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Abstract: 16 

The mammalian genome is spatially organized in the nucleus to enable cell type-specific gene 17 

expression. Investigating how chromatin architecture determines this specificity remains a big 18 

challenge. Methods for measuring the 3D chromatin architecture, such as Hi-C, are costly and 19 

bears strong technical limitations, restricting their widespread application particularly when 20 

concerning genetic perturbations. In this study, we present C.Origami, a deep neural network 21 

model for predicting de novo cell type-specific chromatin architecture. By incorporating DNA 22 

sequence, CTCF binding, and chromatin accessibility profiles, C.Origami achieves accurate cell 23 

type-specific prediction. C.Origami enables in silico experiments that examine the impact of 24 

genetic perturbations on chromatin interactions, and moreover, leads to the identification of a 25 

compendium of cell type-specific regulators of 3D chromatin architecture. We expect Origami – 26 

the underlying model architecture of C.Origami – to be generalizable for future genomics studies 27 

in discovering novel regulatory mechanisms of the genome. 28 

 29 
  30 
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Introduction: 31 

 32 

In mammalian cells, interphase chromosomes are hierarchically organized into large 33 

compartments which consist of multiple topologically associating domains (TADs) at the 34 

megabase and sub-megabase scale (Dixon et al., 2012). Chromatin looping within TADs 35 

functions to restrict enhancer-promoter interactions at the kilobase scale for regulating gene 36 

expression (Dixon et al., 2012; Schoenfelder and Fraser, 2019; Tang et al., 2015). The 37 

perturbation of TADs, such as disrupting TAD boundary, can lead to aberrant chromatin 38 

interactions and changes in gene expression (Kloetgen et al., 2020; Narendra et al., 2015). As a 39 

result, mutations that disrupt 3D genome organization can substantially affect developmental 40 

programs and play important roles in genetic diseases and cancer (Franke et al., 2016; Lettice et 41 

al., 2003; Lupiáñez et al., 2015; Spielmann et al., 2018).  42 

 43 

The higher-order organization of the genome is largely determined by intrinsic DNA sequence 44 

features known as cis-regulatory elements that are bound by trans-acting factors in a sequence 45 

specific manner (Rowley and Corces, 2018). For example, the location and orientation of CCCTC-46 

binding factor (CTCF) binding sites act as a landmark for defining boundaries of TADs. Other 47 

factors, such as the cohesin proteins, act together to regulate chromatin interaction via loop 48 

extrusion (Rowley and Corces, 2018). While most TADs are conserved across cell types, a 49 

substantial amount (>10%) of TADs are dynamic and vary in different cells (Schmitt et al., 2016). 50 

In addition, widespread cell type-specific chromatin-looping contributes to the precise regulation 51 

of gene expression (Phillips-Cremins et al., 2013; Tang et al., 2015). These fine-scale chromatin 52 

interactions are controlled by chromatin remodeling proteins and cell type-specific transcription 53 

factors such as GATA1 and FOX1A (Kagey et al., 2010; Schoenfelder and Fraser, 2019; 54 

Weintraub et al., 2017). While the general organization of chromatin architecture is largely well 55 

described, the current challenge is to reveal the principles underlying cell type-specific chromatin 56 

folding. Chromatin architecture capture technologies, such as Hi-C, are used for examining 57 

chromatin structure underlying gene regulation at fine-scales and across cell types (Lieberman-58 

Aiden et al., 2009; Rao et al., 2014). However, these approaches are costly, require large cell 59 

numbers, and are unable to distinguish abnormal genome rearrangements, prohibiting their 60 

widespread applications in investigating how chromatin architecture determines cell type-specific 61 

gene expression, especially in cancer genomes.  62 

 63 
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Owing to its ability to model complex interactions, deep learning has emerged as a powerful 64 

strategy for studying genomic features. Application of deep learning models could minimize the 65 

requirement for experimental analyses of chromatin architecture (Eraslan et al., 2019; Zou et al., 66 

2019). Since intrinsic features in DNA sequence of the genome partially determine its general 67 

folding principles, an approximate prediction of chromatin architecture can be made using 68 

sequence alone (Cao et al., 2021; Fudenberg et al., 2020; Schwessinger et al., 2020). However, 69 

different cell types rely on differential compendia of trans-acting factors to establish cell type-70 

specific chromatin interactions (Rowley and Corces, 2018). Approaches that rely solely on DNA 71 

sequence are unable to predict cell type-specific chromatin interactions (Cao et al., 2021; 72 

Fudenberg et al., 2020; Schwessinger et al., 2020). Conversely, methods that rely only on 73 

chromatin profiles lack the consideration of DNA sequence features, thus generally requiring 74 

multiple epigenomic data to improve predictive power (Belokopytova et al., 2020; Bianco et al., 75 

2018; Di Pierro et al., 2017; Qi and Zhang, 2019; Yang et al., 2021; Zhang et al., 2019). The 76 

limitations of current methods make it almost impossible to practically carry out in silico 77 

experiments for studying how trans-acting factors and DNA seqeunce features work together to 78 

shape chromatin architecture for gene expression regulation. 79 

 80 

We propose that an accurate prediction of cell type-specific chromatin folding requires a model 81 

which effectively recognizes and integrates both DNA sequence features and cell type-specific 82 

genomic information. A practical model should also minimize the requirement for input information 83 

without performance loss. Based on these principles, we developed C.Origami, a deep neural 84 

network that synergistically integrates DNA sequence features and two essential cell type-specific 85 

genomic features, CTCF binding profile (CTCF ChIP-seq signal) and chromatin accessibility 86 

information  (ATAC-seq signal). C.Origami achieved accurate prediction of cell type-specific 87 

chromatin architecture in both normal and rearranged genomes. Additionally, the high-88 

performance of C.Origami enables in silico genetic perturbation experiments that interrogate the 89 

impact on chromatin interactions and moreover, allows the identification of cell type-specific 90 

regulators of genomic folding through in silico genetic screening. We expect the underlying deep 91 

learning architecture, Origami, to be generalizable for predicting genomic features and 92 

discovering novel genomic regulations.  93 

 94 

 95 

RESULTS: 96 

Origami: a model architecture for predicting cell type-specific genomic features 97 
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 98 
Figure 1: de novo prediction of cell type-specific genomic features with Origami. a, A schematic of 99 
Origami architecture. Origami adopts an encoder-decoder design, separately encoding DNA sequence 100 
features and cell type-specific genomic features. The two streams of encoded information are concatenated 101 
and processed by a transformer module. The decoder converts the processed 1D information to the final 102 
prediction, such as a Hi-C interaction matrix. b, Applying Origami model to predicting the Hi-C interaction 103 
matrix. The best-practice model integrates DNA sequence, CTCF ChIP-seq signal and ATAC-seq signal 104 
as input features to predict Hi-C interaction matrix in 2 Mb windows.  105 
 106 

 107 

To achieve accurate and cell type-specific prediction of genomic features, we first developed 108 

Origami, a general modeling architecture, to synergistically integrate both nucleotide-level DNA 109 

sequence and cell type-specific genomic signal (Fig. 1a). In these two streams of information, the 110 

former enables recognition of informative sequence motifs, while the later provides cell type-111 

specific features. The Origami architecture consists of two encoders, a transformer module and 112 

a decoder (Fig. 1a, see Methods). The two encoders process DNA sequence and genomic 113 

features independently. The encoded features are concatenated and further processed by a 114 

transformer model (Vaswani et al., 2017), which allows the encoded information to exchange 115 

between different genomic regions. The decoder in Origami synthesizes the processed 116 

information to make predictions, and depending on the task, can be customized to specific 117 
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downstream prediction targets. In this study, we deployed a decoder for predicting chromatin 118 

architecture represented by Hi-C contact matrices, and therefore named this variant C.Origami. 119 

 120 

To cover typical TADs in the genome while maximizing computation efficiency, C.Origami predicts 121 

chromatin architecture within a 2 mega-base (2Mb) sized genomic window (Dixon et al., 2012). 122 

DNA sequence and genomic features within the 2Mb window were separately encoded as 123 

nucleotide-level features (Fig. 1b, see Methods). The model reduces 2Mb wide genomic features 124 

down to 256 bins, and output a Hi-C contact matrix with a bin size of 8,192 bp resolution (see 125 

Methods). The target Hi-C matrix from the corresponding 2Mb genomic window was processed 126 

to have the same bin size. To train the model, we used data from IMR-90 (Rao et al., 2014), a 127 

fibroblast cell line isolated from normal lung tissue, and randomly split the chromosomes into 128 

training, validation (chromosome 10), and test set (chromosome 15) (Fig. 1b, top right). 129 

  130 

To select genomic features as input for cell type-specific chromatin architecture prediction, we 131 

considered three criteria: 1) representative for cell type-specific identity; 2) widely available and 132 

experimentally robust; 3) minimized number of features to enable broad applicability of the model. 133 

CTCF binding is one of the most critical determinants of 3D genome architecture, thus we initially 134 

trained the model using DNA sequences and CTCF ChIP-seq signals as the only cell type-specific 135 

genomic feature (Supplementary Fig. 2). Our model performed well in most predictions, capturing 136 

the TAD structures and chromatin interaction events (Supplementary Fig. 2). However, we found 137 

the prediction did not recognize some fine-scale chromatin interaction features, especially in de 138 

novo prediction on a cell type (Supplementary Fig. 2). These results indicate that integrating DNA 139 

sequence with CTCF binding signal alone is not sufficient for optimal prediction of cell type-140 

specific 3D genome conformation.  141 

 142 

Previous studies indicate that chromatin accessibility directly or indirectly affects genome 143 

conformation with cell type-specific interactions (Stergachis et al., 2014; Thurman et al., 2012). 144 

We thus improved the model by including ATAC-seq signals as an extra feature (Fig. 1b). We 145 

found that C.Origami trained with nucleotide-level DNA sequence, CTCF ChIP-seq, and ATAC-146 

seq signals provided high-quality predictions for chromatin architecture (Fig. 2). On validation 147 

chromosome 10 and test chromosome 15, C.Origami predicted highly accurate contact matrices 148 

that emphasized both large topological domains and detailed chromatin looping events (Fig. 2a-149 

c and Supplementary Fig.3). To quantify prediction performance, we calculated the insulation 150 

scores from the predicted Hi-C matrix and found a high correlation with the insulation scores 151 
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calculated from the experimental data (Fig. 2d). C.Origami achieved on average 0.95 and 0.94 152 

Pearson correlation coefficients on validation and test chromosomes, respectively (Fig. 2e). We 153 

found that DNA sequence, CTCF binding signal, and chromatin accessibility signal were all 154 

required to accurately predict Hi-C contact matrix with high-quality. Compromising any of the 155 

signals led to inaccurate prediction (Supplementary Fig. 4).  156 

 157 

 158 

 159 
Figure 2: C.Origami accurately predicts 3D chromatin architecture.  a-b, Experimental Hi-C matrices 160 
(a) and C.Origami predicted Hi-C matrices (b) of IMR-90 cell line at chromosome 2 (left), chromosome 10 161 
(middle), and chromosome 15 (right), representing training, validation and test chromosomes, respectively. 162 
c, Input CTCF binding profiles and chromatin accessibility profiles. d, Insulation scores calculated from 163 
experimental Hi-C matrices (solid line) and C.Origami predicted Hi-C matrices (dotted line). Pearson 164 
correlation coefficients comparing the insulation was indicated in the plots. e, Insulation correlation between 165 
predicted and experimental Hi-C matrices across all windows in both validation and test chromosomes. 166 
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Each group included both Pearson correlation (r) and Spearman correlation (ρ) coefficients. f, The 167 
distribution of experimental Hi-C intensity scores by insulation correlation (Pearson’s r) between prediction 168 
and experiment. Each point represents a 2Mb genomic window in chromosome 15 (test). Colormap 169 
indicates the Spearman’s ρ of insulation correlation between prediction and experiment. g, Average 170 
intensity of the interaction matrix across genomic distances.  h, Distance-stratified interaction correlation 171 
(Pearson) between prediction and experiment.  172 
 173 

 174 

We carried out multiple different measurements to further evaluate the performance of C.Origami. 175 

First, by plotting the insulation correlation between prediction and experiment against Hi-C data 176 

intensity, we found that the predictions in the test set maintain uniform high performance across 177 

different clusters, demonstrating the robustness of the model (Fig. 2f). The few data points with 178 

low intensity are regions corresponding to unmappable or repeat sequences such as centromeres 179 

and telomeres (Fig. 2f and Supplementary Fig. 5). Second, our predicted Hi-C contact map 180 

followed the exponential decay pattern that are generally present in experimental Hi-C data (Fig. 181 

2g). Third, we plotted the distance-stratified interaction correlation (Pearson) between prediction 182 

and experiment. C.Origami achieved correlation above 0.8 within 1Mb region and 0.6 within 183 

1.5Mb (Fig. 2h). Last, we found that predictions from C.Origami were highly consistent across 184 

neighboring regions (Supplementary Fig. 6). Thus, C.Origami can be used to construct 185 

chromosome-wide prediction of Hi-C contact matrix by joining predictions across sliding windows. 186 

Together, the results demonstrate that C.Origami can accurately predict 3D chromatin 187 

architecture with minimum input data.  188 

 189 

 190 

De novo prediction of cell type-specific chromatin architecture 191 

 192 
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 193 
Figure 3: Cell type-specific de novo prediction of chromatin structure. a, Experimental Hi-C matrices 194 
from IMR-90 (left) and GM12878 (middle) cell lines at chromosome 2, highlighting cell type-specific 195 
chromatin differences (right). b, C.Origami-predicted Hi-C matrices of IMR-90 (left) and GM12878 (middle), 196 
precisely recapitulated the experimental Hi-C matrices (a). The arrow heads highlighted differential 197 
chromatin interactions between the two cell types. c, CTCF binding profiles and chromatin accessibility 198 
profiles of IMR-90 (left), GM12878 (middle) and their difference (right). d, Insulation scores calculated from 199 
experimental Hi-C matrices (solid line) and C.Origami predicted Hi-C matrices (dotted line) of IMR-90 (left), 200 
GM12878 (middle) and their difference (right). e, The distribution of interaction intensity by insulation 201 
correlation (Pearson) between the experimental Hi-C matrices of IMR-90 and GM12878. Colormap 202 
indicates the corresponding Spearman correlation coefficient (ρ). Dotted lines denote the filtering criteria in 203 
selecting representative loci with cell-type specificity. f, Pearson correlation between insulation scores 204 
calculated from predicted and experimental Hi-C matrices across cell types. Prediction from each cell type 205 
was similar to the corresponding experimental data. g, Pearson’s r of predicted insulation difference and 206 
experimental insulation difference between IMR-90 and other cell types. The correlation was calculated as: 207 
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Pearson(Insu(IMR-90_pred) - Insu(Target_pred), Insu(IMR-90_data) - Insu(Target_data)). High correlation 208 
indicates that our model detected cell types-specific features applicable across different cell types.  209 
 210 
 211 
We next tested whether our model generalizes to de novo predict of chromatin architecture in 212 

new cell types. GM12878, a lymphoblastoid cell line, differs substantially from IMR-90 in its 213 

chromatin architecture (Rao et al., 2014), as exemplified at locus Chr2:400,000-2,497,152 (Fig. 214 

3a). Specifically, we highlighted a cell type-specific interaction related to chromatin accessibility 215 

changes (black arrowhead) and a distal interaction that associates with both CTCF and ATAC-216 

seq signal changes (gray arrowhead, Fig. 3c). These cell type-specific features were clearly 217 

demonstrated by differences in their signal intensity in Hi-C and genomic tracks (Fig. 3a and 3c, 218 

right). To evaluate how C.Origami performs in de novo predicting cell type-specific chromatin 219 

architecture, we applied the prediction to both cell types at this locus. We found that the cell type-220 

specific chromatin interactions were accurately captured in our prediction, and matched with the 221 

experimental Hi-C contact matrix in both cell types(Fig. 3b). The calculated insulation scores from 222 

the predicted Hi-C matrix were also highly correlated with the scores of the experimental data 223 

from both cell types (Fig. 3d, left and middle). In addition, the difference between insulation scores 224 

of the two cell types were highly correlated (Fig. 3d, right). We further expanded the de novo 225 

chromatin architecture prediction to two more cell lines, embryonic H1-hESC and erythroleukemia 226 

K562. Again, our model achieved accurate predictions of cell type-specific chromatin architecture 227 

with high specificity, demonstrating the robustness of C.Origami in de novo prediction and its 228 

practical potential for general application (Supplementary Fig. 7). 229 

 230 

To systematically evaluate our model, we next assessed its performance across the genome. 231 

Although we presented accurate prediction results of multiple loci that have cell type-specific 232 

chromatin structures, most TAD boundaries are conserved across cell types (Schmitt et al., 2016). 233 

Therefore, we aimed to test the model on a subset of 2Mb loci with differential chromatin 234 

structures between IMR-90 and GM12878. Regions with normal intensity (> 10% intensity 235 

quantile) and low similarity (< 20% insulation difference) between the experimental Hi-C matrices 236 

of the two cell types were selected. In total, ~15% of the entire genome (~450Mb) were included 237 

for evaluating the performance of cell type-specific Hi-C prediction (Fig. 3e).  238 

 239 

We calculated the correlation coefficient between the insulation scores of the predicted and 240 

experimental Hi-C matrices across all four cell types (Supplementary Fig. 7). In line with 241 
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observations from the single locus experiment (Fig. 3a-d, Supplementary Fig. 7), we found that 242 

predictions using input features from one cell type has the highest correlation coefficients with the 243 

experimental Hi-C data of the same cell type (Fig. 3f, scores at the diagonal line). The correlation 244 

coefficients between prediction and experimental data from different cell types were lower, 245 

consistent with the expectation that the model predicts cell type-specific chromatin interactions 246 

(Fig. 3f). Similarly, these results were recapitulated by correlation analysis using pixel-level 247 

Observed/Expected contact matrices (Supplementary Fig. 8a-b). As a control, we performed a 248 

similar analysis using structurally conserved genomic regions, characterized by normal intensity 249 

(> 10% intensity quantile) and high similarity (> 20% insulation difference), between IMR-90 and 250 

GM12878 (Supplementary Fig. 8c). As expected, we found the prediction in these regions was 251 

highly correlated with the experimental data across all cell types (Supplementary Fig. 8d-e).  252 

 253 

To quantify the performance of C.Origami in predicting cell type-specific chromatin architecture 254 

across the genome, we calculated the insulation difference between Hi-C matrices of IMR-90 to 255 

that of the three other cell lines using predicted or experimental data (Fig. 3g). We then computed 256 

the correlation between the cell-type insulation differences calculated from prediction and that 257 

from the experimental data. We found that all comparisons yielded high correlations between 258 

prediction and experimental data (Fig. 3g), indicating that C.Origami accurately detected the 259 

chromatin architecture difference across cell types comparable to that detected from experimental 260 

Hi-C technique.  261 

 262 

We further compared the performance of C.Origami to Akita, a deep learning model trained on 263 

DNA sequence alone for predicting Hi-C contact matrix (Fudenberg et al., 2020). We found 264 

C.Origami outperformed Akita and made accurate cell type-specific predictions regardless of loci 265 

(Supplementary Fig. 9). Together, our results indicate that C.Origami trained with DNA sequence, 266 

CTCF binding and chromatin accessibility signals performs optimal in de novo predicting high-267 

quality Hi-C contact matrix, and sensitively captures cell type-specific chromatin folding features.  268 

 269 

 270 
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 271 
Figure 4: C.Origami enables allele-specific prediction of 3D chromatin architecture in rearranged 272 
cancer genome. a, Chromosomal translocation between chromosome 7 and chromosome 9 in CUTLL1 T 273 
cell leukemia cells (Palomero et al., 2006). b, Experimental Hi-C data mapped to a custom reference 274 
chromosome with t(7,9) translocation (Kloetgen et al., 2020). c-d, C.Origami prediction of chromatin 275 
architecture of chromosome 7 (c) and chromosome 9 (d) in CUTLL1 cells. The windows represented intact 276 
chromosomal loci around the translocation sites in CUTLL1 cells. e, C.Origami prediction of chromatin 277 
architecture at the t(7,9) translocation locus. f, A simulated Hi-C contact matrix using prediction for 278 
mimicking of experimental mapping results. The simulated result was averaged from the prediction of both 279 
normal and translocated alleles. The simulated Hi-C matrix was aligned to the experimental Hi-C matrix (b), 280 
with highlights for the neo-TAD at the translocation locus (yellow bar). Black arrowhead indicates the 281 
translocation site. The grey arrowhead indicates a stripe in the neo-TAD.   282 
 283 

 284 

Allele-specific prediction in rearranged cancer genomes 285 

Chromosomal translocations and other structural variants generate novel recombined DNA 286 

sequences, subsequently inducing new chromatin interactions which may be critical in 287 

tumorigenesis and progression (Rabbitts, 1994; Spielmann et al., 2018). However, the allelic 288 
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effect of translocation and structural variations frequently seen in cancer genomes makes it 289 

challenging to distinguish the chromatin architecture of the variant chromosome from a normal 290 

one. For example, CUTLL1, a T cell leukemia cell line, incorporated a heterozygous t(7,9) 291 

translocation where the end of chromosome 7 is recombined with chromosome 9 (Palomero et 292 

al., 2006) (Fig. 4a). The translocation introduces new CTCF binding signals from chromosome 9 293 

to chromosome 7 (Kloetgen et al., 2020).  Experimental Hi-C in CUTLL1 cells detected the 294 

formation of a neo-TAD at the translocation locus when mapped to a custom CUTLL1 reference 295 

genome (Fig. 4b). However, due to the limitation in mapping sequencing data to the reference 296 

genome, experimental Hi-C measures chromatin architecture allele-agnostically, and is thus 297 

unable to quantify allele-specific translocation.  298 

 299 

To examine the performance of C.Origami in predicting chromatin architecture from recombined 300 

cancer genomes, we applied the model to  2Mb windows centered at the translocation breakpoint 301 

in CUTLL1 cells (Fig. 4c-e). We first predicted the Hi-C contact matrices referring to normal alleles 302 

at chromosome 7 and chromosome 9 (Fig. 4c-d). Since the input CTCF ChIP-seq and ATAC-seq 303 

profiles can only be mapped allele-agnostically, our prediction used these inputs as an 304 

approximation. Then we simulated the translocation by fusing DNA sequences at the breakpoint 305 

in Chromosome 7 (q34) to the Chromosome 9 (q34) breakpoint together with all genomic features 306 

(see Methods). The predicted Hi-C map from translocation detected a neo-TAD forming between 307 

the two recombined chromosomes (Fig. 4e). Specifically, we found a stripe extending from 308 

translocated chromosome 9 to chromosome 7, indicating a novel regulation in the recombined 309 

chromosome (Fig. 4e, gray arrowhead). We next averaged the Hi-C contact matrix from normal 310 

and translocated alleles, mimicking the allele-agnostic Hi-C mapping in the experimental data, 311 

and found a high correlation between the two (Fig. 4b and 4f, see Methods). The high-accuracy 312 

in prediction underscores the potential of applying C.Origami in future cancer genomics studies.  313 

 314 

Transferring knowledge learned from human genome to predict mouse chromatin 315 

architecture 316 

The mouse genome differs from human in its genomic components but the two share similar 317 

mechanisms in 3D chromatin organization (Cheng et al., 2014; Dixon et al., 2012; Stergachis et 318 

al., 2014). We sought to test whether C.Origami could apply knowledge learned from human 319 

genome to a different species. In an initial trial, we found that our model trained with DNA 320 

sequences and dense genomic features (e.g. bigwig tracks) did not achieve good performance. 321 

We hypothesized that the background intensity in dense features can be highly specific to species 322 
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and thus such knowledge learned from dense profiles in human made it challenging to transfer to 323 

the mouse. 324 

 325 

We expect sparse features such as peaks to be less specific, and more consistent across species. 326 

To achieve cross-species prediction using a model trained with human data, we modified our 327 

input data by performing a peak-calling step on the CTCF CHIP-seq and ATAC-seq profiles and 328 

used such sparse genomic features as input for training and prediction (see Methods). We 329 

confirmed that using sparse input genomic features did not significantly undermine the model’s 330 

prediction performance in human (Supplementary Fig. 10). Testing the model trained on sparse 331 

features of human IMR-90 cell line for mouse prediction, we found it capable of predicting mouse 332 

chromatin architecture with good quality, indicating the power of C.Origami for transferring the 333 

conserved genomic features learned from different species (Supplementary Fig. 11). 334 

Notwithstanding the good performance, the accuracy of C.Origami can be further improved by 335 

training on mouse data to adapt to mouse sequence and genomic features. 336 

 337 

High-accuracy prediction of C.Origami enables cell type-specific in silico genetic 338 

experiments 339 

 340 
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341 
Figure 5, In silico genetic experiments for identifying cis-regulatory elements determining 342 
chromatin architecture. a, Schematic of in silico deletion and masked mutation experiments. A deletion 343 
experiment completely removed both DNA sequences and genomic signals, while a masked mutation 344 
experiment shuffled DNA sequence but not the genomic peaks and their underlying DNA sequences. b, A 345 
500bp deletion in chromosome 8 led to chromatin looping changes in T cells. The presented 2Mb window 346 
starts at the promoter region of MYC, and the experimental deletion perturbed a CTCF binding site at the 347 
arrowhead location (Kloetgen et al., 2020). The presented results include C.Origami prediction of the Hi-C 348 
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contact matrices with (middle) or without (left) the deletion, and their difference (right). The virtual 4C signal, 349 
calculated from the predicted Hi-C matrices, is shown at the bottom. c, Schematic of impact score that 350 
indicates how perturbation of one locus affected the local chromatin folding, and sensitivity score that 351 
indicates how sensitive a locus is to genetic perturbations in neighboring areas. d, GRAM score, indicating 352 
the contribution of genomic location to the predicted Hi-C matrix. e-f, Sliding-window deletion screening (e) 353 
and CTCF-masked mutation screening (f) across a 2Mb window corresponding to d. Impact and sensitivity 354 
scores were shown on the horizontal and vertical axis, respectively. CTCF peak and its DNA sequences 355 
were masked to prevent disruption of CTCF signal. Arrowhead in f indicates a potential regulatory elements 356 
free of CTCF binding and ATAC-seq signals.  357 
 358 

The high accuracy of C.Origami allowed us to perform cell type-specific in silico experiments,  and 359 

therefore enabled studying how chromatin interaction may be altered upon genetic perturbation. 360 

Deletions and mutations are two common types of perturbations in genetic studies. Deletion 361 

removes all three types of input features at the perturbed locus, and can lead to a TAD merge 362 

event in experiments (Narendra et al., 2015) (Fig. 5a, top). Instead of experimentally performing 363 

such genetic studies, we modelled deletions of TAD boundary sequences in IMR-90 cells in silico, 364 

and subsequently predicted local chromatin interaction maps with C.Origami. We found that in 365 

silico deletion at TAD boundaries led to TAD merging events of the originally insulated adjacent 366 

TADs and a sharp drop in insulation score (Supplementary Fig. 12), indicating the impact of this 367 

genetic alteration.  368 

 369 

To further investigate the validity of in silico genetic experiments, we applied C.Origami to predict 370 

chromatin interactions surrounding the MYC locus which was experimentally perturbed in T cells 371 

(Kloetgen et al., 2020). Our previous study showed that disrupting a CTCF-binding site near MYC 372 

reduced the chromatin looping efficiency in T cells, resulting in a reduced insulation score 373 

(Kloetgen et al., 2020). Applying C.Origami at the locus, we found a stripe in the predicted Hi-C 374 

matrix (Fig. 5b, left, arrowhead), while a 500bp in silico deletion covering the perturbed CTCF-375 

binding signal attenuated such interaction (Fig. 5b, middle and right). Based on our predicted Hi-376 

C matrices, we calculated virtual 4C profiles after perturbing the CTCF binding site and found 377 

them to be consistent with the experimental data (Supplementary Fig. 7E in Kloetgen, et 378 

al)(Kloetgen et al., 2020). 379 

 380 

Cell type-specific in silico genetic screen of cis-regulatory elements 381 

To determine whether C.Origami could be used to identify cis-regulatory elements affecting 382 

chromatin folding using in silico genetic screening, we developed two different approaches: 383 
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gradient-based scoring and perturbation-based approaches (Fig. 5c-f). In the gradient-based 384 

approach, we defined a GRAM (Gradient-weighted Regional Activation Mapping) score to 385 

estimate how significant each genomic site contributed to the prediction of the final Hi-C matrix 386 

(Fig. 5c, see Methods). We found GRAM score precisely captured important genomic regions that 387 

determine 3D genome structure such as TAD boundaries (Fig. 5d).  388 

 389 

To orthogonally demonstrate the capability of C.Origami in discovering novel regulation of 390 

chromatin architecture, we carried out in silico genetic screening experiments with systematic 391 

perturbation. We divided the window into 256 perturbation regions of ~8kb, followed by deletion 392 

and prediction across the whole 2Mb window (see Methods). This process produced a mapping 393 

of intensity shift at each perturbed region. We defined the impact score to measure the 394 

contribution of a locus on chromatin architecture within the 2Mb window (Fig. 5c, top). This was 395 

calculated as the average intensity change of the entire 2Mb window after perturbation of a given 396 

locus. We also defined a sensitivity score to measure how sensitive a locus is to the perturbations 397 

of its surrounding region (Fig. 5c, bottom). We calculated it as the average intensity change of 398 

one locus when every region in a 2Mb window is perturbed. We found that deletion at TAD 399 

boundaries with enriched CTCF ChIP-seq peaks had the highest impact on chromatin folding in 400 

the in silico screening experiment (Fig. 5d-e). This result is consistent with the fact that CTCF 401 

binding is a key signal in determining TAD boundaries, and its deletion can lead to alteration of 402 

TAD structure, thereby changing the overall intensity of neighboring regions (Kloetgen et al., 2020; 403 

Narendra et al., 2015).  404 

 405 

To discover CTCF-independent factors regulating chromatin interaction, we performed an in silico 406 

screening through CTCF-masked mutagenesis (referred to as mutation) experiment. We first 407 

selected a perturbation region and masked the CTCF peaks and their underlying DNA sequences. 408 

We then performed the mutation experiment of the given region by shuffling unmasked DNA 409 

sequences, followed by a prediction from C.Origami on the 2Mb genomic window (see Methods). 410 

We then calculated the impact and sensitivity scores similar to the in silico deletion screening. By 411 

masking CTCF peaks and its underlying sequence, mutation screening allowed us to identify 412 

multiple CTCF-independent genomic elements that might be critical for chromatin architecture, 413 

including regions free of ATAC-seq signal (Fig. 5f, arrowhead). In contrast, we found sensitivity 414 

scores were more similar for loci within the same TADs than those across different TADs, 415 

consistent with the expectation that the deletion perturbation is likely to cause intensity shifts 416 

within the TAD (Fig. 5f). Together, our data show that C.Origami can be used to systematically 417 
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identify how cis-regulatory elements affect chromatin folding in high-throughput in silico genetic 418 

screening. 419 

 420 

 421 

Genome-wide in silico screening revealed canonical and novel regulators of chromatin 422 

folding 423 

We next asked whether C.Origami could identify a compendium of trans-acting regulators 424 

determining the  chromatin interactions in a cell-type specific scenario. We first systematically 425 

scanned through the whole genome to discover genomic loci that were critical for predicting 426 

chromatin architecture in IMR-90 cells. We separately applied in silico deletion and mutation 427 

experiments across the entire genome and calculated the impact score at each 20Kb locus. The 428 

DNA sequence of the perturbed loci with high impacts – positive or negative – were designated 429 

as potential functional elements for subsequent analysis with LOLA (Locus OverLap Analysis for 430 

enrichment of genomic ranges) (Sheffield and Bock, 2016) (Fig. 6a).  431 

 432 

 433 
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434 
Figure 6: Genome-wide in silico screening uncovers trans-regulators of chromatin folding. a, 435 
Schematic of whole-genome in silico screening process. b, A heatmap of weighted scores across the four 436 
categories of in silico screen-determined contributing factors. The plot highlights three major clusters of 437 
contributing factors. c-d, In silico screening-identified contributing factors ranked by their weighted scores 438 
in each of the four categories as defined in b.  439 
 440 
 441 

Scanning throughout the genome separately in the two types of in silico screening allowed us to 442 

identify trans-acting factors important for chromatin structure (Fig. 6b). As expected, CTCF, 443 

together with other canonical factors such as RAD21, STAG1 and SMC3, were significantly 444 
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enriched in the positive impact score categories due to their role in determining TAD boundaries 445 

(Fig. 6b, cluster 1). These factors did not stand out in the negative score category of mutation 446 

screening due to CTCF masking, acting as a negative control for the results. 447 

 448 

In contrast to the category enriched in the positive impact score group, we identified a cluster of 449 

factors which strongly associated with both positive and negative impacts on chromatin folding in 450 

the screening experiments (Fig. 6b, cluster 2). Of note, this cluster was enriched in several histone 451 

modifications represented by H3K4me1/2/3, identifying active chromatin marks that are known to 452 

contribute to enhancer-promoter looping (Zhao et al., 2019). This cluster is also enriched for 453 

H3K9me3, a mark of constitutive heterochromatin, which is involved in shaping chromatin 454 

compartment boundaries (Feng et al., 2020). 455 

 456 

In addition, the in silico screening identified multiple transcription factors which may function to 457 

modulate fine-scale chromatin interactions. The positive impact score categories enriched for 458 

many transcription factors (Fig. 6b, cluster 3), such as YY1, NOTCH, and GATA2, indicating that 459 

the in silico screening precisely identified these as critical factors for chromatin interactions, in line 460 

with previous studies (Petrovic et al., 2019; Weintraub et al., 2017; Wu et al., 2014). Beyond this, 461 

cluster 3 identified factors that were not previously known to have a role in modulating chromatin 462 

interactions, such as the stress response transcription factors JUND and C-JUN. Interestingly, 463 

other AP-1 family proteins such as FOS, have been reported to alter chromatin interactions of 464 

their targeting genes (Beagan et al., 2020). Together, our in silico genetic screen confidently 465 

recognized critical chromatin architecture regulators, highlighting its potential for identifying a 466 

compendium of trans-acting factors and discovering novel regulation in determining chromatin 467 

interactions. 468 

 469 

Discussion: 470 

 471 

Cell type-specific gene expression profiles require unique chromatin folding patterns. In this study, 472 

we developed a novel deep neural network model, C.Origami, that synergistically incorporates 473 

both DNA sequence and cell type-specific genomic features for de novo prediction of 3D genome 474 

architecture. We found that CTCF binding together with DNA sequence was not sufficient for 475 

accurately predicting cell type-specific chromatin architecture. Additional features such as cell 476 

type-specific chromatin states play an essential role in chromatin interactions (Stergachis et al., 477 

2014; Thurman et al., 2012). Consistent with this, we found that incorporating chromatin 478 
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accessibility data into C.Origami provided enough information for accurately predicting chromatin 479 

architecture, mirroring the results of a high-quality Hi-C experiment. The C.Origami model 480 

achieves high accuracy in de novo predicting cell type-specific chromatin architecture. This high 481 

performance and minimal requirement on input data make it practical for de novo prediction of Hi-482 

C contact maps. The predicted Hi-C contact matrices can be further analyzed and interpreted 483 

through other available computational tools for inferring TADs, enhancer-promoter interactions, 484 

and higher-order chromosomal structures (Forcato et al., 2017; Lu et al., 2020; Szabo et al., 2018).  485 

 486 

C.Origami model learned critical features from DNA sequences and cell type-specific information 487 

from the CTCF binding and ATAC-seq profiles, thus achieving high performance in de novo 488 

prediction of cell type-specific chromatin architecture. Other methods for predicting chromatin 489 

architecture either lack cell type-specificity or require substantial amount of input data, making 490 

them not practical for studying chromatin architecture underlying gene expression regulation. It is 491 

worth mentioning that, while preparing the manuscript, another method, Epiphany, was developed 492 

for cell type-specific prediction of Hi-C contact matrices using five input genomic profiles (Yang et 493 

al., 2021). Compared with Epiphany, C.Origami achieved high-quality prediction with minimal 494 

input data. 495 

 496 

With highly accurate prediction of chromatin architecture, our model enables in silico genetic 497 

perturbation as a tool to study how cis-regulatory elements determine 3D chromatin architecture 498 

in a cell type-specific manner. C.Origami is able to accurately simulate the changes in chromatin 499 

architecture upon genetic perturbation within seconds and without the need to perform 500 

experimental studies. The low cost and high speed of C.Origami simulation make it useful in 501 

studies requiring frequent measurement of chromatin architecture, such as cancer genomics 502 

involving widespread genome rearrangement and synthetic regulatory genomics with de novo 503 

regulatory circuit  construction (Pinglay et al., 2021; Rabbitts, 1994; Spielmann et al., 2018). 504 

 505 

Expanding the throughput of in silico genetic perturbations, we performed genome-wide in silico 506 

screening of features using deletion and masked mutation experiments in IMR-90 cells. This 507 

screening allowed us to determine the compendium of trans-acting regulators determining the 508 

chromatin architecture in a cell type-specific manner. This compendium not only includes 509 

canonical factors for determining chromatin architecture, such as CTCF, RAD21, STAG1 and 510 

SMC3, but also transcription factors that potentially function through modulating fine-scale 511 

chromatin structure for the regulation of gene expression. Meanwhile, the in silico screening 512 
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identified cis-regulatory elements free of CTCF binding and ATAC-seq signals, indicating potential 513 

uncharacterized regulatory sequences in the genome. We postulate that systematic in silico 514 

screening could be generally applicable in discovering novel 3D genome regulatory mechanisms 515 

and identifying the specific compendium of regulators across different cell types. 516 

 517 

We demonstrated that by integrating cell type-specific genomic features and DNA sequence 518 

features, C.Origami model is capable of predicting complex genomic features such as 3D 519 

chromatin architecture with high accuracy. The underlying architecture of our model, Origami, is 520 

generalizable beyond 3D genome structure prediction. Origami can be trained with appropriate 521 

genomic datasets for predicting cell type-specific genomic features, such as epigenetic 522 

modifications. Ultimately, we expect future genomics study to shift towards using tools that 523 

leverage high-capacity machine learning models to perform in silico experiments for discovering 524 

novel genomic regulation. 525 

 526 
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Methods: 554 
 555 
Hi-C data: 556 
We used seven human and mouse Hi-C profiles in this study: IMR-90, GM12878, H1-hESC, 557 
K562, CUTLL1, T cell, Mouse ESC (Supplemental Table 1). All the data are available on GEO 558 
(www.ncbi.nlm.nih.gov/geo) and 4D Nucleome Data Portal (https://data.4dnucleome.org). 559 
 560 
 561 

Cell Type Enzyme Accession Number Reference 

IMR-90 MboI GSE63525 Rao et al. 

GM12878 MboI GSE63525 Rao et al. 

H1-hESC Arima 4DNESFSCP5L8 Calandrelli et al. 

K562 MboI GSE63525 Rao et al. 

CUTLL1 Arima GSE115896 Kloetgen et al. 

T cell Arima GSE115896 Kloetgen et al. 

Mouse ESC Arima GSE140363 Nishana et al. 

Supplementary Table 1 562 
 563 
Hi-C data preprocessing: 564 
To minimize bias in preprocessing, we obtained counts data in raw fastq format. The reads from 565 
human cell lines were aligned to GRCh38 human reference genome and mouse cell lines are 566 
aligned to mm10 mouse genome. The alignments were filtered at 10kb resolution and iteratively 567 
corrected with HiC-bench (Lazaris et al., 2017). To ensure the compatibility of prediction result 568 
with downstream softwares, we only used the a reversible natural log transform to process the 569 
Hi-C prediction targets. Prediction from C.Origami with exponential transformation can be 570 
directly used as Hi-C data for any downstream analysis. 571 
 572 
CTCF ChIP-seq and ATAC-seq data: 573 
All the CTCF ChIP-seq and ATAC-seq data for all cell-types are publicly available online from 574 
GEO (www.ncbi.nlm.nih.gov/geo) and ENCODE data portal (www.encodeproject.org/). CUTLL1 575 
ATAC-seq is sequenced according to standard method (Buenrostro et al., 2015). Details on 576 
accession number are listed in Supplemental Table 2. To maintain signal consistency across 577 
different cell lines, we aggregated fastq data from different replicates and subsampled them 578 
down to 40 million reads. The reads were processed by Seq-N-Slide to generate bigWig files 579 
(https://doi.org/10.5281/zenodo.6308846). The bigWig was used as regular, dense inputs to our 580 
model.  To prepare an alternative sparse input format, we used MACS2 to perform peak calling 581 
on the intermediate bam files to obtain sparse peaks for CTCF and ATAC-seq (Zhang et al., 582 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.05.483136doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.05.483136
http://creativecommons.org/licenses/by-nc/4.0/


2008). The sparse narrowPeak file was converted back to bigWig with ucscutils. We took the 583 
natural log of both dense and sparse bigWig files and used them as inputs to the model. 584 
 585 
 586 

Cell Type CTCF ChIP-seq ATAC-seq 

IMR-90 ENCSR000EFI ENCSR200OML 

GM12878 ENCSR000AKB ENCSR095QNB 

H1-hESC ENCSR000AMF GSE85330 

K562 ENCSR000AKO ENCSR483RKN 

CUTLL1 GSE115893 see Methods CTULL1 

T cell GSE115893 GSE168880 

Mouse ESC GSE140363 GSE140363 

Supplementary Table 2 587 
 588 
DNA sequence 589 
We used the reference DNA-sequence from UCSC. The original fasta file includes four types of 590 
nucleotides and “n” for unknown type with upper- and lower-case letters which represent (repeat 591 
sequences). We retained the ‘n’ category and encoded each nucleotide as a 5 channel one-hot 592 
vector representing ATCGN. The same sequence is used for all cell types. 593 
 594 
Training data: 595 
The training data consists of DNA sequence, CTCF signal, ATAC-seq signal and Hi-C matrix on 596 
the IMR-90 cell line. The input data to the model is sequence, CTCF ChIP-seq signal, ATAC-597 
seq signal at a 2,097,152 bp region and the output target is the Hi-C matrix at the corresponding 598 
regions. The original Hi-C matrix was originally called at 10Kb resolution and downscaled 8,192 599 
bp to match the model output resolution.  To generate batches of training data, we defined 2Mb 600 
sliding windows across the genome with 40kb steps. Windows that have overlap with telomere 601 
or centromere were removed. We split training, validation and test set by chromosome. 602 
Chromosome 10 is used as the validation set and Chromosome 15 as the test set. The rest of 603 
the chromosomes are used as the training set. 604 
 605 
Model Architecture: 606 
The model is implemented with the PyTorch framework. Our model consists of two 1D 607 
convolutional encoders, a transformer module and a 2D convolutional decoder. To adapt to 608 
input channels of sequence and genomic features. The sequence encoder has 5 input 609 
channels, and the genomic feature encoder has 2 input channels. The two encoders have 610 
similar structures otherwise. Each encoder starts with a 1D convolution header with stride 2 to 611 
half the size of the 2m bp input before it goes to convolution blocks to reduce memory cost. To 612 
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reduce the input length down to 256, we deployed 12 convolution modules each of which 613 
consists of a residual block and a scaling block. The residual block has 2 sets of convolution 614 
layers with kernel width 5 and same padding. Batch normalization and ReLU nonlinearity follows 615 
each conv layer, and the start and end position of the residual block is connected by a residual 616 
connection. Residual blocks keep the same dimension of inputs and promote information 617 
propagation. The scaling block consists of a 1D convolutional layer with kernel size 5 and stride 618 
2 followed by batch normalization and ReLU activation. The scaling block reduces input length 619 
by a factor of 2 and increases the number of hidden layers. We increase the hidden size 620 
according to this schedule: 32, 32, 32, 32, 64, 64, 128, 128, 128, 128, 256, 256. The output from 621 
the last scaling module has length 256 with 256 channels.  622 
 623 
The transformer module is built with 8 customized attention layers adopted from Huggingface 624 
Bert implementation(Devlin et al., 2018). Specifically, we set the number of hidden layers to 625 
256, ReLU as the activation function and used 8 attention heads. We used relative key query as 626 
positional embedding and set the maximum length to be 256. 627 
 628 
After the transformer module, we concatenate each position in the 256 bins to every other 629 
position to form a 256 by 256 interaction map. The concatenation function takes the 256-bin 630 
sequence from the feature extraction module and outputs a 256 by 256 grid where location (i, j) 631 
is a concatenation of the features at i and j position. Then a 1-dimensional distance matrix is 632 
calculated and appended to the grid. The distance matrix value at location (i, j) is the Manhattan 633 
Distance between point (i, i) and (j, j) on the grid divided by 2. Since each bin has 256 channels, 634 
after concatenation and addition of the distance matrix, we arrived at an output of 256 by 256 635 
with 513 channels. The decoder consists of 5 dilated residual networks. We set the dilation 636 
factor to be 2, 4, 8, 16, 32 so that the receptive field at the last layer covers the input space. At 637 
the end of the decoder, we use a Conv2D layer with 1x1 kernel to combine 256 channels down 638 
to 1 channel and the output is a 256 by 256 matrix with one channel. 639 
 640 
The 256x256 output from the model is compared with ground truth Hi-C map via a mean 641 
squared error (MSE) loss. The loss is back propagated through the whole network for gradient 642 
updates. 643 
 644 
Data augmentation 645 
To avoid overfitting, we implemented 3 types of data augmentations.  1) During training, we 646 
dynamically selected the 2Mb window with random shifts between plus and minus 0.36 mb 647 
range. 2) We reverse complemented the sequence and flipped the target Hi-C matrix with 0.5 648 
chance. 3) We added gaussian noise to sequence, CTCF and ATAC-seq signal with zero mean 649 
and 0.1 standard deviation. 650 
 651 
Model Training: 652 
To train the model we used a training batch size of 8 and Adam optimizer with learning rate 653 
0.002. The cosine learning rate scheduler with 200 epoch period is used for stabilizing training. 654 
The minimal validation loss is achieved when the model is trained for 54 epochs. We trained the 655 
model for 18 hours on a GPU cluster with 4 NVIDIA Tesla V100 GPUs with 320GB RAM to 656 
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store training data. To prevent bottlenecking from the data loading process, we used 8 CPU 657 
workers to load data and assigned 10 CPU cores in total for the training procedure. Model 658 
inference with a mobile NVIDIA RTX 2060 GPU can be achieved in under 1 second and 659 
inference on an Intel i7-8750H CPU is around 3 seconds. 660 
 661 
Insulation Score: 662 
Insulation score is implemented as the ratio of maximum left and right region average intensity 663 
and the middle region intensity. We also added a pseudo-count calculated from chromosome 664 
wide average intensity to prevent division by zero in unmappable regions. The insulation score 665 
can be formulated as follows:  666 
Insulation = (max(avg(Left Region), avg(Right Region)) +  pseudocount) / (avg(Center Region) 667 
+ pseudocount) 668 
 669 
Fused chromosome prediction: 670 
Most downstream analysis on Hi-C is conducted on Hi-C contact matrices at the level of a 671 
chromosome. To bridge the gap between our 2Mb window prediction and over 100mb 672 
chromosome, we applied window fusion to construct chromosome wide prediction from 673 
individual 2Mb predictions windows. We run the prediction in a sliding window of step side 674 
262,144 bp which is 1/8 of the 2Mb prediction window. All predictions are in-painted to their 675 
corresponding location on the contact map. Most regions are covered by prediction for 8 times, 676 
and regions like the beginning of the chromosome are only covered for 1 time.  To correct for 677 
different levels of overlap, we calculated times of overlap for every pixel and applied 678 
corresponding scaling factors. The resulting chromosome wide prediction can be directly used 679 
for downstream analysis tasks like insulation score (Supplementary Fig. 6).  680 
 681 
Stratified intensity and correlation 682 
Stratified intensity and correlation are based on fused chromosome prediction. Stratified 683 
intensity at distance i is calculated by aggregating the line that is parallel to the diagonal with 684 
offset of i. Stratified correlation is calculated as Pearson’s r between the shifted diagonal line of 685 
prediction and ground truth. 686 
 687 
CUTLL1 translocation 688 
CUTLL1 translocation is heterozygous, and this property adds more complexity to its 689 
corresponding Hi-C matrix. Hi-C matrix is called from interactions between two genomics loci 690 
but we do not have information on which chromatid this loci is located, so there is no way to call 691 
Hi-C matrix for only the translocation. Since only one chromatid has translocation, the measured 692 
Hi-C matrix is a combination of both translocation and normal state. To align with this hybrid Hi-693 
C map, we predicted the Hi-C map for Chr7Chr9 translocation chromatid and Chr7 and Chr9 694 
without translocation. The interaction between Chromosome 7 and Chromosome 9 is an 695 
average of the interaction in the Chr7Chr9 in the translocated chromatid and the inter-696 
chromosomal interaction between Chromosome 7 and Chromosome 9. We do not count the 697 
inter-chromosomal interaction because it is relatively weak compared to interaction at the 698 
translocation. The predicted interaction on Chromosome 7 until breakpoint chr7:142,797,952 is 699 
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averaged with the translocated prediction. Similarly, predicted interaction on chr9 starting 700 
136,502,817 is also averaged with translocation prediction. 701 
 702 
Mouse prediction 703 
For mouse prediction, we trained the model with sparse genomic features as inputs. To obtain 704 
sparse features, we called peaks for CTCF ChIP-seq and ATAC-seq with MACS2 from the bam 705 
files generated by the Seq-N-Slide pipeline. 706 
 707 
In silico genetic deletion experiment 708 
We conducted genetic screening on the 2Mb window by systematically removing segments from 709 
model inputs. We selected deletion windows of 8192 bp or 1 bin on the predicted matrix. To 710 
scan the entire region, we performed 256 deletion experiments at each bin and calculated the 711 
prediction difference map before and after deletion. Deletion reduces the input length from 712 
2,097,152 bp to 2,088,960 bp. To maintain input shape, we appended 8192 bp of the following 713 
region. 714 
 715 
Reducing impact and sensitivity score from 3D voxels 716 
Screening by deletion produces a 3D voxel with coordinates (i, j, k) where the first two 717 
dimensions (i, j) correspond to the Hi-C matrix difference and the third dimension k denotes 718 
deletion locus. Under this framework, the impact score can be defined as reducing the first two 719 
dimensions (i, j) with mean or sum, denoting the overall intensity shift with respect to deletion. 720 
The sensitivity score can be defined as the result of reducing either of the first two dimensions (i 721 
or j) and the third deletion dimension k. From another perspective, sensitivity score of a locus 722 
denotes average intensity shift over all deletions with respect to its location. 723 
 724 
GRAM (Gradient-weighted Regional Activate Mapping) 725 
This scoring system is a generalized version of Grad-CAM on 2D outputs (Selvaraju et al., 726 
2017). Instead of taking a single output, GRAM operates on a region r in the output space and 727 
runs backpropagation on all pixels within r. GRAM on region r in network layer m is defined as 728 
follows: 729 

𝐺𝑅𝐴𝑀!
" =& |𝛼#"||𝐴#" |

#
 730 

Where 𝛼#" is the activation weight for channel k and region r, is calculated by the average 731 
gradient at the layer m. 𝐴#"  is the activation in channel k at layer m. In this study, we choose r to 732 
be the full output space. 733 
 734 
CTCF-masked mutation 735 
For the given mutation range, we randomly change the nucleotides at all locations. The region 736 
that is under a CTCF ChIP-seq peak is kept unchanged. To accommodate the peak signal used 737 
in this task, we used the sparse model for this screening experiment. 738 
 739 
In silico genome-wide genetic screen 740 
For both deletion and masked mutation, we performed saturated editing with 20Kb width and 741 
step size. Specifically, we defined a 20Kb edit region at the center of the 2Mb window. The 742 
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inputs within the 20Kb region are modified and we predict the Hi-C matrix from the modified 743 
inputs. Then we measure the intensity shift of the entire 2Mb window and move to the next 744 
window which is downstream with a 20Kb offset. After whole genome screening, we obtain a 745 
genome-wide impact score for every 20Kb perturbation. 746 
 747 
LOLA (Locus Overlap Analysis) takes a genomic region set and compares it to a set of core 748 
databases and calculates enrichment score for every feature in the database (Sheffield and 749 
Bock, 2016). The enrichment score is calculated with fisher’s exact test on a contingency table. 750 
The two sets of conditions of the contingency table are defined as present/absent and 751 
query/database. The query region is the genomic region we are testing and database regions 752 
are from a target database feature that we are comparing against. LOLA also requires a 753 
universe set which we choose to be the whole genome with 20Kb widths. 754 
 755 
To generate a set of genomic regions from our impact score, we choose a sliding window of 756 
size 2Mb and step 20Kb across the genome and aggregate the region with the highest impact 757 
scores. These regions are then merged to continuous regions and formatted to a bed file as 758 
input (query set in LOLA) to LOLA. The background input (universe set in LOLA) to LOLA is 759 
selected as the entire genome with offsets of 20kb. Since high impact can be either positive and 760 
negative, we also generated regions with lowest impact scores and tested its enrichment. 761 
 762 
The output from LOLA is processed by merging and filtering different features. For features with 763 
the same antibody name, only the highest ranked one was kept for analysis. Features without 764 
antibody name are removed. Then we filtered out the features with odds ratio less than 2 in all 765 
four categories: deletion postive/negative and mutation positive/negative. We collected 191 766 
relevant factors and ranked them according to by a weighted score defined as min-max 767 
normalized -log10(q-value). We then visualized the relationship between different transcription 768 
factors with heatmaps and hierarchical clustering. 769 
 770 
  771 
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 772 
Supplementary Figures: 773 

 774 
Supplementary Figure 1: C.Origami model structure and module components. A detailed schematic 775 
of C.Origami model architecture. The DNA encoder and Genomic Feature encoder have similar 776 
architectures and they only different in input channels where DNA encoder has 5 and Feature encoder has 777 
2. To encoder data, we built the encoder with 12 convolution blocks, each consisting of a scaling module 778 
and residual module. The scaling module downscales input features by a factor of 2 with a stride-2 1D 779 
convolution layer. The residual module promotes information propagation in very deep networks (REF Deep 780 
Residual Learning for Image Recognition). The number of modules was carefully chosen such that we scale 781 
the 2,097,152 input down to 256 bins at the end of the encoder. To enhance interactions within the 2Mb 782 
window, we used an attention module that consists of 8 attention blocks modified from the transformer 783 
architecture. Each position of the output is concatenated with every other position to form a 2D matrix, 784 
resembling a vector outer-product process. To refine the final prediction, we used a 5-layer dilated 2D 785 
convolutional network as decoder. We deliberately chose the dilation parameters to ensure that every 786 
position at the last layer has a receptive field covering the input range. 787 
 788 

 789 

 790 

 791 
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792 
Supplementary Figure 2: Performance of C.Origami trained with DNA sequence and CTCF binding 793 
profiles. a, Predicting chromatin architecture using a model trained with DNA sequence and CTCF binding 794 
profiles. The plots were organized the same as Fig. 2 a-d. b, De novo predicting chromatin architecture of 795 
the chromosome 15 locus in GM12878 using the model trained with DNA sequence and CTCF binding 796 
profiles. The difference between IMR-90 and GM12878 were presented on the right. While C.Origami 797 
trained with DNA sequence and CTCF profile achieved good performance in validation and test set in IMR-798 
90 (a), it missed predicting some fine-scale chromatin structures in GM12878.  799 
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 801 
Supplementary Figure 3: C.Origami trained with DNA sequence, CTCF binding, and chromatin 802 
accessibility profiles performed optimally. a, Experimental Hi-C matrices and genomic profiles of IMR-803 
90 and GM12878 cells at chr2:400,000-2,497,152. The difference between the two cell lines were 804 
presented on the right. b-c, Cell type-specific prediction of the chromatin architecture at the same locus 805 
using C.Origami models trains  with DNA sequence and CTCF binding (b) or DNA sequence, CTCF binding, 806 
and chromatin accessibility profiles (c). d-e, Same as a-c at a difference locus, chr10:122,700,000-807 
122,797,152. 808 
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 809 
Supplementary Figure 4: Ablation study on different input features. Using the C.Origami model trained 810 
with DNA sequence, CTCF binding, and chromatin accessibility profiles, the experiments was performed 811 
by  random shuffling DNA sequences at base pair level (a), random shuffling CTCF signal (b), and random 812 
shuffling ATAC-seq signal (c). From left to right, reference prediction with all inputs (left), prediction with 813 
sequence shuffled (middle), difference between perturbed prediction and reference prediction (right).  814 
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 815 
Supplementary Figure 5: Chromosome karyotype visualization along with chromosome-wide Hi-C 816 
intensity and correlation of insulation scores. The results were visualized using karyoploteR (Gel and 817 
Serra, 2017). Chromosome 1 to chromosome X were plotted to visualize the Pearson correlation 818 
coefficients of insulation scores calculated from prediction and that from experimental Hi-C. Average 819 
intensity of 2Mb windows were plotted in red. Centromere regions were denoted with red segments on the 820 
genome. 821 
 822 

Supplementary Figure 5: Whole chromosome prediction. a, Input features to the model are DNA sequence, continuous CTCF ChIP-seq and ATAC-seq signal spanning 
2,097,152 bp. DNA sequence is encoded as one-hot vector and epigenetic signals are scaled. 
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 823 

 824 

 825 
Supplementary Figure 6: Fusing C.Origami-predicted 2Mb Hi-C maps into larger interaction maps. 826 
The predicted 2Mb Hi-C maps were fused to 5Mb (a), 10Mb (b), and 50Mb (c) on chromosome 15, all with 827 
the same starting site at 40 Mb.  828 
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833 
Supplementary Figure 7: C.Origami predicts chromatin architectures across multiple cell types. Two 834 
representative loci were separately presented across IMR-90, GM12878, H1-hESCs, and K562 in a and b. 835 
From top to bottom, each panel included experimental Hi-C matrix, predicted Hi-C matrix, CTCF and ATAC-836 
seq signals, and insulation scores calculated from experimental and predicted Hi-C data.  837 
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 838 

839 
Supplementary Figure 8: Genome-wide statistics on cell type-specific prediction performance. a-b, 840 
Pearson’s r (left) and Spearman’s ρ (right) between prediction (row) and experimental data (column) for 841 
different cell types with insulation score (a) and observed/expected score (b) as metrics. The scores were 842 
calculated based on the differentially structured loci defined in Fig. 3. The correlation between 843 
Observed/Expected contact matrices was lower due to higher background noise. c, selecting structurally 844 
conserved loci across different cell types. Conserved subset accounts for ~60% of the data. d-e, Same as 845 
a-b but for the structurally conserved loci across different cell types.  846 
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 847 
Supplementary Figure 9: Comparing the performance of C.Origami with Akita in cell-type specific 848 
prediction. Two represented loci were presented (a-b). Each locus includes the experimental Hi-C matrix 849 
together with the C.Origami prediction in IMR-90 cells and GM12878 cells (lef). Akita predicted chromatin 850 
architectures in windows of 1Mb, thus fractioned Hi-C matrices were presented on the right for comparison. 851 
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855 
Supplementary Figure 10: Performance comparison of C.Origami models trained with sparse 856 
information and dense information. a, Experimental Hi-C matrices and genomic profiles of IMR-90 and 857 
GM12878 cells at chr3: 158,600,000-160,697,152. The difference between the two cell lines were 858 
presented on the right. b-c, Cell type-specific prediction of the chromatin architecture at the same locus 859 
using C.Origami models trains  with sparse genomic information (b) or dense genomic information (c). d-860 
e, Same as a-c at a difference locus, chr10: 85,100,000-87,197,152. 861 
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865 
Supplementary Figure 11: Mouse chromatin architecture prediction using C.Origami trained with 866 
human data. Experimental Hi-C matrices (a), predicted Hi-C matrices (b), CTCF and ATAC-seq signals 867 
(c), and insulation scores calculated from experimental and predicted Hi-C data (d) were presented from 868 
top to bottom, each with two different loci.  869 
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871 
Supplementary Figure 12: In silico genetic experiments performed on IMR-90 cells. Two in silico 872 
deletion experiments were separately represented in a and b. Each experiment included the prediction 873 
before (left) and after deletion (middle). The difference in chromatin folding after deletion were presented 874 
on the right.  875 
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