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7

Abstract Attention allows us to focus sensory processing on behaviorally relevant aspects of8

the visual world. One potential mechanism of attention is a change in the gain of sensory9

responses. However, changing gain at early stages could have multiple downstream10

consequences for visual processing. Which, if any, of these effects can account for the benefits of11

attention for detection and discrimination? Using a model of primate visual cortex we document12

how a Gaussian-shaped gain modulation results in changes to spatial tuning properties. Forcing13

the model to use only these changes failed to produce any benefit in task performance. Instead,14

we found that gain alone was both necessary and sufficient to explain category detection and15

discrimination during attention. Our results show how gain can give rise to changes in receptive16

fields which are not necessary for enhancing task performance.17

18

Introduction19

Deploying goal-directed spatial attention towards visual locations allows observers to detect tar-20

gets with higher accuracy (Hawkins et al., 1990), faster reaction times (Posner, 1980), and higher21

sensitivity (Sagi and Julesz, 1986) providing humans and non-human primates with a mechanism22

to select and prioritize spatial visual information (Carrasco, 2011). These enhanced behavioral re-23

sponses are accompanied by both an increase in the gain of sensory responses near attended24

locations (Connor et al., 1996;McAdams and Maunsell, 1999) and changes in the shape and size of25

receptive fields, typically shrinking and shifting towards the target of attention (Ben Hamed et al.,26

2002; Womelsdorf et al., 2006; Anton-Erxleben et al., 2009; Klein et al., 2014; Kay et al., 2015; Vo27

et al., 2017; van Es et al., 2018). These changes in neural representation are thought to contribute28

to behavioral enhancement, but because both gain and changes in spatial properties co-occur in29

biological systems, it is not possible to disentangle them. Computational models of the visual sys-30

tem allow us to design experiments to independently examine the effects of such changes (Lindsay31

and Miller, 2018; Eckstein et al., 2000).32

Shrinkage and shift of receptive fields toward attended targets has been observed in both single33

unit (Womelsdorf et al., 2006; Anton-Erxleben et al., 2009) and population (Klein et al., 2014; Vo34

et al., 2017; Fischer and Whitney, 2009; van Es et al., 2018) activity, and has been suggested to35

lead to behavioral enhancement through a variety of possible mechanisms (Anton-Erxleben and36

Carrasco, 2013). For example, receptive field changes might magnify the cortical representation37

of attended regions (Moran and Desimone, 1985), select for relevant information (Anton-Erxleben38
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et al., 2009; Sprague and Serences, 2013), reduce uncertainty about spatial position (Vo et al., 2017),39

increase spatial discriminability (Kay et al., 2015; Fischer and Whitney, 2009), or change estimates40

of perceptual size (Anton-Erxleben et al., 2007). Compression of visual space is also observed just41

prior to saccades and thought to shift receptive fields towards the saccade location (Zirnsak et al.,42

2014; Colby and Goldberg, 1999; Merriam et al., 2007) and maintain a stable representation of43

visual space (Kusunoki and Goldberg, 2003; Tolias et al., 2001; Ross et al., 1997; Duhamel et al.,44

1992).45

Shrinkage and shift of receptive fields has also been hypothesized to occur as a side effect of46

increasing gain of neural responses (Klein et al., 2014; Compte and Wang, 2006), thus raising the47

question of which of these physiological effects could be responsible for enhanced perception.48

When gain is asymmetric across a receptive field, the overall effect will be to shift the receptive49

field location towards the side with the largest gain. Similarly, asymmetric gain can be expected50

to change spatial tuning properties such as the size and structure of the receptive field. These51

concomitant changes of receptive field size, location, and structure could improve perceptual per-52

formance through the mechanisms described above, or could be an epiphenomenological conse-53

quence of increasing gain. Increasing gain by itself has also been hypothesized to be a mechanism54

for improved perceptual performance, because response gain can increase the signal-to-noise ra-55

tio and make responses to different stimuli more discriminable (McAdams and Maunsell, 1999;56

Cohen and Newsome, 2008). Moreover, larger responses for attended stimuli due to gain changes57

can act as a mechanism for selection when read-out through winner-take-all mechanisms (Lee58

et al., 1999; Pelli, 1985; Pestilli et al., 2011; Palmer et al., 2000; Hara et al., 2014).59

We took a modeling approach to ask what effects gain changes incur on spatial receptive field60

structure when introduced at the earliest stage of visual processing and to ask which effects would61

improve behavioral performance. We modified a convolutional neural network (CNN) trained on62

ImageNet categorization to test various hypotheses by implementing them as elements of the63

model architecture. CNN architectures can be designed to closely mimic the primate visual hier-64

archy (Yamins et al., 2014; Kubilius et al., 2018). Training “units” in these networks to categorize65

images leads to visual filters that show a striking qualitative resemblance to the filters observed in66

early visual cortex (Krizhevsky et al., 2012) and the pattern of activity of these units when presented67

with natural images is sufficient to capture a large portion of the variance in neural activity in the68

retina (McIntosh et al., 2016), in early visual cortex (Cadena et al., 2019), and in later areas (Güçlü69

and van Gerven, 2015; Cichy et al., 2016; Eickenberg et al., 2017; Khaligh-Razavi and Kriegeskorte,70

2014; Yamins et al., 2014). Cortical responses and neural network activity also share a correlation71

structure across natural image categories (Storrs et al., 2020). These properties of CNNs make72

them a useful tool which we can use to indirectly study visual cortex, probing activity and behavior73

in ways that are impractical in humans and non-human primates (Lindsay and Miller, 2018).74

Using simulations based on a CNN observer model we found that gain changes introduced at75

the earliest stage in visual processing improved task performance with a magnitude comparable76

to that measured in human subjects. While these gain changes also induced changes in receptive77

field location, size and spatial structure similar to that reported in physiological measurements,78

these changes were neither necessary nor sufficient for improving model task performance. More79

specifically, we designed a simple cued object-detection task and measured improved human per-80

formance on trials with focal attention. Using CORnet-Z (Kubilius et al., 2018), a CNN whose archi-81

tecture was designed tomaximize similarity with the primate visual stream, wemeasured a similar82

improvement in detection performance when a Gaussian gain augmented inputs coming from a83

“cued” location. We found that the network mirrored the physiology of human and non-human84

primates: units shifted their center-of-mass toward the locus of attention and shrank in size, all in85

a gain-dependent manner. We isolated each of these physiological changes to determine which, if86

any, could account for the benefits to performance. Amodelwith only gain reproduced the benefits87

of cued attention while models with only receptive field shifts, shrinkage, or only changes in recep-88

tive field structure were unable to provide any benefit to task performance. These results held for89
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both an object detection task and a category discrimination task. Gain applied or removed at the90

last stage of processing in the CNN observer model demonstrated that gain was both necessary91

and sufficient to account for the benefits in task performance of the model.92

Results93

We characterized the ability of human observers to detect objects in a grid of four images, with or94

without prior information about the object’s possible location (Fig. 1). Observers were given a writ-95

ten category label, e.g. “ferris wheel”, and shown five exemplar images of that category (Category96

intro, 1a). This was followed by a block of 80 trials in which observers tried to detect the presence97

or absence of the target category among the four images in the grid (Each trial, 1a). Half of the98

80 trials had focal cues and 50% of the focal (and distributed) trials included a target image. On99

focal trials a cue indicated with 100% validity the grid quadrant that could contain a target while100

on distributed trials no information was given as to where an image of the target category could101

appear. Distractor images were randomly sampled from the nineteen non-target image categories.102

Stimulus durations were sampled uniformly from 1 (8.3 ms), 2 (16.7), 4 (33.3), 8 (66.7), 16 (133.3),103

or 32 (267.7) frames (Stimulus, 8.3 ms per frame, 1a). Image grids were masked before and after104

stimulus presentation by shuffling the pixel locations in the stimulus images, ensuring that the lu-105

minance during each trial remained constant. Observers had 2 s tomake a response and each trial106

was followed by a 0.25 s inter-trial interval. Observers completed one training block on an unused107

category prior to data collection.108

Human observers improved their performance on this detection task when given a focal cue109

indicating the potential location of a target (Fig. 1b). We quantified human performance by comput-110

ing sensitivity, d’, as a function of stimulus duration separately for focal and distributed conditions.111

Across all observers the 𝑑′ function was best fit as:112

𝑑′(𝑚𝑠) = 𝛼 log(163.6𝑚𝑠 + 1) (1)
Where 𝛼 scaled the function for the focal condition. At a stimulus duration of 8.3ms (one frame)113

observers were near chance performance regardless of cueing condition. On distributed trials114

observers exceeded threshold performance (𝑑′ = 1) at a stimulus duration of 155 ms, 95% CI [135,115

197]. For focal trials, the same threshold was reached with only a 38 ms [32, 43] stimulus duration,116

demonstrating a substantial performance benefit of the focal cue. We found that 𝑑′ in the focal117

conditionwas higher than in the distributed condition, average increase across observers 𝛼 = 1.67×118

[1.57, 1.74].119

Using a drift diffusionmodel we found that themajority of this performance benefit came from120

improved perceptual sensitivity, rather than speed-accuracy trade off. We assessed this by fitting121

a drift diffusion model to the reaction time and choice data (Wagenmakers et al., 2007). Drift122

diffusion models assume that responses are generated by a diffusion process in which evidence123

accumulates over time toward a bound. We used the equations in Wagenmakers et al. (2007) to124

transform each observer’s percent correct, mean reaction time, and reaction time variance for the125

twenty categories and two focal conditions into drift rate, bound separation, and non-decision time.126

The drift rate parameter is designed to isolate the effect of external input, the non-decision time127

reflects the fastest responses an observer makes, and the bound separation is a proxy for how128

conservative observers are. Comparing the drift rate parameter we observed a similar effect to129

what was described above for 𝑑′: the average drift rate across observers in the focal condition was130

1.61×, 95% CI [1.39, 1.77] the drift rate in the distributed condition. This suggests that the majority131

of the performance gain observed in the 𝑑′ parameter came from increased stimulus information.132

We did find that the other parameters of the drift diffusion model were also sensitive to duration133

and condition, but in opposite directions. We found larger bound separation at longer stimulus134

durations and on focal trials (focal bound-separation 1.57× distributed [1.37, 1.75]), consistent135

with observers being more conservative on trials where more information was available. But this136
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Figure 1. Cued object detection task. (a) Observers were asked to perform object detection with or without aspatial cue. At the start of a block, observers were shown five examples of the target category. This wasfollowed by 80 trials: 40 with a spatial cue indicating the possible target quadrant and 40 with no priorinformation. Stimulus presentation was pre and post-masked. The stimuli consisted of a composite image offour individual object exemplars. The target category was present in 50% of trials and always in the cuedlocation on focal trials. Human observers used a keyboard to make a fast button response to indicate thetarget presence before moving on to the next trial. (b) Human observers showed a substantial improvementin performance when given a focal cue indicating the quadrant at which the target might appear. Vertical lineat 64 ms indicates the duration at which the best-fit 𝑑′ curve for the Distributed condition matched the CNNobserver model performance (without gain). Markers indicate the median and error bars the 95% confidenceintervals. 4 of 30
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increase in cautiousness was offset by a shorter non-decision time on focal trials (0.26 s) compared137

to distributed (0.38, [0.34, 0.41]).138

Having shown that a spatial cue provides humanobserverswith increased stimulus information139

in this task, we next sought to show that a neural networkmodel of the human visual stream could140

replicate this behavior under similar conditions. We used a convolutional neural network (CNN)141

model, CORnet-Z (Kubilius et al., 2018), a neural network designed tomimic primate V1, V2, V4, and142

IT and optimized to perform object recognition for images at a similar scale to our task. CORnet-Z is143

a four layer CNNwith repeated convolutional, rectified linear units (ReLU), and pooling (Fig. 2d). We144

used pretrained weights which were optimized for object categorization on ImageNet (Deng et al.,145

2009). To perform our image detection task, we added a fully-connected output layer for each cat-146

egory and trained the weights of that layer to predict the presence of the twenty object categories147

selected for this study, thus creating a neural network observer model, i.e. a model designed to148

idealize the computations performed by human observers performing the 4-quadrant object de-149

tection task. We applied the observer model to a task analogous to the one human observers150

performed (Fig. 2c). The prediction layers added to the end of the model provided independent151

readouts for the presence or absence of the different target categories (Linear classifier, Fig. 2c).152

These output layers were trained on a held out set of full-size images from each category. On a153

separate held out validation set of 100 images, the trained prediction layers achieved a median154

AUC of 0.90, range [0.77, 0.96].155

To examine the computational mechanisms that could underlie the performance benefit of156

focal cues we added a multiplicative Gaussian gain centered at the location of the cued image (Fig.157

2b, Gaussian width 56 px). We applied this gain at the first layer of the model and tested various158

strengths of gain.159

To align the human andmodel performance for this task we took the performance of themodel160

in the distributed condition (Distributed, Fig. 2a) and found the stimulus duration at which ob-161

servers in the distributed condition of the human data matched this performance level (64 ms, Fig.162

1b). We then scaled up the amplitude of the Gaussian gain incrementally and found that we could163

mimic the performance enhancement of human spatial attention by setting the maximum of the164

Gaussian gain field to approximately 4×. Themodel with this level of gain had amedian AUC across165

categories of 0.80, 95% CI [0.77, 0.82] compared to 0.71 [0.67, 0.72] without gain and amedian AUC166

improvement of 0.09 [0.08, 0.12] within each category.167

The gain strengths necessary to induce an increase in task performance in the neural network168

observer model were relatively large compared to the gain due to directed attention observed in169

measurements of single unit (Luck et al., 1997; Treue and Trujillo, 1999) and population (Birman170

and Gardner, 2019) activity. We attribute this difference to the lack of any non-linear “winner-take-171

all” type of activation in the CNN. In the primate visual system, it is thought that non-linearities172

such as exponentiation and normalization can accentuate response differences (Reynolds and173

Heeger, 2009; Carandini and Heeger, 2012) and act as a selection mechanism for sensory signals174

(Pestilli et al., 2011). We tested whether similar non-linear mechanisms would allow for smaller175

gain strengths to be amplified to the range needed by our model by raising the activations of units176

by an exponent before re-normalizing the activation of all units at the output of each layer (see177

Methods for details). This has the effect of amplifying active units and further suppressing inactive178

ones. Using this approach we found that a relatively small gain of 1.1× combined with an exponent179

of 3.8 led to a significantly larger effective gain of 1.37× after just one layer (Fig. 3j). This form of180

non-linearity is consistent with the finding that static output non-linearities in single units range181

from about 2 to 4 (Gardner et al., 1999; Albrecht and Hamilton, 1982; Sclar et al., 1990; Heeger,182

1992) and suggests a plausible physiological mechanism by which the larger gains predicted by183

our model could be implemented. Repeated use of exponentiation and normalization in succes-184

sive layers of the visual system could produce an even larger effective gain. To avoid training a185

new convolutional neural network (CNN) and possibly violate the close relationship between the186

primate visual system and the CNN we studied, we continued our analysis without introducing an187
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Figure 2. Neural network observer model. (a) Using a Gaussian gain the neural network observer was able to replicate the benefit of spatialattention for human observers. Human performance is shown at a stimulus duration of 64 ms which provided the closest match to theconvolutional neural network (CNN) performance without gain. Markers indicate the median by category and error bars the 95% confidenceintervals. (b) The Gaussian gain was implemented by varying the maximum strength of a multiplicative gain map applied to the “cued” quadrant.(c) The gain was applied prior to the first layer of the CNN. The neural network observer model consisted of a four layer CNN with linearclassifiers applied to the output layer. Individual classifiers were trained on examples of each object category. (d) Each of the four convolutionallayers consisted of a convolution operation, a rectified linear unit, and max pooling. Unit activations were measured at the output of each layer.
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exponentiation and normalization step.188

The Gaussian gain could have its effect on the neural network observer model’s performance189

by increasing the activation strength of units with receptive fields near the locus of attention. These190

changes in activation strength might directly modify behavior, or work indirectly through mecha-191

nisms such as changes in receptive field size, location, or spatial tuning. We observed all of these192

effects in our model (Fig. 3). To measure receptive fields we computed the derivative of each unit193

with respect to the input image and then fit these with a 2D Gaussian (seeMethods for details). We194

found that the gain caused receptive fields to shift and shrink toward the locus of attention (Fig.195

3a,b). The information provided by individual units in the model also changed, increasing for units196

on the border of the cued quadrant (Fig. 3c). The receptive field shift and shrinkage were mag-197

nified in deeper layers of the model (Fig. 3d,e) consistent with physiological observations (Klein198

et al., 2014). The gain in activation strength propagated through the network without modification199

(Fig. 3f). To measure the effective gain experienced by the layer four units (Fig. 3i) we computed200

the ratio of the standard deviations of unit activations at the output of each layer (Fig. 2d) with201

and without gain applied. All three observed effects: receptive field shift, shrinkage and expan-202

sion, and effective gain were directly related to the gain strength at the input layer (Fig. 3g-i). All203

of these changes have been proposed as mechanisms that could account for the behavioral bene-204

fits of attention (Anton-Erxleben and Carrasco, 2013;Moran and Desimone, 1985; Anton-Erxleben205

et al., 2009; Sprague and Serences, 2013; Vo et al., 2017; Kay et al., 2015; Fischer and Whitney,206

2009; Anton-Erxleben et al., 2007). We designed models to try to isolate these effects with the goal207

of testing their independent contributions to behavior.208

We next sought to test whether receptive field shifts alone could account for the behavioral209

benefits of the neural network observer model. To do this, we built a model variant that could210

shift receptive fields without introducing gain. To develop an intuition for how this could affect211

perceptual reports, consider a CNN with just four units in a 2 × 2 grid with each unit having its212

receptive field centered on one image in the composite. When shown a composite grid of four213

images, a logistic regression using the output of these four units would receive one quarter the214

information it expects from being trained on full size images. Shifting the receptive fields of the215

three non-target units to overlap more with the cued image could add additional task-relevant in-216

formation to the output, much as was observed for units with receptive fields overlappingmultiple217

images in the Gaussian gain attention model (Fig 3c).218

Wedesigned a variant of ourmodel that could be used to test the hypothesis that receptive field219

shifts alone are responsible for the behavioral enhancement (Fig. 4). In this model we re-wired the220

units in the first layer to reproduce the effect of Gaussian gain. The re-wiring was designed so221

that receptive fields in the fourth layer matched their shift with the Gaussian gain model (Fig. 3g).222

To mimic those shifts, we changed the connections between the input image pixels and layer one223

(Fig. 4a). This manipulation worked as designed and changed the receptive field locations and size224

(Fig. 4b-d) but since no gain was added to the model, the overall responsiveness of units remained225

constant (Fig. 4e). Because receptive field shifts due to gain are not the result of actual rewiring226

it is unsurprising that the shift and shrinkage in this model variant are only qualitatively matched227

to those caused by the original Gaussian gain. Note that the effective gain of individual units in228

layer four did change for individual images, a result of each unit receiving different inputs, but the229

average change across images was zero.230

We found that the model with receptive field shifts but no gain had no effect on task perfor-231

mance, demonstrating that receptive field shifts are not key for the improvement in task perfor-232

mance observed with Gaussian gain (Fig. 4f). Themodel imitating shifts from 4×Gaussian gain had233

a median AUC across categories of 0.71, 95% CI [0.66, 0.73] compared to 0.71 [0.67, 0.72] with no234

attention and a median change in AUC of -0.01 [-0.02, 0.01] within each category.235

Another way to understand the possible effect of the Gaussian gain on task performance is to236

note that the spatial tuning profile of units is “shifted” towards the locus of attention: sensitivity is237

enhanced closer to the locus of attention, but the receptive field itself has not truly moved in the238
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Figure 3. Effects of Gaussian gain on neural network units. (a) The Gaussian gain applied to Layer 1 units caused the measured receptive field(RF) of units in Layer 4 to shift (black ellipse, original; brown ellipse, with gain) toward the locus of attention (black ×). (b) A 2D spatial mapdemonstrates the effects of Gaussian gain in Layer 4: shift of RF center position (black arrows), shrinking RF size near the attended locus (bluecolors) and an expansion of size near the gain boundaries (red colors). (c) 7 × 7map of the output layer before averaging, showing the change inAUC caused by the addition of Gaussian gain. Each pixel’s ΔAUC is computed by projecting the activations at that location for composite gridswith target present and absent on the decision axis and then calculating the difference in AUC between a model with and without Gaussian gain.The map demonstrates that units overlapping the borders of the composite grid have the largest change in information content when Gaussiangain is applied. (d,e) Scatter plots demonstrate that each layer magnifies the effect of the gain on RF shift and RF size. The RF shift percentagesare the ratio of pixel shift at the peak of the curve relative to the average receptive field size, measured as the full-width at half-maximum. (f)Later layers do not magnify the effective gain (shown for an 11× gain), which stays constant across layers. (g) Gain strength influences the size ofRF position shifts, RF size (h), and effective gain (i). (j) Adding an additional non-linear normalizing exponent at the output of each layer allows formuch smaller gains to be magnified across layers. Markers in all panels indicate individual sampled units from the model. Lines show the LOESSfit for visualization.
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Figure 4. Receptive field shift model. (a) To mimic the effects of the Gaussian gain on receptive field position without inducing gain in the modelwe re-assigned the inputs to units in Layer 1. This re-assignment was performed so that the pattern of receptive field shift in Layer 4 wouldmatch what was observed when the Gaussian gain was applied. (b) The observed pattern of receptive field shifts and shrinkage is shown for asample of units in layer 4, qualitatively matching the effects of the Gaussian gain. (c) RF shift is shown for sampled units (markers) and the LOESSfit (solid lines) compared to the effect in the Gaussian gain model (dotted lines). (d) Conventions as in c for the RF size change. (e) Conventions asin c,d for the effective gain of units. (f) The behavioral effect of shifting receptive fields is shown to be null on average across categories whencompared to the effect of Gaussian gain. Large markers indicate the median performance, small markers the individual categories, and errorbars the 95% confidence intervals.
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manner studied by the previous model. If different parts of a receptive field receive asymmetric239

gain, as expected for Gaussian gain, then the local structure of the receptive field has been changed240

(Fig. 5a). We designed another model variant to test the hypothesis that these local changes in re-241

ceptive field structure might be sufficient to explain the behavioral effect without inducing recep-242

tive field shifts or gain. To implement this model at layer𝐿, we examined the effect of the Gaussian243

gain on each unit (green differential gain, Fig. 5a). We normalized this differential gain within each244

unit’s receptive field to prevent any overall gain effect and re-scaled the unit’s kernel accordingly.245

Overall this manipulation of each unit’s kernel preserved a portion of the receptive field shift effect246

in a gain-dependent manner but guaranteed that there was no effective gain.247

The receptive field structuremodel was designed to only change the spatial tuning of individual248

units without inducing gain, which naturally caused some shifts in themeasured receptive field size249

and location (solid lines and markers, Fig. 5b-d) but these were smaller than the effects observed250

under Gaussian gain (dashed lines). The normalization prevented the model from introducing any251

spatial pattern of gain change (Fig. 5e). Note that there were still small changes in overall sensitivity252

of units in this model, for example, the 4× model had an average gain of 1.08, 95% CI [1.07, 1.09]253

across all units, which we attribute to the fact that inputs to a unit may exhibit correlations due254

to spatial structure. These receptive field changes and small gain effects were distinct from those255

observed under Gaussian gain (Fig. 5c-e).256

The receptive field structure model, like the shift model, was unable to account for the be-257

havioral effects of the Gaussian gain. No matter where in the model we changed the receptive258

field structure, and even when applied at all layers, the average performance across categories259

remained flat (Fig. 5f). Compared to the median distributed AUC across categories of 0.71 [0.67,260

0.72], the sensitivity model applied to all layers had a median AUC across categories of 0.69 [0.65,261

0.72] when imitating gain of 1.1×, 0.70 [0.65, 0.72] for 2× gain, 0.69 [0.65, 0.71] for 4× and 0.66262

[0.63, 0.69] for 11×. Each of these conditions resulted in a median AUC change within category of263

-0.02 [-0.03, 0.00], -0.01 [-0.03, 0.00], -0.02 [-0.04, -0.01], and -0.04 [-0.05, -0.03], respectively. When264

applied to early layers we observed a slight drop in performance, which we attribute to how this265

model directly alters the kernels in the CNN. These changes break the assumption that the CNN266

kernels at each layer are consistent with those that were optimized when the model weights were267

trained.268

The Gaussian gain also caused units to shrink and expand their receptive fields across the vi-269

sual field (Fig. 3b). These changes might modify the information content received at the output270

layer, improving or hurting performance. We designed a modal variant to test the hypothesis that271

shrinkage and expansion of receptive fields, without shift or gain, might be sufficient to explain272

the behavioral effect (Fig. 6). To implement this model we took the observed change in receptive273

field size at layer 4 and then re-scaled the connections between layers three and four to mimic the274

observed effect. Because the kernels were scaled in space this manipulation has no effect on ef-275

fective gain or receptive field position. Specifically, we approximated the shrinkage of the sampled276

units using a parameterized equation (Eqn. 5) that provides a shrinkage factor for every unit in277

the model (Fig. 6a). We then re-wired the connections between layer three and four using linear278

interpolation to approximate the necessary change in scaling.279

After re-wiring, units’ receptive fields retained the same overall position, but were scaled to280

qualitatively match the observed effects under Gaussian gain (Fig. 6b-d). The size changes don’t281

match perfectly with those under Gaussian gain because we enforced symmetry in two ways: first,282

by parameterizing the shrinkage and expansion we enforced symmetry around the locus of atten-283

tion, and second, because the observed receptive field changes were often asymmetric but we284

implemented a symmetric linear scaling. These necessary simplifications reduced the complexity285

of implementation. The shrinkage and expansion effects correctly scaled by attention strength (Fig.286

6d). By design, the new architecture induced no gain-dependent shift (Fig. 6c) or effective gain (Fig.287

6e).288

The shrinkage model was unable to account for improved task performance with Gaussian289
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Figure 5. Receptive field structure model. (a) We adjusted the kernels of each convolutional neural network (CNN) unit according to the effect ofa Gaussian gain, subtly shifting the the sensitivity within individual units. To avoid inducing a gain change we then normalized each units outputsuch that the sum-of-squares of the weights was held constant, ensuring the local gain at that unit remained at 1×. This model was implementedindividually at each layer, replicating the effect of a Gaussian gain of 1.1× to 11× as well as at all layers at once. (b-f) conventions as in Fig. 4.
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Figure 6. Shrinkage model. (a) To create shrinkage at layer 4 matched with the effects observed under Gaussian gain we re-assigned theconnections between layers 3 and 4 according to a parameterized approximation of the shrinkage effect as a function of distance from the locusof attention. This re-scaling of connections changed the size of receptive fields without moving them in space or modifying their gain. (b-f)conventions as in previous figures.
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gain. The average performance across categories remained flat (Fig. 6f). Compared to the median290

distributed AUC across categories of 0.71 [0.67, 0.72], the shrinkagemodel applied to all layers had291

amedian AUC across categories of 0.70 [0.66, 0.72] when imitating gain of 1.1×, 0.70 [0.66, 0.71] for292

2× gain, 0.69 [0.65, 0.70] for 4× and 0.68 [0.65, 0.70] for 11×. Each of these conditions resulted in293

a median AUC change within category of -0.01 [-0.01, -0.00], -0.01 [-0.01, -0.01], -0.02 [-0.02, -0.01],294

and -0.02 [-0.03, -0.01], respectively. We again observed drops in performance, which we attribute295

to how the kernels have been altered.296

Having ruled out that receptive field shift, shrinkage, or changes in spatial tuning could account297

for the improved task performance in our neural network observer, we next designed a model to298

amplify signals in the cued quadrantwithout these other effects and found that thismodel was able299

to explain the improved task performance observed with cued attention. In the original Gaussian300

gain model an asymmetry in gain was introduced in the receptive fields of the units, causing size301

and location changes in the receptive fields. To remove this effect, we flattened the gain within the302

cued quadrant (Fig. 7a) by setting the gain at each pixel to the average of the Gaussian gain across303

the entire quadrant. By itself, this change has the unintended consequence that units centered in304

an uncued quadrant with a receptive field overlapping the cued quadrant will still shift in a gain-305

dependent manner. To remove this effect, we split the CNN feature maps into the four quadrants306

and computed these separately with padding and concatenated the results. This forces all units307

in the model to receive information about only a single quadrant. These manipulations did result308

in shifts in receptive field location and size for units at the borders (Fig. 7b-d), but by design these309

were independent of the gain strength.310

Using the gain-only model we were able to reproduce the improved task performance of the311

original Gaussian gain (Fig. 7). The gain-onlymodel induced the samepattern of receptive field shift312

and size change at all gain strengths (Fig. 7b-d) and a flat effective gain within the cued quadrant313

(Fig. 7e). We found that increasing the strength of a flat gain was sufficient to capture the full314

performance improvement of the original model (Fig. 7f). The median AUC across categories of315

the 4× flat gainmodelwas 0.78, 95%CI [0.76, 0.83] compared to 0.80 [0.77, 0.82] for the 4×Gaussian316

gain model. The confidence intervals in flat gain and Gaussian gain performance overlapped at all317

gain strengths, with a difference of 0.00 [-0.00, 0.02] at 1.1× gain, -0.01 [-0.02, 0.00] at 2× gain, -0.01318

[-0.02, 0.00] at 4× gain, and 0.02 [0.00, 0.04] at 11× gain.319

Having found that the improved task performance could be explained not by receptive field320

changes, but instead by the change in the overall gain, we asked whether gain propagated through321

the network was both necessary and sufficient to explain this effect. To test necessity and suffi-322

ciency we ran the task images through the Gaussian gain model (first row, Fig. 8a) and measured323

the effective gain propagated to units in the final layer output (7 × 7 × 512, before averaging). We324

averaged these effective gains over features to obtain a propagated gain map (Layer 4 feature325

map, 7 × 7, Fig. 8b). To test the hypothesis that this propagated gain was sufficient to account326

for improved performance in the task we re-applied it to the output layer of a model with no gain327

applied to the inputs.328

We found that the propagated gain map, when used to multiply the outputs of a model with329

no Gaussian gain (Multiply by propagated gain, Fig. 8a) was sufficient to induce task performance330

benefits similar to Gaussian gain applied to the input (Propagated gain vs. Gaussian gain, Fig. 8c).331

The median AUC across categories using the propagated gain map was 0.79, 95% CI [0.76, 0.84],332

compared to 0.71 [0.67, 0.72] in the distributed model. There was a small difference between333

the Gaussian gain and the effect of the propagated gain map -0.02 [-0.03, 0.01], within the 95%334

confidence interval for no difference. This difference could be attributed to changes in receptive335

field structure in the Gaussian gain condition, but we attribute it instead to differences between336

the propagated gain map and the effect of the Gaussian gain. The propagated gain manipulation337

was constructed from the average effective gain of units across all task stimuli. Because of this, the338

gain map did not exactly reproduce the effect of gain on an image-by-image basis.339

To test the hypothesis that gain was necessary to account for the behavioral effect we divided340
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Figure 7. Gain-only model. (a) To create a gain effect without modifying the receptive fields of units we applied a flattened gain field, with thegain set to the average of the original Gaussian gain for each attention strength. The flat gain alone causes units to shift their receptive field atthe boundary between the four stimulus quadrants. To modify gain while ensuring shifts were gain-independent we computed the fourquadrants separately with zero padding and then concatenated the results. (b-f) conventions as in previous figures.
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Figure 8. Gain is both necessary and sufficient to explain the improved task performance due to cuedattention. (a) To test necessity and sufficiency of gain on performance we propagated the effect of Gaussiangain through the model and measured the effective gain at the output layer. (b) We averaged the effectivegain across features to obtain a “propagated gain map”. To test sufficiency we multiplied the output of amodel with no true gain by the propagated gain map. To test necessity we divided the output of a model withtrue gain by the propagated gain map. (c) Multiplying the output by the propagated gain recovered the effectof Gaussian gain, while dividing removed this effect, confirming that gain was both necessary and sufficient toaccount for the change in task performance. Grey markers show the individual category performance, blackmarkers the median across categories and error bars the 95% confidence intervals.
Figure 8—figure supplement 1. Direct readout from the cued quadrant improves performance alone, with
no additional improvement from gain.
Figure 8—figure supplement 2. Gain propagation can account for changes in discrimination task
performance due to Gaussian gain.
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the final layer activations by the propagated gain map (Divide by propagated gain, Fig. 8a). We341

found that the behavioral effect of an early gain was mostly reversed by this manipulation (Re-342

moved gain vs. Distributed, Fig. 8c). The median AUC across categories after dividing out the343

propagated gain was 0.72, 95% CI [0.68, 0.75], compared to 0.71 [0.67, 0.72] in the distributed con-344

dition. Dividing by the propagated map did not perfectly reverse the effects of the full Gaussian345

gain, we found a median within category AUC advantage of 0.02 [0.01, 0.03] for the Gaussian gain346

with division compared to the distributed baseline. These small residual differences are likely due347

to the combined effects of changes in spatial receptive field properties that are not reversed by348

the division of the propagated gain map.349

Note that in the final readout of our model, we assumed that explicit spatial information was350

lost, as we averaged activations across the 7 × 7 convolutional units in the final pooling layer. How-351

ever, some evidence in ventral temporal cortex suggests that there is spatial information available352

(Schwarzlose et al., 2008; Carlson et al., 2011), sowe tested amodel read outwhich retained spatial353

information, but found that the necessary and sufficiency results did not show qualitative changes.354

Amodel trained to use the full 7×7×512 output hadmarginally worse performance than themodel355

built with the average encodings, achieving a median AUC across categories of 0.68 [0.63, 0.71] in356

the distributed condition and 0.78 [0.75, 0.82] in the focal condition with 4× Gaussian gain at the357

first layer. We attribute the small difference in task performance compared to the average model358

to worse generalization: on the validation set the 7×7model showed amedian drop in AUC across359

categories of -0.02, range [-0.10, 0.00] compared to the average-pooled readouts.360

We repeated the propagated gain manipulations in the 7 × 7 readout model to confirm the361

necessary and sufficiency results would not change when the model retained spatial information362

in the final readout. Both the necessity and sufficiency tests showed similar results when using the363

full output: the average increase in AUC when using the propagated gain map was 0.09, 95% CI364

[0.08, 0.10] for the full output model, compared to 0.09 [0.07, 0.10] for the average pooled model365

and the average change in AUC (compared to the distributed condition) when dividing out the366

propagated gain map from a model with Gaussian gain applied was 0.01 [-0.01, 0.02] for the full367

output model, compared to 0.02 [0.01, 0.03] for the average pooled model.368

Improvements in task performance with a Gaussian gain could come from changes in signal369

discriminability, but also could come from the network being better able to suppress irrelevant370

visual information. That is, increasing the gain could act to strengthen signals from the relevant371

target and suppress signals from irrelevant locations. To see how much suppressing irrelevant372

visual information alone could improve task performance, we designed a neural network observer373

model which explicitly read out from the top-left 4× 4× 512 quadrant of the layer 4 output, instead374

of the average pooled 1 × 1 × 512 output. As expected, the task performance of this model with375

no additional gain is already elevated (Distributed, Fig. 8a - supplement 1), because the readout376

now implicitly acts as a form of spatial cueing. The performance of the 4×4 readout was still not377

at ceiling (ΔAUC between training validation set and distributed images = -0.07, 95% CI [-0.06, -378

0.09]). Thus, the performance enhancement due to the Gaussian gain appears to act similarly to379

an explicit manipulation which suppresses irrelevant information.380

Theoretical considerations would suggest that moving receptive fields into the target quadrant381

should further improve performance even when the readout is already spatially specific, because382

these additional receptive fields can add new information (Kay et al., 2015; Vo et al., 2017). We383

found that this wasn’t true for the amount of shift induced by the 4× Gaussian gain, chosen to384

match the magnitude of the human behavioral benefits of spatial attention. To demonstrate this,385

we applied a 4× Gaussian gain to the 4 × 4 readout model and found no further increase in per-386

formance beyond what was achieved by shifting the readout (Gaussian gain vs. 4 × 4 Readout, Fig.387

8 - supplement 1). Gain applied to the output of the model also provided no additional benefit388

(Propagated Gain vs. 4 × 4 Readout, Fig. 8 - supplement 1), supporting the interpretation that the389

gain acts as a selection mechanism with no effect in the absence of irrelevant distractors.390

Finally, the observer model solved a detection task where both criterion and sensitivity con-391
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tribute to performance, and we reported task performance as AUC to avoid confounding these392

factors. A more explicit test is to use a criterion-free discrimination task to evaluate the effects of393

gain on task performance. (Fig. 8 - supplement 2a). We therefore designed a category discrimina-394

tion task in which the neural network observer model determined which of two composite-grids395

included the target category at a specified location (always top-left). Baseline performance (Base-396

line, Fig. 8 - supplement 2b) was considered as the performance of themodel when no information397

about which location is cued for discrimination was provided. Note that because the discrimina-398

tion location always included the target and all other locations had equal probability of including399

the target category, chance performance was greater than 50%. To compute task performance,400

the previously trained fully-connected category target readout was compared across the two com-401

posite grids and the composite with the larger response chosen as the model’s response. We then402

applied a Gaussian gain at the cued location and found that discrimination task performance im-403

proved in a similar manner to the detection task (Gaussian Gain, Fig. 8 - supplement 2b). Using404

the propagated gain manipulation we confirmed that the gain was both necessary and sufficient405

for improvements in model task performance (Propagated Gain vs. Gaussian Gain and Removed406

Gain vs. Chance, Fig. ?? - supplement 2b).407

Discussion408

Human observers are more accurate when trying to detect or discriminate objects at a cued loca-409

tion. Our results demonstrate that this behavioral benefit can also be observed in a neural network410

model of visual cortex when a Gaussian gain is applied over the pixels of a “cued” object. By mod-411

eling attentional modulation as gain at the earliest stage of the neural network, we were able to412

observe similar effects on spatial receptive fields to what is seen in human physiology. When using413

a gain strength set to match the improvement in model task performance to a similar level as ob-414

served in human spatial attention, we documented shifts of receptive fields towards the center of415

the Gaussian gain field, shrinkage of receptive fields, and changes to the spatial structure in units416

at later stages of the model. These changes in model receptive field properties were similar in417

magnitude and characteristics to changes in single-unit (Womelsdorf et al., 2006; Anton-Erxleben418

et al., 2009) and population (Klein et al., 2014; Vo et al., 2017; Fischer and Whitney, 2009; van Es419

et al., 2018) receptive fields reported from physiological measurements.420

To determine which, if any, of these changes to receptive field properties were the source of421

improved task performance in the model, we built a series of neural network observer models in422

which we isolated receptive field shifts, shrinkage, and structural changes from the direct effect423

of gain. To assess these changes in a way that could provide information about the human visual424

system, we matched the scale of the shifts, shrinkage, and structural changes to the effect size ob-425

served in the Gaussian gain model with the gain strength best matched to human performance. In426

the shift-only model we re-wired units to move receptive fields without introducing gain and found427

that this produced no improvements in task performance. In the shrinkagemodel we changed the428

size of units without changing their gain or position, and again found no improvements in task per-429

formance. In the receptive field structure model we modified the sensitivity profile of individual430

receptive fields tomimic the effects of gain, without changing their gain, position, or size, but again431

found no improvements in task performance. It was only by applying a gainwhile keeping receptive432

field properties stable that we were able to reproduce the improvements in task performance.433

Our results suggest that spatial gain implemented by neural populations in visual cortex can434

be sufficient to induce behavioral effects of attention for both detection and discrimination even435

without the concomitant changes in downstream receptive field properties. That is, increasing436

response magnitude through gain changes can act to select relevant visual information when cou-437

pled with max or soft-max pooling mechanism which then suppress irrelevant visual information438

with lower magnitudes (Lee et al., 1999; Pestilli et al., 2011; Hara et al., 2014; Pelli, 1985). While439

increasing gain can have downstream effects which change receptive field properties such as po-440

sition, size and spatial structure, our results suggest that these may be secondary effects and only441
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a consequence of applying gain, rather than the cause of the behavioral improvements as others442

have suggested (Anton-Erxleben and Carrasco, 2013;Moran and Desimone, 1985; Anton-Erxleben443

et al., 2009; Sprague and Serences, 2013; Vo et al., 2017; Kay et al., 2015; Fischer and Whitney,444

2009; Anton-Erxleben et al., 2007). We also found that gain had no additional impact when the445

readout was already spatially specific, reinforcing the interpretation that gain and selection of rel-446

evant information are intertwined.447

We used an image-computable model of the computational steps from sensory input to deci-448

sionmaking which allowed us to formally test hypotheses (Gardner andMerriam, 2021) about how449

different attentional mechanisms could impact task performance. In our case, the advantage of450

this approach is that the model architecture allowed us to examine how gain at the earliest stages451

of processing causes changes in spatial receptive field properties: any time a gain occurs in an452

asymmetrical manner across a receptive field, downstream units will experience an apparent shift453

as well as shrinkage or expansion. We know from the large literature exploring the physiology of454

attention that receptive field shifts are correlated with spatial attention (Anton-Erxleben and Car-455

rasco, 2013; Anton-Erxleben et al., 2009, 2007; Vo et al., 2017; Kay et al., 2015; Fischer andWhitney,456

2009;Womelsdorf et al., 2006). Several authors have proposed that enhanced behavior is a result457

of increases in the information capacity of a population of neurons by reducing spatial uncertainty458

about position (Kay et al., 2015) or enhancing discriminability (Vo et al., 2017). However, if changes459

in spatial receptive field properties are the consequence of gain changes (Klein et al., 2014; Compte460

and Wang, 2006), then it raises the question of whether these receptive field changes actually help461

to improve task performance. Our modeling approach allowed us to examine the theoretic impact462

of each change that is associated with gain systematically and quantify the potential benefit to463

detection and discrimination task performance. At larger scales or in other tasks there are theo-464

retical reasons to expect that task performance will improve due to these effects, (Kay et al., 2015;465

Vo et al., 2017; Theiss et al., 2022)466

Whether our conclusions can generalize to the behavior of attentional gain in biological neural467

circuits is limited both by how well the neural network observer model approximates the func-468

tioning of those neural circuits and by the model’s ability to predict behavior. There are several469

reasons to suggest that the model captures relevant properties of both object recognition and the470

primate visual system. We chose to analyze a CNN whose architecture was designed to reflect the471

primate visual system. This has been evaluated by comparing the similarity of CNN unit activity472

against measurements of single unit activity in the primate visual cortex (Schrimpf et al., 2018).473

After training, the image features that the CNN units become selective for align closely with those474

that activate single units in visual cortex (Yamins et al., 2014; Carter et al., 2019). In addition, the475

designers of the architecture we used (CORnet), Kubilius et al. (2018) optimized for “core object476

recognition”, detecting a dominant object during a viewing duration of natural fixation (100-200477

ms) in the central visual field (10 deg). We re-used core object recognition in our human object478

detection task and projected our composites in a 10 degree square aperture to obtain similar per-479

ceptual characteristics. In the analysis of our task we showed that distributed performance was480

similar for humans and the CNN at a stimulus presentation of 65ms, confirming that the intended481

design of CORnet generalized to the new dataset and task that we used.482

While CORnet was designed to map individual visual cortex regions onto the different layers of483

the CNN, it differs from the visual system in that it is a completely feed-forward model. It is well-484

known that the visual system has recurrence both within and between visual areas (Felleman and485

Van Essen, 1991). Computational modeling has suggested that recurrence can affect how gain and486

additive offsets change down stream receptive field location and size, in particular enhancing these487

effects beyond receptive field boundaries (Compte andWang, 2006). These considerations suggest488

that more realistic models could have even stronger downstream effects on spatial receptive field489

properties then what we have documented in a purely feed-forward network. In computational490

models, recurrent connections are often unfolded into feed-forward layers, effectively making a491

recurrentmodel a deeper convolutionalmodel (Nayebi et al., 2018). Althoughwedidn’t test deeper492
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architectures in our analysis, we expect that the general principles we described should hold for493

models with more layers and therefore also for models with recurrent connections. An intriguing494

follow-up direction would be to extend the modeling described here to reaction time tasks, where495

a recurrent architecture allows for modeling of temporal dynamics and where diffusion models496

have been found to provide a useful parameterization of how bottom-up and top-down signals497

contribute to sensory responses over time (Kay and Yeatman, 2017).498

CORnet is alsomissingmany intermediate areas of the visual system (notably area V3) (Wandell499

and Winawer, 2011) as well as an explicit gain control mechanism such as divisive normalization500

(Carandini and Heeger, 2012) which might account for the large gain necessary in our model to501

produce human-like performance enhancements. These differences mean that the exact strength502

of the gain signal we observed cannot be mapped directly onto physiology. In particular, while503

we apply gain at the earliest stage of the model, we do not wish to imply that such a large gain504

is seen with attention in the LGN inputs to V1 (O’Connor et al., 2002). Nor do we imply that the505

gain in various stages of our model should directly map on to the gain observed in physiological506

measurements, which have tended to highlight larger gain changes in intermediate areas like V4507

andMT (Treue and Trujillo, 1999;McAdams andMaunsell, 1999;Moore and Armstrong, 2003) than508

earlier areas. Instead, in our model, the 4× gain should be interpreted as both an explicit increase509

in gain as well as an implicit gain due to the effects of normalization (Reynolds and Heeger, 2009;510

Carandini and Heeger, 2012). While normalizationmodels have traditionally been studied in single511

layer models, our work extends this general approach to consider downstream effects of gain on512

RF properties. We assessed how these effects might interact in our CNN by demonstrating that513

a physiologically plausible gain of 1.1×, when accentuated by a divisive gain control mechanism514

(Kaiser et al., 2016; Carandini and Heeger, 2012) and amplified across multiple visual areas (many515

of which are not included in the CORnet model), could have produced the magnitude of effects516

necessary for human-level improvements in task performance. This smaller gain is more consis-517

tent with neural recordings in primates, where gain changes on the order 20-40% (1.2-1.4×) have518

been measured (Motter, 1993; Luck et al., 1997; Treue and Trujillo, 1999).519

We chose to model gain at the earliest possible point in the system to understand how signal520

changes propagate through the visual hierarchy andmodify receptive field structure. Physiological521

measurements have found evidence for early gain (McAdams and Maunsell, 1999; Motter, 1993;522

Luck et al., 1997), but it is equally possible that the gain is applied at a late stage close to decision523

making and signal gains early in visual cortex are a result of backward projections to these areas524

(Buffalo et al., 2010;Moore and Armstrong, 2003). The propagated gain analysis confirms that gain525

signals with spatial specificity arriving at later stages in processing (Moore and Armstrong, 2003)526

would have similar effects on task performance.527

To solve the demands of goal-directed visual attention, the human brain has multiple poten-528

tial mechanisms available. To select for relevant and suppress irrelevant information, sensory re-529

sponses can be amplified or the tuning of neurons andpopulations can be shifted to enhance some530

signals at the cost of others. In addition, these bottom-up sensory changes can be combined with531

shifts in how sensory representations are read out or communicated to downstream regions. In532

biological systems, these mechanisms are intertwined: as we have shown, changes to early sen-533

sory signals will have complex effects on the later stages that are used for readout. In an idealized534

model, the changes that would have themost effect on the readout would be computed by approx-535

imating their gradients on the decision axis (Lindsay and Miller, 2018). However, these gradients536

are typically computed in models through back-propagation (Rumelhart et al., 1986), and it is not537

known whether or how similar gradients can be computed in biological systems. Here, we have538

shown using a state-of-the-art model of the visual system that when the neural network observer539

is matched with human performance during spatial attention somemechanisms can improve task540

performance, while others cannot. In the limit, shift, shrinkage, and tuning changes in receptive541

fields must have an impact on sensory representations and therefore on performance. But our re-542

sults show that in a neural network model and at the scale expected in the primate visual system543
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during goal-directed behavior, these are not sufficient to produce the expected effects of spatial at-544

tention on task performance. Instead, gain combined with a nonlinear selectionmechanismmeets545

the demands imposed by goal-directed visual attention. New techniques that allow for targeting546

interventions to defined populations of neurons raise the possibility of manipulating gain and top-547

down signaling to determine the effect on downstream neural response properties and behavior.548

Such interventions would allow for testing the main prediction of our model: that spatial visual549

attention relies primarily on changes in gain and not concomitant downstream effects to spatial550

receptive field properties.551

Methods and Materials552

Human observers553

Seven observers were observers for the experiments (1 female, 6 male, mean age 22 y, range 19-554

24). All observers except one (who was an author) were naïve to the intent. No observers were555

excluded during the initial training sessions (see eye-tracking below). Observers completed 1600556

trials in two 60minute sessions. Observerswore lenses to correct vision to normal if needed. Proce-557

dures were approved in advance by the Stanford Institutional Review Board on human participants558

research and all observers gave prior written informed consent before participating.559

Hardware setup for human observers560

Visual stimuli were generated using MATLAB (The Mathworks, Inc.) and MGL (Gardner et al., 2018).561

Stimuli were displayed at 60 cm viewing distance on a 22.5 inch VIEWPixx LCD display (resolution562

of 1900x1200, refresh-rate of 120 Hz) and responses collected via keyboard. Experiments were563

performed in a darkened room where extraneous sources of light were minimized.564

Eye-tracking was performed using an infrared video-based eye-tracker at 500 Hz (Eyelink 1000;565

SR Research). Calibration was performed at the start of each session to get a validation accuracy566

of less than 1 degree average offset from expected, using a thirteen-point calibration procedure.567

During training, trials were initiated by fixating the central cross for 0.5 s and canceled on-line568

when an observer’s eye position movedmore than 1.5 degree away from the center of the fixation569

cross for more than 0.3 s. Observers were excluded prior to data collection if we were unable to570

calibrate the eye tracker to an error of less than 1 degree of visual angle or if their canceled trial571

rate did not drop to near zero. All observers passed these criteria. During data collection the online572

cancellation was disabled and trials were excluded if observers made a saccade outside of fixation573

(> 1.5deg) during the stimulus period.574

Experimental Design575

We compared the ability of humans and neural networks to detect objects in a grid of four images576

covering 10 degrees of visual angle (224 px). Given a grid of images, the observers were asked577

to identify whether or not a particular target category was present. On half of the trials we gave578

observers prior information telling them which of the four grid locations could contain the object579

(100% valid cue). This focal condition was compared with a distributed condition, in which no580

information was provided about which grid location could contain the target object. For humans,581

the prior in the focal condition was a spatial cue, a visual pointer to one corner of the grid. For the582

neural network, the prior for the focal condition was implemented by a mechanistic change in the583

model architecture, which differed according to the model of attention being tested. Note that in584

the distributed condition, our model is analogous to one in which the focal cue is implemented by585

a Gaussian of infinite width.586

To verify that our results were not specific to detection, we also examined the ability of a neural587

network observer model to perform a category discrimination task. To perform the discrimination588

we compared the classifier outputs from two composite grids. These grids were constructed such589

that one of the two grids always contained an image of the target category (A) in the top-left location590
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and the other contained an image from the non-target category (B). The remaining distractors591

images were randomly sampled from the A and B categories with 50% probability. In the focal cue592

condition the model architecture was modified to implement a model of attention.593

Stimuli: object detection task594

In the object detection task, the stimuli presented to both humans and the neural network observer595

modelwere composed of four base images arranged in a grid (henceforth a "composite grid"). Each596

base image contained an exemplar of one of 21 ImageNet (Deng et al., 2009) categories. Composite597

grids always contained images from four different categories. The base images were cropped to be598

square, and resized to 122× 122 pixels, making each composite grid 224× 224 pixels. We pulled 929599

images from each of 21 ImageNet categories: analog clock (renamed to "clock"), artichoke, bakery600

(renamed to "baked goods"), banana, bathtub, bonsai tree (renamed to "tree"), cabbage butterfly,601

coffee, computer, Ferris wheel, football helmet, garden spider (renamed to "spider"), greenhouse,602

home theater, long-horned beetle (renamed to "beetle"), mortar, padlock, paintbrush, seashore,603

stonewall, and toaster. These base images were usually representative of their category. However,604

many included other distracting elements (people, text, strong reflections, etc). Two authors (KF605

andDB) selected 100 base images for each category absent of distracting elements (low-distraction606

base images) to be used for the human task. From these low-distraction base images we set aside607

5 to use as exemplars when introducing the category to human participants.608

To create the human stimulus set we generated composite grids for each of the 20 target cate-609

gories. Each category required 80 composite grids: 40 including target objects and 40 without. We610

therefore needed 40 base images from the target category and 280 (3×40+4×40) base images from611

the non-target categories. We sampled all images from the low-distraction base images. Targets612

were placed 10 times in each of the four corners.613

The neural network observer model was trained and tested on an expanded stimulus set. We614

set aside 50 base images for each category to train the linear classifiers (see Linear Classifiers,615

below). The approach was otherwise identical to that described above, but 829 composite grids616

were createdwith a target and 829without, and the compositeswere assembled from the full set of617

929 base images. Because CNN models are translation invariant we formed all target composites618

with the target image in the NW corner, to simplify analysis.619

Stimuli: category discrimination task620

The stimuli in the category discrimination task were also composite grids of four images. How-621

ever, these composites were constructed to only include images from a target pair of categories622

(called “A” and “B” and generated from 20 of the 21 ImageNet categories, as displayed in Table623

1). Pairs of composites were generated, consisting of an “A” stimulus and a “B” stimulus with the624

corresponding category in the top left target grid position. The other three locations were filled625

with distractor images sampled pseudorandomly from the A or B category. Target images were626

not repeated across composites, but did appear in other stimuli as distractors. We generated 900627

images per category pair, 450 with an A target and 450 with a B target.628

Human object detection task629

Humanobservers performed blocks of trials inwhich they had to report the presence or absence of630

a specified category in composite grids. At the start of each block we showed the human observers631

the words "Search for:" followed by the name of the current target category (Fig. 1a, Category).632

They were then shown five held-out (i.e. not shown in the task) exemplar base images to gain633

familiarity with the target category (Fig. 1a, Examples) and advanced through these with a self-634

paced button click. This was followed by individual trials of the task. At all times a fixation cross635

(0.5 deg diameter, white) was visible at the center of the screen in front of a black circle (1 deg636

diameter). This fixation region obscured the center of the composite grid, but made maintaining637

fixation easier for observers. At the start of each trial the pixels of the current composite grid638
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Pair Category A Category B
0 Ferris wheel analog clock
1 artichoke bakery
2 banana bathtub
3 cabbage butterfly coffee
4 computer football helmet
5 garden spider greenhouse
6 home theatre long-horned beetle
7 mortar padlock
8 paintbrush seashore
9 stone wall toaster

Table 1. Category pairs for the discrimination task.

were scrambled to create a luminance-matched visual mask. This was displayed until an observer639

maintained fixation for 0.3 s (Fig. 1a, "Fixation"). Once fixation was acquired a cue was shown for640

0.75 s, informing the observer about whether the trial was focal (in which case the possible target641

location was indicated) or distributed (four possible target locations indicated). The focal cue was a642

0.25 deg length white line pointing toward the cued corner of the grid. The distributed cuewas four643

0.25 deg length white lines pointing toward all four corners of the grid. Distributed and focal cues644

were presented in pseudo-randomized order throughout each block. The cue was followed by a645

0.75 s inter-stimulus interval (Fig. 1a, Delay) before the composite grid (10 × 10 deg) was shown for646

either 1 (8.3 ms), 2 (16.7), 4 (33.3), 8 (66.7), 16 (133.3), or 32 (266.7) video frames (Fig. 1a, Stimulus).647

The mask then replaced the stimulus and observers were given 2 s to make a response (Fig. 1a,648

Response), pressing the “1” key for target present or the “2” key for absent. Feedback was given649

by changing the fixation cross color to green for correct and red for incorrect until the 2 s period650

elapsed. A 0.25 s inter-trial interval separated trials.651

Observers completed one training block (the “tree” category) as practice before data collection652

began. They then completed each category block (40 focal trials with 20 target present and 20653

target absent, and 40 distributed trials with 20 target present and 20 target absent) before moving654

on to the next category. Block order was pseudo-randomized for each observer. Each block took655

about five minutes to complete and a break was provided between blocks, as needed. In total the656

experiment took about two hours, split into two one hour sessions on different days.657

Neural network observer model658

Wemodeled the ventral visual pathway using CORnet-Z, a convolutional neural network (CNN) pro-659

posed by Kubilius et al. (2018). The model consists of four convolutional layers producing feature660

maps of decreasing spatial resolution (Table 2). The model which we used was pre-trained on Ima-661

geNet by the original authors, details can be found in Kubilius et al. (2018). At the last convolutional662

layer we took the average over the spatial dimensions of each feature map to create the neural663

network’s representation (512-dimensional vector) of the input image.664

Linear classifiers: object detection task665

To allow the neural network observermodel to perform an object detection task we trained a set of666

linear classifiers on the model output to predict the presence or absence of each of the twenty tar-667

get categories. Each of these fully-connected layers received as input the (512-dimensional) feature668

output from the CNN and projected these to a scalar output. Weights were fit using logistic regres-669

sion with an L2 loss and no regularization, using scikit-learn and the LIBLINEAR package (Pedregosa670

et al., 2011). We trained the classifiers on a held out set of base images not used to generate the671

task grids, using 50 images with the target present and 50 images with the target absent. Clas-672
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Layer Type Kernel Size Output Shape FWHM (px, deg)
Input 224 × 224 × 3

V1 Block conv, stride=2 7×7 112 × 112 × 64 11 (0.5)
ReLU 56 × 56 × 64

max pool 2×2 56 × 56 × 64
V2 Block conv 3×3 56 × 56 × 128 26.8 (1.21)

ReLU 28 × 28 × 128
max pool 2×2 28 × 28 × 128

V4 Block conv 3×3 28 × 28 × 256 55.6 (2.52)
ReLU 14 × 14 × 256

max pool 2×2 14 × 14 × 256
IT Block conv 3×3 14 × 14 × 512 111.4 (5.06)

ReLU 7 × 7 × 512
max pool 2×2 7 × 7 × 512

Encodings avg. pool 1 × 1 × 512
Table 2. CORnet-Z structure. Average receptive field (RF) full-width at half-maximum (FWHM) is measuredusing ellipses fit to the backpropagated gradients of units in a convolutional layer with respect to the inputimage pixels. 22.4 pixels corresponds to one degree of visual angle (Kubilius et al., 2018).

sifiers were trained on independent data and training performance was evaluated on a held out673

validation set.674

To test model performance in the detection task the observer model was presented with each675

of the composite grids in the full image set and the output of the target category’s classifier was676

computed. We report the model’s area under the curve (AUC) as a measure of performance.677

Linear classifiers: category discrimination task678

To allow the neural network observermodel to performa category discrimination taskwe repeated679

the linear classifier training described above, adding a final step in which the classifier outputs680

were compared for two composites. The composite grid producing a higher output was marked681

as containing the target category. The classifiers were trained on a held out set of base images682

not used to generate the task grids. We report the model’s accuracy as a measure of performance.683

Note that even in the distributed condition themodel performance exceeds chance: this is because684

in any set of category pair composites the proportion of grid positions with a target will always be685

higher when the target image is fixed to one category. On average across images the proportion686

of A images in the A targets will be 2.5∕4 (1 + 0.5 + 0.5 + 0.5), making the average discrimination687

performance above chance.688

Spatial attention: Gaussian gain model689

To introduce Gaussian gain as a mechanism for spatial attention we multiplied the pixel intensity690

of the input image at row 𝑟 and column 𝑐 by the magnitude of a 2-dimensional Gaussian, using the691

following equation:692

𝑔𝑟0 ,𝑐0 ,𝜎,𝛽(𝑟, 𝑐) = (𝛽 − 1) exp

(

−

(

𝑟 − 𝑟0
)2 +

(

𝑐 − 𝑐0
)2

2𝜎2

)

+ 1 (2)
Where 𝑟0 and 𝑐0 set the row and column location for the center of the gain field and 𝛽 controls693

the strength, i.e. the multiplicative factor at the peak of the Gaussian. The Gaussian was centered694

in the cued quadrant and 𝜎 was set to 56 pixels (approx 2.5 degrees). We explored four values of695

𝛽: 1.1, 2, 4, and 11.696
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Quantifying the effects of gain on receptive fields and activations697

To reduce computational requirements we randomly sampled 300 units per layer (1,200 total units)698

for receptive field analysis, with higher density near the attended locus.699

To determine the location and size of the receptive field of each CNN unit we computed the700

derivative of their activation with respect to the pixels in the input image. This derivative was701

taken across a batch of 40 task images evenly distributed across categories. The magnitude of702

derivatives with respect to the red, green and blue channels were summed to create a sensitivity703

map. Receptive field location and size were estimated by fitting a 2D Gaussian distribution to the704

sensitivitymap. TheGaussian fit was performed by treating the sensitivitymap as an unnormalized705

probability distribution and choosing the Gaussian with the same mean and covariance matrix as706

that distribution. Receptive field location wasmeasured as themean of the Gaussian fit. We report707

the full-width at half-maximum for the receptive field size.708

To measure the effect of gain on the activation and information content of CNN units we com-709

puted the effective gain and the change in AUC across the sampled units. We defined effective gain710

as the ratio between the standard deviation of a unit’s activity after applying an attention mecha-711

nism compared to before. We computed the effective gain across all features and all stimuli. To712

compute the change in AUC we measured the average change along the prediction layers’ deci-713

sion axes for each feature map location in layer 4 between the distributed and focal conditions.714

More specifically, for each category and each location in the 7 × 7 feature map, we passed the715

512-dimensional encoding vector onto that category’s prediction layer just as we did for the 512-716

dimensional vector after average pooling. This resulted in two distributions of confidence scores717

along the prediction layer’s decision axis (one each for target present and absent), the AUC of which718

describes the relative amount of information contained in that feature map location pertaining to719

discrimination of target present and absent conditions. We then took the difference of AUCs be-720

tween focal and distributed conditions averaged across categories in each location.721

Nonlinear normalization722

In order to test the ability of “winner-take-all” normalization to amplify small gains, we isolated the723

first layer of the CNN, and applied nonlinear normalization with exponent 𝜉. More precisely, if the724

output feature map of the first layer had size𝑀 rows by𝑁 columns by 𝐶 channels and activations725

𝑎𝑖𝑗𝑐 , we calculated the normalized outputs:726

𝑏𝑖𝑗𝑐 =
∑𝑀,𝑁,𝐶

𝑘,𝑙,𝑑=1 |𝑎𝑘𝑙𝑑|
∑𝑀,𝑁,𝐶

𝑘,𝑙,𝑑=1 |𝑎𝑘𝑙𝑑|𝜉
𝑎𝜉𝑖𝑗𝑐 . (3)

To measure the resulting amplified gain we applied a small Gaussian gain between 1× and 1.1×727

to the input image in the same manner as in the full Gaussian gain model. We then measured the728

ratio of average effective gain for units contained entirely within the gain field against the average729

effective gain of units entirely outside the attention gain field, for various values of 𝜉.730

Spatial attention: shift-only model731

In the Gaussian gain model we applied the gain at layer 1 and observed changes in the model’s732

detection performance at the output layers. We took a parallel approach here to design a model733

that could mimic the receptive field shifts at layer 4 (induced by gain at layer 1) while producing no734

systematic effect on response gain. To cause the layer 4 units to observe different parts of the input735

image we shifted the connections between pixels in the input image and first layer. We preserved736

all other connections, so layer 4 units of the neural network continued to receive information from737

the same layer 1 units.738

To obtain the size of the necessary connection shifts we created a “shift map” in input image739

space by measuring the distance and direction that layer 4 units moved when the Gaussian gain740

was applied. To make this measurement, we took each input image pixel location (𝑟, 𝑐) and calcu-741

lated the average receptive field shift of the 20 sampled layer 4 units with the closest receptive742
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field centers without attention. Because we used a sampling procedure and not the full set of743

layer 4 units we weighted the sampled units by their Euclidean distance from the target pixel. To744

reduce noise in the shift map we applied a Gaussian blur with 𝜎 = 8 pixels. Using the shift map,745

we then re-assigned the connections from the input image to the layer 1 units. The simplest way746

to to implement this involved swapping the activation of each layer 1 unit with the activation of747

the unit at its shifted location. For example, if unit (75, 75) was shifted by (−10,−10) we assigned it748

the activation of the unit at (65, 65). To deal with decimal shifts we performed linear interpolation749

using neighboring units.750

Spatial attention: receptive field structure751

In the receptive field structuremodel we aimed tomimic the spatial tuning changes induced by the752

Gaussian gain at a particular layer but without changing the effective gain of units. To accomplish753

this, we first computed the true gain propagated to the target layer 𝐿 by scaling the Gaussian gain754

map to the size of layer𝐿−1’s featuremap. With this change alone theweights of units closer to the755

locus of attention are scaled more than the weights farther from the locus, introducing differential756

gain. To avoid a change in the overall scale of units’ weights, we re-scaled the kernel to match the757

L2-norm (sum-of-squares) of the original kernel weights.758

To summarize, suppose that layer 𝐿 − 1’s feature map is 𝑡 times the size of the input image so759

that a unit at row 𝑟 and column 𝑐 of the layer 𝐿 − 1 feature map has an effective effective gain of760

𝑔𝑡𝑟0 ,𝑡𝑐0 ,𝑡𝜎,𝛽(𝑡𝑟, 𝑡𝑐) under the Gaussian gain model. Then if 𝑤 ∈ ℝ𝑁 is the original weight vector of a761

unit in the unraveled convolution at layer 𝐿 whose input vector 𝑎 ∈ ℝ𝑁 contains the activations of762

post-ReLU units of layer 𝐿− 1, and if the row-column positions in the 𝐿− 1 feature map of the unit763

described by 𝑎𝑖 is (𝑟𝑖, 𝑐𝑖), then the replacement weight vector in the sensitivity shift model is given764

by the vector 𝑤′ ∈ ℝ𝑁 , whose entries are:765

𝑤′
𝑖 =

(

∑𝑁
𝑖=1 𝑤

2
𝑖

∑𝑁
𝑖=1 𝑤

2
𝑖 𝑔𝑡𝑟0 ,𝑡𝑐0 ,𝑡𝜎,𝛽(𝑡𝑟𝑖, 𝑡𝑐𝑖)

2

)1∕2

𝑤𝑖, (4)

Spatial attention: Shrinkage model766

In the shrinkage model we aimed to mimic the receptive field size changes observed at layer 4767

underGaussian gain, without causing changes in receptive field location or gain. To achieve this, we768

assigned a shrinkage factor to each layer 4 unit and rewired its connections to layer 3 accordingly.769

Shrinkage factors 𝑓𝛽(𝑑) were determined by the distance 𝑑 between the locus of attention in770

input image space and the unit’s spatial location in the feature map projected back onto the input771

image. This distance was converted to a shrinkage factor by a function chosen to model the prop-772

erties of the receptive field size change pattern observed under 11𝑥× Gaussian gain at layer 4 (Fig.773

3e), namely774

𝑓𝛽(𝑑) = 1 − 𝛽 exp
(

−2.44 𝑑2

1122

)

cos
(

2.89 𝑑2

1122

)

(5)
where 𝛽 determines the overall strength of the effect, and ranged from 0.1 to 0.4 in our analyses.775

A shrinkage factor of 0 indicated no change in receptive field size, while a shrinkage factor of 1776

indicated shrinkage to zero radius.777

Given a shrinkage factor, we re-weighted the connections of each layer 4 unit to produce an778

approximate shrunken convolution kernel for that unit. The linearity of convolution provides an779

equivalence between re-weighting connections from layer 3 to layer 4 and replacing those connec-780

tions with new ones to units in a virtual continuous layer 3 feature map formed by linear interpo-781

lation between activations in the true layer 3 feature map. We therefore were able to calculate the782

new weights for each layer 4 unit based on a length-9 array of floating-point locations on the layer783

3 feature map (all CORnet-Z kernels are 3 × 3). Given the original wiring locations 𝑥𝑖, 𝑦𝑖, 𝑖 = 1, ..., 9784

for a unit with distance 𝑑, the new location corresponding to input 𝑖 was chosen to be785
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𝑥′
𝑖 = 𝑓 (𝑑)𝑥𝑖 − (1 − 𝑓 (𝑑))

(

1
9

9
∑

𝑗=1
𝑥𝑗

)

(6)
and similarly for 𝑦′𝑖. Using the linearity of convolution, each new virtual input location (𝑥′

𝑖, 𝑦
′
𝑖) is786

equivalent (for a linearly interpolated feature map) to a weighted combination of connections to787

the four feature map locations surrounding (𝑥′
𝑖, 𝑦

′
𝑖), calculated by rounding 𝑥 and 𝑦 coordinates up788

or down. The resultant 28 (9×4) connections were then simplified by combining connections from789

the same layer 3 unit to yield a re-weighted convolution kernel.790

Spatial attention: Gain-only model791

We designed a model which could effect gain without receptive field shift by flattening the gain in792

the cued quadrant. Receptive field shift occurs when there is a differential gain across the receptive793

field of a unit. To get rid of this, you can simply put a flat gain over the cued quadrant. This naive794

approach has the problem that units that overlap two quadrants will still shift and shrink according795

to the strength of the gain. To prevent these units from shifting in a manner correlated to the gain796

we separated theCNN featuremaps into four parts corresponding to the four imagequadrants, ran797

the model forward with zero padding around each quadrant, and then concatenated the results798

back together. This ensured that each unit experienced a flat gain across its inputs and that as gain799

increased units near the quadrant boundaries did not experience gain-dependent receptive field800

shift or shrinkage.801

Necessary and sufficient test802

To obtain a propagated gain map in the final layer output we applied the Gaussian gain to the803

start of the neural network observer model and measured the average effective gain of the 7 × 7804

layer 4 output units across a representative sample of images. We call this the “propagated gain805

map”, since it represents the effect of the input gain on the output layers. We tested necessity by806

dividing the network output by the map for a model with gain applied and we tested sufficiency by807

multiplying the outputs from a no-gain model.808

Readout from target quadrant809

To test the behavior of the neural network observer model with spatially-specific readout from the810

last convolution layer (Layer 4), we masked output of that layer to the linear prediction layers in811

the object detection task. To apply the mask, we zeroed activations of units outside the top-left812

4×4×512 of layer 4 (full dimensions 7×7×512). The same linear prediction layers and stimuli were813

used as in the necessary and sufficient test, and the same four conditions were tested: no gain,814

early Gaussian gain, and with a propagated gain map applied and divided out at layer 4.815

Behavioral analysis816

We analyzed the human behavioral data by binning trials according to their duration and comput-817

ing sensitivity 𝑑′ from the equation:818

𝑑′ = 𝑍(𝐻) −𝑍(𝐹𝐴) (7)
Where 𝑍 is the inverse of the cumulative normal distribution and 𝐻 and 𝐹𝐴 are the hit and819

false alarm rate, respectively. We fit a logarithmic function to the 𝑑′ data using the equation:820

𝑑′(𝑡) = 𝛼 ∗ log(𝜅𝑡 + 1) (8)
Where 𝑡 is the stimulus duration and 𝛼 and 𝜅 are parameters that control the shape of the821

logarithmic function.822

To compare human andmodel performancewe can also convert between 𝑑′ and the area under823

the curve (AUC) by the equation:824
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𝑑′ =
√

2𝑍(𝐴𝑈𝐶) (9)
Confidence intervals825

All error bars are calculated by bootstrapping the given statistic with 𝑛 = 1000 and reported as the826

95% confidence interval.827

Data and code availability828

The images and composite grids used in this study as well as the code necessary to replicate our829

analyses are available in theOpen Science Frameworkwith the identifier 10.17605/OSF.IO/AGHQK.830
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Figure 8—figure supplement 1. Direct readout from the cued quadrant improves performance
alone, with no additional improvement from gain.
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Figure 8—figure supplement 2. Gain propagation can account for changes in discrimination task
performance due to Gaussian gain.
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