To  further  characterise  the  outlier  behaviour,  we  calculated  the  number  of  times  an 
 outlier  line  shows  an  abnormal  cell  type  fraction  across  the  differentiation  (outlier  event, 
 Methods  ).  On  average,  we  observed  2.21  outlier  events  per  line  (2.03-2.39,  95%  CI)  with 
 even  contributions  per  time  point  (  Fig.  5B  ,  lower).  When  focusing  only  on  the  cell  lines 
 profiled  at  the  three  time  points  (N=121  cell  lines),  we  observed  that  they  tend  to  show 
 outlier  events  most  frequently  at  the  two  consecutive  latest  time  points  (day  30  and  day  52) 
 or just initially (day 11). Only twelve cell lines showed outlier behaviour in all time points. 

 Although  observing  abnormal  cell  type  fraction  is  common  among  wild-type  iPSC 
 lines  in  pooled  experiments,  we  found  that  larger  proliferation  rates  at  day  52  were 
 associated  with  the  outlier  behaviour  (p=9.68·10  -4  ,  logistic  regression)  (  Fig.  5E  ).  To  identify 
 which  genes  might  be  driving  this  behaviour,  we  correlated  the  cell  type  specific  expression 
 with  the  changes  in  cell  type  composition  (  Fig.  5C,  Methods  ).  Among  the  significant 
 associations,  including  positively  and  negatively  correlated  genes,  we  observed  a  strong 
 enrichment  of  DDD  genes  (p.Adj<0.01,  chi-squared  test)  in  most  of  the  cell  types  at  the 
 progenitor  stage,  at  day  11  (  Fig.  5D,  Methods  ).  Similarly,  we  observed  that  7  out  of  the  9 
 cell  type  associations  enriched  in  cancer-associated  genes  were  also  enriched  among  DDD 
 genes,  as  expected  from  the  significant  overlap  between  the  two  gene  sets  (p<2.2·10  -16  , 
 Chi-squared).  This  suggests  that  the  regulation  of  developmental  genes  during  early  neural 
 induction  is  critical  to  determine  the  progenitor  abundance,  with  further  potential  to  increase 
 the  proliferation  rate  and  impact  the  differentiation  success  in  vitro  ,  as  shown  for  the  BCOR 
 gene. 

 Discussion 
 One  of  the  biggest  limitations  of  iPSC-based  disease  modelling  is  our  poor  understanding, 
 and  control,  of  factors  that  influence  the  capacity  of  cell  lines  to  differentiate  successfully  and 
 reproducibly.  Recently,  it  was  proposed  that  the  large  variability  associated  with 
 differentiation  is  primarily  explained  by  cell-intrinsic  factors  8  ,  rather  than  experimental  or 
 other  technical  factors.  Genetic  variation  has  previously  been  shown  to  drive  molecular 
 heterogeneity  in  iPSCs  7  ,  33  ,  34  ,  35  ,  but  large-scale  studies  looking  at  the  role  of  genetic  variation 
 in  differentiation  are  only  beginning  to  emerge.  In  particular,  somatic  mutations  acquired  prior 
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 to  the  differentiation,  either  in  vivo  during  parental  tissue  clonal  evolution  or  in  vitro  during 
 iPSC  reprogramming  and  culture  maintenance,  are  potential  contributors  to  variation  in 
 differentiation  efficiency.  Here,  we  present  the  first  attempt  to  link  differentiation  outcomes  to 
 acquired  somatic  mutations  in  human  iPSC  lines  from  the  HipSci  resource,  which  offered  a 
 unique  opportunity  to  study  multiple  cell  types  independently  derived  from  the  same  iPSC 
 lines.  Further,  with  exome  sequencing  available  for  both  iPSCs  and  their  parental  fibroblasts, 
 we  were  able  to  focus  on  the  subset  of  damaging  mutations  acquired  in  vitro  ,  which  are 
 particularly relevant for abnormal differentiation outcomes. 

 One  of  the  key  insights  from  our  work  is  that  although  the  total  burden  of  acquired 
 mutations  in  iPSC  lines  is  not  predictive  of  their  differentiation  outcome,  deleterious 
 mutations  in  the  core  genes  of  a  given  differentiation  system  can  cause  unwanted  effects  on 
 differentiation.  This  effect  is  likely  not  limited  to  mutations  acquired  in  vitro  ,  as  mutations  and 
 rare  variants  in  the  genetic  background  of  the  parental  cells  selected  for  reprogramming  may 
 account  for  a  considerable  fraction  of  differentiation  variability,  even  if  not  affecting 
 reprogramming  directly.  In  support  of  this,  we  found  that  somatic  deleterious  mutations  in  the 
 BCOR  gene  are  strongly  associated  with  differentiation  failure  in  human  dopaminergic 
 neurons.  The  effect  was  seen  with  183  observed  differentiations  as  well  as  793  predicted 
 differentiation  outcomes  of  iPSC  to  dopaminergic  neurons  8  .  The  sensitivity  to  BCOR 
 deleterious  mutations  is  supported  by  the  strong  selection  against  predicted  LoF  variants  in 
 the  Genome  Aggregation  Database  36  .  Further,  a  high  prevalence  of  acquired  BCOR 
 mutations  was  previously  found  in  blood-derived  iPSC  lines,  and  it  was  shown  that  they 
 likely  arose  after  reprogramming  through  positive  selection  for  BCOR  dysfunction  11  .  In  our 
 dataset,  damaging  BCOR  variants  were  only  observed  in  the  iPSC  lines,  although  they  could 
 have  originated  in  vivo  and  be  present  in  parental  fibroblasts  as  subclones  at  very  low 
 frequencies that later underwent positive selection  in vitro  . 

 BCOR  is  a  key  transcriptional  regulator  during  embryogenesis.  It  is  part  of  a  specific 
 type  of  polycomb  repressive  complex  that  mediates  transcriptional  repression  through 
 epigenetic  modifications  of  histones  18  and  has  been  shown  to  have  a  key  role  in  regulating 
 the  pluripotent  state  and  differentiation  (Z.  Wang  et  al.  2018).  Like  many  other 
 chromatin-related  genes,  BCOR  is  annotated  both  as  a  developmental  disorder  gene  and  a 
 cancer  driver  gene  30  ,  37  ,  38  we  observed  that  failed  lines  that  carried  deleterious  BCOR 
 mutations  showed  significantly  larger  proliferation  rates  than  lines  that  differentiated 
 successfully,  suggesting  that  monitoring  cell  line  proliferation  rates  prior  to  differentiation  may 
 be an effective way to screen out lines that will not differentiate correctly  39  . 

 Although  the  BCOR  gene  was  not  listed  in  the  expression  signature  of  failed 
 differentiation  for  specific  iPSC  populations  (N=184  lines)  (Jerber  et  al.  2021),  we  observed 
 that  BCOR  expression  in  dopaminergic  neurons  was  negatively  associated  with  final  neuron 
 abundance,  and  was  also  linked  to  the  abundance  of  progenitor  populations  earlier  in  the 
 differentiation.  As  an  epigenetic  modulator  of  stemness  and  differentiation,  it  is  unclear 
 whether  the  expressivity  of  BCOR  LoF  mutations  already  manifests  at  iPSC,  at  precursor 
 stage  or  at  both,  potentially  redirecting  neuron  differentiation  to  astrocytes  and 
 ependymal-like cells. 

 Despite  the  strong  association  of  BCOR  mutations  with  differentiation  failure,  not  all 
 of  the  failed  lines  carried  damaging  variants  in  that  gene,  suggesting  other  genes  are 
 involved  as  well.  For  this  reason,  we  also  analysed  the  most  differentially  mutated  genes  in 
 each  differentiation  outcome  to  pinpoint  the  biological  processes  that  were  affected  by 
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 deleterious  mutations.  Interestingly,  genes  that  were  mutated  only  in  failed  lines  were 
 enriched  in  neurodevelopmental  processes  such  as  the  negative  regulation  of  neuron 
 differentiation  or  the  regulation  of  the  neuron  apoptotic  process.  Similarly,  when  comparing 
 the  top  differentially  mutated  genes  per  outcome  between  discordant  replicate  pairs,  failed 
 lines  showed  an  excess  of  deleterious  mutations  in  DDD  genes  and  an  excess  of  LoF 
 mutations in cancer-associated genes. 

 To  better  characterise  the  cell  type  composition  dynamics  throughout  the  DN 
 differentiation  process,  we  introduced  a  critical  modification  to  the  analysis  in  the  original 
 study  8  .  Specifically,  we  clustered  all  cells  at  once,  rather  than  per  time  point.  While  we  lose 
 some  granularity  in  the  definition  of  cell  types,  this  approach  allowed  us  to  observe  cell  type 
 composition  changes  per  line  across  neuron  lineages,  tracing  the  commitment  of 
 neuroblasts  to  young  and  mature  neurons.  We  identified  a  larger  fraction  of  neuroblasts 
 committing  to  dopaminergic  and  serotonergic  neurons  in  failed  lines,  suggesting  an 
 accelerated  maturation  at  the  progenitor  stage  potentially  linked  to  the  proliferative 
 phenotype.  In  that  scenario,  failed  lines  could  reach  faster  the  number  of  cell  cycles  required 
 for  differentiation  to  begin  after  neural  induction,  promoting  the  early  production  of 
 neuroblasts with a defective neuronal commitment. 

 Finally,  we  compared  the  extent  of  differential  gene  expression  per  cell  type  across 
 time  points  and  conditions  between  failed  and  successful  lines.  With  these  comparisons,  we 
 sought  to  identify  the  key  regulator  genes  across  the  different  stages  of  neurodevelopment 
 and  across  different  biological  processes.  Many  cell  types  at  the  progenitor  stage  (day  11) 
 showed  an  enrichment  of  DE  genes  corresponding  to  key  developmental  genes,  either  DDD 
 or  cancer-associated.  In  those  cell  types,  the  differentially  regulated  neurodevelopmental 
 processes  clearly  overlap  with  the  functional  processes  affected  by  deleterious  mutations  in 
 failed  lines.  We  hypothesise  that  among  those  DE  genes,  there  is  a  potential  list  of  new 
 DDD  candidates,  whose  clinical  significance  should  be  evaluated.  Moving  beyond  the 
 outcome  definition,  we  found  that  those  genes  whose  expression  is  associated  with  the 
 abundance of progenitor populations at day 11 are also enriched in DDD genes. 

 Any  differentiation  process  involves  a  dynamic  evolution  of  cell  types,  which  does  not 
 necessarily  fit  into  a  failed  or  successful  outcome  based  on  an  arbitrary  threshold.  To  avoid 
 overlooking  other  relevant  changes,  we  analysed  outlier  behaviour  in  cell  type  composition. 
 We  found  that  64.3%  of  lines  in  pooled  experiments  occasionally  display  abnormal  cell  type 
 fractions  during  the  differentiation  process.  This  outlier  behaviour  reflects  the  large  variability 
 in  cell  type  composition  during  in  vitro  pooled  differentiations,  likely  resulting  from  the 
 combination  of  donor  effects,  cross-interactions  among  pooled  lines  and  stochasticity.  The 
 periodicity  of  outlier  events  suggests  that  they  tend  to  happen  either  consecutively  in  the  last 
 two  time-points  or  only  at  the  first  one,  which  can  be  explained  by  the  experimental  design, 
 as  cells  were  only  passaged  at  day  20.  Even  more  importantly,  we  found  that  outlier 
 behaviour  was  strongly  associated  with  larger  proliferation  rates  in  cell  lines,  possibly 
 implying  that  acquired  mutations  in  other  genes  that  also  increase  proliferation  activity  could 
 be  behind  the  abnormal  cell  type  composition.  However,  since  the  mutational  recurrence  in 
 all  other  genes  was  substantially  lower  than  in  BCOR  ,  we  were  not  sufficiently  powered  to 
 detect  population-level  evidence  for  this  possibility.  Finally,  we  did  not  observe  a  higher 
 burden  of  acquired  mutations  in  outlier  lines  when  compared  to  non-outlier  lines,  but  instead 
 the  opposite.  These  observations  suggest  that  while  individual  deleterious  mutations  can 
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 define  differentiation  outcomes,  the  determinants  of  outlier  behaviour  during  neuronal 
 differentiation are likely more varied. 

 In  summary,  our  study  demonstrates  that  although  iPSC  models  are  an  excellent  tool 
 for  studying  neurodevelopment  and  developmental  disorders,  results  from  differentiated  cell 
 types  should  be  interpreted  with  caution.  We  studied  a  large  number  of  iPSC  lines  derived 
 from  healthy  individuals  and  observed  that  deleterious  mutations  in  genes  known  to  cause 
 developmental  disorders  cause  differentiation  defects  via  transcriptional  and  cell  type 
 composition  changes  during  neuronal  differentiation.  Our  work  highlights  somatic  mutations 
 as  a  significant  source  of  variation  in  iPSC-based  disease  models,  and  further  emphasises 
 the  importance  of  comprehensively  assaying  the  genomes  of  iPSC  lines  prior  to  their 
 experimental use. 
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 Main Figures 

 Figure  1.  Studying  the  cellular  basis  of  iPSC  differentiation.  a,  Experimental  design  of 
 differentiations:  Fibroblasts  derived  from  the  skin  of  healthy  patients  were  cultured  and  reprogrammed 
 into  iPSC  lines  (HipSci  Project).  We  leveraged  four  existing  iPSC  differentiations  that  used  HipSci 
 lines  to  derive  dopaminergic  neurons  (N=128,  nPred=349),  macrophages  (N=102),  sensory  neurons 
 (N=85)  and  endoderm  (N=86).  In  the  former  three,  lines  were  classified  as  having  a  failed  or 
 successful  outcome  upon  the  fraction  of  target  cell  type  observed  at  the  end  of  the  differentiation.  As 
 for  the  endoderm,  the  differentiation  efficiency  was  given  as  an  average  pseudotime  at  day  3,  ranging 
 from  0  (pluripotent  state)  to  1  (differentiated  state)  (Cuomo  et  al.  2020).  From  the  dopaminergic 
 dataset,  we  used  the  observed  and  predicted  outcome  per  line  from  (Jerber  et  al.  2020).  Cells  from 
 this  differentiation  were  profiled  at  single-cell  level  at  three  time-points  (day  11,  day  30,  day  52)  aiming 
 to  observe  progenitors,  young  neurons  and  mature  neurons.  b,  Characterisation  of  the  iPSC 
 mutational  burden.  The  variants  carried  by  iPSC  lines  can  be  classified  as  germline  or  somatic 
 mutations  upon  their  origin.  Those  variants  acquired  during  fibroblast  clonal  evolution,  previous  to  the 
 skin  biopsy,  are  referred  as  acquired  mutations  in  vivo  ,  while  those  variants  acquired  during  or  after 
 iPSC  reprogramming  are  referred  as  acquired  mutations  in  vitro  .  We  leveraged  whole-exome 
 sequencing  data  from  832  iPSC  cell  lines  to  evaluate  the  genetic  determinants  on  several  iPSC 
 differentiations,  where  germline  and  somatic  mutations  were  a  priori  indistinguishable.  Yet,  for  384  of 
 the  832  lines,  a  joint  variant  calling  between  the  available  parental  fibroblast  and  the  corresponding 
 iPSC  (Rouhani  et  al.  2021)  was  performed  to  detect  the  somatic  mutations  that  were  positively 
 selected during reprogramming as a proxy to identify acquired somatic mutations  in vitro  . 
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 Figure  2.  Effect  of  the  mutational  burden  on  iPSC  differentiations.  a,  Total  (left)  somatic 
 mutational  burden  per  cell  line  -  including  single  nucleotide  variants  (SNVs),  dinucleotides  and  indels  - 
 was  not  significantly  associated  with  the  differentiation  outcome  observed  in  macrophages,  sensory 
 neurons  and  dopaminergic  neurons  (Wilcoxon  rank  sum  test,  p>0.05).  No  association  was  observed 
 either  when  considering  only  deleterious  mutations  (right).  b,  Similarly,  no  association  (linear 
 correlation,  p<0.05)  was  observed  between  the  total  and  deleterious  mutational  burden  with  the 
 differentiation  efficiency  in  the  endoderm  (Pearson  correlation,  pAdj<0.05).  c,  Volcano  plot  of  the 
 differentially  mutated  genes  between  the  failed  and  successful  lines  in  dopaminergic  neurons 
 (observed  and  predicted)  and  for  macrophages,  tested  across  loss-of-function  (LoF),  deleterious 
 (LoF+missense  pathogenic)  and  synonymous  variant  categories.  In  red,  genes  significantly  more 
 mutated  in  failed  lines  (FC>2.5,  Wilcox.test  pAdj<0.05)  and  in  blue,  genes  significantly  more  mutated 
 in  successful  lines  (FC<1/2.5,  Wilcox.test  pAdj<0.05).  Those  genes  with  the  strongest  significance  are 
 displayed  (pAdj<0.001).  Only  the  BCOR  gene  was  significantly  more  mutated  in  failed  lines  than 
 successful  lines  across  the  variant  categories  linked  to  gene  damage.  d,  Gene  ontology  enrichment 
 analysis  unravelled  the  impact  of  deleterious  mutations  on  neuro-related  biological  processes 
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 (pAdj<0.05)  that  contribute  to  the  failed  differentiation:  the  negative  regulation  of  neuron  differentiation 
 (GO:0045665,  hit  45)  in  failed  observed  lines  or  the  regulation  of  neuron  apoptotic  process 
 (GO:0043523,  hit  82)  in  failed  predicted  lines.  The  colour  gradient  corresponds  to  the  odds  ratio  (OR) 
 per  GO  term  between  failed  and  successful  lines.  The  number  within  each  tile  indicates  the  hit 
 position  of  the  significant  GO  term,  ordered  by  decreasing  OR  within  each  analysis.  Overall,  4  GO 
 analyses  were  run  considering  the  observed  and  predicted  DN  outcomes  and  for  each  case,  only  the 
 top-5%  of  genes  more  differentially  mutated  per  outcome  were  considered  (N=933).  Neuro-related 
 GO terms that were not enriched in a particular GO analysis are shown in grey. 

 Figure  3.  Cell  line  replicates  in  pooled  differentiation  experiments  and  characterisation  of  in 
 vitro  proliferation  rates.  a,  Comparison  of  the  mean  cell  line  proportion  between  replicates  of 
 different  types:  pool  replicates,  one  cell  line  pooled  with  different  lines;  biological  replicates,  cell  lines 
 differentiated  with  the  same  pool  in  independent  experiments;  technical  replicates,  cell  lines  from  the 
 same  pool  differentiated  at  the  same  time  (different  wells  of  the  same  plate);  10x  replicate,  cell  lines 
 from  the  same  pool  differentiated  at  the  same  time  (same  wells  of  the  same  plate).  The  designation 
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 for  Replicate  1  and  Replicate  2  is  random.  The  p-value  and  adjusted  R-square  are  obtained  from 
 fitting  a  linear  regression.  The  background  of  donors  in  each  pool  affects  the  reproducibility  of  a  cell 
 line  abundance  in  culture.  Still,  the  reproducibility  was  high  among  independent  experiments  of  the 
 same  pool  and  showed  minimal  differences  between  technical  and  10x  replicates.  b,  Cell  line 
 proportion  evolution  throughout  neuron  dopaminergic  differentiation.  Each  line  corresponds  to  a  cell 
 line  in  a  given  pool.  Proportions  measured  at  day  11,  30  and  52  are  based  on  cell  deconvolution 
 estimates,  while  at  day  0  are  based  on  the  equivalent  number  of  cells  seeded  per  line  in  each  pool. 
 We  observed  a  consistent  outlier  behaviour  featured  by  1-to-2  lines  that  proliferate  significantly  faster 
 during  pooled  differentiation.  c,  Failed  cell  lines  carrying  at  least  one  BCOR  LoF  mutation  showed,  on 
 average,  a  higher  proliferation  rate  than  neurons  that  can  differentiate  successfully  in  any  of  the  three 
 time  points  (D11/D0,  p=0.0069;  D30/D0,  p=0.03;  D52/D0,  p=0.0015,  Wilcoxon  Rank  Sum  Test).  None 
 of  the  successful  lines  carried  a  LoF  mutation  in  the  BCOR  gene.  Each  point  exhibits  the  proliferation 
 rate  of  a  cell  line  in  a  given  pool.  d,  High  proliferation  rates  in  cell  lines  were  associated  with 
 significant  changes  on  cell  type  composition  at  day  52  (linear  regression,  FDR<0.05),  consisting  of  a 
 depletion  of  dopaminergic  (DA)  neurons  and  an  excess  of  astrocytes  and  proliferative  floor  plate 
 progenitors  type  1  (proFPP-1).  The  increasing  size  of  the  black-filled  circle  indicates  different  levels  of 
 significant  association:  p<0.05  (*),  p<0.01  (**);  while  the  white-filled  circles  stand  for  non-significant 
 associations.  The  colour  for  each  cell  type  indicates  whether  there  is  a  positive  (blue)  or  a  negative 
 correlation (orange). 
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 Figure  4.  Failed  and  successful  lines  showed  major  differences  in  cell  type  composition,  gene 
 expression  and  functional  enrichment.  a,  Major  cell  types  showed  significant  differences  in 
 composition  as  early  as  in  day  11  (negative  binomial  regression,  Methods),  except  for  floor-plate 
 progenitors  type  1  (FPP-1)  and  ependymal-like  cells  (Epend-1).  Neuroblasts  from  failed  lines  showed 
 an  earlier  commitment  to  dopaminergic  (DA)  or  serotonergic-like  (Sert-like)  fate,  which  was 
 notoriously  reversed  throughout  neuron  maturation  (days  30,  days  52).  The  significance  for  each  test 
 is  displayed  in  red  for  those  cell  types  with  less  than  2%  of  abundance  within  a  given  time  point.  The 
 significance  level  of  each  test  was  indicated  as  follows:  pAdj<0.05  (*),  pAdj<0.01  (**),  pAdj<0.001 
 (***),  after  multiple  test  correction  using  the  Benjamini  &  Hochberg  method.  b,  The  heatmap  illustrates 
 the  magnitude  of  differential  expression  during  differentiation  between  the  matched  cell  types  of  failed 
 and  successful  lines.  At  the  progenitor  stage  (day  11),  most  of  the  differentially  expressed  genes  are 
 enriched  in  developmental  disorder  genes  (DDD,  cyan),  especially  when  considering  those  that  act  in 
 a  dominant  fashion  (DDD-dominant,  blue)  (Chi-squared  test,  Methods).  Also,  some  of  the  cell  types 
 show  an  enrichment  in  cancer-associated  genes  (Cosmic-Tier  1, magenta),  particularly  strong  in  the 
 case  of  floor-plate  progenitors  type  3.  The  significance  level  for  the  gene  set  enrichment  is  indicated 
 by  the  increasing  size  of  the  filled  circles:  pAdj>0.05  (ns),  pAdj<0.05  (*),  pAdj<0.01  (**),  pAdj<0.001 
 (***).  c,  Functional  enrichment  of  biological  processes  (  hypergeometric  test  for  GO  term  association, 
 pAdj<0.05  and  FC>1.5)  among  the  differentially  expressed  (DE)  genes.  Only  the  neurodevelopmental 
 and  chromatin-related  processes  are  illustrated.  Several  tests  were  run,  either  aggregating  all 
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 differentially  expressed  genes  (allDE),  all  the  DE  genes  with  an  overrepresentation  of  DDD  genes 
 (allsignif)  or  any  of  the  individual  time  point  and  cell  type  combinations.  Several  processes  involving 
 neuron  development  and  neuron  maturation  were  affected  as  previously  observed  in  failed  lines  with 
 differential mutational burden. 

 Figure  5.  Cell  lines  in  the  pooled  differentiation  displayed  common  outlier  behaviour  in  cell 
 type  composition.  a,  Identification  of  cell  line  outliers  of  cell  type  composition  per  time  point  (dots  in 
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 red,  |Z-score|>2).  Most  of  the  outlier  cell  lines  showed  an  excess  of  a  particular  cell  type  throughout 
 the  differentiation,  except  for  some  lines  with  a  reduced  population  of  astrocytes  and  progenitors  at 
 day  11.  b,  upper  :  Lines  with  at  least  one  outlier  cell  type  abundance  throughout  the  differentiation 
 (outlier  event)  showed  a  significant  reduction  in  the  somatic  burden  of  acquired  mutation  in  vitro  than 
 non-outliers  (Wilcoxon  Rank  Sum  Test).  This  is  observed  considering  either  all  mutations  (p=3.6·10  -3  ) 
 or  just  the  subset  of  deleterious  ones  (p=2.7·10  -3  );  lower  :  On  average,  each  outlier  line  showed  2.21 
 outlier  events  per  differentiation,  but  less  than  1  event  per  time  point.  Also,  most  of  the  lines  displayed 
 the  outlier  behaviour  either  simultaneously  at  days  30  and  52  (young  and  mature  stage),  or  just  at  day 
 11  (progenitor  stage).  Each  dot  represents  the  mean  outlier  events  while  the  bars  represent  the  95% 
 CI.  c,  upper  :  Example  illustrating  the  z-score  correlation  of  the  KMT2D  gene  expression  in 
 neuroblasts  committing  to  dopaminergic  neurons  (DA)  with  the  corresponding  cell  type  proportions  at 
 day  11.  This  analysis  was  done  for  all  the  expressed  genes  per  time  point.  Each  dot  corresponds  to  a 
 cell  line;  lower  :  The  distribution  of  Pearson  correlation  coefficients  for  all  genes  expressed  in  the 
 neuroblast  populations  committing  to  DA  at  day  11.  We  sampled  the  correlated  (and  anti-correlated) 
 genes  that  showed  significant  associations  (pAdj<0.05,  purple  dashed  line)  between  the  expression 
 and  the  cell  type  abundance.  This  distribution  was  generated  for  all  cell  types  at  each  time  point.  d, 
 The  abundance  of  progenitor  population  was  associated  with  the  expression  of  developmental 
 disorder  (DD)  and  cancer-associated  (Cosmic-Tier1)  genes.  A  gene  set  enrichment  (Chi-Squared 
 test,  B&H  multiple-test  correction)  was  performed  between  those  significantly  correlated  genes. 
 Results  are  illustrated  in  heatmap  tiles  as  follows:  not  tested  due  to  insufficient  cells  (grey),  pAdj>0.05 
 (ns,  yellow),  pAdj<0.05  (*,  orange),  pAdj<0.01  (**,  red).  e,  The  mean  proliferation  rate  per  line, 
 calculated  as  the  ratio  of  the  cell  line  proportion  between  days  52  and  0,  was  higher  in  outlier  lines 
 than in non-outlier lines (p=  9.68·10  -4  , logistic regression).  
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 Supplementary Figures 

 Supp.  Fig  1.  a,  No  significant  mean  differences  on  total  number  of  mutations  acquired  in  vitro  (Wilcox 
 rank  sum  test,  FDR<5%)  were  observed  between  the  two  differentiation  outcomes  (failed  vs 
 successful)  of  the  three  different  iPSC-derived  cell  types  (dopaminergic  neurons  -  observed  and 
 predicted-,  macrophages  and  sensory  neurons).  We  also  tested  such  differences  of  burden  on  six 
 variant  classes:  total  variants  excluding  CNVs;  synonymous  variants  and  others  (coding,  non-coding 
 and  unannotated),  deleterious  variants  (union  of  LoF  and  missense  pathogenic),  as  well  missense 
 pathogenic  and  loss-of-function  variants  alone.  In  none  of  the  24  tests,  the  difference  reached  the 
 statistical  significance  threshold,  even  before  multiple  test-correction.  b,  No  association  was  observed 
 between  the  binary  differentiation  outcome  (failed  or  successful  groups)  and  the  total  number  of 
 mutations  acquired  in  vitro  for  any  of  the  tested  variant  classes.  For  each  mutation  category,  we  fitted 
 a  logistic  regression  and  showed  the  corresponding  raw  p-values  shown  in  the  heatmap.  None  of  the 
 tests  reached  the  statistical  significance  threshold  even  before  multiple-test  correction.  We  considered 
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 all  mutations  (without  CNVs),  synonymous,  missense  (pathogenic  and  non-pathogenic),  deleterious 
 and  LoF  only,  other  mutations  (coding,  non-coding  and  unannotated),  dinucleotides,  single  nucleotide 
 variants  only,  indels,  indels  predicted  to  be  LoF,  the  number  of  CNVs,  and  the  region  length  (in  Mb)  of 
 shared  and  different  CNVs.  c,  Number  of  BCOR  mutations  per  iPSC  line  (either  LoF,  deleterious  or 
 synonymous  variants)  linked  to  the  DN  differentiation  outcome  (observed  and  predicted).  A  significant 
 higher  burden  of  damaging  variants  were  observed  across  failed  lines  (Wilcox  test,  p<0.05).  None  of 
 the  successful  lines  (N=135)  in  the  DN  observed  outcome  carried  a  BCOR  LoF  mutation,  while  22  out 
 of  48  failed  lines  have  at  least  one  mutation.  d,  Gene  set  enrichment  for  developmental  disorder  (DD) 
 and  cancer-associated  (Cosmic-Tier  1)  genes  on  the  differential  mutational  burden  between 
 discordant  replicate  lines  (N=49  pairs)  (Methods).  A  significant  enrichment  of  LoF  burden  (nominal 
 p=0.033)  was  observed  in  cancer-associated  genes,  as  well  as  deleterious  (nominal  p=0.039)  and 
 synonymous  (nominal  p=0.008)  burden  in  DDD  genes.  The  proportion  t.test  p-value  was  ranked 
 through  1,000  random  gene  sets.  The  colour  scale  indicates  the  magnitude  of  the  nominal  p-value, 
 while  the  black-filled  circle  per  tile  indicates  a  significant  enrichment  (nominal  p-value<0.05).  The 
 increasing  size  of  the  black-filled  circle  indicates  higher  significance  levels  for  gene  set  enrichment: 
 p<0.05 (*), p<0.01 (**), p<0.001(***). 
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 Supp.  Fig  2.  a,  Cell  line  proportion  for  the  different  10x  samples  run  for  pool  2.  Each  heatmap  row  is 
 a  cell  line  and  each  column  corresponds  to  a  10x  sample.  In  certain  samples,  one-to-two  cell  lines 
 consistently  account  for  up  to  50%  of  the  cells.  b,  Percentage  of  singletons  confidently  assigned  to  a 
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 10x  sample  (each  dot)  of  day  52  grouped  by  pool.  As  a  quality  control  step,  those  10x  samples  with 
 less  than  a  50%  of  singletons  were  removed  from  further  analysis  due  to  concerns  on  data  integrity.  c, 
 Number  of  cell  droplets  estimated  per  10x  sample  after  CellRanger  processing.  d,  Quality  control 
 metrics  after  the  merging  and  the  cell  deconvolution  of  the  115  10x  samples  from  the  dopaminergic 
 differentiation.  The  median  number  of  genes  per  cell  was  below  3,000,  while  the  total  count  of  reads 
 was  around  10,000,  as  expected.  Also,  cells  at  day  52  showed  a  higher  average  of  mitochondrial 
 counts,  while  at  day  11  the  higher  percentage  corresponded  to  ribosomal  counts.  e-g,  Time-specific 
 cell  markers  expression  from  8  used  to  annotate  our  Leiden  clustering.  General  makers  are  shown  in 
 (e),  specific  dopaminergic  markers  in  (f)  and  glial  cells  in  (e).  The  intensity  of  blue  shows  the  mean 
 expression  of  the  gene  for  each  cluster-time  point  group.  h,  UMAP  based  on  gene  expression  with 
 cells  coloured  by  the  annotated  cell  types.  i,  UMAP  on  gene  expression  with  cells  coloured  by 
 sampling  time  point  in  differentiation  (days  11,  30  and  52).  j,  Cell  type  proportion  in  each  10x  sample 
 highlights  the  observed  variability  on  cell  type  composition  throughout  differentiation.  Each  row  is  a 
 10x sample ordered by time point, without considering the contribution of individual lines. 

 Supp.  Fig  3.  a,  Illustrative  diagram  for  the  four  types  of  replicates  considered  in  DN  dataset:  pool 
 replicates,  referred  to  cell  lines  that  are  included  in  different  pools;  biological  replicates,  referred  to 
 lines  from  the  same  pool  that  are  differentiated  independently  (in  time  and  space);  technical 
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 replicates,  referred  to  lines  from  the  same  pool  differentiated  in  the  same  plate  but  different  wells;  and 
 10x  replicates,  referred  to  lines  from  the  same  pool,  plate  and  well.  b,  Distribution  of  the  in  vitro 
 proliferation  rate  for  pooled  cell  lines  (expressed  in  log  10  )  between  each  differentiation  time  point  and 
 day  0.  The  vertical  red  line  indicates  the  mean  cell  line  proportion  ratio  and  the  dashed  lines  the  95% 
 confidence  intervals.  c,  Failed  cell  lines  showed  on  average  a  larger  proliferation  rate  at  day  52  than 
 successful  lines  (Wilcoxon  Rank  Sum  Test,  p=2.8·10  -3  ).  Proliferation  rates  are  expressed  in  log  10  .  d, 
 Cell  lines  carrying  at  least  one  deleterious  BCOR  mutation  were  associated  with  cell  type  composition 
 changes  at  day  52  with  a  significant  depletion  of  dopaminergic  and  serotonergic-like  neurons  (DA  and 
 Sert-like)  and  an  excess  of  astrocytes  (Astro),  proliferative  floor-plate  progenitors  type  1  (proFPP-1) 
 and  glial  cells  (Unk-1).  The  test  for  association  was  run  for  all  protein-coding  genes  (Wilcoxon  rank 
 sum  test)  and  corrected  for  multiple-testing  (  Benjamini  &  Hochberg).  The  increasing  size  of  the 
 black-filled  circle  indicates  higher  significance  levels  for  gene  set  enrichment:  p<0.01  (**),  p<0.001 
 (***);  while  the  white-filled  circles  indicate  non-significant  association.  Cell  types  with  a  significantly 
 higher  proportion  in  mutated  lines  compared  to  the  unmutated  ones  are  labelled  in  blue.  In  the 
 opposite scenario, they are labelled in orange. 
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 Supp.  Fig  4.  a,  The  number  of  cells  per  outcome  and  cell  type  did  not  correlate  with  the  detected 
 number  of  differentially  expressed  (DE)  genes  (p>0.05),  suggesting  that  differential  gene  expression 
 was  not  biased  by  the  sample  sizes.  Each  dot  represents  a  cell  type  and  is  coloured  according  to  the 
 corresponding  time  point.  b,  Gene  set  enrichment  analysis  on  MSigDB  hallmark  signatures 
 (|NES|>1.5,  adj.P<0.05)  among  those  cell  types  with  cancer-associated  differential  gene  expression. 
 Pathways  with  significant  enrichment  are  coloured  in  red  for  upregulation,  in  yellow  for  downregulation 
 and  in  grey  when  no  significant  enrichment  is  observed.  Astrocytes  at  day  52  downregulated  the 
 oxidative phosphorylation and upregulated the mitotic spindle assembly, contrary to other cell types. 

 Supp.  Fig  5.  The  differences  in  the  burden  of  somatic  mutations  acquired  in  vitro  between  outliers 
 and  non-outliers  of  cell  type  composition  are  not  consistent  throughout  the  different  stages  of  the 
 differentiation  (Wilcoxon  Rank  Sum  Test).  The  definition  of  outlier  lines  was  based  on  the  observation 
 of  an  abnormal  cell  type  proportion  during  the  differentiation  or  at  a  given  time  point.  Only  at  day  30, 
 we  observed  a  reduced  burden  in  the  outlier  group,  which  was  also  observed  with  the  aggregated 
 definition, both when accounting for total variants or for deleterious only. 
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 Materials and Methods 

 1. Quality control and annotation of somatic mutations acquired  in vitro 
 A  joint  variant  calling  (  BCFtools/mpileup  and  BCFtools/call,  version  1.4.25,  human  genome 
 assembly  GRCh37d5)  between  384  pairs  of  parental  fibroblasts  and  their  corresponding 
 iPSC  lines  was  performed  to  identify  18,999  somatic  mutations  that  were  acquired  or 
 positively  selected  throughout  iPSC  reprogramming  as  described  in  11  .  This  calling  was 
 performed  for  single-nucleotide  variants  (SNVs),  dinucleotides,  indels  and  copy  number 
 variants  (CNVs)  for  both  autosomal  chromosomes  and  chromosome  X.  Only  in  the  case  of 
 indels, chromosome X was not included. 

 We  filtered  the  initial  call  set  11  following  these  steps:  the  variants  out  of  the  exome 
 sequencing  baits  were  excluded,  germline  variants  were  filtered-out  assuming  they  show  a 
 minor  allele  frequency  MAF>0.1%  in  1000  Genomes  Phase3  40  or  in  ExAC  0.3.1  41  ,  or  be 
 carried  by  the  parental  fibroblast  of  more  than  one  donor.  Only  high-quality  variants  were 
 filtered-in  (PASS  filter).  Variants  with  an  allelic  fraction  larger  than  0.6  in  iPSC  or  in 
 fibroblasts  were  removed  to  filter  potential  spurious  mutation  calls.  We  classified  variants 
 either  as  acquired  in  vitro  or  positively  selected  only  when  a  significant  rise  in  allele 
 frequency  was  observed  between  the  iPSC  and  the  parental  fibroblast  (Fisher’s  exact  test 
 p<1.6·10  -4  ,  equivalent  to  FDR  5%  using  the  Benjamini-Hochberg  multiple  test  correction 
 procedure).  17  out  of  the  384  iPSC  lines  were  found  to  be  hypermutated  in  vitro  (>240 
 mutations  corresponding  to  a  Z-score>2)  and  were  discarded  for  further  analysis 
 downstream.  Finally,  we  defined  our  gene  universe  as  the  19,653  genes  that  were 
 protein-coding  genes  in  the  Ensembl  gene  annotation  (GRCh37,  version  87)  and  were 
 covered  by  the  exome  sequencing  baits.  In  line  with  that,  we  discarded  all  those  variants  that 
 could  not  be  annotated  to  the  gene  universe,  finally  releasing  a  call  set  of  18,999  mutations, 
 including 460 CNVs, 642 indels, 2,445 dinucleotides and 15,452 SNVs (  Supp. Table 1  )  . 

 2. Functional annotation of somatic mutations acquired  in vivo  . 
 We  annotated  the  somatic  mutations  acquired  in  vivo  (SNVs,  dinucleotides,  indels)  by 
 predicting  their  functional  consequence  using  the  variant  effect  predictor  (VEP,  release  99)  42 

 and  the  haplotype-aware  BCFtools/csq  tool  (version  1.9)  43  .  We  used  Ensembl  gene 
 annotations  (GRCh37,  version  87)  and  recorded  only  the  most  impactful  consequence  for 
 each mutation, as determined by the following decreasing order of severity: 
 https://www.ensembl.org/info/genome/variation/prediction/predicted_data.html 

 We  defined  mutations  as  loss-of-function  (LoF)  when  they  were  annotated  as 
 frameshift,  stop-gain,  splice  acceptor  or  splice  donor  variants;  and  as  missense  pathogenic 
 (or  damaging  missense)  when  annotated  as  missense  or  start  loss  with  a  CADD  Phred 
 score  cutoff  >  15  (version  1.6)  44  .  The  definition  of  deleterious  mutations  included  the  union 
 of  LoF  and  missense  pathogenic  mutations.  The  remaining  mutations  were  annotated  as 
 synonymous  or  as  “others”  (either  as  coding,  non-coding  or  unannotated).  Overall,  we 
 annotated  1,002  LoF  mutations,  5,722  missense  pathogenic,  2,631  missense 
 non-pathogenic, 3,158 synonymous and 6,026 other mutations  (  Supp. Table 1  ). 

 3. Definition of differentiation outcomes in iPSC-derived cell types 

 Sensory  neurons  14  :  We  processed  the  Supplementary  Table  1  of  the  original  publication 
 (“IPSDSNs”)  that  contained  the  metadata  for  all  cell  lines  differentiated  to  sensory  neurons. 
 We  annotated  the  differentiation  outcome  by  re-labelling  the  neuron  quality  status  per  line 
 from  “Poor”  to  failed  and  from  “Good”  to  successful.  We  excluded  those  cell  lines  with 
 undefined  neuron  quality  status  and  renamed  the  non-neuronal  differentiation  outcome  to 
 failed  differentiation.  We  identified  13  iPSC  lines  with  differentiation  replicates,  all  of  which 
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 had  a  concordant  outcome  (2  failed,  10  successful),  except  for  one  line  ("HPSI0613i-eojr_3") 
 that  was  discarded.  In  total,  we  annotated  the  outcome  for  105  cell  lines  (5  failed  and  100 
 successful),  of  which  85  lines  (3  failed,  82  successful)  were  also  profiled  by  WES  and  had 
 mutation data available  (  Supp. Table 1  ). 

 Macrophages  13  :  We  processed  the  Supplementary  Table  1  of  the  original  publication  that 
 contained  the  status  of  the  differentiation  outcome  per  line.  We  removed  those  cell  lines  that 
 showed  a  low  macrophage  purity  (“FC_QC_fail”)  or  presented  degraded  RNA 
 (“RNA_QC_fail”).  We  identified  11  iPSC  lines  with  differentiation  replicates,  all  of  which  had  a 
 concordant  outcome  (7  failed,  4  successful).  In  total,  we  annotated  the  outcome  for  123  cell 
 lines  (23  failed  and  90  successful),  of  which  102  lines  (22  failed,  80  successful)  were  also 
 profiled by WES  (  Supp. Table 1  ). 

 Dopaminergic  neurons  8  :  We  reprocessed  the  whole  scRNA-seq  dataset  (excluding  cells 
 treated  with  rotenone),  re-clustering  all  cells  at  once  and  annotating  the  resulting  cell  types 
 using  the  same  markers  from  the  original  publication  (see  also  Section  7  ).  We  then 
 computed  the  total  number  of  cells  and  the  cell  type  proportion  per  line  in  each  pool.  For 
 each  time  point,  we  removed  those  cell  lines  with  the  lowest  number  of  cells  (first  twentile)  to 
 increase  the  confidence  level  of  the  cell  type  proportion  estimates.  We  then  defined  the 
 neuronal  differentiation  efficiency  per  cell  line  in  each  pool  as  the  proportion  of  dopaminergic 
 and  serotonergic  neurons  observed  at  day  52  of  the  differentiation.  We  annotated  this 
 efficiency  for  209  cell  lines  distributed  in  18  pools,  and  classified  lines  accordingly  either  as 
 failed  lines  (<0.2,  this  includes  lines  with  poor/impaired  outcome)  or  successful  lines  (≥0.2). 
 Only  3  out  of  the  36  iPSC  lines  placed  in  more  than  one  pool  (pool  replicates)  were 
 discordant.  The  DN  outcomes  for  the  remaining  206  lines  corresponded  to  56  failed  and  150 
 successful  lines,  with  a  subset  of  126  lines  also  profiled  by  WES  (35  failed,  91  successful). 
 Overall,  we  reached  a  98.8%  agreement  with  the  neuronal  differentiation  outcome 
 classification of the original paper. 

 Additionally,  we  processed  the  Supplementary  Table  5  8  which  contained  the  model 
 scores  from  the  predicted  efficiency.  Those  scores  were  obtained  from  a  logistic  regression 
 trained  with  a  binary  outcome  definition  per  line  (either  successful  lines  with  >20%  measured 
 efficiency  or  failed  lines  with  <20%)  and  an  independent  dataset  of  bulk  RNA-seq  that  uses 
 all  expressed  genes  from  184  iPSC  lines.  The  model  scores  classified  812  HipSci  iPSC  lines 
 as  failed  (N=103)  and  successful  (N=709)  differentiators  (precision=0.9  and  recall=0.35  for 
 threshold=0.02231),  with  349  lines  also  profiled  by  WES  (33  failed,  316  successful)  (see 
 Figure 1A  ,  Supp. Table 1  ). 

 Endoderm  15  :  We  processed  a  table  obtained  from  the  authors  of  the  original  publication 
 with  the  differentiation  efficiency  for  108  donors,  of  which  86  were  also  profiled  by  WES. 
 Here,  differentiation  efficiency  is  computed  as  the  average  pseudotime  on  day  3,  having  a 
 continuous distribution of efficiencies rather than a binary outcome (“failed”, “successful”). 

 4. Gene burden differences linked to the differentiation outcome 
 We  leveraged  the  832  iPSC  lines  profiled  with  WES  available  from  the  HipSci  project  and 
 annotated  the  most  severe  consequence  for  each  variant  using  the  variant  effect  predictor 
 (VEP,  release  99)  42  and  the  Ensembl  gene  annotation  from  the  release  (version  75)  .  We 
 summarise  the  results  by  building  a  matrix  of  mutation  counts  per  variant  category  either  for 
 LoF  or  deleterious  mutations  representing  gene  damage  categories,  or  synonymous  variants 
 as  mutational  burden  control.  The  criteria  for  inclusion  in  each  of  the  categories  was  the 
 same  as  provided  previously  with  the  annotation  of  somatic  acquired  mutations  in  vivo  (see 
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 Section  2  ).  Each  matrix  contained  the  19,653  genes  (of  the  gene  universe)  as  rows  and  the 
 832 lines as columns. 

 We  then  combined  the  mutational  burden  data  per  line  for  each  variant  category 
 (LoF,  deleterious  and  synonymous)  with  the  corresponding  binary  differentiation  outcome 
 (DN  predicted  (N=793),  DN  observed  (N=183),  macrophages  (N=118)).  We  excluded  the 
 sensory  neurons  from  the  analysis  due  to  the  low  number  of  failed  lines  in  that  dataset 
 (N=3).  For  each  variant  category  and  outcome  combination,  we  performed  a  Wilcoxon  Rank 
 Sum  Test  per  gene  (N=19,653  tests)  to  identify  those  that  presented  a  differential  burden 
 between  failed  and  successful  lines.  For  each  combination,  we  performed  a  multiple  test 
 correction  using  the  Benjamini  &  Hochberg  approach.  The  level  of  statistical  significance 
 was  set  at  FDR=5%.  To  compute  a  fold  change  of  the  mutational  differences  per  gene 
 between  failed  and  successful  lines,  we  initially  normalised  the  mutation  ratio  by  the  gene 
 length  (as  in  Ensembl  Annotation  release  87)  and  the  number  of  lines  per  outcome  and 
 divided  the  ratios  using  pseudocounts.  The  pseudocounts  used  for  each  combination 
 corresponded  to  the  minimum  non-zero  normalised  mutation  rate  observed  across  all  genes 
 for  any  of  the  outcomes.  We  used  a  threshold  of  FC>2.5  or  FC<1/2.5  to  classify  genes  as 
 disproportionately  mutated  in  failed  lines  or  in  successful  lines,  respectively.  Alternatively  in 
 the  case  of  the  DN  dataset,  we  also  combined  the  burden  data  with  the  continuous 
 distribution  of  differentiation  efficiencies  and  predicted  scores  to  check  the  robustness  of  the 
 BCOR  association.  In  this  case,  we  performed  a  Pearson’s  correlation  per  gene  for  each 
 combination. 

 5. Gene ontology enrichment analysis for DN differentiation 
 For  the  gene  ontology  enrichment  analysis  on  biological  processes,  we  only  focused  on  the 
 deleterious  burden  of  iPSC  lines.  Given  the  number  of  lines  for  the  DN  differentiation  (183 
 for  the  observed  outcome  and  793  for  the  predicted  one),  it  is  the  variant  category  linked  to 
 gene  damage  with  the  best  power  to  detect  enrichment.  We  proceeded  with  the  matrix  of 
 counts  previously  generated  for  the  identification  of  gene  burden  differences  linked  to  the 
 differentiation  outcome.  Likewise,  we  computed  the  fold  change  of  mutational  differences  per 
 gene  between  failed  and  successful  lines  using  the  ratio  of  the  mutation  burden  (mutations 
 per  Kb)  normalised  by  gene  length,  number  of  lines  per  outcome  and  adding  0.001  as 
 pseudocounts.  Prior  to  the  GO  analysis,  we  annotated  all  genes  with  their  corresponding 
 Entrez  gene  identifiers  and  selected  the  most  differentially  mutated  genes  in  successful  lines 
 (top-5%  in  log  2  FC)  and  the  most  differentially  mutated  in  failed  lines  (bottom-5%  in  log  2  FC). 
 We  then  run  the  hypergeometric  test  for  GO  term  overrepresentation  of  biological  processes 
 conditional  to  the  hierarchical  GO  structure  (package  GOstats  from  R).  For  each  of  the  four 
 tests,  we  provided  the  selected  genes  in  each  DN  outcome  combination:  failed/observed, 
 failed/predicted,  successful/observed  and  successful/predicted.  We  used  the  following 
 thresholds:  the  cutoff  for  significance  was  set  at  p<0.05,  we  considered  only  those  gene  sets 
 defined  with  more  than  20  genes  and  each  gene  set  had  to  account  for  at  least  10  counts  in 
 each  analysis.  All  gene  sets  found  to  be  significantly  enriched  are  shown  in  Supp.  Table  2  . 
 Finally,  we  highlighted  only  those  significant  GO  terms  related  to  neurodevelopment  or 
 chromatin  modification,  so  we  highlighted  any  gene  set  with  the  following  words  in  Fig.  2D: 
 “Axon”,  “neuron”,  “glial”,  “brain”,  “hindbrain”,  “forebrain”,  “midbrain”,  “synapse”,  “chromatin”, 
 “cerebellum”,  “neural”,  “cortex”,  “neurogenesis”,  “axonogenesis”,  “nervous”,  “hippocampus”, 
 “neurotransmitter”, “dopaminergic”, “axenome”, “action potential” and “synaptic”. 

 6.  Gene  set  enrichment  (DDD  and  Cosmic-Tier  1)  in  differentially  mutated  genes  from 
 discordant replicate lines 
 We  identified  49  replicate  line  pairs  with  a  discordant  DN  outcome,  that  is  when  one  of  the 
 lines  from  a  donor  was  predicted  to  fail  differentiation  (model  score  <  0.02231)  and  the  other 
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 was  predicted  to  produce  dopaminergic  neurons  successfully  (model  score  >  0.02231).  One 
 of  the  49  pairs  was  added  from  a  quartet  of  replicate  lines  (“HPSI-fdpl”  donor),  from  which 
 we selected the failed line and randomly sampled one of the three successful lines. 

 For  each  of  the  replicate  pairs,  we  filtered  out  variants  that  were  shared  by  the  two 
 lines  with  the  purpose  to  retain  only  the  mutational  burden  specific  to  each  outcome.  With 
 the  remaining  variants,  we  annotated  the  most  severe  consequence  predicted  by  VEP 
 (version  99),  as  described  earlier.  For  further  analysis  downstream,  we  only  considered 
 those  variants  annotated  as  LoF,  deleterious  or  synonymous  variants,  that  represent  gene 
 damaging  categories  and  a  control  group,  respectively.  We  summarised  the  mutation  counts 
 per  gene  and  variant  category  for  the  49  replicates  and  computed  the  fold-change  mutational 
 differences between failed and successful lines (log  2  FC,  pseudocounts=1)  . 

 We  focused  on  two  curated  gene  sets  of  key  relevance  in  development: 
 developmental  disorders  genes  (from  the  Deciphering  Developmental  Disorders  Project, 
 DDD;  version  2.2  from  DDG2P)  29  and  cancer-associated  genes  (Cosmic:  catalogue  of 
 somatic  mutations  in  cancer,  version  90  on  GRCh37).  In  both  sets,  we  filtered  out  those 
 genes  not  overlapping  our  gene  universe  and  considered  only  the  DDD  genes  with 
 monoallelic  requirement  (N=1,938),  as  well  the  Cosmic  genes  under  the  strongest  oncogenic 
 activity, labelled as Tier 1 (N=558). 

 We  assessed  whether  the  genes  mostly  mutated  in  failed  lines  (FC>2)  for  a  given 
 variant  category  are  enriched  in  one  of  those  gene  sets  when  compared  with  those  genes 
 mostly  mutated  in  successful  lines  (FC<½).  We  ran  a  proportion  test  with  the  mutational 
 burden  of  that  genes  (2x2  table,  rows:  failed/successful  lines,  columns:  gene  set  /  non-gene 
 set)  and  ranked  the  resulting  p-value  with  those  obtained  from  1,000  random  gene  sets  to 
 finally  compute  an  empirical  p-value  (i.e.,  position  N  would  correspond  to  p=N/1000). 
 Significant enrichment was considered only when empirical p<0.05. 

 7. Reanalysis of the pooled single-cell data of dopaminergic neuron differentiation 

 Sample selection and data preprocessing 
 The  dopaminergic  neuron  differentiation  was  profiled  by  droplet-based  scRNA-seq  (10x 
 Genomics).  We  processed  a  subset  of  the  dopaminergic  neuron  differentiation  dataset  8  that 
 consisted  of  119  10x  samples  out  of  the  total  166  (  Supp.  Table  4  ).  Here,  a  10x  sample  is 
 defined  as  the  cells  sequenced  from  one  inlet  of  a  10x  chip.  For  the  sake  of  this  study,  we 
 did  not  include  those  samples  from  the  original  experiment  profiled  under  rotenone  treatment 
 at  day  52  or  containing  iPSC-derived  cerebral  organoids  (day  119).  We  also  did  not  process 
 samples for pool 10 (day 11) due to reported problems on library preparation. 

 We  processed  the  119  10x  samples  using  CellRanger  software  (version  3.1.0)  and 
 aligned  them  to  the  GRCh37/hg19  reference  genome.  Gene  counts  were  quantified  by  the 
 “count”  option  of  the  software,  using  the  Ensembl  87  reference  gene  annotation  (N=32,738 
 genes).  After  pre-processing,  we  excluded  4  additional  10x  samples  due  to  quality  control 
 issues,  mainly  due  to  low  percentages  of  cell  singletons  in  deconvolution  (≤50%)  and  low 
 cell  viability:  two  technical  replicates  from  pool  12  on  day  52,  one  sample  from  pool  8  on  day 
 30  and  a  sample  from  pool  1  on  day  30  (  Supp.  Figure  2b  ).  The  final  115  10x  samples 
 covered  all  pooled  experiments  (N=19,  pools  1-17  and  pools  20-21),  including  238  different 
 cell  lines  (7-24  lines  per  pool).  Only  one  cell  line  (“HPSI0913i-gedo_33”)  was  removed  due 
 to an abnormally high cell line proportion (>90%) in pool 14. 

 Quality control and deconvolution of cell donor identity 
 Each  10x  sample  went  through  a  quality  control  step  in  which  we  removed  dying  cells  or 
 those  with  broken  membranes,  displaying  a  low  number  of  genes  per  cell  (<200)  and  an 
 excess  of  mitochondrial  count  fraction  (>5%).  Also,  we  discarded  those  cells  with  an 
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 abnormal  percentage  of  reads  consumed  by  the  top-100  mostly  expressed  genes  (<75%), 
 which  indicate  technical  artefacts  affecting  the  good  coverage  of  the  full  transcriptome  of  the 
 cells.  On  the  other  hand,  we  filtered  out  those  genes  that  were  not  expressed  in  at  least 
 0.1% of the total cells. 

 For  each  of  the  19  pools,  we  performed  cell  deconvolution  using  demuxlet  45  using 
 existing  genetic  variation  (genotypes  of  common  biallelic  exonic  variants,  MAF>5%) 
 available  from  the  HipSci  Project  7  as  in  the  original  paper.  In  those  cases  when  iPSC  cell 
 lines  had  not  been  genotyped  (intended  cell  lines  from  Supp.  Table  3  ),  we  used  the 
 genotypes  from  the  primary  fibroblast  instead  when  available.  Demuxlet  was  run  using  a 
 default  prior  doublet  rate  of  0.5.  We  only  retained  those  (singletons)  cells  that  could 
 unambiguously  be  linked  to  a  donor  and  discarded  those  10x  samples  for  which  the  overall 
 singleton  outcome  was  low  (<50%)  (  Supp.  Figure  2b  ).  We  performed  the  quality  control  and 
 the  integration  of  the  cells  from  the  10x  samples  using  the  Scanpy  Python-based  toolkit 
 (version 1.4.5.1)  46  . 

 Normalisation, dimensionality reduction, batch correction and clustering 
 We  performed  a  combined  analysis  of  all  the  three  time  points  (day  11,  day  30  and  day  52) 
 to  have  a  shared  embedding  for  all  lines.  Initially,  genes  that  were  not  expressed  in  at  least 
 0.1%  of  total  cells  were  removed.  Then,  gene  counts  were  normalised  to  the  total  number  of 
 counts  per  cell  and  log-transformed  (log1p).  After  adjusting  for  mean-variance  dependence, 
 we  selected  the  2,928  highly  variable  genes  and  scaled  gene  counts  to  unit  variance  and 
 zero  mean.  We  then  calculated  the  first  50  principal  components  (PCs)  and  batch-corrected 
 them  with  Harmony  31  ,  treating  each  10x  sample  as  a  different  batch  (parameters:  theta=2, 
 max.iter.harmony=25,  max.iter.cluster=500).  We  then  used  the  batch-transformed  PCs  to 
 compute  a  neighbourhood  graph  (n_neighbors=10),  visualise  it  using  UMAP  and  perform  the 
 cell  clustering  using  the  Leiden  algorithm  (resolution=0.3)  identifying  12  different  clusters 
 (  Supp.  Figure  2h-j  ).  We  also  used  the  Scanpy  toolkit  (version  1.4.5.1)  for  all  the  steps, 
 except for Harmony that was run in R version 4.0.3. 

 Cell type annotation 
 Cell  type  annotation  was  performed  using  the  same  set  of  literature-curated  markers  as  in  8 

 (  Supp.  Figure  2e-g  ).  We  confidently  annotated  10  out  of  the  12  identified  clusters. 
 Interestingly,  we  could  also  identify  neuroblasts  at  day  11  with  a  commitment  to 
 dopaminergic  neurons,  as  they  clustered  together,  but  at  the  same  time  did  not  exhibit  the 
 neuron marker expression. 

 At  day  11,  we  characterised  four  populations  of  floor-plate  midbrain  progenitors, 
 either  proliferating  (proFPP-1,  proFPP-2)  or  non-proliferating  (FPP-1,  FPP-3).  We  could  also 
 link  the  population  of  neuroblasts  to  their  early  dopaminergic  or  serotonergic  commitment.  At 
 day  30  and  52,  we  identified  six  additional  cell  types,  including  another  cell  type  of 
 non-proliferating  progenitors  (FPP-2),  two  neuronal  populations  (dopaminergic-like  (DA)  and 
 serotonergic-like  (Sert-like)  neurons)  and  three  non-neuronal  ones  (astrocytes  (Astro), 
 ependymal-like  cells  (Epend-1)  and  an  unknown  population  (Unk-1)  potentially  linked  to 
 Cajal-Retzius  transient  neurons.  At  day  30,  two  additional  rare  cell  types  (<2%)  were 
 identified,  either  belonging  to  a  subgroup  of  Sert-like  neurons  associated  with  proliferation 
 markers  (pro.Sert-like),  or  to  an  unknown  population  (Unk-2)  only  detected  in  a  single  10x 
 sample of pool 12. 
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 Table: Cell type annotation using the gene markers provided by  8 

 Num.  Cell type  Abbr.  Gene markers used for cell annotation 

 0  Dopaminergic 
 neurons 

 DA  ABCC8, ACOT7, ALDH1A1, AMER3, ARG2, 
 ASB4, BNC2, CADPS2, CALB1, CALB2, 

 CAMK2N1, CCK, CDK14, CDKN1C, CHL1, 
 CHRNA4, CPEB3, CXCR4, DCC, DKK3, DRD2, 

 EBF2, EN1, EN2, EPHA5, ERC2, FGF13, FOXA1, 
 FOXA2, GDAP1, GFRA1, GRIA3, GRIK3, GRP, 
 ICA1L, IGF1, KCNIP4, KCNJ6, KLHL1, KLHL13, 

 LGI1, LMO3, LMX1A, LMX1B, LRRC3B, 
 LRRTM2, LSAMP, LY6H, NETO2, NR4A2, 

 NTSR1, OTX2, PBX1, PRICKLE2, PRKCA, PRL, 
 PRRT4, PITX3, PTPN5, PTPRO, RET, SCG2, 

 SLC10A4, SLC18A1, SLC18A2, SLC18A3, 
 SLC6A3, SNCA, SOX6, TH, TMCC3, TMEFF2, 

 TMEM255A, TUB, VGF, SYT1, SNAP25 

 1  Astrocytes  Astro  S100B, AQP4, GFAP, SLC1A3, SOX9 

 2  Floor-plate 
 progenitors 

 type 1 

 FPP-1  ZEB2, DMBX1, HMGA1, HMGB2, LMX1A, 
 FOXA2 

 3  Serotonergic-li 
 ke neurons 

 Sert-like  CHGB, FEV, GATA2, GATA3, GCH1, GCHFR, 
 HTR1A, HTR1B, MAOA, MAOB, SLC18A2, 
 SLC29A4, SLC6A4, TPH2, SYT1, SNAP25 

 4  Ependymal-like 
 cells type 1 

 Epend-1  STOML3, CCDC153, CDHR4, FOXJ1, DNAH11, 
 TTR, MLF1 

 5  Proliferative 
 floor-plate 

 progenitors 
 type 1 

 proFPP-1  MKI67, TOP2A, KIAA1524, ZEB2, DMBX1, 
 HMGA1, HMGB2 

 6  Floor-plate 
 progenitors 2 

 FPP-2  ZEB2, DMBX1, HMGA1, HMGB2, LMX1A, 
 FOXA2 

 7  Proliferative 
 floor-plate 

 progenitors 
 type 2 

 proFPP-2  MKI67, TOP2A, KIAA1524, ZEB2, DMBX1, 
 HMGA1, HMGB2 

 8  Unknown cell 
 type 1 (Glial 

 cells) 

 Unk-1  TNC, SOX2, CDH2, HES1, DKK3, EOMES, 
 RELN, LHX1, LHX5, TP73, CALB2, EBF3, 

 SAMD3, SOX2 
 (Maybe Cajal-Retzius / hem cortical) 

 9  Floor-plate 
 progenitors 

 type 3 

 FPP-3  ZEB2, DMBX1, HMGA1, HMGB2, LMX1A, 
 FOXA2 
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 10  Proliferative 
 serotonergic-lik 

 e neurons 

 Pro.Sert-li 
 ke 

 MKI67, TOP2A, KIAA1524, CHGB, FEV, GATA2, 
 GATA3, GCH1, GCHFR, HTR1A, HTR1B, MAOA, 

 MAOB, SLC18A2, SLC29A4, SLC6A4, TPH2, 
 SYT1, SNAP25 

 11  Unknown cell 
 type 2 

 Unk-2  ? 

 0,3  Neuroblasts 
 (DA-lineage/ 

 Sert-like 
 lineage) 

 DA / 
 Sert-like 
 (Day 11) 

 NEUROG1, NEUROG2, NEUROD1, NEUROD2, 
 NHLH1, SIM1 

 8. Reproducibility of cell line abundance in different types of replicates 
 We  started  processing  the  metadata  object  containing  annotations  from  all  cells  (  Supp.  Data 
 1  ).  To  define  different  types  of  replicates,  we  used  the  information  provided  by  the  naming  of 
 the  115  10x  samples  (  Supp.  Table  4  ).  Four  replicate  types  were  defined  per  cell  line  (  Supp. 
 Fig. 3a  ): 

 -  Pool  replicates  :  The  same  cell  line  was  placed  in  different  pooled  experiments 
 (different cell lines in the background). 

 -  Biological  replicates  :  One  cell  line  underwent  independent  differentiations  (different 
 time and plate), but within the same pool (same background). 

 -  Technical  replicates  :  One  cell  line  underwent  differentiation  within  the  same  pool, 
 same time, but different wells of the same plate. 

 -  10x  replicates  :  One  cell  line  underwent  differentiation  within  the  same  pool,  same 
 time and same well of the plate. 

 Initially,  we  calculated  the  cell  line  proportion  within  each  10x  sample.  Then,  for  each  cell 
 line,  the  corresponding  replicate  group  and  a  given  time-point,  we  calculated  the  averaged 
 cell  line  proportion  per  replicate  taking  into  account  the  contributing  10x  samples.  For 
 instance,  to  compare  the  cell  line  proportion  of  the  two  biological  replicates  for 
 “HPSI1014i-tuju_1”  at  day  11,  we  averaged  the  cell  line  proportion  of  the  four  10x  samples 
 contributing  to  replicate  1  on  one  side,  and  the  four  10x  samples  contributing  to  replicate  2, 
 on  the  other.  To  evaluate  the  reproducibility  between  replicate  proportions,  we  fitted  a  linear 
 regression  and  computed  the  adjusted  R-squared  and  the  p-value  of  the  association.  Data 
 points  on  Fig.  3A  corresponds  to  matched  replicates  per  line/time-point  combination.  Note 
 here that the designation of replicate 1 or replicate 2 before the regression is random. 

 9. Cell line proliferation throughout dopaminergic neuron differentiation 
 The  cell  suspension  for  each  pool  was  prepared  with  an  equal  amount  of  each  iPSC  line  8  . 
 For  this  analysis,  we  only  considered  those  cell  lines  within  a  given  pool  that  had  been 
 sampled  in  the  three  time  points  of  the  differentiation  (N=187).  Given  their  lack  of 
 reproducibility,  pool  replicates  (N=23)  were  considered  as  independent  lines.  For  each  pool 
 and  time-point,  we  computed  the  log-transformed  (log1p)  cell  line  proportion.  Then,  we 
 calculated  the  proliferation  rate  at  day  11,  day  30  and  day  52,  dividing  the  cell  line 
 proportions  observed  at  each  respective  time  point  by  the  equal  proportions  from  day  0.  We 
 then  annotated  each  cell  line  with  the  observed  outcome  in  DN  dataset,  either  successful  or 
 failed,  based  on  the  neuron  differentiation  efficiency  threshold  of  0.2.  Additionally,  we 
 annotated  failed  cell  lines  with  either  BCOR+  (N=23)  or  BCOR-  (N=33)  based  on  the 
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 presence  of  LOF  BCOR  variants  in  each  line.  Note  here  that  none  of  the  successful  lines 
 (N=131) carried any LoF mutation in our iPSC exome-sequencing data. 

 10. Annotation of cancer-driver mutations 
 For  each  of  the  832  iPSC  cell  lines  with  exome  sequencing  data,  we  annotated  the  most 
 severe  consequence  for  each  variant  using  the  variant  effect  predictor  (VEP,  release  99)  as 
 described  earlier  (see  Section  2  )  .  We  then  overlapped  the  predicted  LoF  variants  from  each 
 line  with  those  listed  in  the  database  for  the  cancer-associated  genes  (Cosmic  Tier  1, 
 version  94)  under  the  strongest  evidence  for  oncogenic  activity  (Tier  1).  We  restricted  the 
 overlap  search  to  those  Cosmic  Tier  1  variants  that  have  a  defined  genomic  position  and  a 
 FATHMM  score  >=  0.7  11  .  We  identified  726  potential  driver  mutations  with  606  iPSC  lines 
 carrying  at  least  one  driver  mutation.  The  most  mutated  driver  genes  were  PDE4DIP  (564), 
 CCND3  (35),  TCF3  (29)  and  the  BCOR  (24),  also  after  normalising  the  burden  by  the  CDS 
 length.  We  then  annotated  each  cell  line  with  both  the  observed  and  predicted  DN 
 differentiation  and  computed  the  driver  mutational  ratio  (log2-transformed)  given  the 
 outcome.  In  both  cases,  BCOR  ranked  as  the  gene  with  the  highest  ratio  of  driver  mutations 
 in  failed  lines  versus  successful  ones  (5:0  with  the  observed  DN  outcome,  18:5  with  the 
 predicted DN outcome). 

 11. Cell type composition analysis between failed and successful lines 
 After  annotating  the  cell  type,  we  used  the  metadata  information  for  each  cell  (  Supp.  Data  1  ) 
 to  compute  the  cell  type  proportions  per  line.  We  used  the  DN  outcome  annotation  for  the 
 206  lines  classified  either  as  failed  or  successful,  as  described  in  Section  3  .  For  8  pool 
 replicates  missing  day  52  time-point  in  one  of  the  pools,  we  imputed  the  same  outcome  as 
 observed  in  the  other  replicate.  We  also  included  15  out  of  the  18  lines  that  were  not  profiled 
 at  day  52,  but  with  data  from  previous  time-points  (either  from  day  11  or  30,  or  from  both).  To 
 take  advantage  of  those  lines  in  the  cell  type  composition  analysis,  we  classified  them  either 
 as  successful  or  failed  using  the  predicted  model  scores  from  8  .  Following  those  steps,  we 
 end up annotating the differentiation outcome for 221 lines (58 failed, 163 successful). 

 For  each  time-point  and  cell  type,  we  used  a  negative  binomial  regression  model  to 
 evaluate  the  composition  changes  between  failed  and  successful  lines.  We  modelled  the 
 total  number  of  cells  per  line  as  an  offset  variable,  given  that  the  accuracy  of  cell  type 
 proportion estimates increases with their magnitude. 

 glm.nb(nCells ~  outcome + offset(log(nTotalCells))) 

 We  finally  performed  a  multiple-test  correction  (N=36  tests)  using  the  Benjamini  &  Hochberg 
 approach  (FDR<5%).  The  significance  level  of  the  mean  cell  type  proportion  difference 
 between  mutated  and  unmutated  groups  is  indicated  by  different  levels:  pAdj<0.05  (*), 
 pAdj<0.01 (**), pAdj<0.001 (***). 

 12.  Association  of  cell  type  composition  with  BCOR  mutational  carrier  status  and  in 
 vitro proliferation rate. 
 We  calculated  the  cell  type  proportion  estimates  for  the  209  lines  on  day  52  from  the  DN 
 dataset  (  Supp.  Data  1  )  as  described  in  Section  11  .  For  each  gene  (N=19,653),  we 
 compared  the  cell  type  composition  differences  at  the  end  of  the  differentiation  between 
 those  lines  carrying  at  least  one  deleterious  mutation  (≥1)  and  those  lines  unmutated 
 (Wilcoxon  Rank  Sum  Test).  For  each  cell  type,  we  applied  multiple-test  correction  (Benjamini 
 &  Hochberg,  FDR<5%)  to  the  raw  p-values  obtained  from  each  gene  and  indicated  whether 
 they  are  more  abundant  in  mutated  (blue)  or  unmutated  lines  (orange).  Note  here  that  only 
 those  cell  types  that  show  >2%  of  abundance  at  day  52  are  considered,  discarding  FPP-1, 
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 FPP-3,  proliferative  serotonergic-like  neurons,  proliferative  FPP-2  and  the  unknown  cell  type 
 2. 

 Alternatively,  for  each  major  cell  type  at  day  52  (>2%  abundance),  we  tested  for  the 
 association  between  cell  type  proportions  per  line  and  their  corresponding  proliferation  rates 
 between  day  52  and  day  0  (see  Section  9  )  using  Pearson’s  correlation.  We  corrected  for 
 multiple-test  correction  using  the  Benjamini  &  Hochberg  method  (N=7,  FDR<5%).  We  also 
 indicated if the cell type proportions correlate (blue) or anti-correlate (orange). 

 The  significance  level  of  all  comparisons  was  indicated  as  follows:  pAdj<0.05  (*), 
 pAdj<0.01 (**), pAdj<0.001 (***). 

 13. Differential gene expression analysis between failed and successful lines 
 We  leveraged  the  gene  expression  data  from  221  lines  annotated  with  the  DN  outcome  (58 
 failed,  163  successful)  as  in  the  cell  type  composition  analysis.  Overall,  we  processed 
 273,804,  266,226  and  306,811  cells  from  day  11,  day  30  and  day  52,  respectively.  For  each 
 time-point,  we  load  the  “.h5”  object  with  the  log-transformed  gene  expression  per  cell  (log1p 
 normalised  counts,  not-scaled)  (  Supp.  Data  2-4  )  and  filtered  out  those  genes  expressed  in 
 less  than  1%  of  the  cells,  finally  processing  12,912,  14,149  and  14,737  genes,  respectively. 
 We  performed  differential  gene  expression  analysis  between  those  lines  that  failed 
 differentiation  and  those  lines  that  were  successful  for  each  cell  type  and  time  point 
 combination  using  the  Wilcoxon  Rank  Sum  test  (as  implemented  in  Seurat).  We  required 
 more  than  10  cells  to  be  represented  in  each  of  the  outcomes  to  run  the  DE  test  for  each 
 combination. DE genes were selected based on an adjusted P-value < 0.05 and a FC >1.5. 

 For  each  cell  type  and  time  point,  we  also  tested  the  overrepresentation  of  three 
 gene  sets  (Cosmic-Tier1,  DDD  and  a  subset  of  dominant  DDD  genes)  among  the  list  of  DE 
 genes  (Chi-squared  test  using  p-values  computed  by  Monte  Carlo  simulation  using  100,000 
 replicates).  The  gene  universe  for  the  test  used  the  union  of  the  pass-filtered  genes  across 
 all  timepoints  (N=15,367).  We  corrected  for  multiple-test  correction  using  the  Benjamini  & 
 Hochberg  method  (N=102,  FDR<5%).  The  significance  level  of  each  test  was  indicated  as 
 follows: pAdj<0.05 (*), pAdj<0.01 (**), pAdj<0.001 (***). 

 14.  Gene  ontology  enrichment  analysis  of  differentially  expressed  genes  per  outcome 
 and cell type 
 We performed 12 gene ontology enrichment tests on biological processes based on: 

 -  The  union  of  genes  found  to  be  differentially  expressed  in  any  given  time  point  and 
 cell type combination (labelled as  allDE  ). 

 -  The  union  of  genes  found  to  be  differentially  expressed  in  any  given  time  point  and 
 cell  type  combination  with  an  overrepresentation  of  DDD  DE  genes  (labelled  as 
 allsignif  ). 

 -  The  lists  of  DE  genes  for  each  of  the  10  time  point  and  cell  type  combinations  with 
 an overrepresentation of DDD DE genes (cyan circles with p<0.05, Fig. 4C). 

 Previous  to  the  GO  analysis,  we  annotated  each  feature  of  the  gene  universe  (N=15,367) 
 with  their  corresponding  Entrez  gene  identifiers  using  the  package  org.Hs.eg.db  from 
 R/Bioconductor.  We  discarded  from  the  analysis  those  genes  without  correspondence  or 
 showing  duplicate  identifiers.  We  then  run  the  hypergeometric  test  for  GO  term 
 overrepresentation  of  biological  processes  conditional  to  the  hierarchical  GO  structure 
 (package  GOstats  from  R).  Given  the  different  magnitude  of  DE  genes  between  allDE 
 (N=1,884)  or  allsignif  (N=972)  and  each  of  the  combination  tests  (N=131-372),  we  used 
 different  thresholds  for  significance  in  each  case:  allDE/allsignif:  {minimum  gene  set  size  = 
 30,  maximum  gene  set  size=200,  pAdj<0.001,  minimum  number  of  counts  per  gene  set  = 
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 20};  combinations:  {minimum  gene  set  size  =  10,  maximum  gene  set  size=200, 
 pAdj<0.001, minimum number of counts per gene set = 7} 

 All  gene  sets  found  to  be  significantly  enriched  are  shown  in  Supp.  Table  5  .  Finally,  we 
 highlighted  only  those  significant  GO  terms  related  to  neurodevelopment  or  chromatin 
 modification,  so  we  highlighted  any  gene  set  with  the  following  words  in  Fig.  4C:  “Axon”, 
 “neuron”,  “glial”,  “brain”,  “hindbrain”,  “forebrain”,  “midbrain”,  “synapse”,  “chromatin”, 
 “cerebellum”,  “neural”,  “cortex”,  “neurogenesis”,  “axonogenesis”,  “nervous”,  “hippocampus”, 
 “neurotransmitter”, “dopaminergic”, “axenome”, “action potential” and “synaptic”. 

 15.  Gene  set  enrichment  analysis  on  cell  types  with  differential  expression  of  cancer 
 genes 
 We  performed  a  gene  set  enrichment  analysis  (GSEA)  on  those  time  point  and  cell  type 
 combinations  in  which  the  list  of  differentially  expressed  genes  were  enriched  in 
 cancer-associated  genes.  For  this  purpose,  we  used  the  curated  MSigDB  hallmark  gene  set 
 signatures  (version  7.4  for  symbol  identifiers)  47  .  We  considered  only  those  gene  sets  with  a 
 larger  size  than  10  genes.  For  each  gene  set,  we  then  ran  the  preranked  gene  set 
 enrichment  analysis  with  a  maximum  gene  set  size  of  500  genes,  an  eps  parameter  of  0  and 
 used  10,000  permutations  for  preliminary  estimation  of  p-values.  We  highlighted  significantly 
 enriched  gene  sets  as  those  with  a  BH-adjusted  p-value  <  0.05  and  an  enrichment  score 
 normalised  to  mean  enrichment  of  random  samples  of  the  same  size  (NES):  NES≥  1.5  for 
 upregulated pathways and NES ≤ -1.5 for downregulated ones. 

 16. Identification of cell line outliers for cell type composition 
 We  calculated  the  cell  type  fraction  per  line  within  each  pool  and  time  point,  removing  those 
 lines  with  the  lowest  number  of  cells  (first  twentile).  Those  cell  lines  pooled  in  more  than  one 
 experiment  (pool  replicates)  were  considered  as  independent  lines.  We  then  computed  the 
 z-score  associated  with  the  calculated  fractions  and  marked  as  outliers  those  lines  showing 
 a  cell  type  fraction  with  a  |Z-score|>2,  either  showing  a  deficiency  or  an  excess  of  a  given 
 cell type. 

 We  characterised  the  outlier  behaviour  focusing  on  those  outlier  cell  lines 
 represented  in  the  three  time  points  of  the  differentiation  (N=121).  Based  on  that,  we 
 computed  the  number  of  times  each  line  shows  an  abnormal  cell  type  fraction  (outlier  event) 
 throughout  the  entire  differentiation  or  specifically  per  time  point.  For  each  cell  line,  we 
 explored  when  outlier  events  occurred  and  identified  the  most  common  time  point 
 combinations. 

 For  those  lines  profiled  with  WES  for  the  iPSC  and  the  corresponding  parental 
 fibroblasts,  we  annotated  the  burden  of  somatic  acquired  mutations  in  vivo  (  Supp.  Table  1  ) 
 considering  either  total  or  deleterious  variants.  We  then  evaluated  whether  cell  lines  defined 
 as  outliers  of  cell  type  composition  showed  mean  differences  on  the  mutational  burden 
 (Wilcoxon  Rank  Sum  Test).  Alternatively,  we  also  evaluated  the  outlier  lines  within  each 
 specific time point (day 11, N=58; day 30, N=82; day 52, N=114). 

 Finally,  we  also  annotated  each  pooled  cell  line  with  their  corresponding  proliferation 
 rate  at  day  52  (see  also  Section  9  )  and  fitted  a  logistic  regression  to  predict  the  outliereness 
 of cell type composition. 

 17. Association between gene expression and cell type abundance 
 We  analysed  the  correlation  between  the  cell  type  abundance  and  the  cell  type  specific 
 expression  for  all  genes  using  the  existing  cell  line  variability  throughout  the  differentiation. 
 We  computed  the  z-scores  for  cell  type  composition  as  shown  in  Section  16  .  As  for  the 
 gene  expression  (log1p  normalised  counts,  not-scaled),  we  computed  the  z-score  per  cell 
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 type  using  the  average  gene  expression  per  line  at  each  time  point.  The  average  gene 
 expression  per  line  was  calculated  considering  all  the  cells  of  that  given  line  in  one  specific 
 pool  experiment,  including  those  from  different  10x  samples  when  available.  We  required  a 
 minimum  of  10  cells  per  line  (in  any  time  point  -  cell  type  combination)  to  calculate  the 
 average  gene  expression.  We  discarded  all  those  combinations  in  which  less  than  10  lines 
 matched  this  threshold  (proliferative  Sert-like  neurons  at  day  11  and  the  glial  cells  (Unk-2)  at 
 days 11 and 52). 

 We  then  correlated  the  expression  z-scores  with  the  cell  type  fraction  z-scores,  as 
 shown  in  the  example  for  KMT2D  gene  for  DA  and  FPP-1  in  day  11  (  Fig.  5b  ).  To  identify  the 
 key  genes  driving  the  outliereness  in  cell  type  composition,  we  performed  the  z-score 
 correlations  for  all  the  detected  genes  per  time  point  (day  11,  N=12,912;  day30,  N=14,149; 
 day  52,  N=14,737).  Those  genes  with  no  detectable  expression  in  at  least  10  lines  of  a  given 
 combination  were  not  considered.  We  then  sampled  the  genes  with  either  positive  or 
 negative  significant  associations  (p.Adj<0.05)  from  the  resulting  distribution  of  Pearson 
 correlation coefficients per cell type (  Fig. 5c  , lower). 

 From  the  list  of  genes  with  significant  correlation  (or  anti-correlation)  per  cell  type  and 
 time  point,  we  tested  whether  there  was  a  gene  set  enrichment  on  key  developmental 
 genes,  for  both  DDD  and  Cosmic-Tier1  genes.  In  this  case,  we  performed  a  2x2  chi-squared 
 contingency  table  between  the  list  of  significantly  and  non-significantly  correlated  genes  and 
 the  overlap  with  each  gene  set  separately  (Monte  Carlo  simulation  using  2,000  replicates  to 
 compute  the  p-values).  We  then  performed  multiple-test  correction  using  the  Benjamini  & 
 Hochberg  method  (N=66  tests,  FDR<5%).  The  significance  level  of  each  test  was  indicated 
 as follows: pAdj<0.05 (*), pAdj<0.01 (**). 

 Data availability 

 Exome sequencing data from the HipSci Project 
 Links  to  the  raw  data  are  available  from  the  HipSci  project  website  (  www.hipsci.org  )  for  both 
 the  parental  fibroblasts  and  the  iPSC  lines.  Exome  sequencing  data  for  the  open  access 
 samples  is  deposited  in  the  European  Nucleotide  Archive  (ENA,  https://www.ebi.ac.uk/ena/  ) 
 under  the  ERP006946  study  accession  number  (N=325  iPSC  lines,  of  which  260  also 
 available  for  the  parental  fibroblasts).  WES  data  for  the  managed  access  samples  is 
 deposited  in  the  European  Genotype-Phenotype  Archive  (EGA,  https://ega-archive.org  ),  with 
 normal  and  specific  disease  cohort  datasets  available  upon  request  and  data  access 
 agreement.  The  variant  call  sets  of  acquired  mutations  in  vitro  and  the  code  used  to 
 generate them are available at  11  . 

 Single-cell profiling of iPSC dopaminergic differentiation 
 Managed  access  data  from  scRNA-seq  are  accessible  in  the  European  Genome–phenome 
 Archive  (EGA,  https://www.dev.ebi.ac.uk/ega/)  under  the  study  number  EGAS00001002885 
 (dataset  EGAD00001006157).  Open  access  scRNA-seq  data  are  available  in  the  European 
 Nucleotide  Archive  (ENA,  https://www.ebi.ac.uk/ena/)  under  the  study 
 ERP121676(https://www.ebi.ac.uk/ena/browser/view/PRJEB38269).  Processed  single-cell 
 count  data  and  metadata  tables  (  Supp.  Data  1-4  )  will  be  made  available  on  Zenodo.  Chip 
 genotypes  for  HipSci  lines  are  available  from  the  EGA  (EGAS00001000866)  and  the  NCBI 
 (PRJEB11750). 
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 Code availability 

 All  scripts  and  figures  will  be  made  available  in  the  following  github  repository: 
 https://github.com/paupuigdevall/somaticBurdenNeuro2022  .  The  repository  includes  the 
 single-cell  processing  scripts,  the  downstream  analysis,  and  an  R  markdown  with  the  main 
 figures, as well the supplementary ones. 

 Supplementary Information 

 Supplementary Data 

 Supplementary  Data  1:  Metadata  information  for  the  846,841  processed  cells  from  the  DN  dataset: 
 donor identity, cell type annotation, pool identifier, 10x sample, time point and replicate information. 
 Supplementary  Data  2-4:  AnnData/H5AD  files  containing  the  single-cell  gene  expression  matrices  and 
 the  metadata  for  day  11,  day  30  and  day  52,  respectively.  The  gene  expression  is  normalised  and 
 log-transformed, but not scaled. 

 Supplementary Tables 

 Supplementary  tables  are  available  at  the  downloadable  file 
 suppTableMutBudenNeuro.xlsx  . 

 Supplementary  Table  1.  Cell  lines  annotated  with  the  burden  of  somatic  mutations  acquired  in-vitro  and  their 
 outcome  in  multiple  differentiations  (sensory  neurons,  macrophages,  dopaminergic  neurons  -DN-  and 
 endoderm). 842 HipSci iPSC cell lines are included. 
 Supplementary  Table  2.  Results  from  the  gene  ontology  enrichment  analysis  for  the  most  differentially  mutated 
 genes  (top-5%  in  deleterious  mutations)  per  dopaminergic  differentiation  outcome.  Both  predicted  (N=793)  and 
 observed (N=183) DN outcomes are included. 
 Supplementary Table 3.  List of the cell lines used  in each of the 19 pool experiments from the DN dataset. 
 Supplementary  Table  4.  List  of  the  119  10x  samples  from  DN  dataset  that  were  pre-processed  with  CellRanger. 
 115 out of the 119 samples passed the QC filtering criteria and were processed further downstream. 
 Supplementary  Table  5.  Functional  enrichment  analysis  for  the  differential  gene  expression  between  failed  and 
 successful lines in the DN outcome. Results from the several hypergeometric tests for GO term association. 
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