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Abstract 
 
Despite insights gained by bulk DNA sequencing of cancer it remains challenging to resolve the 

admixture of normal and tumor cells, and/or of distinct tumor subclones; high throughput single-

cell DNA sequencing circumvents these and brings cancer genomic studies to higher resolution. 

However, its application has been limited to liquid tumors or a small batch of solid tumors, 

mainly because of the lack of a scalable workflow to process solid tumor samples. Here we 

optimized a highly automated nuclei extraction workflow that achieved fast and reliable targeted 

single-nucleus DNA library preparation of 38 samples from 16 pancreatic adenocarcinoma 

(PDAC) patients, with an average library yield per sample of 2867 single nuclei. We demonstrate 

that this workflow not only performs well using low cellularity or low tumor purity samples but 

reveals novel genomic evolution patterns of PDAC as well. 
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Introduction 

 

The field of single-cell genomics, since its advent about 10 years ago1,2, has been striving to 

increase the throughput and resolution of cancer research. Single-cell DNA sequencing (scDNA-

seq) offers many advantages over traditional “bulk” DNA-seq. Most importantly, it circumvents 

the issue of “mixed signals”3, i.e. the admixture of normal and tumor cells, and/or of distinct 

tumor subclones. Solving the former allows for much higher sensitivity in calling rare genetic 

events, which opens opportunities to validate and discover cancer-related somatic mutations. 

Solving the latter allows for more confident identification of different clonal lineages within a 

single tumor, which could inform understanding cancer evolution as well as targeted treatment 

decisions. 

 

Bulk sequencing of pancreatic ductal adenocarcinoma (PDAC) is particularly problematic 

because of the high stromal content and low tumor cellularity which further lowers variant 

calling sensitivity4–6. Present solutions include multi-regional sampling to increase sensitivity for 

variants with low allele frequency7,8 or laser-capture tissue microdissection to enrich for tumor 

content9,10, but they are laborious and not amenable to high-throughput. With targeted single-cell 

sequencing, because each cell is partitioned and PCR amplified individually, high-quality 

genomic data from a low percentage of tumor cells could potentially be extracted from the 

background noise, making it valuable for genomic studies of PDAC. 

 

To date, several high-throughput single cell partitioning systems have been developed, including 

microfluidic platforms, nanowells and microdroplets, which have resulted in several reliable 
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single-cell DNA library preparation technologies11. Tapestri12,13, as a microdroplet-based, 

targeted sequencing approach, allows for high cell-throughput (up to 10,000 cells per sample) 

and high coverage depth (>80X) of genomic sites of interest, and is therefore suited for high-

resolution studies of key genetic variants within diseases. However, its use so far has been 

limited to cell lines and liquid primary tumor samples, or a small batch of solid tumor tissues at a 

time14–20. While methods to quickly and effectively dissociate clean single nuclei suspensions 

from solid tumor tissues have been extensively tested for single-nucleus RNA-seq (snRNA-

seq)21, they have not been applied for single-nucleus DNA-seq (snDNA-seq) usage. 

 

We optimized a snap frozen tissue single nuclei extraction workflow that yielded high 

throughput in generating the resulting snDNA libraries. Importantly, the workflow takes < 30 

minutes per sample with minimal manual labor, thus ideal for processing large batches of solid 

tumor samples. Coupling the snDNA data with bulk whole exome sequencing (WES) or whole 

genome sequencing (WGS) data generated on the same samples, we were able to uncover novel, 

single-cell clonal relationships among key driver mutations. 
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Results 

 

Optimization of workflow to extract and store single nuclei from snap frozen tissue 

 

We recognized the need for a nuclei extraction workflow that has reduced hands-on operation, 

sample resuspension times, and total processing time, all of which hinder scalability and could 

potentially cause between-sample inconsistency in quality (clumping, debris) and final yields. 

Thus, we used an automated nuclei extraction machine22 for homogenizing frozen tissues into 

single nuclei suspensions. The nuclei were then passed through a sucrose gradient to strip away 

debris before microdroplet encapsulation. The entire procedure takes ~30 minutes per sample 

and requires a single step of pelleting and resuspension (Figure 1a; Methods). Although the 

resulting nuclei clumping % and nuclei concentration varied across samples of different starting 

sizes, cellularity and morphology, most primary pancreas tumor samples of volumes ≥ 8 mm3, 

regardless of collection method (resection vs autopsy), resulted in final nuclei suspensions with 

≤ 10% clumping and >2,000 nuclei/ul suspended in > 35ul buffer as input for Tapestri (Figure 

1b). Exceptions were samples with extremely high fat/stroma content or random technical errors, 

which either limited input nuclei concentration or increased clumping % as observed by 

microscopy. 

 

With this protocol, we prepared 38 snDNA libraries from 34 biologically distinct snap frozen 

PDAC samples from 16 patients. These samples were purposely selected to represent primary 

tumors and metastases, different tissue collection methods, and with varying tumor purities 

(Figure 1c; Supplementary Table 1). Each was analyzed with a custom 186-amplicon panel 
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covering 93 frequently mutated genes in PDAC (Supplementary Table 2). The mean library 

yield of single nuclei with sufficient reads (Methods) was 2867 complete nuclei (standard 

deviation = 1672.67). For context, two previous studies17,19 using primary acute myeloid 

leukemia (AML) cell suspensions for Tapestri resulted in on average 5072 complete cells/sample 

(146 samples) and 6102 complete cells/sample (154 samples) in the final libraries. 

 

We next determined the extent to which extracted single nuclei could be stored in suspension 

without affecting the yield. For two different samples (PA04-2 and PA04-3) we cryopreserved a 

portion of the extracted nuclei (Methods) then thawed these frozen nuclei suspensions after 3 

weeks and 14 weeks respectively as input for snDNA-seq. This allowed us to compare both the 

nuclei morphology and the resulting snDNA-seq results between freshly extracted and 

cryopreserved nuclei of the same biological samples. We found that the freeze-thaw-

resuspension process had >80% recovery rate and minimal change in nuclei morphology and 

clumping % (Supplementary Figure 1a-b). Moreover, the final library yield did not decrease 

when prepared with frozen nuclei; on the contrary, frozen nuclei gave slightly higher yield than 

fresh nuclei for both samples (Supplementary Figure 1c). Frozen nuclei generated similar 

quality results as freshly extracted nuclei as measured by sharing the majority of high-quality 

variants (Methods) (Supplementary Figure 1d, e), and having largely linearly correlated 

pseudobulk VAF for all shared variants (Figure 1d; Supplementary Figure 1f). For both 

samples, fresh and frozen nuclei revealed highly concordant genotypes as well (Figure 1e; 

Supplementary Figure 1g). We also noted that for sample PA04-3 the frozen nuclei snDNA-seq 

result revealed a subclone not present in the fresh counterpart (Supplemental Figure 1g); this 

subclone was identified in both replicates of PA04-2, that was taken from a different region of 
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the same liver metastasis. Such a difference could be attributed to different numbers of nuclei in 

the snDNA library (1371 vs. 635) between the frozen and fresh replicate of PA04-3, or simply 

technical variation.  

 

While the multiplet rate inherent to the Tapestri scDNA library preparation method has been 

estimated to be 5-8% by its manufacturer23, we sought to estimate the multiplet rate associated 

with our entire workflow when using snap frozen tissue. We selected two samples from two 

distinct patients, each with a tumor population characterized by a distinct driver mutation (TP53 

p.C207Y vs. ARID1A splice) that was orthogonally validated by bulk WES as well as 

independent Tapestri runs. Similar sized pieces of each tissue sample were mixed together and 

subjected to the entire nuclei extraction workflow followed by scDNA library generation. Next, 

we assigned each cell to the two originating tumors based on its genotype for the two driver 

mutations. The number of barcodes that carried somatic variants from both tumors are as shown 

in the Venn Diagrams (Figure 1f).  Using a mixture model (Supplementary Note) we derived 

the doublet rate to be 3-5%.  

 

Validation against bulk sequencing results 

 

To validate the robustness of our method for detection of single-nucleotide variants (SNVs) 

(Supplemental Figure 2), we selected 18 samples previously used for bulk WES sequencing 

(Methods). When limiting to variants present within the targeted panel, a strong concordance 

was noted between unfiltered coding variants called from frozen nuclei versus those called by 

WES (Figure 2a; Supplementary Figure 3a). When we next limited to filtered, high quality 
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variants (Methods) there was virtual complete concordance (Figure 2b). Moreover, despite 

technical differences inherent to WES versus Tapestri (input tissue slice, DNA library prep 

technology and sequencing depths) the bulk WES VAFs and snDNA-seq pseudobulk VAFs for 

all shared variants, except for those with ≤ 2 alternative reads in bulk WES results, were 

linearly correlated for the majority of samples (Supplementary Figure 3b-d). 

 

We next sought to determine if our scDNA-seq approach can detect subclonal copy number 

variations (CNVs) that may be difficult to call with low-depth/low-coverage bulk sequencing 

data.  For this analysis we used sample PA02-1 with known homozygous deletions of SMAD4 

and CDKN2A24. By calculating the single-cell per-amplicon (~200bp) ploidy based on read 

counts (Methods), we were able to identify both homozygous deletions (ploidy~0) in the 

neoplastic population despite it comprising 28.5% of all cells (Figure 2c, d; Supplementary 

Figure 4a-d).  

 

scDNA-seq is applicable to low-cellularity, low-tumor content samples 

 

Low cellularity and tumor content in certain clinical settings, such as with fine needle 

aspirations, core needle biopsies or for PDAC in general25, represent major hurdles for bulk-

sequencing and hinder the quality of resulting genomic information. We therefore tested our 

workflow’s performance in such settings. 

 

We identified one sample PA04-1 of a primary pancreas tumor with both low tumor cellularity 

(neoplastic cells occupying <50% area of tissue section) and low overall cellularity due to a high 
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fat content (Figure 3a).  Despite use of a tissue sample of similar size (~8mm3) as others studied, 

we extracted a total of 30,000 nuclei, much lower than the optimal number of 200,000 as input 

for Tapestri. Ultimately, we captured only 479 nuclei in the final library, approximately 6-fold 

lower than average. Nonetheless, both driver gene variants (KRAS p.G12V, SMAD4 p.A39T) 

identified by bulk WES of this same sample were identified with high quality read data 

(Supplementary Figure 5a, b) and indicated 113 likely tumor cells (23.6% of all) captured for 

this sample based on the presence of a clonal KRAS variant (Figure 3b, c).  

With a second sample of extremely low tumor purity as revealed by pathology review (Figure 

3d) and bulk sequencing (Figure 3e), Tapestri data identified 40 out of 3866 nuclei (1%) of this 

sample carrying at least one of KRAS p.G12V, TP53 p.R186H, or SMAD4 p.508D (Figure 3f, g). 

Again, the driver variants were genotyped with high quality read data (Supplementary Figure 

5c, d). Intriguingly, the single-nucleus colocalization of the three main drivers violated the 

assumption of the infinite sites model: more than half of the nuclei carry the KRAS mutation and 

among them, a subset carry SMAD4 and TP53, yet a significant number of nuclei were wildtype 

for KRAS yet mutated for SMAD4/TP53. If it were assumed that KRAS were mutated first and 

SMAD4 and TP53 mutations followed, a likely explanation would be that a subset of tumor cells 

lost their mutant KRAS allele through loss of heterozygosity (LOH). Although allelic dropout 

(ADO) inherent to the library preparation method might also factor in, similar patterns observed 

in snDNA-seq results of two other samples of this case (M12-2, M12-3) seemed to support the 

abovementioned theory (Supplementary Figure 5e, f). However, more rigorous statistical 

modeling is required for validation. 
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snDNA-seq identified two mutually exclusive clones bearing two different KRAS mutations in 

the same PDAC patient 

 

For a PDAC surgical resection case PR02, based on both MSK-IMPACT sequencing (high-depth 

targeted sequencing) and bulk WES, we identified the major tumor clone carry the hotspot KRAS 

p.G12D mutation; hints of a minor KRAS p.G12V clone existed but were on the borderline of the 

technologies’ detection sensitivity (Figure 4a). Single-nucleus genotype heatmaps and Venn 

diagrams (Figure 4b-e) of multiregional samples PR02-3 and PR02-4 suggested colocalization 

of the major KRAS p.G12D with another likely driver TP53 p.C203Y, which signified the major 

tumor clone in this sample; the minor KRAS p.G12V -bearing clone was mutually exclusive with 

the above two drivers and did not colocalize with any known driver gene mutation at similar 

clonal frequency. In PR02-4, while the major clone consisted of 221 cells (6.12% of all cells), 

the minor clone was only 12 cells (0.33% of all cells, Figure 4e), further buttressing the 

technology’s sensitivity. The minor KRAS p.G12V clone in both samples was substantiated with 

high quality read data (Supplementary Figure 6a-b); digital droplet PCR (ddPCR) also proved 

the presence of the KRAS p.G12V (Supplementary Figure 6c). Pathology review did not 

identify any apparent secondary neoplastic or metaplastic structure (fig 4f). This observation 

aligns with several other studies6,26 in suggesting that multiple KRAS genetic variants may 

coexist in one patient’s PDAC precursor/tumor.  
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snDNA-seq identified complex clonal structures in a KRAS-WT PDAC  

 

The KRAS gene is mutated in >90% of all PDAC’s and signifies the phenotype of MAPK-ERK 

pathway hyperactivation25. By bulk exome sequencing of three spatially distinct samples of 

resected PDAC PR01, we noted that this case was wild type for KRAS yet contained an FGFR1 

p.T50K mutation as well as two distinct TGFBR2 mutations (p.M450I, p.A451G) on the same 

allele. Pathology review of the samples’ H&E slides identified two well-isolated populations of 

PDAC cells with distinct histological features. A population of PDAC cells characterized as 

dilated glands with extensive stroma was exclusively present in sample PR01-1 (Figure 5a, left), 

while another population characterized as small nests of tumor cells was exclusively present in 

PR01-2 (Figure 5a, right). Sample PR01-3 had both populations present in the same tissue 

section. We performed snDNA-seq of all 3 samples and discovered that the FGFR1 and 

TGFBR2 mutations corresponded to two mutually exclusive clones: sample PR01-1 had only the 

TGFBR2 double-mutated clone (Supplementary Figure 7a), PR01-2 only the FGFR1 mutated 

(Supplementary Figure 7b), while PR01-3 contained both clones that were mutually exclusive 

at the single-cell level (Figure 5b-c, Supplementary Figure 7c). To determine the extent to 

which these two clones were unique neoplasms versus subclones that shared a common ancestor, 

we included all other high-quality coding & non-germline variants to define a putative normal 

cell population and computed the median per-amplicon ploidy within each clone (Methods).  

This revealed many shared CNVs between the two clones that included allelic losses of ARID1A, 

TGFBR, FGFR1 and SMAD4 as well as a homozygous deletion of CDKN2A (Figure 5d, 

Supplementary Figure 7c). Collectively these data suggest that large-scale copy number 

aberrations preceded the formation of the two distinct SNV clones. 
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snDNA-seq revealed step-wise evolution during PDAC metastasis 

 

Through snDNA-seq of three samples of PA04 (one primary tumor sample, two liver metastases) 

we identified sequential steps leading to TGF-β inactivation in association with cancer 

progression. Specifically, we identified five distinct subclones based on the genotypes of two 

genes, KRAS and SMAD4 (Figure 6a, figure legend).  These subclones were present in different 

proportions in each sample. Clone 1 (indicated by red) was characterized by a heterozygous 

KRAS p.G12V mutation, whereas clone 2 (indicated by orange) contained a SMAD4 p.A39T 

mutation in addition to the KRAS mutation (Figure 6c,d,  Supplementary Figure 8a,b). Clone 3 

(light green) contained a greater degree of allelic imbalance for mutant KRAS in part due to loss 

of the wild type KRAS allele, best appreciated in the liver metastases (Figure 6b-e; 

Supplementary Figure 8b,c). Moreover, in PA04-3 specifically (Figure 6d), clone 3 contains 

two populations: one heterozygous for SMAD4 p.A39T and one homozygous for this variant in 

association with allelic loss of part of the gene, suggesting that the missense mutation preceded 

the loss of heterozygosity event. Clone 4 (dark green) is characterized by a second mutation in 

SMAD4 at p.D52Rfs*2, and clone 5 (dark blue) illustrates complete loss of both SMAD4 

mutations and hence complete homozygous deletion of the gene (Figure 6b,c,e; Supplementary 

Figure 8b).  

 

Based on these observations, we conclude that four of five clones were pre-existent in the 

primary site and disseminated to the secondary site, either directly from the primary tumor or by 

way of another unsampled secondary site. It is ambiguous whether the fifth clone with 

homozygous deletion of most SMAD4 exon arose in the primary site or not, since it was not 
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present in the one primary sample we sequenced. While differences in clone proportions may 

indicate selection for specific genotypes (i.e. KRAS amplification, SMAD4 deletion) we cannot 

rule out stochastic events during sample preparation that may have enriched for some nuclei over 

others (Figure 7). Perhaps most notable is the finding of five distinct events affecting SMAD4: 

p.A39T mutation, LOH, partial homozygous deletion, D52Rfs*2 mutation and finally 

homozygous deletion of the remaining exonic region containing these two mutations. This 

finding is in keeping with inactivation of cell-intrinsic TGFβ signaling as a critical aspect of 

PDAC metastasis27–30, as well as ongoing clonal selection for survival benefits25,31. 
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Discussion 

 

In this study, we used two commercially available products to assemble a highly automated 

workflow to generate Tapestri snDNA-seq libraries from snap frozen patient tissues. The 

workflow is fast, efficient and can be applicable for high-throughput clinical and translational 

research. Additionally, we recognized the value of storing excess single-nuclei suspensions for 

later use and verified a corresponding workflow that was free from issues such as nuclei quantity 

loss, nuclear envelope damage, or nuclei clumping. This workflow further illustrates the ability 

to maintain information pertaining to relative VAFs compared to matched WES data. 

Furthermore, while our custom panel was not designed for identification of CNVs, specifically 

homozygous deletions, we demonstrate the proof of principle that these events could be 

identified with confidence. These encouraging results, combined with the added information 

gleaned pertaining to co-occurring and mutually exclusive genetic events, suggests this 

technology and workflow is ideally suited to settings in which samples sizes are small or limited.  

 

A caveat of this snDNA-seq technology is that albeit its high cell-throughput, it is a targeted 

approach that focuses on a pre-designed panel of genes which might be insufficient for certain 

research questions that require unbiased study of the cancer exome/genome32–35. This also 

implies a general challenge of single-cell research: because the total library size is limited by 

sequencing cost and data processing capacities, there is always a trade-off between the total cell-

throughput and the amount of information one can extract from each single cell.  Another caveat, 

in this instance related to our computational analysis, is that the current variant calling pipeline 

for Tapestri applied GATK HaplotypeCaller and enabled default read downsampling which 
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might be suboptimal for such high-depth single-cell data in a cancer setting.  We did not apply 

matched normal/panel of normal (PON)-aided filtering in our pipeline; a benefit of this approach 

is that it enabled us to see many germline variants that can be used for quality control or 

phylogeny modeling, although this benefit is balanced by outputs containing a large number of 

artifacts. Ultimately, to enable novel somatic variant discovery a more robust variant calling 

pipeline is needed to adapt to the noise profiles particular to this PCR-based high-throughput 

single-cell DNA sequencing technology.  

 

The field of single-cell transcriptomics began earlier than single cell genomics, and 

accompanying analysis methods have been flourishing in the past 5 years36,37. Single-cell 

transcriptome-oriented methods, such as clustering or gene-set enrichment analysis, are generally 

not optimal for single-cell genomic data, because the cell-cell difference for the latter is minimal 

in comparison, often only on a handful of genetic mutations. The best method would be to rely 

on the ancestor-descendent relationship between every pair of cells’ genomic sequence and build 

single-cell phylogenies. Several models for the evolution of SNVs in cancer have been 

developed to date38–44, but only two43,44 have been constructed to account for the frequent, 

complex aneuploidy in cancer, one of which is suited for the high throughput and depth of the 

dataset presented in this paper44. From the combined SNV and CNV data of case PR01's 

multiregional samples (Supplementary Figure 7a-c), we could already see many complex 

clonal structures than could not be defined by driver SNV clones alone; there was apparent large-

scale aneuploidy that was ancestral to the driver SNVs as well as focal loss of genomic segments 

in descent cells. From analyzing multiregional autopsy samples of case PA04, we also surmise 

that manual investigation of subclonal structure based on driver genes could easily fall short in 
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uncovering more granular evolution patterns. Efficient methods to analyze such datasets, 

potentially leveraging matched bulk sequencing data for greater coverage of the genome, need to 

be developed and tested in order to fully unleash the power of single-cell genomic studies on 

multiregional samples.  
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Data availability 

Sequence data have been deposited at the European Genomephenome Archive (EGA), which is 

hosted by the European Bioinformatics Institute and the Centre for Genomic Regulation, under 

accession number EGAS00001006024. Further information about EGA can be found at 

https://ega-archive.org and “The European Genomephenome Archive of human data consented 

for biomedical research” (http://www.nature.com/ng/journal/v47/n7/full/ng.3312.html). All data 

supporting the findings of this study are in the process of uploading to EGA to be available upon 

publication. 
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Methods 

Ethics statement 

Use of samples used in this study was approved by IRB review at Memorial Sloan Kettering 

Cancer Center. 

 

Patient sample collection and preprocessing 

Patient samples used in this study mainly consist of two categories- multiregionally sampled 

surgical resection of primary pancreatic cancer, and multiregionally sampled autopsy of 

metastatic pancreatic cancer. Detailed patient, sample information is summarized in 

Supplementary Table 1. 

 

For multiregional sampled surgical resections: treatment naïve patients with tumors ≥2cm on 

cross-sectional imaging were identified preoperatively. A single cross-sectional piece of tumor 

was sampled sequentially using a cartesian coordinate system with 0.6cm x 0.6cm grid, with 3 to 

5 samples obtained from each tumor. Adjacent normal pancreas or duodenum was also collected. 

All samples were stored at -80 degrees Celsius until use. 

 

For multiregional sampled autopsy: Tissues from three patients were used. All patients had a 

premortem diagnosis of PDAC based on pathological review of resected biopsy material and/or 

radiographic and biomarker studies.  

 

Tissue sections were cut from tissue blocks embedded in optimal cutting temperature (OCT) 

compound, stained with hematoxylin and eosin (H&E) and reviewed by a gastrointestinal 
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pathologist (S.U.) to estimate total cellularity, tumor purity and tissue quality. Normal samples 

were reviewed to confirm that no contaminating cancer cells were present.  

 

Bulk WES, WGS library preparation, sequencing and variant calling 

Genomic DNA was extracted from each tissue using the phenol-chloroform extraction protocol 

or QIAamp DNA Mini Kits (Qiagen). WGS, WES and alignment were performed by the 

Integrated Genomics Operation and the Bioinformatics Core at Memorial Sloan Kettering 

Cancer (New York, NY). Briefly, an Illumina HiSeq 2000, HiSeq 2500, HiSeq 4000 or NovaSeq 

6000 platform was used to target sequencing coverages of >60× for WGS samples and >150× for 

WES samples.  

 

Sequencing reads were analyzed in silico to assess quality, coverage, as well as alignment to the 

human reference genome (hg19) using BWA. After read de-duplication, base quality 

recalibration and multiple sequence realignment were completed with the PICARD Suite and 

GATK v.3.1; somatic single-nucleotide variants and insertion–deletion mutations were detected 

using Mutect v.1.1.6 and HaplotypeCaller v.2.4. Such a process generates the “filtered” variant 

list for every sample. Then, all variants of all samples of the same sequencing cohort were 

pooled as a single list. Each sample’s BAM file were used to compute “fillout” values (total 

depth, reference allele counts, alternative allele counts) for each variant in the pooled list. This 

process aimed to rescue variants that were detected with high confidence in multiregional sample 

#1 but with low confidence in multiregional sample #2 of the same patient; the output 

corresponded to the “unfiltered” variant list. 
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Nuclei extraction from frozen tissue, counting, QC, sorting and cryopreservation 

Single nuclei from OCT-embedded snap frozen primary tissue samples were extracted using the 

Singulator 100 machine (S2 Genomics) with its extended nuclei dissociation protocol.	After 

extraction, nuclei solution was centrifuged at 800g for 5 minutes in a swing bucket with a 

reduced braking in a 0.25M Nuclei PURE Sucrose solution (Sigma-Aldrich) to filter out debris. 

 

Nuclei were stained with Trypan blue and manually inspected under a brightfield microscope for 

clumping%, which was estimated as the number of clumped particles out of all single particles 

within one field of view. Nuclei concentration was estimated by DAPI staining on a Countess II 

FL automated cell counter. Clumping% and nuclei concentration were both measured ≥ 2 times 

for each sample. A final concentration of 4000 nuclei/ul suspended in 50ul Mission Bio cell 

buffer was targeted per sample prepared. 

 

After up to 200,000 nuclei were taken for Tapestri library preparation, the remaining nuclei were 

resuspended in Sigma Aldrich Nuclei PURE storage buffer and immediately frozen on dry ice, 

before being transferred to -80C freezer for long-term storage. If needed, nuclei were thawed on 

ice until the solution was clear, and centrifuged with the same settings as described above for 

pelleting and buffer exchange. 

 

Single-nuclei library preparation and sequencing 

Nuclei were suspended in Mission Bio cell buffer at a maximum concentration of 4000 nuclei/ul, 

encapsulated in Tapestri microfluidics cartridge lysed and barcoded. Barcoded samples were 

then put through targeted PCR amplification with a custom 186-amplicon panel covering 
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important PDAC mutational hotspots in our sample cohort (Supplementary Table 2). PCR 

products were removed from individual droplets, purified with Ampure XP beads and used as 

templates for PCR to incorporate Illumina i5/i7 indices. PCR products were purified again, 

quantified with an Agilent Bioanlyzer for quality control, and sequenced on an Illumina 

NovaSeq. 

 

Single-nuclei DNA library quality control, cell-calling and variant calling  

FASTQ files for single-nuclei DNA libraries were processed through Mission Bio’s Tapestri 

pipeline with default parameters. Briefly, it trims adaptor sequences, aligns reads to the hg19 

genome (UCSC), assigns reads to cell barcodes. The CellFinder module then filtered for 

barcodes corresponding to “complete cells/nucleus” based on total read completeness (>8 * 

number of amplicons) and per-amplicon read completeness (>80% data completeness for 

working amplicons, which are defined as amplicons with > 0.2*mean of all amplicon reads per 

qualified barcode). It next used GATK HaplotypeCaller to call variants individually on each cell, 

and then GATK GenotypeGVCFs to jointly genotype all cells using genotype likelihoods from 

the previous step. The unfiltered VCF was parsed into an HDF5 file containing single-cell 

variant and per-amplicon read count matrices compatible with downstream analysis. 

 

Single-cell genotyping and cell-variant pair filtering 

The HDF5 file output from above was analyzed mainly by Mission Bio’s python-based analysis 

package Mosaic, with a modified genotyping and variant filtering module. As shown in 

Supplementary Figure 1, with a single-cell variant call matrix, we started by assigning a 

genotype to each cell-variant pair. First, we defined the minimum depth at 5 reads 
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and any variant in any cell with depth below the threshold in a cell would be assigned as 

“missing”. 

Then, we used cutoffs: 

 

𝑉𝐴𝐹!" 	~	[0, 20]	

𝑉𝐴𝐹#$" 	~	(20, 80]	

𝑉𝐴𝐹#%&	~	(80, 100]	

	

to assign each variant’s genotype (WT- wildtype; HET- heterozygously mutated; HOM- 

homozygously mutated) in each cell, thus allowing 20% of reads of a barcode to be false 

positives potentially caused by barcode contamination.  

 

Finally, we set the threshold for the alternative (mutant) read count to 3 reads to convert low-

quality heterozygous calls back to wildtype to arrive at the final cell-variant genotype matrix. 

 

For the sake of comparing the same sample under different conditions, we computed a list of 

high-quality variants for each library as follows: we first discarded variants that have “missing” 

genotype in more than 75% cells (while whitelisting certain genes that are known to be prone to 

homozygous deletion in PDAC, such as SMAD4, CDKN2A). Through inspecting the 

distributions of cellular prevalence of variants across different read depths and total cell 

numbers, we determined that a mutational prevalence of 0.5% is a feasible and effective cutoff to 

filter out most technical artifacts. Any variant mutated in more than 0.5% of all cells was added 
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to the high-quality variant list. Worth mentioning is we still observed obvious artifacts in these 

final lists, which need to be addressed with more rigorous filtering in further studies. 

 

Doublet model and calculation 

Please see attached Supplementary Document. 

 

Single-cell per-amplicon ploidy calculation 

The ploidy calculation was mainly based on Mission Bio’s Mosaic package. The per-amplicon 

read counts were normalized first within the same cell across different amplicons by mean read 

depth, and then within the same amplicon across different cells by median read depth. Note the 

median read depth across different cells only considered good-quality cells, which are defined as 

those with at least 1/10 number of reads as that of the cell with the 10th rank in terms of read 

count. 

 

Then the per-amplicon ploidy was calculated by setting a group of cells as diploid baseline based 

on a priori knowledge (e.g. KRAS mutational status) and taking the ratio of every other cell’s 

per-amplicon read count against that group’s per-amplicon median read count. 

 

To test the robustness of our ploidy calculation, we picked one sample with known KRAS 

mutation and cancer-related aneuploidy based on bulk sequencing and validated with DNA 

microarray. We started by separating a scDNA-seq library into two groups- KRAS-mutated and 

KRAS-WT, with the latter assumed as mostly normal cells. Then we divided the normal cell 

population randomly into 3 groups (norm_a, norm_b, norm_c), used one group (norm_a) as 
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diploid baseline and calculated other groups’ ploidy against it. As shown in the Supplementary 

Figure 3, the two other putative normal cell groups had their median per-amplicon ploidy 

aligning close to 2, which validates the diploid-defining rule; the KRAS-mutated group had 

apparent aneuploidy across most amplicons and CDKN2A and SMAD4 loss, which validated our 

ploidy calculation. 

 

For case PR01, because there was not an a priori clonal oncogenic driver such as a KRAS variant 

to be reliably used to determine a diploid population, we used 7 (including 2 TGFBR2 mutation 2 

bp apart) variants pre-identified by bulk WES to set up a rule: a cell with “WT” genotype for all 

7 variants can be called putative normal and be used as diploid baseline. 
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Figure 1: Frozen tissue single nuclei extraction workflow for snDNA-seq 
a. Overview of frozen sample single nuclei extraction workflow for Tapestri snDNA-seq. b. Representative 
microscopic images of extracted single nuclei, stained with Trypan blue (brightfield, BF), DAPI (fluorescence, FL). 
c. Technical and genetic profile of each biologically distinct sample. A total of 38 samples were processed, 34 of 
which were biologically distinct samples from 16 unique patients. Genetic profiles were based on bulk 
sequencing. d. Pseudobulk (p-bulk) VAF comparison of all 160 shared variants between libraries prepared with 
fresh vs frozen (3 weeks) nuclei of sample PA04-2. Key drivers preidentified by bulk WES in this case are 
highlighted; regression line with 90% confidence interval is drawn. e. Single-cell genotype heatmap of snDNA-
seq libraries generated by fresh vs frozen nuclei of sample PR04-2. Each row represents a bulk data-validated 
driver variant of this case, while each column represents a single nucleus in the library. The nuclei were sorted 
based on KRAS variant’s VAF in ascending order from left to right. f. Venn diagrams showing colocalization of 
genotypes belonging to two separate tumor cell populations in one snDNA-seq library (two replicates shown); the 
cells carrying both genotypes were identified as doublets. Nuclei suspension extracted from two tumor samples 
from different patients were mixed and subject to snDNA-seq. The two distinct tumor populations were identified 
by genotype for their respective driver variants TP53 p.C207Y and ARID1A splice.  

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.06.483206doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.06.483206


 31 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: snDNA-seq was able to capture SNV and CNV pre-identified by bulk-sequencing with high 
sensitivity 
a. For 18 samples of the same bulk WES sequencing cohort, histogram showing the number of unfiltered 
(Methods), coding variants called by bulk (blue) and among them, the number detected by snDNA-seq (orange). 
b. For the same samples, histogram showing the number of filtered coding variants called by bulk (dark red) and 
among them, the number detected by snDNA-seq (light red). c-d. Single-cell per-amplicon ploidy heatmap of 
select amplicons covering chromosomes 9 (c) and 18 (d) of sample PA02-1. Each row represents one cell while 
each column is one amplicon. Cells are divided into KRAS mutated group (blue) and 3 normal groups (red, 
yellow, green) (Methods) and hierarchically clustered within group. The amplicons spanning CDKN2A and 
SMAD4 genes are outlined in red. 
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Figure 3: Tapestri snDNA-seq’s performance in limiting settings 
a. Representative Hematoxylin and eosin (H&E) stained histology image of sample PA04-1, a sample of 
extremely low cellularity due to high fat content. b. Single-cell genotype heatmap of sample PA04-1. A total of 
479 captured single nuclei were sorted based on KRAS variant allele frequency (VAF) in ascending order from 
left to right. c. Single-cell genotype heatmap of sample PA04-1, zoomed in on 113 putative tumor cells, defined 
by the presence of KRAS p.G12V/SMAD4 p.39T mutation. d. Representative H&E histology image of sample 
PR04-1. e. Bulk WES result of sample PR04-1. f. Single-cell genotype heatmap of PR04-1. A total of 3866 
captured single nuclei are sorted based on KRAS VAF in ascending order from left to right. Tumor cells, defined 
by the presence of KRAS p.G12D/SMAD4 p.G508D/TP53 p.R136H mutations, cluster to the right and are barely 
visible. g. Single-cell genotype heatmap of PR04-1, zoomed in on 40 putative tumor cells. 
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Figure 4: snDNA-seq identified two mutually exclusive clones bearing two different KRAS mutations in 
one pancreatic cancer patient 
a. Bulk-sequencing calls of KRAS variants of patient PR02’s 4 multiregional primary tumor samples. b-c. Venn 
diagram showing colocalization pattern of genetic variants TP53 p.C203Y, KRAS p.G12D, KRAS p.G12V in 
single nucleus of samples PR02-3 (b), PR02-4 (c). d-e. single-cell genotype heatmap of samples PR02-3 (d), 
PR02-4 (e, zoomed in on 300 cells where tumor cells cluster). The KRAS p.G12D & p.G12V clone identities 
(above heatmaps) are identified as cells having “HET” or “HOM” genotype of each variant and are colored as 
labeled. Cells are hierarchically clustered based on the two KRAS variants’ single-cell AF. KRAS p.G12V clone 
size was 57 cells in PR02-3, 17 cells in PR02-4. f. representative H&E histology images of sample PR02-3.  
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Figure 5: snDNA-seq identified two mutually exclusive SNV clones in a PDAC patient without KRAS 
mutation. 
a. Representative H&E histology images of PDAC regions in samples PR01-1 (left, only the TGFBR2 double 
mutation was present), PR01-2 (right, only the FGFR1 mutation was present). b. For sample PR01-3 (both the 
TGFBR2 double mutation and FGFR1 mutation were present), Venn diagram showing single-cell colocalization 
pattern of the TGFBR2 double mutation and FGFR1 mutation. c.  Single-cell genotype heatmap of 7 important 
variants pre-identified by bulk WES for sample PR01-3. Each cell’s clone identity (color strip above heatmap) is 
colored as shown by the figure legend. The FGFR1 and TGFBR2 SNV clones are defined as cells with non-WT 
genotype of each gene. The “putative normal” clone is identified as cells with “WT” genotype of all 7 genetic 
variants. Cells are hierarchically clustered within each clone. d. Median per-amplicon ploidy of the TGFBR2 
double mutation clone, the FGFR1 mutation clone and the putative normal clone found PR01-3. The putative 
normal clone is set as diploid baseline (green); amplicons with notable copy number loss and their corresponding 
genes are labeled. 
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Figure 6: snDNA-seq revealed step-wise evolution during PDAC metastasis 
a-e. Combined genotype and ploidy analysis of 3 multiregional samples of PDAC autopsy case PA04. In each 
panel, single-cell genotype heatmap (of important KRAS and SMAD4 variants preidentified by bulk WGS) is 
placed on the left, each cell’s clone identity (as defined by KRAS and SMAD4 genotype as shown in the legend) 
in the middle and single-cell per-amplicon ploidy heatmap on the right. Cells (rows) are sorted hierarchically 
within each clone. Each panel corresponds to PA04-1 (a, primary tumor), PA04-2_A (b, liver met slice 1, fresh 
nuclei), PA04-2_B (c, liver met slice 1, frozen nuclei), PA04-3_A (d, liver met slice 2, fresh nuclei) and PA04-3_B 
(e, liver met slice 2, frozen nuclei). For the ploidy heatmap, each amplicon’s starting genomic location is labeled 
on the x-axis. The amplicon where the SMAD4 p.A39T and p.D52Rfs*2 mutations took place is outlined in blue.  
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Figure 7: Stepwise evolution pattern of PDAC case PA04 
Fishplot demonstrating the stepwise evolution of PDAC case PA04, as inferred by snDNA-seq results of three 
multiregional samples from the same patient. Relative evolution time was plotted on the x-axis and clonal 
prevalence on the y-axis. The two timepoints (primary, liver met) are arbitrarily labeled based on sample 
locations. In the primary tumor, cells first gained KRAS p.G12V mutation and then SMAD4 p.A39T mutation; 
followed by KRAS allelic imbalance and SMAD4 allelic loss. A second SMAD4 mutation (p.D52Rfs*2) occurred in 
tandem to the first one in the primary tumor, followed by homozygous deletion of the entire SMAD4 gene; this 
latter clone (blue) achieved high clonal fraction in the metastatic samples. 
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Supplementary figure 1: Nuclei cryopreservation results 
a-b. Sample PA04-3 nuclei suspension before (a) and after cryopreservation (b). Nuclei were stained with Trypan 
blue and visualized under brightfield microscope. c. snDNA-seq library nuclei yield comparison of fresh vs frozen 
nuclei of the same samples. d-e. Venn diagram comparing the sets of high-quality variants (Methods) identified 
in snDNA-seq libraries generated by fresh vs frozen (3 weeks) nuclei of sample PA04-2 (e); fresh vs frozen (14 
weeks) nuclei of sample PA04-3 (f). The mean read depths of each library are labeled. f. Pseudobulk VAF 
comparison of all 212 shared variants between libraries generated with fresh vs frozen (14 weeks) nuclei of 
sample PA04-3. Key drivers preidentified by bulk WES in this case are highlighted; regression line with 90% 
confidence interval is drawn. g. Single-cell genotype heatmap of snDNA-seq libraries generated by unsorted vs 
sorted nuclei of sample PA04-3. The nuclei are sorted based on KRAS variant’s variant allele frequency (VAF) in 
ascending order from left to right. 
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Supplementary figure 2: single-cell variant matrix genotyping and filtering procedure 
To enable comparison of variant call sets across technical replicates, the procedure outlined in the figure and 
detailed in the method section was used. Briefly, each variant in each single cell was first genotyped with read 
depth and variant allele frequency (VAF) thresholds, and then hard filtered based on coverage and mutational 
prevalence to result in a final call set for each sample. 
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Supplementary figure 3: Bulk vs snDNA-seq variant comparison  
a. For 18 samples of the same bulk WES sequencing cohort, histogram showing the number of unfiltered 
(Methods) variants called by bulk (purple) and among them, the number detected by snDNA-seq (green). b. Per-
sample linear regression results of bulk VAF vs snDNA-seq pseudobulk VAF for all shared variants, except for 
those that have less than or equal to 2 alternative reads in bulk results; coefficient of determination (R2) is plotted 
on the y axis. c-d. Representative linear correlation of bulk VAF vs snDNA-seq pseudobulk VAF for shared 
variants for sample PR01-1 (R2 = 0.85), PR01-3 (R2 = 0.39). 
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Supplementary figure 4: Clone-median per-amplicon ploidy for sample PA02-1. 
Ploidy was calculated as follows:  

(1)  Read count per (cell * amplicon) is normalized both across cells and amplicons as described in 
Methods. 

(2)  KRAS-mutated group is identified as cells carrying KRAS HOM/HET genotype; all other cells are 
assigned as putative normal cells.  

(3)  Putative normal cells are randomly split into 3 equally-sized groups norm_a, norm_b, norm_c. Norm_a 
is used as diploid baseline and all other groups’ absolute ploidy is calculated as the ratio of their 
normalized read counts to norm_a’ normalized read counts. For sample PA02-1, the resulting absolute 
per-amplicon ploidy for each group is plotted above (a-d). 
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Supplementary figure 5: Tapestri snDNA-seq’s performance in limiting settings 
a-b. Distribution of single-cell allele frequency (AF, a), read depth (DP, b) of the 3 main driver variants of sample 
PA04-1 in the 113 putative tumor cells out of 479 total cells. c-d. Distribution of single-cell AF (c), DP(d) of the 3 
main driver variants of sample PR04-1 in the 40 putative tumor cells. e-f. single-cell genotype heatmap of 
samples PR04-2 (e), PR04-3 (f), which are two other samples from the same tumor as PR04-1. Cells are again 
sorted based on KRAS VAF in ascending order from left to right.  
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Supplementary Figure 6: snDNA-seq identified a minor KRAS p.G12V mutation mutually exclusive with a 
major KRAS p.G12D mutation in the same tumor 
a-b. Distribution of single-cell allele frequency (AF, left), read depth (DP, right) of KRAS p.G12V mutation in cells 
where it was mutated in sample PR02-3 (a), Pr02-4 (b). c. Digital droplet PCR results on KRAS variants in 
samples PR02-1 (used instead of PR02-4 because the latter’s nuclei material was depleted) and PR02-3’s 
leftover nuclei from Tapestri runs. 
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Supplementary Figure 7: single-cell SNV and CNV results of a KRAS WT PDAC 
a-c. Single-cell genotype heatmap of 7 important genomic variants pre-identified by bulk WES (left) and genome-
wide per-amplicon ploidy heatmap (right) for samples PR01-1 (a), PR01-2 (b), PR01-3 (c). Each cell’s clone 
identity (middle) is colored as shown by labels. The FGFR1 and TGFBR2 SNV clones are defined as cells with 
non-WT genotype of each gene. The “putative normal” clone is defined as cells with “WT” genotype of all 7 
genetic variants. Cells are hierarchically clustered within each clone.  
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Supplementary Figure 8: snDNA-seq revealed step-wise evolution during PDAC metastasis 
a-c. Boxplot showing distribution of single cell ploidy for KRAS, SMAD4 in sample PA04-1 (a), PA04-2_A (b), 
PA04-3_A (c), split by clone identities defined as in Figure 6. Each clone is colored the same as defined in 
Figure 6. Each box spans from quartile 1 (Q1) to quartile 3 (Q3). The second quartile (Q2) is marked by a line 
inside the box. The whiskers correspond to the box’ edges +/- 1.5 times the interquartile range (IQR: Q3-Q1). 
Only sample points lying outside the whiskers are shown. Sample points with ploidy > 10 are clipped from the 
images. Each amplicon’s starting genomic location is labeled on the x-axis and a dashed line is drawn to 
separate the two different genes. The amplicon where the SMAD4 p.A39T and p.D52Rfs*2 mutations took place 
is outlined in blue. 
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