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Summary 

 

Encounters between host cells and intracellular bacterial pathogens lead to complex phenotypes 

that determine the outcome of infection. Single-cell RNA-sequencing (scRNA-seq) are 

increasingly used to study the host factors underlying diverse cellular phenotypes. But current 

approaches do not permit the simultaneous unbiased study of both host and bacterial factors 

during infection. Here, we developed scPAIR-seq, an approach to analyze both host and 

pathogen factors during infection by combining multiplex-tagged mutant bacterial library with 

scRNA-seq to identify mutant-specific changes in host transcriptomes. We applied scPAIR-seq 

to macrophages infected with a library of Salmonella Typhimurium secretion system effector 

mutants. We developed a pipeline to independently analyze redundancy between effectors and 

mutant-specific unique fingerprints, and mapped the global virulence network of each individual 

effector by its impact on host immune pathways. ScPAIR-seq is a powerful tool to untangle 

bacterial virulence strategies and their complex interplay with host defense strategies that drive 

infection outcome. 
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Introduction 

Interactions between a pathogenic intracellular bacterium and its host involve both activation of 

a coordinated defense response by the host macrophage and a complex virulence program 

executed by the bacterium (Schwan et al., 2000). To invade and survive within the hostile host 

cellular environment, intracellular pathogens employ secretion systems that deliver effector 

proteins across phospholipid membranes from within the bacterium into the host cytoplasm 

(Green and Mecsas, 2016). A wide range of secretion systems allow different pathogens to 

survive within host cells. For example, in Mycobacterium tuberculosis, a type VII secretion 

system (T7SS) is required for reprogramming of host cell death mechanisms (Stanley et al., 

2003). In Salmonella Typhimurium (S.Tm), a type III secretion system (T3SS) can remodel 

host phagosomes into a hospitable vacuole, whereas the T3SS of Shigella flexneri enables 

bacteria to lyse the phagocytic membrane and gain access to the cytoplasm shortly after 

internalization (Hueck, 1998). Legionella pneumophila encodes a type IV secretion system that 

injects ~300 effectors, allowing the pathogen to subvert host processes and establish replication-

permissive niche inside an ER-like vacuole (Tilney et al., 2001).  

One of the best studied intracellular pathogens, S.Tm utilizes two different T3SS, located on 

Salmonella Pathogenicity Island (SPI) 1 and 2, to establish a protective niche within different 

host cell types (Hansen-Wester and Hensel, 2001). SPI-2 mediates secretion of 28 effectors from 

within the macrophage phagosome to manipulate host cell processes and ensure bacterial 

replication inside the Salmonella-containing vacuole (SCV) (Jennings et al., 2017). In recent 

years it has become increasingly understood that effector secretion is heterogeneous between 

individual intracellular bacteria, leading to different complex phenotypes (García-del Portillo and 

Pucciarelli, 2017). For example, within a population of invading S.Tm, variable activity of PhoP, 

a response regulator required for SPI-2 T3SS activation (Bijlsma and Groisman, 2005), has been 

shown to drive heterogeneity in macrophage responses (Avraham et al., 2015). Heterogeneity 

was detected within S.Tm subpopulations comprising either actively growing bacteria or non-

growing persisters, with different SPI-2 expressing profiles in infected host cells (Stapels et al., 

2018). Within a single population, both in vitro and in vivo, S.Tm was shown to display 

heterogeneous S.Tm T3SS expression has been associated with variable growth rate (Sturm et 

al., 2011), sensitivity to antibiotics (Arnoldini et al., 2014) and localization of bacterial cells 

within infection sites (Laughlin et al., 2014). Adding to the complexity of heterogenous 
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expression of T3SS and the host response, redundancy between effectors activities is also 

observed, as single T3SS effectors converge on the same host pathway (Galán, 2009). For 

example, the GTPase-activating protein SopD2 and the cysteine protease GtgE were both shown 

to target and counteract the host Rab32-dependant host defenses (Wachtel et al., 2018). Recent 

studies have additionally shown that a single S.Tm effector can bind many host proteins that are 

associated with multiple cellular processes (Walch et al., 2021). While redundancy and 

heterogeneity are beneficial for the pathogen to establish a successful infection, they have 

complicated the determination of individual effector function; therefore, a systematic 

understanding of T3SS effector activity is still lacking.  

On the host side, macrophages infected with S.Tm generates well-documented heterogeneous 

phenotypes during intracellular infection (Burton et al., 2014). Recent single cell RNA-seq 

(scRNA-seq) studies revealed host signatures of macrophage subpopulations that display diverse 

outcomes: some are permissive to intracellular bacterial growth (Hoffman et al., 2021); some 

will lyse the ingested bacteria (Huang et al., 2018); others allow bacteria to persist intracellularly 

(Stapels et al., 2018). But scRNA-seq methods are limited to profiling only host transcripts as 

they rely on polyA priming of mRNAs, while bacterial mRNAs lack polyA. The heterogeneous 

and dynamic nature of bacterial pathogens suggests that descriptions limited only to immune 

attributes may fail to accurately characterize the full spectrum of interactions with different 

complex phenotypes (Patel et al., 2021). Recent efforts to perform single cell profiling of 

bacteria have had limited sensitivity for detection of bacterial genes, making biological 

interpretation in the context of infection difficult (Avital et al., 2017; Imdahl et al., 2020; 

Kuchina et al., 2021). Alternatively, systematic analysis of bacterial gene function can be 

performed en masse either as arrayed or pooled genetic screens, but are mostly limited to 

autonomous phenotypes rather than interactions with host and are insensitive to bacterial 

heterogeneity (Barczak et al., 2017; O’Connor and Isberg, 2014). Thus, a significant gap remains 

in our ability to study macrophage and bacterial factors that regulate survival strategies during 

individual encounters. Knowledge of these factors is fundamental to our understanding of 

infection biology and finding novel treatment options for infectious disease that result in a more 

beneficial outcome to the host. 

To address this challenge, we introduce scPAIR-seq, a computational and experimental single 

cell framework for analyzing PAthogen-specific Immune Responses. This approach offers the 
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much-needed simultaneous, systematic analysis of host and bacterial factors that contribute to 

heterogeneous host-pathogen encounters. We implemented a unique multiplexed bacterial 

Mutant Identifier Barcode (MIB) and modified scRNA-seq protocols for detection of both the 

bacterial mutant identity and the transcriptional profile of single infected host cells (Fig. 1). As a 

proof-of-principle, we generated a MIB-tagged library of S.Tm SPI-2 effector mutants and 

followed their cognate effects on the host using the transcriptome of single infected 

macrophages. We developed a computational pipeline to analyze mutant-dependent changes in 

host activation programs and identified specific host targets, gene signatures, and cell states 

affected by individual SPI-2 mutants. Using this approach, we show that a SPI-2 effector, SifA, 

has a unique, yet undescribed function, that drive a distinct macrophage transcriptional signature. 

 

 

Results 

 
Establishing a scRNA-seq protocol for detection of MIBs in intracellular bacteria 

To allow detection of bacterial mutants within single host cells, we engineered a plasmid with 

constitutive expression of a Green Fluorescent Protein (GFP), tagged with a MIB followed by a 

polyA tail, and inserted it into S.Tm (MIB-S.Tm; Fig. 1). The GFP signal enables detection of 

infected cells using flow cytometry and imaging. The polyA tail allows capture of MIBs using 

scRNA-seq protocols, and deconvolution of bacterial mutant identity by the unique bacterial 

MIB transcripts. Polyadenylation in bacteria is considered a signal for transcript degradation by a 

mechanism involving 3’-exonucleolytic attack (Hui et al., 2014). To assess the impact of the 

polyA tag on transcript abundance, we compared GFP fluorescence levels between MIB-S.Tm to 

S.Tm containing non-polyadenylated GFP plasmid (S.Tm control), and S.Tm without GFP 

plasmid (No-GFP control; fig. S1A). While there is a decrease in the GFP fluorescence of MIB-

S.Tm compared to S.Tm control, GFP signal remains sufficiently high in this strain for detection 

within host cells. We next tested if the GFP with MIB transcript can be detected by polyA 

capture of bacterial RNA. We detected GFP with MIB transcript only in the MIB-S.Tm samples 

but not in S.Tm control, validating that polyadenylated MIB transcripts were amplified 

exclusively (fig. S1B).    

Next, as bacterial transcripts within single infected host cell are estimated at less than 1% of the 

total RNA (Marsh et al., 2017), we sought to modify a scRNA-seq protocol (Hashimshony et al., 
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2016) to specifically amplify low abundant MIB transcripts (Fig. 2A). After an in vitro 

transcription (IVT) step, the sample is split into two parts and amplified by PCR separately to 

generate both i) a library of host transcripts via traditional protocol, and ii) a MIB library with 

specific amplification of the tagged GFP. The MIB library is then sequenced with a custom 

primer that targets the GFP transcript upstream of the MIB sequence to allow exclusive detection 

of MIBs. The adjusted protocol was then tested for sensitivity and accuracy of host transcriptome 

analysis and MIB identification in bulk. We infected a J774.1 cells with MIB-S.Tm, collected 

150 cells by fluorescence activated cell sorting (FACS) and generated bacterial MIB libraries. To 

test the sensitivity of MIB detection, we analyzed MIB reads and counted ~625,000 reads of 

~1,400,000 reads in the MIB-S.Tm bulk sample that was generated from 150 cells. Second, we 

generated MIB libraries from serial dilutions of RNA samples and measured detection of MIBs 

within host cells (fig. S2A).  

 

Construction of a pooled, MIB-tagged, SPI-2 mutant library   

We next aimed to test scPAIR-seq by performing functional analysis of SPI-2 effectors with 

single cell resolution. We generated and validated a library of WT and 24 known SPI-2 effector 

mutants (Porwollik et al., 2014) and transformed each mutant with a GFP expressing plasmid 

containing a unique MIB sequence (table S1). To minimize PCR and sequencing errors that can 

lead to MIB misidentification (Sleep et al., 2013), we designed MIB sequences with an edit 

distance of at least three nucleotides (fig. S2B), providing two mismatches for non-ambiguous 

identification of mutants. To examine MIB classification and detection, we pooled cultures of 

bacterial mutants, extracted RNA and generated MIB libraries. To test for specificity of MIB 

detection, we iteratively increased number of mismatches that are allowed for MIB classification 

(Fig. 2B and fig. S2C). We could validate specific MIBs classification when allowing up to 2 

mismatches, corresponding to our design of MIBs. Allowing more than 2 mismatches resulted in 

ambiguous MIB detection. We next verified the specificity and sensitivity of detection of 

bacterial MIBs in infected bone marrow-derived macrophages (BMDMs). We infected BMDMs 

with each of SPI-2 mutants separately, sorted 150 infected cells from each sample and generated 

MIB libraries. We measured highly specific detection of the expected MIBs from each infected 

bulk sample, according to its infected mutant (Fig. 2C). Furthermore, high signal to noise ratio 

was observed for each individual MIB (fig. S2D). MIB of ∆SopD2 was not detected and was 
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verified separately. As a control, a BMDM sample infected with S.Tm strain carrying a non-

polyadenylated GFP plasmid showed no detection of MIBs.  

 

A computational framework for MIB identification within single cells 

We next performed scPAIR-seq protocol on single BMDMs infected with the pooled library of 

SPI-2 effectors. We infected BMDMs with the pooled MIB-tagged SPI-2 mutant library at a low 

multiplicity of infection (MOI) of 2:1 to ensure an infection rate of ~1 bacterium per cell (Gog et 

al., 2012). SPI-2 gene expression is induced approximately 1.5 hours post internalization 

(Jennings et al., 2017), peaks at 2-4 hours after infection (Fass and Groisman, 2009), and 

mediates bacterial replication after 18 hours (Nix et al., 2007). Thus, we harvested cells at twenty 

hours post infection (hpi) and isolated 3648 infected single-cells to deconvolute the phenotype of 

host responses corresponding to individual SPI-2 mutants. We index-sorted infected cells based 

on the GFP signal of the internalized bacteria. Bulk samples of 1000 infected cells were collected 

as controls for validating single-cell MIB detection. MIB and host libraries were generated and 

sequenced according to the scPAIR-seq protocol. For each single cell we extracted the 

corresponding MIB reads and generated a matrix of MIB counts per cell. Examining total MIB 

counts revealed a distribution with three distinct peaks (fig. S3A). We set a threshold at the 

maximum of the lowest peak to exclude cells with less than 128 detected MIB reads, reasoning 

that counts below this threshold would reflect low-quality detection. Cells with low-quality MIB 

detection were removed, and downstream analysis was performed on 1191 cells (~33%). We 

developed a computational framework to determine unambiguous mutant identity in single cells 

with scPAIR-seq. We modeled the normalized counts of each MIB to find the quantile parameter 

that maximizes singlet detection rate across all cells in the experiment. We applied 

‘deMULTIplex’ (McGinnis et al., 2019) to the MIB counts within single host cells and set a 

quantile threshold of 0.23 that maximizes the percentage of cells containing a single mutant MIB 

(Fig. 3A). Importantly, this threshold is robust to singlet detection at a range of threshold values. 

Based on this analysis, we assigned 878 cells with single invading mutant and 112 cells with 

more than one mutant (Fig. 3B).  

Few cells were detected with 4-7 invading mutants, raising the possibility that these cells were 

simultaneously invaded by multiple mutants during early stages of infection. Alternatively, 

infection with multiple mutants could arise from re-infection; while gentamycin-containing 
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media was used throughout the infection course, re-infection events can occasionally occur 

(Stapels et al., 2018). As another alternative, multiple infecting mutants could result from 

efferocytosis, a process in which a macrophage swallows another dying infected cell (Korns et 

al., 2011). To validate multiple MIBs detection in single cells, we assessed the indexed GFP 

intensities of the respective sorted single cells. Indeed, GFP intensity levels were higher in cells 

with higher number of MIBs (Fig. 3C). To further validate that the GFP signal serves as a proxy 

for bacterial numbers, we analyzed infected cells and measured increased GFP fluorescence at 

twenty hours compared to four hours (fig. S3B), by which time bacterial replication has occured. 

Thus, using GFP fluorescence within infected cells we can evaluate bacterial burden and identify 

single cells that are infected by multiple mutants. 

Next, we generated a map to capture the landscape of MIBs in single infected host cells. t-

distributed Stochastic Neighbor Embedding (tSNE) dimensional reduction was used on the MIB 

counts to represent the detection in the single cell data (Fig. 3D). This dimensional reduction 

allows visualization of the cells that were infected by each mutant, based on our pipeline for 

MIB identification. Overall, we identified between 19 to 76 infected cells for each mutant (fig. 

S3C). To validate our procedure for MIB identification in single cells, we quantified MIBs from 

matched bulk infected samples. We averaged the distribution of detected MIBs from 4 bulk 

samples and compared it to MIB detection in the single cell data. We found a high correlation 

(correlation coefficient of 0.71), corroborating our single cell detection (Fig. 3E). To further 

confirm MIB library analysis, we analyzed the detection of MIBs also in host libraries. We found 

a high degree of agreement in the detection of MIB identity between host libraries and MIB 

libraries. The number of MIB-detected cells was ~5-folds higher in the MIB libraries (fig. S3D), 

confirming the improved sensitivity of our protocol. Taken together, we demonstrate an 

approach to detect unique MIBs that map bacterial mutant identity within single host cells. 

 

A computational framework to dissect mutant-specific changes of host transcriptome 

To study distinct host cell responses affected by individual SPI-2 effector mutants, we next 

analyzed host transcriptomes in single cells. We first validated quality control parameters of host 

single cell data (fig. S4; A-C), and turned to analysis of single cells. Unsupervised clustering 

analysis showed that host gene-expression profiles formed six stable clusters (fig. S4D). To 

study the possibility of mutant-specific clusters, we examined the composition of the clusters 
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across cells that were grouped based on the identity of the infected mutant (fig. 

S4E). Macrophages infected with WT S.Tm express three main clusters of genes: cluster Ⅰ 

containing inflammation-related genes (e.g., Il1b, Nfkbia and Cxcl2), cluster Ⅲ containing genes 

related to cell cycle (e.g., Cdk1, Mcm6 and Lig1) and cluster Ⅴ with genes related to oxidative 

stress (e.g., Prdx1, Prdx6 and Nqo1). These clusters were also shared with cells infected by most 

mutants, indicating the known redundancy between effectors (Zhou et al., 2001). Three 

clusters (Ⅱ, Ⅳ and Ⅵ) were mostly evident in several mutant-infected cells. Of note, clusters Ⅱ 

and Ⅵ were most evident in ∆steE and ∆sifA infected cells, respectively. Cluster Ⅱ, which was 

expressed mainly by ∆steE infected cells, includes the type Ⅰ interferon (IFN) response genes 

(e.g., Oasl2, Ifitm6 and Cd74) and cluster Ⅵ, associated mainly with ∆sifA, was enriched with 

genes reminiscent of M2-transcriptional state (e.g., Il4ra, Arg1 and Mrc1) (Saliba et al., 2016).  

We next performed a directed analysis of the impact of individual SPI-2 mutants on host gene 

expression. To identify changes due to mutant identity, we developed a tailored pipeline for 

single cell analysis using a metric we termed MutAnt spEcific hoST TRanscriptOme 

(MAESTRO) analysis. The analysis estimates the effect of each mutant on host gene expression 

changes by weighing both expression levels and variance of each gene between WT- and mutant-

infected cells. We first modeled the number of cells that are required to represent the variance of 

the data, to ensure that the cell numbers in each mutant group is sufficient. In agreement with 

previous estimations (Dixit et al., 2016), we observed that from 20 cells the variance across cells 

is stabilized (fig. S4F). Next, infected cells were grouped by MIB identity (25 groups) and mean 

expression and coefficient of variance (CV) were calculated for all genes in each mutant group. 

To generate a metric that captures these two measurements of single cell data, we calculated the 

Euclidean distance in mean-CV space between WT and respective mutant (MAESTRO score) 

for each gene (Fig. 4A). To exclude noise due to lowly detected genes, we included only genes 

expressed in at least 30% of cells for specific mutant. As lowly expressed genes in scRNA-seq 

tend to display high CV due to dropouts, we controlled artificial high CV by increasing the 

weight for mean expression in the analysis. Plotting the MAESTRO scores distribution for all 

expressed genes in all mutants, we observed a right tail of genes with high MAESTRO scores 

(Fig. 4B). We curated gene lists linking each bacterial mutant with its effect on host gene 

expression. We defined a group of Differentially Expressed Genes (DEGs) for each mutant by 
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selecting the genes with MAESTRO scores higher than the 95th percentile of all scores (fig. S5 

and table S2).  

To provide statistical power for MAESTRO scores and test for mutants that significantly impact 

host genes relative to WT, we generated a random model. We included in our random model 

cells that were excluded from the host analysis due to low MIB coverage (fig. S3A, n=2457). We 

randomly assigned these cells to groups in the same sizes as the original number of cells we 

obtained for each mutant. We calculated MAESTRO scores for these random mutant groups and 

generated the null distribution of the scores. We then performed two-sample t-test between our 

real data and the random data for each mutant. Using this strategy, we identified 6 mutants with 

significantly different MAESTRO scores than the random model (1% FDR), including ∆sifA, 

∆gogB, ∆sopD2, ∆ssaV, ∆sseK1 and ∆srfJ (Fig. 4C). We identified distinct signatures of each of 

these mutants, with 495 out of total 691 DEGs (~72%) that were mutant specific (Fig. 4D, table 

S3). MAESTRO, our unique computational framework, thus enabled us to analyze both 

redundancy between mutants and to assign individual mutant-specific host gene expression 

fingerprints.  

 

Functional analysis of effectors by mutant-specific host gene expression fingerprints 

We performed Gene Ontology (GO) enrichment analysis on the groups of DEGs for each 

significant mutant. A total of 24 terms were enriched (10% FDR), with 15 terms that were 

mutant specific (Fig. 5A, table S4). This analysis identified to previously described functions of 

these effectors, providing validation of our approach. General inflammatory response GO-terms 

(enriched in ∆sifA, ∆sseK1 and ∆gogB) and neutrophil chemotaxis (enriched in ∆sifA, ∆sseK1, 

∆gogB and ∆sopD2) indicated a role for these effectors in modulating innate immune response, 

as previously described (Jennings et al., 2017). Cellular response to tumor necrosis factor (TNF), 

a well-characterized inducer of NF-kB (Hayden and Ghosh, 2014), was enriched only in ∆sseK1 

and ∆gogB. These two effectors were previously identified as targeting the NF-kB signaling 

pathway. SseK1 was shown to suppress TNFα-induced NF-kB activation through direct 

modulation of the host signaling adaptor TRADD (Günster et al., 2017; Newson et al., 2019), 

and GogB was reported to down-regulate host inflammatory responses by inhibiting poly-

ubiquitination of IkBα and thus NFkB-dependent gene expression (Pilar et al., 2012). The 

effector SifA is known to maintain the integrity of the SCV membrane (Beuzón et al., 2000), 
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which is indicated in our analysis by signatures of ∆sifA related to endocytosis, a necessary 

process for SCV maturation (Smith et al., 2005). In addition, response to oxidative stress was 

observed in our analysis of ∆sifA, corresponding to increased redox stress described in ∆sifA 

infected cells (Heijden et al., 2015). SopD2 has been shown to interact with various host 

regulatory Rab-GTPases in the endocytic pathway and block its function (D’Costa et al., 2015; 

Spanò et al., 2016; Teo et al., 2017). Rab GTPases mediate the motility of organelles and 

vesicles and contribute to membrane trafficking (Gillingham et al., 2014). In our analysis we 

identified enrichment of ∆sopD2 with ER to Golgi vesicle-mediated transport. 

We next calculated the mean expression of up or down regulated DEGs of each mutant across all 

cells (Fig. 5B). We measured high variation within each group of cells infected with the same 

mutant, indicating signature expression in only a subpopulation of cells (Fig. 5C). T3SS 

effectors are considered to form a robust, redundant intracellular signaling network that could 

sustain deletion of a single effector gene (Ruano-Gallego et al., 2021). Thus, the observed 

heterogeneity in host response possibly reflects this redundancy in effectors network, which can 

mask the deleted effector activity in a subset of infected cells. In cells infected with ∆ssaV, a 

mutant with nonfunctional SPI-2, we measured reduced variation in host responses, potentially 

reflecting ablated redundancy of the entire effector network (Fig. 5C). Overall, we provide a 

gene signature analysis with mutant-specific fingerprints driving unique changes in host gene 

expression.  

 

SifA effector protein drives an alternatively activated macrophage phenotype.  

We next interrogated selected effector function using its host transcriptional fingerprints. Based 

on MAESTRO analysis and clustering of host transcriptome, the SifA mutant presented the most 

prominent phenotype. SifA is a well-studied SPI-2 effector, known to play a significant role 

in S.Tm virulence: detoxifying lysosomes (McGourty et al., 2012), recruiting late endosomes and 

lysosomes to the SCV (McEwan et al., 2015), and promoting the formation of tubular 

membranous structures connected to SCVs (Portillo et al., 1993; Stein et al., 1996). These 

studies, like for other T3SS effectors, focus on characterizing the host protein targeted by SifA. 

Interestingly, when examining the transcriptional differences between WT and ∆sifA within 

infected cells (Fig. 6A), we found enrichment in genes related to macrophages polarization 

(M1/M2 genes, table S5, taken from Saliba et al., 2016), corresponding to cluster Ⅵ in the 
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unsupervised single cell analysis (fig. S4; D and E). Furthermore, M2 host genes are exclusively 

expressed by only a subset of ∆sifA infected cells (Fig. 6B). 

In response to the presence of microbial products, macrophage activation is considered to 

polarize in two distinct programs: the pro-inflammatory M1 macrophages, and alternatively 

activated M2 macrophages with tissue remodeling and immune resolution functions (Lee, 2019). 

Recent studies have shown that a SPI-2 effector of S.Tm function to support macrophages M2 

activation (Stapels et al., 2018) and that intracellular growth was associated with M2 

macrophages (Saliba et al., 2016). To test the specificity of ∆sifA-mediated M2 signature in 

macrophage polarization, we measured the sum expression of M1 and M2 genes in infected 

single cells across all groups of mutants (Fig. 6C). Gene expression in ∆sifA infected cells was 

significantly lower in M1 genes and higher in M2 genes compared to WT. In ∆ssaV infected 

cells we measured an opposite trend with significantly lower M2 gene expression, which is in 

agreement with previous reports indicating that a ∆ssaV mutant is less capable of triggering M2 

polarization (Stapels et al., 2018). To validate M2 genes in only a subset of ∆sifA infected 

macrophages, we used single-molecule fluorescence in situ hybridization (smFISH). We 

designed probes targeting two transcripts, Il4ra and Dab2. Both are known markers of M2 

polarization (Adamson et al., 2016) and both were upregulated in the ∆sifA signature (table S2). 

Similar to the scPAIR-seq results, we measured significantly higher Il4ra and Dab2 expression 

in a subpopulation of ∆sifA infected cells compared to WT (Fig. 6; D and E, and fig. S6A). 

Expression levels of normalizing control gene Gapdh were comparable between WT and ∆sifA 

cells (fig. S6B). Moreover, when counting the number of bacteria within each infected cell, 

macrophages with higher loads of ∆sifA bacteria, but not WT, showed increased expression of 

Il4ra and Dab2 (fig. S6C), indicating that the observed M2 gene program is not merely related to 

bacterial burden but rather related to ∆sifA-dependent activation.  

Next, we characterized the kinetics of M1/M2 activation in ∆sifA infected macrophages. We 

studied the expression of four representative M1 genes (Tnf, Cd40, Cxcl10 and Nlrp3) and 

measured early induction from 2 to 6 hpi with subsequent decrease in expression, both in WT 

and ∆sifA (Fig. 6F and fig. S6D). We then studied the expression of four representative M2 

genes (Il4ra, Dab2, Mrc1 and Timp1) and measured increased expression of all M2 genes in 

∆sifA infected cells compared to WT infected cells 22 hpi (Fig. 6F and fig. S6E), indicating that 

M2 activation is triggered by ∆sifA only at later time points after infection. Next, we sorted bulk 
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samples of WT or ∆sifA infected cells and performed bulk RNA-seq analysis. M2-related genes 

were significantly enriched in the genes that are up-regulated in ∆sifA relative to WT infected 

cells (P=2.2204e-15; ~40% of genes) (Fig. 6G, table S6). Moreover, we observed enrichment 

for cholesterol metabolism-related genes in ∆sifA infected cells (e.g., Ch25h, Scd2 and Fabp5) 

corresponding to previous reports showing that the loss of vacuolar membrane around SifA 

mutants requires activity of the cholesterol acyltransferase effector, SseJ (Lossi et al., 2008; 

Ruiz-Albert et al., 2002). Finally, we studied the effects of ∆sifA on host protein levels, using an 

antibody against Il4ra and flow cytometry. Similar to our results above, we measured high levels 

of Il4ra protein in ∆sifA infected cells only in a subpopulation of cells (Fig. 6; H and I). Taken 

together, using scPAIR-seq we revealed a transcriptional program of host macrophages that is 

mediated by SifA secreted effector.  

 

Discussion 

Bacterial effectors are key pathogenic virulence determinants that highjack host cellular 

pathways to support intracellular growth. Despite many efforts, our understanding of the function 

of many single effector mutants has been limited by their redundancy, heterogeneity, and 

context-dependent activity. This limitation constrains our ability to discover regulators of 

bacterial pathogenicity that are the major drivers of infection outcome. In this work we 

developed scPAIR-seq, in which multiple pooled bacterial mutants can be analyzed 

simultaneously at single cell resolution to overcome redundancy and heterogeneity during 

infection. Mutants are functionally characterized by their impact on host responses, that can be 

expanded to different host contexts. Key to this approach are tagged, multiplexed bacterial 

barcodes (MIB) that allow us to infect with a pooled library of bacterial mutants and deconvolute 

mutant identity within single infected host cell. We use this approach to provide a detailed 

virulence-immune network of single SPI-2 effectors, using a global view of their impact on host 

gene expression inside infected cells. To overcome expected redundancy between effectors and 

possible masking of mutant-specific gene signatures by the highly inflammatory gene expression 

induced upon Toll-like receptor (TLR)-4 detection of bacterial lipopolysaccharide (LPS) (Bode 

et al., 2012), we developed a computational approach (MAESTRO). Analysis of the impact of 

each SPI-2 effector on host responses also captures the heterogeneous response of macrophages 

to single bacterial mutants, exemplified by mutant-specific genes signatures that were expressed 
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in only a subset of infected cells (Fig. 5; B and C). The observed variation in the host response 

highlights the importance of MAESTRO and suggests that T3SS effectors form complex 

interconnected network that under certain conditions can tolerate perturbations (e.g. deletion of a 

single effector) without affecting virulence, as previously suggested (Ruano-Gallego et al., 

2021). This redundancy is common to secretion systems of different bacterial pathogen species. 

We propose that future experiments using scPAIR-seq to specifically analyze cells infected with 

multiple bacterial mutants or bacteria carrying deletions of multiple effectors can help interpret 

the combined nonlinear effects of secreted effectors on host processes. 

MAESTRO analysis revealed single SPI-2 mutants that impact gene expression of macrophages. 

We focused on one effector, SifA, a well-studied SPI-2 secreted effector that had most 

significant impact on host transcriptome in the MAESTRO analysis. SifA has primarily been 

studied for its role in mediating the formation of a protective niche inside macrophages, and 

SifA deletion results in rupture of the SCV membrane and release of bacteria into the cytosol 

(Beuzón et al., 2000). However, gene expression changes induced by SifA cytosolic S.Tm were 

not studied. Our analysis indicates that cytosolic SifA S.Tm drives infected macrophages 

towards an M2 activation state. Alternatively, vacuolar S.Tm with intact SifA, was shown to use 

another SPI-2 effector to drive M2 activation (Stapels et al., 2018). This is not the case for other 

cytosolic bacteria, as infection of macrophages with the cytosolic pathogens Listeria 

monocytogenes and Shigella dysenteriae was reported to induce an M1-like polarization (Biswas 

et al., 2007; Lizotte et al., 2014; Rai et al., 2012; Xu et al., 2012). Cytosolic SifA S.Tm was 

shown to expose cytosolic LPS that is detected by Caspase-11 to induce non-canonical 

inflammasomes and pyroptotic cell death (Aachoui et al., 2013; Thurston et al., 2016). Recently, 

it was shown that cytosolic LPS can activate phagocytes while retaining their viability (Gaidt et 

al., 2016), indicating context-dependent cell fate decisions. It is tempting to speculate that in our 

experimental conditions (low MOI, non-SPI inducing bacterial cultures), macrophages infected 

with cytosolic SifA S.Tm maintain viability and activate a parallel pathway to induce an M2-

program. As M2 activation in macrophages is linked to their metabolic state, it would be of 

interest to further decipher the metabolic pathway that is maintained in SifA infected 

macrophages. 

To conclude, we present scPAIR-seq, an approach to analyze pooled bacterial mutants and 

cognate host responses at single cell resolution during intracellular infection. At its current scale, 
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scPAIR-seq can be applied for targeted screens of a set of bacterial mutants of interest, as we 

have done here for SPI-2 S.Tm mutants during intracellular infection of macrophages. While 

SPI-2 mutants have previously been studied, they were mostly analyzed one at a time. Our 

analysis provides a global view of the functional impact of effectors on immune pathways that 

underlie intracellular growth and virulence of S.Tm. We foresee that enhancing the throughput of 

scPAIR-seq using microfluidic approaches will allow us to advance our knowledge of 

fundamental aspects of infection biology at unprecedented level. As discussed above, important 

points of study will include analysis of the redundancy of bacterial effectors converging on the 

same immune pathways. Further, experimental models utilizing an intact immune system (e.g., 

organoids, blood immune cells or in vivo infections) will provide insight into the impact of 

bacterial virulence not only on cell autonomous immunity but also their immuno-modulatory 

capacity in cell-cell communications, and the activity of effectors within different immune cell 

subsets (Jennings et al., 2017). We propose that at larger scales, scPAIR-seq can be applied as a 

systematic approach to dissect the interplay between bacterial pathogenesis and host defense 

strategies in any bacterial strain and infection model. 
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Figures legend 

 
Figure 1: Overview of the scPAIR-seq approach. Bacterial mutants express a fluorescent 

protein (GFP), tagged with unique mutant identifier barcode (MIB) followed by a polyA 

sequence. Macrophages were infected with a library of pooled multiplex-tagged bacterial 

mutants and single cells were sorted into multi-well plates. scPAIR-seq was applied on infected 

cells, for deconvolution of mutant-specific changes in host transcriptome using the MAESTRO 

pipeline. 

 

Figure 2: scPAIR-seq protocol and optimization for paired analysis of MIBs and host 

transcripts. (A) Detailed overview of scPAIR-seq protocol. UMI, unique molecular identifier; 

CB, cell barcode; RT, reverse transcription; NT, nucleotides (B) Cultures of multiplexed-tagged 

SPI-2 mutants were pooled and MIB library was generated. Sequences from each read were 

compared to the MIB sequence of each mutant with increasing number of mismatches allowed 

from 0 to 10. Indicated is the number of specific identifications (each read mapped exactly to one 

mutant; solid black line) and number of non-specific identifications (more than 1 mutant mapped 

to the same read; dashed gray line). Using one mismatch we optimize MIB identification rate 

without affecting specificity. (C) BMDMs were infected separately with each of the S.Tm SPI-2 

mutants and bulk samples were collected. Percentage of the bacterial MIBs detected (columns) 

are presented for each infected sample (rows); see colorbar to the right. Each detected MIB was 

normalized by the total number of reads obtained for that MIB across all infected samples, before 

calculating percentages. 

 

Figure 3: Non-ambiguous identification of MIBs in single infected cells. BMDMs were 

infected with a pooled MIB-tagged SPI-2 mutant library at an MOI=2. Twenty hpi single 

infected host cells were sorted and analyzed by scPAIR-seq. (A) The distribution of MIB counts 

across all cells was modeled and the local maxima of positive and negative cells were found for 

each MIB (see supplementary methods). To set a threshold between these two maxima of each 

MIB, in a way which maximizes singlets detection across all MIBs together, we iterated over all 

inter-maxima quantiles (x-axis). The percentage of singlets (infected cells with 1 mutant; blue 

line), multiple (more than 1 invading mutant per cell; red line), and negative (no invading mutant 

was identified; black line) are shown (y-axis) for each quantile. We selected the quantile which 

optimize singlet detection (q=0.23, black dashed line). (B) Number of detected mutants per cell 

indicate that most cells are infected with 1 mutant as expected by the low MOI. (C) Sorted single 

cells were indexed by the GFP signal of internalized bacteria. Boxplots represent the GFP 

intensities (log10) from host cells as detected by flow cytometry (y-axis), grouped by the number 

of MIBs detected by scPAIR-seq in single cells (x-axis). There is high concordance between the 

number of identified invading bacteria and the GFP intensity. (D) Visualization of MIB counts in 

single cells using t-distributed Stochastic Neighbor Embedding (t-SNE) dimensional reduction. 

Each cell is colored by the identity of its invading mutant as detected by scPAIR-seq (see 

colorbar to the right and fig. S3C). Depicted are also cells with multiple MIB detection (white) or 

without detection (Negative; gray). (E) Comparison between MIB detection from the single cell 

data (y-axis) and detection in matched bulk infected samples (x-axis; averaged distribution from 

4 samples). Dots represent the percentage of each mutant from total MIBs. Colors are as in (D), 

correlation coefficient and corresponding p-value are indicated in the figure. 
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Figure 4: MAESTRO analysis to dissect mutant-specific changes of host transcriptome. (A) 

Illustration of the MAESTRO scores calculation: to capture mutant-specific changes in host gene 

expression, we calculated the mean expression (x-axis) and CV (y-axis) of each gene (i) in each 

mutant group (j) compared to WT infected cells. The MAESTRO score was calculated as a 

weighted Euclidian distance between the mean-CV of the WT and the specific tested mutant (j), 

with weight (w) for the mean expression component set to 1.5. (B) Histogram of MAESTRO 

scores from all genes across all mutant groups generated a right tail distribution of genes with 

high MAESTRO scores. We defined the genes with MAESTRO score larger than the 95th 

percentile of all scores (black dashed line) as different from WT infected cells. Using this 

threshold, we defined the group of differentially expressed genes (DEG) for each mutant. (C) To 

test for significance of these DEGs we generated a random model. We compared the distribution 

of MAESTRO scores obtained from our data to the null distribution. Using two-sample t-test we 

identified 6 mutants with significantly higher MAESTRO scores than the random model. 

Presented are the scores from these 6 significant mutants (colored lines), and the random scores 

of each mutant (gray lines; mean of 1000 random permutations) (D) To identify specific and 

shared signatures, DEGs of the six significant mutants were intersected. Bar plots represent the 

number of genes that are unique to one mutant, and these that are shared between 2 to 6 mutants 

(x-axis).  

 

Figure 5: MAESTRO analysis reveals virulence-immune networks of SPI-2 mutants. (A) 

GO-terms enrichment analysis for the DEGs of each significant mutant (table S4) (B) Heatmap 

of the mean expression of mutant-specific signature genes (up – top panel, down – bottom panel 

regulated DEGs) for each mutant across all cells. Rows are the mean expression of the up or 

down regulated genes of each mutant (mutant signature); columns are sorted by the MIB 

detected in infected single cells. (C) For each up or down regulated signature of each mutant, we 

calculated the number of cells expressing the signature. Presented are the proportion of cells that 

up-regulated (upper panel) or down-regulated (bottom) the specific signature in the same mutant 

(colored bars), or in all other cells not infected with this mutant (gray bars, non-specific 

induction of the signature). Signatures are specific to their mutant infected cells, with high 

variation between single cells.   

 

Figure 6: ∆sifA mediates transcriptional reprogramming of BMDMs towards M2-

activation state. (A) Heatmap of the expression levels of ∆sifA DEGs in single cells across WT 

and ∆sifA infected BMDMs. Genes and cells are clustered by hierarchical clustering (ward 

linkage method); see colorbar to the left for expression levels. The black bars to the right 

indicate position of genes related to macrophages M1 and M2 polarization (from Saliba et al., 

2016, see table S5). M1 signature is enriched in down-regulated genes in ∆sifA infected cells 

(P=2.8x10-13), while M2 signature is enriched in the up-regulated genes (P<1x10-20). (B) 

Correlation matrix between WT and ∆sifA infected cells over the space of ∆sifA DEG; colorbar 

to the right indicates correlation coefficient values. There are two subsets of ∆sifA infected cells, 

one that has similar M1 signature to WT infected cells and another subset which elevates M2 

polarization genes. (C) Box plots of the sum expression of M1 (upper panel) or M2 (bottom 

panel) genes across WT or S.Tm SPI-2 mutants. The box represents the median and 25-75th 

percentile, whiskers encompass all data points. Mutants which significantly differentiate M1 or 

M2 expression levels relative to WT infected cells are indicated (two-sample t-test; 10%FDR). 

(D and E) BMDMs were infected with WT (gray) or ∆sifA (blue) and cells were fixed and 
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analyzed by smFISH with probes against Il4ra and Dab2 transcripts. (D) Violin plots showing 

Il4ra (left) and Dab2 (right) mRNA counts per cell for each infected sample. Each dot 

corresponds to a cell, the median is indicated by the black diamond. **** P<0.0001, two-sample 

t-test. (E) Expression levels of Il4ra and Dab2 transcripts across WT and ∆sifA infected cells. 

Rectangle marks a subpopulation of ∆sifA-infected cells with high expression of both transcripts. 

(F) Z-score normalized expression of representative M1 (filled lines) and M2 (dashed lines) 

genes (see Fig. S6; D and E) from WT (gray) or ∆sifA (blue) infected samples at 2, 6, 10 and 22 

hpi and before infection at t=0 (naïve) by qRT-PCR. Expression was normalized to Rps13 gene. 

(G) Bulk RNA-seq of sorted naïve, WT or ∆sifA infected BMDMs twenty hpi. Presented is a 

heatmap of genes up-regulated following infection with WT or ∆sifA mutant relative to naïve 

cells (10% FDR). Genes were classified into three classes based on their expression changes 

between the conditions. See colorbar to the right for relative gene expression. For each class 

indicated representative genes; upper – inflammatory genes, middle - Type Ⅰ IFN genes, bottom 

– M2 and cholesterol-metabolism genes. (H and I) Infected BMDMs samples were stained with 

Il4ra antibody. Expression levels were analyzed by FACS (H, dashed line represent threshold for 

a population with high Il4ra expression) and proportion of cells expressing high Il4ra levels were 

compared between infected samples (I, cells right of the dashed line in H). 
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