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Abstract 33 
AIM 34 
The role of environmental conditions in limiting species distributions is often hypothesized in 35 
biogeography, but it is challenging to gather large-scale data to demonstrate environmental 36 
impacts on individual performance. The past and present biogeography of model organisms is 37 
key context to understanding how environment shapes species’ genetic and phenotypic 38 
diversity.  39 
 40 
LOCATION 41 
Global 42 
 43 
TAXON 44 
Arabidopsis thaliana (“Arabidopsis”) 45 
 46 
METHODS 47 
We fit occurrence records to climate data, and then projected the distribution of Arabidopsis 48 
under last glacial maximum, current, and future climates. We confronted model predictions with 49 
individual performance measured on 2,194 herbarium specimens, and we asked whether 50 
predicted suitability was associated with life-history and genomic variation measured on 898 51 
natural accessions.  52 
 53 
RESULTS 54 
The most important climate variables constraining the Arabidopsis distribution were winter cold 55 
in northern and high elevation regions and summer heat in southern regions. Herbarium 56 
specimens from regions with lower habitat suitability in both northern and southern regions were 57 
smaller, supporting the hypothesis that the distribution of Arabidopsis is constrained by climate-58 
associated factors. Climate anomalies partly explained interannual variation in herbarium 59 
specimen size, but these did not closely correspond to local limiting factors identified in the 60 
distribution model. Late-flowering genotypes were absent from the lowest suitability regions, 61 
suggesting slower life histories are only viable closer to the center of the realized niche. We 62 
identified glacial refugia farther north than previously recognized, as well as refugia concordant 63 
with previous population genetic findings. Lower latitude populations, known to be genetically 64 
distinct, are most threatened by future climate change. The recently colonized range of 65 
Arabidopsis was well-predicted by our native-range model applied to certain regions but not 66 
others, suggesting it has colonized novel climates. 67 
 68 
MAIN CONCLUSIONS 69 
Integration of distribution models with performance data from vast natural history collections is a 70 
route forward for testing biogeographical hypotheses about species distributions and their 71 
relationship with evolutionary fitness across large scales. 72 
 73 
 74 
  75 
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Introduction 76 
 77 
A major goal in biology and biogeography is to understand how environmental conditions limit 78 
the performance of individuals and species distributions. First, the environment-distribution 79 
relationship can help project species distributions under past climates to understand their 80 
ecological and evolutionary history (Forester et al., 2013). Second, the environment-distribution 81 
relationship can identify regions with currently suitable habitat but that are unoccupied for a 82 
variety of reasons (e.g. dispersal limitation) (Elith et al., 2010). Third, the environment-83 
distribution relationship can predict how distributions will shift under future environments 84 
(Thomas et al., 2004), which is an urgent task due to rapid anthropogenic climate change.  85 

One avenue to advance these goals in future biogeographic studies is through greater 86 
integration of biogeography with organismal biology to test hypotheses about the organismal 87 
and population mechanisms controlling distributions. For example, it is becoming possible to 88 
collect molecular genetic and phenotypic data on large numbers of organisms across a species 89 
range. These approaches are particularly accessible (and valuable) in studies on model 90 
organisms like Arabidopsis thaliana. With model systems researchers can link detailed 91 
information on genetics and organismal biology with population and community processes 92 
(Rudman et al., 2019; Takou et al., 2019) to contribute ecological context and advance 93 
integrative biology. At the same time, advances in the organization and digitization of museum 94 
specimens are rapidly expanding the available data on range-wide variation among individuals 95 
from nature. In this spirit we focus here on Arabidopsis thaliana, a small annual plant (hereafter 96 
referred to as “Arabidopsis”) (Koornneef & Meinke, 2010). Arabidopsis has been key to 97 
understanding how molecular biology and physiology are linked to ecology, but past 98 
biogeographic studies did not use newer distribution modeling tools (Hoffmann, 2002) or 99 
overlooked large parts of its range (Banta et al., 2012; Zou et al., 2017). 100 
 Environment-distribution relationships fundamentally arise from processes acting on 101 
individuals (Clark, 2010). In general, transplant experiments show that individual performance 102 
tends to decline outside species’ natural geographic range (Hargreaves et al., 2014) and efforts 103 
to integrate information at the individual level into distribution models are emerging (Buckley et 104 
al., 2011; Elith et al., 2010; Lasky et al., 2020; Merow et al., 2014; Samis & Eckert, 2007). 105 
Where populations inhabit harsh environments (e.g. at range margins), local adaptations can 106 
emerge, such as life history changes to tolerate or escape harsh periods (Bontrager et al., 107 
2021). In Arabidopsis, there is evidence that local adaptation to environment involves genetic 108 
changes in life history (e.g. flowering time) (Lovell et al., 2013; Martínez-Berdeja et al., 2020). 109 
However, it is challenging to determine how environment shapes individual performance and life 110 
history variation across the ranges of broadly distributed species, as well as the consequences 111 
for distributions.   112 

A vast resource of individual-level information can be found in natural history collections 113 
(Heberling, 2021; Lopez et al., 2019). For example, Bontrager & Angert (2015) showed with 114 
herbarium specimens of Clarkia that fecundity decreased with drier summers, and toward the 115 
western species range margin both summer precipitation and individual fecundity declined, 116 
suggesting a mechanism limiting its distribution. In Arabidopsis, DeLeo et al. (2020) found 117 
decadal shifts in traits of herbarium specimens. For many species, seed banks house great 118 
diversity from across their ranges that can also be used to study their biogeography (Estarague 119 
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et al., 2021; Scholl et al., 2000). Here we estimate performance and life history variation from 120 
museum and seed bank accessions to interrogate predictions from distribution models. 121 

Arabidopsis is native across Eurasia and Africa and with human assistance has 122 
colonized the Americas and Australia. Other species in the genus Arabidopsis are more 123 
restricted to cool temperate climates, with Arabidopsis having expanded to a broader range, e.g. 124 
Mediterranean habitats (Hoffmann, 2005). Arabidopsis can behave as a spring annual with a 125 
rapid life cycle, germinating in the spring and flowering in the late spring and summer. However, 126 
many individuals are longer-lived winter annuals, germinating in the fall and flowering in early 127 
spring (Wilczek et al., 2009). Studies of large-scale environmental response in Arabidopsis have 128 
focused on the role of local adaptation in genetic diversity in the species (e.g. Hancock et al., 129 
2011; Lasky et al., 2018; Martínez-Berdeja et al., 2020; Toledo et al., 2020), but less is known 130 
about the determinants of the species’ distribution. The last overview of the climate 131 
biogeography of Arabidopsis was Hoffmann (2002), who considered Arabidopsis native to 132 
western and central Eurasia, but non-native in China and sub-Saharan Africa. However, studies 133 
show these latter populations are likely native, being genetically diverse, and with many unique 134 
genetic variants (Durvasula et al., 2017; Zou et al., 2017). Advances in distribution modeling 135 
(Elith et al., 2010; Muscarella et al., 2014) and updates to climate and occurrence datasets 136 
highlight the need to update to our understanding of Arabidopsis biogeography. 137 

Studies suggest that multiple climatic factors limit performance and distribution of 138 
Arabidopsis. Experiments have shown that winter cold is a major factor limiting performance 139 
(Ågren & Schemske, 2012; Korves et al., 2007). Additionally, Arabidopsis lacks physiological 140 
traits for dealing with severe water deficit so it is likely individual performance in nature is limited 141 
by drought (Clauw et al., 2015). Based on occurrence data, Hoffmann (2002) concluded that 142 
spring and fall cold limited Arabidopsis in northern Europe, winter temperatures in Russia, heat 143 
and drought toward the southern range margins, and a lack of snow in central Asia. However, 144 
these conclusions were based on visual inspection of climate isotherms and range margins, not 145 
statistical inference. Distribution models fit to occurrence data allow an explicit quantitative 146 
statement of environment-distribution relationships and the potential to infer the environmental 147 
factors limiting distributions (Elith et al., 2010; G. Li et al., 2015).  148 

Distributions are dynamic through time due to environmental change, dispersal, and 149 
demographic stochasticity. Studies have used genetic data to infer Arabidopsis refugia during 150 
the last glacial maximum (LGM), where subpopulations (sometimes referred to as “relicts”) 151 
persisted locally before subsequent admixture with an expanding, now widely distributed “non-152 
relict” lineage (Lee et al., 2017). Whether these refugia corresponded to suitable climates is less 153 
clear. Future climate change projected impacts on Arabidopsis have focused on relative climate 154 
impacts on different genotypes (Exposito-Alonso et al., 2018; Fournier-Level et al., 2016), rather 155 
than distribution dynamics. Additionally, many species, have colonized new regions due to 156 
human introduction, sometimes exhibiting traits that appear distinct from native range 157 
populations, potentially due to plastic or genetic responses to new environments (Turner et al., 158 
2015). Arabidopsis has colonized many regions, but it is unclear to what degree these places 159 
represent novel environments.  160 
 Here we sought to demonstrate an approach to integrate distribution modeling with 161 
organismal biology and intraspecific variation, and to revise our understanding of Arabidopsis’s 162 
biogeography. To do so, we combined occurrences (including many outside Europe poorly 163 
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represented in previous work) with climate data to build distribution models, and then test how 164 
model predictions correspond to performance estimated from herbarium specimens and genetic 165 
variation in natural accessions. We ask the following questions: 166 

1. What climate factors constrain the distribution of Arabidopsis? We hypothesize that 167 
winter cold and summer drought are the most important constraints, depending on 168 
region.  169 

2. Are individual performance and genetic variation associated with model-estimated 170 
habitat suitability? We hypothesize that individuals reach larger sizes in regions with 171 
greater suitability and that populations adapt along gradients in suitability through 172 
changes in traits such as flowering time, a key component of life history. 173 

3. Are occurrences outside the native range predicted by a native range model, suggesting 174 
stable realized niches following colonization? Or is there evidence Arabidopsis has 175 
colonized novel environments?  176 

4. Where did Arabidopsis persist during the Last Glacial Maximum (LGM)? And where will 177 
Arabidopsis move in future climates?  178 

 179 
Methods  180 
Occurrence data 181 
We developed a set of high-quality occurrence data (i.e. species ID verified and location 182 
checked, N=4,024) from published research (Durvasula et al., 2017; Hsu et al., 2019; 183 
Mandáková et al., 2017; Zeng et al., 2017; Zou et al., 2017), publicly available herbarium and 184 
germplasm accessions with known collection locations (Alonso-Blanco et al., 2016; DeLeo et 185 
al., 2020), and some of our recent field collections in East Africa (Gamba et al., 2022). These 186 
span a period of 1794 - 2018. The herbarium specimens and new collections include little-187 
studied populations in Saudi Arabia, Somalia, Djibouti, Eritrea, Rwanda, Ethiopia, Uganda, 188 
Sudan, and Nepal. Duplicate occurrence points were eliminated (samples are often split and 189 
sent to different herbaria). For model fitting, we excluded occurrences from putative non-native 190 
regions (the Americas, New Zealand, Japan).  191 
 We also used occurrence data (with coordinates and without flagged problems 192 
N=115,226) from the Global Biodiversity Information Facility (GBIF) to test model predictions in 193 
regions outside of the native range of Arabidopsis (downloaded 30 Dec 2020, Gbif.Org, 2020). 194 
We deem these occurrences as lower quality given that many have not had the species identity 195 
and location checked (DeLeo et al., 2020). 196 
 197 
Environmental data 198 
Climate data were extracted from CHELSA (Climatologies at High resolution for the Earth’s 199 
Land Surface Areas) v1.2 at 30 arc second spatial resolution (Karger et al., 2017). Current 200 
conditions are the average of 1979-2013 estimates. We selected the following climate variables 201 
based on hypothesized importance (Gienapp et al., 2017; Hancock et al., 2011; Lasky et al., 202 
2014, 2018) and relatively low inter-correlation (Pearson correlation coefficients among 203 
variables at occurrences < 0.75): isothermality (Bio3), minimum temperature of coldest month 204 
(Bio6), temperature annual range (Bio7), mean temperature of wettest quarter (Bio8), mean 205 
temperature of the warmest quarter (Bio10), precipitation seasonality (Bio15), precipitation of 206 
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wettest quarter (Bio16), and precipitation of driest quarter (Bio17). We also included altitude 207 
from Hijmans et al. (2005). 208 

For projecting past distributions, we obtained climate estimates from the last glacial 209 
maximum (LGM) at 21k yrs before present from CHELSA PMIP3 (Karger et al., 2017). We used 210 
the global altitude and bathymetry map with 15 arc second resolution from Tozer et al. (2019) 211 
with a sea level 134 m lower than present (Lambeck et al., 2014) to project potential suitable 212 
habitat at the LGM on land in areas currently submerged. For projecting future distributions, we 213 
used climate projections five divergent global climate models for 2050 from CHELSA v1.2 using 214 
the RCP 4.5 emissions scenario (Karger et al., 2017). We also show RCP 6.0 in the supplement 215 
for context (Figure S13), though it is highly similar to 4.5 in the target time period. 216 
 To characterize temporal variation in climate (climate anomalies), we used the Climate 217 
Research Unit (CRU) TS 4.01 dataset, providing a global time series of monthly temperature 218 
and precipitation for the period 1900-2010 at a 0.5º resolution (Harris et al., 2014). From the 219 
CRU data we calculated the same bioclimatic parameters that we used from CHELSA, but in 220 
the CRU data these bioclimatic variables were specific to each herbarium specimen in the time 221 
period it was collected (Supplemental Methods). We then calculated local anomalies for each of 222 
these variables by taking the observed value, subtracting mean across the entire time series, 223 
and dividing by the standard deviation (DeLeo et al., 2020). 224 
 225 
Performance estimates from herbarium specimens  226 
We estimated fecundity on a subset of herbarium specimens using two traits. First, we 227 
measured the length of the longest inflorescence, reasoning that longer inflorescences would 228 
have more fruits and seeds. Second, we measured maximum rosette leaf length, reasoning that 229 
larger rosettes would support later reproductive investment if these collected plants were 230 
allowed to continue growth in situ (see Supplement for a validation). We used ImageJ on 2,194 231 
specimen images to estimate the tallest point of each inflorescence (N=2,188) and the 232 
maximum rosette leaf length (N=1,264; see Supplement).  233 

 234 
Range-wide genetic variation in life history 235 
Many late-flowering Arabidopsis genotypes require cold cues (vernalization) to flower and also 236 
show slower growth and more stress tolerance, delineating a life history axis (Lovell et al., 2013; 237 
Vasseur et al., 2018). To assess life history variation, we used published experimental data on 238 
flowering time for 898 whole-genome resequenced accessions from the native range with 239 
reliable geographic coordinates grown at 10 and 16ºC (The 1001 Genomes Consortium 2016). 240 
To estimate vernalization sensitivity, we calculated the difference between flowering time at 10 241 
and 16ºC.  242 
 243 
Species Distribution Modeling  244 
We thinned the original 4,024 high quality occurrence points to one sample per 1 km grid cell to 245 
reduce sampling bias (N=662) using the ‘sp’ package (Bivand et al., 2008). To characterize 246 
potentially inhabited sites, we generated pseudoabsence background points using the ‘dismo’ 247 
package  (Hijmans & Elith, 2013) by sampling 10,000 random points within a 500 km buffer 248 
around occurrence points.  249 
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We used Maxent version 3.4.0 to generate a species distribution model (Phillips et al., 250 
2006). MaxEnt was implemented with the R package ‘ENMeval’ v2, and parameters were 251 
optimized using the ‘checkerboard2’ method for cross validation (Muscarella et al., 2014). 252 
Among the tested settings (ENMeval defaults), we chose the model with lowest AICc value and 253 
used this to project habitat suitability under recent conditions across the globe. For all models 254 
we used the logistic output of MaxEnt that scales suitability from zero to unity. 255 
 We used permutation importances to determine which climatic factors drove predictions 256 
in the distribution model. We also used the ‘limiting’ function in the R package ‘rmaxent’ to 257 
determine the most limiting climatic factors in each location, defined as the environmental 258 
covariate that has the largest decrease in suitability at a given location relative to the suitability 259 
achieved if the covariate had its value equal to the global mean (Baumgartner et al., 2017; Elith 260 
et al., 2010). State another way, the local limiting factor is the environmental condition most 261 
limiting suitability, compared to an alternative scenario where that condition takes its global 262 
mean. 263 

 In non-native regions, we evaluated whether Arabidopsis is limited from further 264 
expansion at range edges by climate, i.e. whether there were no more unoccupied suitable 265 
environments near existing populations. To do so, we calculated suitability in a zone 50-100 km 266 
from existing GBIF occurrences and compared occupancy in these buffers in the native range to 267 
invaded regions.  268 

 We also projected the MaxEnt model using past (LGM) and future climate conditions. 269 
For future conditions, we calculated the mean and standard deviation of habitat suitability 270 
projected for the five climate models. To assess whether model predictions were extrapolating 271 
into poorly characterized or novel climates, we compared the present-day model training 272 
climates to each predicted climate conditions, calculating multivariate environmental similarity 273 
surfaces (MESS) following Elith et al. (2010). Higher values on a MESS map indicate conditions 274 
in a location (or point in time) are similar to the reference environmental conditions used to fit 275 
the model. Negative values indicate that at least some variables are outside the range of 276 
environments used to fit the model, signifying extrapolation into novel environments (Elith et al., 277 
2010).  278 
 279 
Performance and habitat suitability 280 
We asked whether suitability corresponded to plant size. We first tested these relationships with 281 
Pearson’s and Spearman’s correlations. We also fit Generalized Additive Models (GAMs) where 282 
herbarium specimen sizes were the response variable. The model included covariates for 283 
suitability at the collection location (square-root transformed to reduce the lower-tail influence) 284 
and (as a nuisance variable) the year of collection (scaled to mean zero and unit variance) to 285 
account for potential changes in size over time. We used GAMs to allow smooth spatial 286 
variation in parameters, allowing us to capture any regional variation. The model can be 287 
represented as: 288 
 289 

Phenotypei,year = β0 +βi,yearYear + βi,HSHabitat Suitabilityi + ɛi,year 290 
 291 

where i represents the specimen location. Errors were modeled as normally distributed. 292 
Spatially-varying parameters were constrained to smooth spatial variation using the ‘mgcv’ 293 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2022. ; https://doi.org/10.1101/2022.03.06.483202doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483202
http://creativecommons.org/licenses/by-nc/4.0/


 8 

package for R, which we used with REML to fit all GAMs (Wood, 2011). We considered 294 
covariates to be significant at a given location if their 95% confidence interval (CI) excluded 0, 295 
and the Moran’s I (Cooper, 2021) for model residuals did not indicate spatial autocorrelation. 296 

We also asked whether local limiting factors corresponded to climate variables with 297 
significant effects on plant performance. We hypothesized that for a given region, temporal 298 
fluctuations in local limiting factors would be associated with temporal variation in plant size in 299 
herbarium specimens.  To address this hypothesis, we tested if specimen sizes were correlated 300 
with anomalies in climate conditions corresponding to the climate variables used in the MaxEnt 301 
model. We used the yearly climate anomalies we calculated from CRU in GAMs with spatially 302 
varying coefficients, where for a phenotype measured at location i:  303 
 304 

Phenotypei,year = βi,0 +βi,yearYear + βi,climateBioClim Variable Anomaly+ ɛi,year 305 
 306 

We then qualitatively assessed whether local limiting factors inferred by MaxEnt had anomalies 307 
that were correlated with plant size (local βi,climate coefficients in the GAMs).  308 
 309 
Genetic variation and habitat suitability 310 
We used two strategies to test how genetic variation in Arabidopsis varies with suitability. First, 311 
we focused on genetic variation in a key life history trait, flowering time. We estimated linear 312 
models relating suitability and flowering time. To account for population structure and neutral 313 
processes that can affect spatial variation in flowering time, we also tested whether suitability 314 
was associated with flowering time after using random effects for genome-wide similarity among 315 
accessions. A significant suitability-flowering time association in this model would suggest 316 
selection linked to suitability acts on flowering time. This test is akin to QST-FST contrasts 317 
(Whitlock & Guillaume, 2009), except that an explicit environmental gradient is tested 318 
(suitability). We implemented this mixed model the function ‘lmekin’ from the R package ‘coxme’ 319 
(Therneau & Therneau, 2015), along with ‘kinship2’ (Sinnwell et al., 2014). The kinship matrix 320 
was obtained from 2,027,463 published whole genome resequencing SNPs  (Alonso-Blanco et 321 
al., 2016). Additionally, to test for geographic variation in suitability-flowering time relationships, 322 
we fitted GAMs of flowering time with spatially varying coefficients: 323 

 324 
FloweringTimei,year = β0 + βi,HSHabitat Suitability + ɛi . 325 

 326 
Our second strategy was to scan the Arabidopsis genome for genes where different 327 

alleles were found in high versus low suitability locations. Such a change in allele frequency 328 
across gradients in suitability would suggest that this genetic variation was involved in local 329 
adaptation to low versus high suitability environments. We used univariate linear mixed-effects 330 
models in GEMMA (v 0.98.3) (Zhou & Stephens, 2012) to perform genome wide association 331 
studies (GWAS) in a set of 2,053,939 SNPs filtered for MAF=0.05 from 1003 native-range 332 
ecotypes part of the 1001 genomes panel. 333 
 334 
 335 
Results 336 
 337 
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Q1. Climate constraints on the distribution of Arabidopsis 338 
Our optimization of MaxEnt models (with AICc) resulted in a selection of a model with linear and 339 
quadratic effects, with the regularization multiplier of 0.5. The training AUC value was 0.78 and 340 
the average test AUC with checkerboard2 cross validation was 0.78. The omission rate of the 341 
10th percentile of suitability for training points was 0.10, suggesting our models were not overfit 342 
as they were able to predict low probability occurrences as well as expected (Fielding & Bell, 343 
1997; Peterson et al., 2011). The areas of high suitability overall correspond well to the 344 
documented Arabidopsis distribution, with one notable exception being tropical lowland sites 345 
(Congo basin) in sub-Saharan Africa (Figure 1A). This region was near zero multivariate 346 
environmental similarity to training data, indicating the model may have been poorly constrained 347 
there, while most of the regions of high predicted suitability where Arabidopsis is documented 348 
have positive similarity (MESS, Figure S2). 349 
 350 
  351 
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Figure 1. (A) Habitat suitability (green) under current climate conditions with thinned 352 
occurrences (n = 662) used in fitting shown as black circles and (B) limiting factors from the 353 
MaxEnt model fit to current climates. Regions far (>500 km) from known occurrence have a gray 354 
mask in (A). Regions of low suitability (less than 0.25) in (B) are marked with gray ‘x’ symbols. 355 
Equal Earth projection was used. Abbreviations in (B) as follows: precipitation of the driest 356 
quarter “Prec driest Q”, precipitation of the wettest quarter “Prec wettest Q”, precipitation 357 
seasonality “Prec seas”, mean temperature of the warmest quarter “Mean temp wrm Q”, mean 358 
temperature of the wettest quarter “Mean temp wettest Q”, temperature annual range “Temp 359 
ann range”, minimum temperature of the coldest month “min temp coldest month. 360 
A. 361 

 362 
 363 
 364 
 365 
 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
 374 
 375 
 376 
 377 
 378 
 379 

B. 380 
 381 
 382 
 383 
 384 
  385 
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The permutation importance of the model covariates across the entire native range revealed 386 
that the minimum temperature of the coldest month (PI = 40%) and the mean temperature of the 387 
warmest quarter (PI = 32%) were the two most important variables, suggesting winter cold 388 
stress and summer heat stress are most important in constraining Arabidopsis’s distribution 389 
(Table S1). The next most important variable was isothermality (PI =14%), as Arabidopsis tends 390 
to be found in regions with low isothermality (e.g. most temperate zones). 391 

To identify spatial variation in climate constraints, we also identified local limiting factors 392 
(Figure 1B). Across northern Eurasia, minimum temperature of the coldest month limited habitat 393 
suitability. Across the Mediterranean and tropical/subtropical regions, the temperature of the 394 
warmest quarter was limiting. Across Eastern Europe and Central Asia, winter cold was limiting 395 
adjacent to other regions where summer heat was limiting, highlighting the multiple stressors in 396 
this region.  397 

We hypothesized that for a given region, temporal fluctuations in local limiting factors 398 
would be associated with temporal variation in plant size in herbarium specimens. We found 399 
that years with warmer minimum winter temperatures were associated with significantly taller 400 
inflorescences from Turkey to central Asia (Figure S3). Concordantly, in much of this region the 401 
Maxent model indicated that minimum temperature of the coldest of the month was the most 402 
limiting factor (namely in the Caucuses and from Kazakhstan to northern India, Figure 1B). We 403 
also found that years with greater seasonality of precipitation were associated with shorter 404 
inflorescences in central Asia, but taller inflorescences in central Europe (Figure S3). Partly 405 
consistent, in the southern part of this central Asian region the MaxEnt model indicated 406 
precipitation seasonality was limiting (Figure 1B). Years with higher isothermality were positively 407 
associated with inflorescence height in Eastern Europe but this was not a limiting factor in this 408 
region (Figure S3). Other climate anomalies were not significantly associated with temporal 409 
variation in plant size. 410 
 411 
Q2. Declining fitness and stress escape life history in regions of low predicted habitat suitability 412 
As habitat suitability increased, so did the inflorescence height of individual plants in herbarium 413 
specimens (Pearson’s r = 0.11, p < 10-7; Spearman’s rho = 0.09, p < 10-5; n = 2053). The 414 
relationship with suitability was even stronger for maximum rosette leaf length (r = 0.23, p < 10-415 
16; rho = 0.24, p < 10-16; n = 1179, Figure 2), which was also more correlated with total fruit + 416 
flower number (Supplement), suggesting fecundity was greater in regions of high predicted 417 
suitability. We tested size-suitability relationships using GAMs with spatially varying suitability 418 
coefficients (but not including climate anomalies – distinct from the previous section Q1). We 419 
found a consistently positive relationship between suitability and size that was significant for 420 
rosette leaf length in western Europe and for inflorescence height across most of Eurasia (Figs 421 
S5 and S6). Unexpectedly, in these models where year of collection was considered primarily 422 
as a nuisance variable, plant size significantly declined over time in northwest Europe (Figs S5 423 
and S6; e.g. in Scandinavia, maximum rosette leaf length vs year, Spearman’s rho = -0.17).  424 
 425 
Figure 2. Predicted current habitat suitability compared with individual plant size (A & B) and 426 
genetic variation in a measure of life history (C). Size measures include inflorescence height (A, 427 
relationship with suitability: Pearson’s r = 0.11, Spearman’s rho = 0.09) and maximum rosette 428 
leaf length (B, r = 0.23, rho = 0.24) from herbarium specimens. Flowering time of natural 429 
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accessions (C, r = 0.21) was taken from published data on a growth chamber experiment at 430 
10ºC (Alonso-Blanco et al., 2016). Linear model fits are shown. N = 2053 for inflorescence 431 
height, N = 1179 for maximum rosette leaf length, and N=953 for flowering time. 432 
 433 

 434 
We compared habitat suitability with published data on genetic variation in flowering 435 

time. We found that flowering time at 10ºC and flowering time plasticity were significantly 436 
positively associated with suitability (r=0.21, p<10-11 and r=0.10, p=0.0021, respectively), and 437 
also for days to flower at 16 ºC (r=0.08, p=0.0166, Figures 2 & S7). In GAMs with spatially-438 
varying suitability coefficients, the suitability-flowering time pattern were largely consistent 439 
across Eurasia (Figure S8). The suitability-flowering time association was significant even when 440 
accounting for genomic similarity among accessions, suggesting selection associated with 441 
suitability could maintain geographic clines in flowering time. Specifically, linear mixed-effects 442 
models found a positive association for flowering time at 10ºC (p<10-6, n=953), and also at 443 
16ºC, the latter of which may have been obscured by population structure that was unaccounted 444 
for in the simple linear regression model (p<10-5, n=920). The suitability association was not 445 
significant for plasticity in flowering time when accounting for genomic similarity (p=0.38, n=920) 446 
(Tables S1-S3). Consistent with this potential obscuring of population genetic structure, we 447 
found that 10 ADMIXTURE genetic clusters in Arabidopsis (Alonso-Blanco et al., 2016) were 448 
significantly different in their habitat suitability (F(9,993)=201.6, p<10-16, Table S5, Figure S9).  449 

We scanned the genome for genes that showed allele frequency correlations with 450 
suitability. The most strongly associated SNP was in the putative promoter region (878 bp from 451 
the start) of ERF53 (AT2G20880), a transcription factor that regulates response to drought, salt, 452 
and heat (Figure S11) (Cheng et al., 2012; B. Li et al., 2019). This SNP showed a strong allele 453 
frequency cline from Europe to Asia, where the alternate allele was nearly fixed in accessions 454 
east of the Ural Mountains, which is a region of low estimated suitability (Fig S10). Furthermore, 455 
we found that this alternate SNP allele was associated with higher expression of ERF53 (Wilcox 456 
test, p = 0.0071) in published transcriptome data (Kawakatsu et al., 2016), suggesting a cis-457 
regulatory variant is locally adapted to low suitability parts of Asia. 458 

 459 
 460 
Q3. Using the native range model to predict outside the native range  461 
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Australia and New Zealand occurrences were largely in areas predicted to be highly suitable 462 
(Figure 3). By contrast, North America includes occurrences in highly suitable areas (Pacific 463 
Northwest) but many in low suitability areas (interior east, where summer heat was predicted 464 
limiting, Figure S12). The eastern US also has near zero similarity on the MESS map, 465 
suggesting a novel set of conditions compared to the native range (Figure S2). Similarly, the 466 
regions where Arabidopsis occurred in Korea and Japan were of lower suitability than in the 467 
native range, also with summer heat as the predicted limiting factor (Figure S12), suggesting 468 
Arabidopsis in eastern North America and East Asia inhabits climates with distinctly warm 469 
summers.  470 
 471 
Figure 3. Distribution of predicted habitat suitability (based on our native-range MaxEnt model, 472 
underlying map surfaces in green) for GBIF occurrences in various regions (black circles). We 473 
do not include a histogram for South America because there are too few occurrences. Equal 474 
Earth projection was used. 475 

 476 
We investigated whether non-native Arabidopsis occupy all available habitat in their 477 

regions or whether suitable habitat remains unoccupied. We found that locales 50-100 km from 478 
occurrences included many areas of high suitability in North America, suggesting suitable sites 479 
remain unoccupied (11.8% of grid cells in these 50-100 km regions had suitability > 0.6). In 480 
comparison there were fewer such sites in the native range (5.1% of these 50-100 km regions 481 
had suitability > 0.6). There were extensive areas of high suitability along the Pacific coast of 482 
North America to around 60ºN, but no occurrences north of 50º, which we confirmed with an 483 
expert botanist (pers comm. Matthew Carlson). The timing of the invasion is likely not a factor 484 
given that occurrences from near Vancouver date at least to 1939. This region has near zero 485 
similarity on the MESS map, potentially indicating that the native range model is not well 486 
constrained there (Figure S2). Similarly, the southern coast of Australia is highly suitable but 487 
Arabidopsis is apparently absent (31.9% of these 50-100 km regions with suitability > 0.8). 488 
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Records are restricted to the southeast and southwest (confirmed by botanists, Shelley James, 489 
Tim Entwistle, Neville Walsh pers. comm.), even though records date at least to 1959 in SE 490 
Australia. In South America there are a few Arabidopsis records from the Southern Cone, and it 491 
appears to be rare in the region (pers. comm. Diego Salariato), while apparently suitable 492 
environments occur throughout Patagonia and high elevation Andean sites that are apparently 493 
unoccupied (pers comm. Gwendolyn Peyre, Santiago Madriñán). Large areas of southern 494 
Australia and South America show positive similarity on the MESS map suggesting the model is 495 
well constrained in those regions. By contrast in Korea and Japan there are very few sites 496 
expected to be highly suitable that are not already occupied by Arabidopsis (4.9% of these 50-497 
100 km regions with suitability > 0.6). 498 
 499 
Q4. The distribution of Arabidopsis during the Last Glacial Maximum and in the future 500 
We projected suitability onto the climate at the LGM and found several putative refugia, where 501 
past environmental conditions could have supported Arabidopsis persistence. In particular, the 502 
Mediterranean/Caucuses/south Caspian Sea, much of sub-Sharan Africa > 1000 m (current) 503 
asl, and China and SE Asia appear as refugia (Figure 4). North Africa, the Atlantic European 504 
coast, and the islands of Sicily, Corsica, and Sardinia also appear as highly suitable potential 505 
refugia.  506 
 507 
  508 
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Figure 4. (A) Predicted distribution during the Last Glacial Maximum and (B) areas in black with 509 
suitability > 0.3 during both the LGM and current conditions as well as within 500 km of known 510 
current occurrences. Because of their greater level at the LGM, in (A) we masked the LGM 511 
Caspian and Aral Seas (including regions of high putative suitability) from the map (Prentice et 512 
al., 1993). Lake Victoria was left unmasked as it was likely very low during the LGM (Johnson et 513 
al., 1996). Equal Earth projection was used. 514 

 515 
 516 
We projected climate suitability for Arabidopsis in the year 2050. Some current high suitability 517 
regions will remain so, such as in Northern Europe. Nevertheless, we found poleward and up-518 
elevation shifts in regions of high suitability and retreats at lower latitudes and elevations. In the 519 
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native range, all African sites show declining suitability, as did most Mediterranean sites, 520 
highlighting vulnerability of these populations. By contrast, Arctic Europe, and the mountains of 521 
central Asia/Tibetan plateau show increased suitability, highlighting potential range expansions 522 
(Figure 5). 523 
 524 
Figure 5. Future predicted suitability for Arabidopsis (A), change in suitability from future 525 
compared with present (blue indicates improving suitability and red decreasing, B), regions of 526 
potential colonization (blue) continued occupancy (gray), and extinction (red) based on a 527 
threshold suitability of 0.25 for occupancy (C), and the standard deviation in suitability among 528 
the 5 tested climate models giving uncertainty (D). Equal Earth projection is used. RCP 4.5 529 
emissions scenario is shown, see Fig S13 for highly similar patterns under RCP 6.0. 530 

 531 
 532 
 533 
 534 
Discussion 535 
 536 
We used the model plant Arabidopsis in a case study of integrative climate biogeography of a 537 
species’ past, present, and future distributions. This species is key to a large body of plant 538 
biology research, and an in-depth study connecting its biogeography to genetic and phenotypic 539 
variation provides important context for the biology of Arabidopsis. The size of individual plants 540 
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in herbarium specimens, as well as genetic variation in flowering time, suggested that regions 541 
with lower predicted suitability harbored populations with reduced fitness and altered life history. 542 
The consistency between model predictions and individual variation provides partial model 543 
validation, bolstering our confidence in conclusions from model projections. Using these model 544 
projections, we identified new glacial refugia, and looking to the future, we found that genetically 545 
distinct lower latitude populations are most threatened by climate change.  546 
 547 
The current distribution of Arabidopsis and its limiting factors 548 
The fitted native-range model largely corresponded to occurrences and indicates Arabidopsis 549 
broadly distributed across Europe, moister regions of central and eastern Asia, and mountains 550 
across Africa. Our results advance beyond the most recent climate biogeographical study of 551 
Arabidopsis by Hoffmann (2002), who used monthly climate data (but notably no synthetic 552 
bioclimatic variables) from Leemans & Cramer (1991) mostly to qualitatively describe the 553 
regions occupied by Arabidopsis. Our study included populations in sub-Saharan Africa and 554 
Asia that were overlooked or considered non-native by Hoffmann (2002). We also included 555 
occurrences from regions apparently missed by Hoffmann (2002). Zou et al. (2017) more 556 
recently built models of Arabidopsis’s distribution using Eurasian populations and default 557 
MaxEnt settings, but did not include occurrences from Arabia, sub-Saharan Africa, and much of 558 
the Himalayas, Russia, and central Asia, and did not subsample occurrence to reduce bias. 559 
Likely as a result of these issues, the predictions of Zou et al. (2017) show a pronounced peak 560 
in suitability in Germany, which was densely sampled in the genomics studies used for 561 
occurrences by Zou et al. (2017), but predicted low suitability in much of the core European 562 
range and near zero suitability in sub-Saharan Africa, Arabia, and most of the Russian part of 563 
the species range.   564 
 The two dominant limiting factors in our model were winter cold (at lower latitudes and 565 
elevations) and summer heat (at higher latitudes and elevations). Winter cold is recognized to 566 
limit Arabidopsis performance, in particular winter cold appears to be a dominant force in local 567 
adaptation of Arabidopsis (Ågren & Schemske, 2012; Gienapp et al., 2017; Monroe et al., 568 
2016). In southern Europe, where summer heat was inferred to be limiting, Arabidopsis flowers 569 
in early spring (DeLeo et al., 2020) and thus summer heat is not usually directly experienced. In 570 
spring in these regions, warm temperatures might not reach consistently stressful levels (e.g. to 571 
induce fruit abortion) (Warner & Erwin, 2005) but it may be that moisture deficit driven by 572 
evaporative demand is directly limiting in late spring. Where suitability was highest for 573 
Arabidopsis, including the British Isles and a belt along the coast from France to Poland, 574 
temperature annual range was identified as limiting. However, interpreting limiting factors in an 575 
area of extremely high suitability (near one) is not meaningful given that suitability can scarcely 576 
be increased. 577 
 Despite inference of winter cold and summer heat as primarily limiting, these were only 578 
partly reflected by temporal fluctuations in individual plant performance from herbarium 579 
specimens. Winter cold and precipitation variability anomalies were significantly associated with 580 
specimen size in much of Asia, where these were also the MaxEnt modeled limiting factors from 581 
Iran and Kazakhstan to Afghanistan and the Himalayas, suggesting these climate factors truly 582 
limit Arabidopsis populations. However, there were discrepancies between individual 583 
performance and limiting factors, likely for several reasons. First, the size of specimens is an 584 
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imperfect fitness proxy. Usually only reproductive individuals are collected in herbaria, and 585 
individuals that would die before reproduction are excluded. Second, individuals are not 586 
randomly sampled from populations (Daru et al., 2018). Third, MaxEnt models face limitations 587 
due to misspecification, problems with occurrence data, or a mismatch between covariates and 588 
the true ecological factors limiting populations. Nonetheless, the limiting factors we identified 589 
here fit well with our knowledge of Arabidopsis ecophysiology and natural history. 590 
 591 
Habitat suitability, individual performance, and life history  592 
We found a decrease in plant size with decreasing habitat suitability across the range of 593 
Arabidopsis, suggesting that our model suitability captured a substantial part of environmental 594 
effects on individual fitness. Given the great variability in individual plant performance within 595 
populations obvious to casual observers, it is unsurprising that suitability explains a minority of 596 
total variation in individual size, leaving most variation unexplained (Figure 2). Furthermore, 597 
fecundity and fecundity response to treatments often have low heritability in many species 598 
(Price & Schluter, 1991), even in controlled experiments (Lasky et al., 2015). 599 

There have still been few studies of individual performance with the geographic scope 600 
that allows inference across a species range (Angert & Schemske, 2005; Csergő et al., 2017; 601 
Greiser et al., 2020; Samis & Eckert, 2007). In a synthesis of studies of 40 species, Lee-Yaw et 602 
al. (2016) found that, on average, individual performance and distribution-model inferred 603 
suitability decline beyond range margins. From 42 studies Lee-Yaw et al. (2021) found that 38% 604 
identified some predictive ability of distribution models for individual performance. However, 605 
many previous studies relied on intensive observations of a small number of populations, while 606 
our estimates of performance from thousands of herbarium specimens allowed us to cover most 607 
of the species range. The increased availability of digitized museum specimens with trait data 608 
indicates an opportunity to estimate performance across distributions for many species 609 
(Bontrager & Angert, 2015). 610 

We found that low suitability regions had earlier flowering genotypes. This relationship 611 
was noisy, with early flowering genotypes frequent in all levels of suitability, but later flowering 612 
genotypes lacking from the least suitable regions. The suitability-flowering time associations 613 
were significant when accounting for genome-wide similarity between accessions, suggesting 614 
they reflect selection associated with suitability. We interpret the direction of the relationship as 615 
indicating that when suitability is low, Arabidopsis employs stress escape strategies, i.e. a rapid 616 
life cycle during favorable conditions (Ludlow, 1989). Nevertheless, our findings suggest that 617 
low suitability central Asian populations have some stress tolerating mechanisms, as they 618 
harbor distinct allele at a transcription factor (ERF53, AT2G20880) that regulates response to 619 
abiotic stressors (Cheng et al., 2012; B. Li et al., 2019). The restriction of late flowering 620 
genotypes to more suitable regions is counterintuitive given physiological work showing these 621 
are more stress tolerant (Lovell et al., 2013). However, it may be true that more favorable 622 
conditions make possible a slow growing, slow flowering, freezing-tolerant winter annual 623 
strategy.  624 
 625 
The distribution of Arabidopsis outside its native range 626 
Arabidopsis has spread across the globe, largely to climates well-predicted by native range 627 
models, but to some regions predicted to be less suitable. Populations in western North 628 
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America, Australia, and New Zealand occur in climates well-predicted by the native range, 629 
suggesting stable realized niches following colonization. But in eastern North America, Korea, 630 
and Japan, these climates tend to be of low predicted suitability. Whether these are truly of 631 
lower suitability is unknown without performance data. It may be that Arabidopsis has colonized 632 
novel environments in these regions, or that the low suitability is only a model artefact. Studies 633 
often find limited transferability among native and introduced range models (Early & Sax, 2014; 634 
Liu et al., 2020).  635 

In southern Australia, the Southern Cone, and Alaska there are widespread seemingly 636 
suitable habitats where Arabidopsis is absent. The lack of more populations may partly owe to 637 
the strict quarantine on imports to Australia to avoid species invasions (Pheloung, 1999). 638 
Additionally, a lack of human disturbance in some regions (e.g. Alaska) may limit the potential 639 
for colonization given Arabidopsis often is found in disturbed sites. 640 
 641 
The distribution of Arabidopsis at the last glacial maximum 642 
Using population genetic patterns, Lee et al. (2017) hypothesized five glacial refugia for Eurasia 643 
to be in Iberia, Sicily, Balkans, the Levant, and Turkmenistan. These are consistent with our 644 
range reconstruction, although we do not find clear barriers of unsuitable climates that would 645 
have isolated Italian, Balkan, and Levant LGM populations. Furthermore, we note that 646 
Sardinia/Corsica appears as a refugium, and we note that narrow, highly suitable areas along 647 
the southern and eastern Caspian Sea could be the location of the hypothesized Turkmenistan 648 
refugium. Lee et al. (2017) further hypothesized that the bulk of current European genotypes 649 
derive from an expansion originating on the northwest coast of the Black Sea, where we found a 650 
strip of highly suitable conditions for Arabidopsis during the LGM. Additional genetic studies 651 
hypothesized a long history of existence in sub-Saharan Africa (Durvasula et al., 2017) and 652 
conditions during the LGM suggest the species could have been much more widespread than 653 
currently. Concordantly, Chala et al., (2017) used models of the distribution of Afroalpine habitat 654 
generally during the LGM to find expanded areas in East Africa compared to present day, 655 
though some locations such as Jebel Marra, Sudan were still surrounded by landscapes of 656 
unsuitable habitat even at the LGM. 657 

We found that the North Atlantic European coast was highly suitable (including areas 658 
currently inhabited) during the LGM, but current British Isle and French populations do not show 659 
genetic signatures of refugia (Lee et al., 2017). In both cases, local, distinct genotypes that 660 
survived the LGM may have gone extinct following expansion by the now dominant European 661 
genetic cluster (“non-relicts”) (Fulgione & Hancock, 2018; Lee et al., 2017). The previous 662 
Arabidopsis distribution modeling of the LGM (Zou et al., 2017) did not identify France and NE 663 
Iberia as highly suitable during the LGM and did not mask the Caspian Sea (thus overinflating 664 
that refugium). Zou et al. (2017) also did not identify the African refugia (except for a small 665 
region in SE Africa) and potential refugia in mountains of SE Asia.  666 
 667 
The future distribution of Arabidopsis  668 
Over the next decades climate conditions are predicted to worsen for Arabidopsis across large 669 
areas of its range. Central Spain and mountains in north and east Africa and Arabia may see 670 
the most worsening. These climate change effects may already be emerging: our intensive field 671 
search in the Dai Forest of Djibouti in 2018 failed to yield any Arabidopsis, despite the presence 672 
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of abundant (but likely more drought tolerant) annual mustards (Brassicaceae) Erucastrum 673 
arabicum and Sisymbrium erysimoides in otherwise appropriate habitat for Arabidopsis. 674 
Arabidopsis was collected in this juniper woodland in 1954 but recent decades have seen 675 
increased drought and tree mortality (Witsen, 2012), and the potential extinction of this isolated 676 
marginal Arabidopsis population. Given the unique genetic diversity of the model plant 677 
Arabidopsis housed in its lower latitude populations (Durvasula et al., 2017; Hsu et al., 2019; 678 
Lee et al., 2017; Zou et al., 2017) the conservation of these populations could benefit plant 679 
biology research.  680 

By contrast, conditions are expected to improve for the northernmost populations in 681 
Europe, suggesting a potential current colonization front of Arabidopsis, in addition to higher 682 
elevation locations in Tibet, the Caucuses, Ural, Alps, and Hengduan mountains adjacent to 683 
currently inhabited regions. Similar currently unoccupied higher elevations are available in many 684 
African mountains though these are usually small mountaintop areas and may be poorly 685 
characterized by CHELSA climate data (Karger et al., 2017). Future distribution models would 686 
benefit from improved environmental data for these high elevation tropical sites. 687 
 688 
Conclusion 689 
Species distribution models provide potentially powerful windows into past, present, and future 690 
macroecology, but they are rarely confronted with individual performance data. Here we showed 691 
that lower suitability habitats inferred from distribution models had smaller plants with distinct life 692 
history, suggesting a stress escape strategy. While the relationships were noisy it may still be 693 
remarkable that they emerge against the many microsite contributors to individual level variation 694 
in a habitat generalist annual plant. Arabidopsis populations are distributed across diverse 695 
climates, but genetically distinct populations in lower latitudes that are potentially valuable for 696 
research are also highly threatened by anthropogenic climate change in the next few decades. 697 
We believe that combining distribution models with individual data on traits and genotypes 698 
across a species range can be a useful approach to validate distribution models and to dissect 699 
the organismal mechanisms underlying distributions. 700 
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