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 2 

Abstract 24 

Understanding the factors that shape microbiomes can provide insight on the importance of host-25 

symbiont interactions and on co-evolutionary dynamics. Unlike for mammals, previous studies 26 

have found little or no support for an influence of host evolutionary history on avian gut 27 

microbiome diversity and instead have suggested a greater influence of the environment or diet 28 

due to fast gut turnover. Because effects of different factors may be conflated by captivity and 29 

sampling design, examining natural variation using large sample sizes is important. Our goal was 30 

to overcome these limitations by sampling wild birds to compare environmental, dietary, and 31 

evolutionary influences on gut microbiome structure. We performed fecal metabarcoding to 32 

characterize both the gut microbiome and diet of fifteen wood-warbler species across a four-year 33 

period and from two geographic localities. We find host taxonomy generally explained ~10% of 34 

the variation between individuals, which is ~6-fold more variation of any other factor 35 

considered, including diet diversity. Further, gut microbiome similarity was more congruent with 36 

the host phylogeny than with host diet similarity and we found little association between diet 37 

diversity and microbiome diversity. Together, our results suggest evolutionary history is the 38 

strongest predictor of gut microbiome differentiation among wood-warblers. Although the 39 

phylogenetic signal of the warbler gut microbiome is not very strong, our data suggest that a 40 

stronger influence of diet (as measured by diet diversity) does not account for this pattern. The 41 

mechanism underlying this phylogenetic signal is not clear, but we argue host traits may filter 42 

colonization and maintenance of microbes.  43 

 44 
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Introduction 47 

 Microorganisms that form intimate associations with their hosts can take part in important 48 

physiological functions. In particular, the gut microbiome—the community of microbes that 49 

colonize the gastrointestinal tract—has been linked to host behavior, immune function, 50 

metabolism, and disease (Sommer & Backhed 2013, Suzuki 2017, Bodawatta et al. 2021b).  51 

 The taxonomic composition of the gut microbiome can vary, sometimes dramatically within 52 

and between host species (Loo et al. 2019, Grond et al. 2019, Song et al. 2020), as well as 53 

within-individuals over short timescales (Videvall et al. 2019, Skeen et al. 2021). However, 54 

when host-microbe associations are long-term, gut microbiomes may be expected to be species-55 

specific and their assembly to be dependent on host evolutionary divergence (Brooks et al. 56 

2016). Consistent with this, host evolutionary history, in addition to diet, has been implicated as 57 

one of the strongest factors driving vertebrate gut microbiome similarity (Youngblut et al. 2020). 58 

 Recent studies have strongly supported a positive correlation between host species 59 

divergence and gut microbiome divergence—known as “phylosymbiosis”—particularly for 60 

insects and non-flying mammals (Brooks et al. 2016, Song et al. 2020). However, in birds, 61 

differences in gut microbiome structure between species are less pronounced (Song et al. 2020). 62 

Despite species-level differences in gut microbiota of 37 New Guinean passerine species (14 63 

families), Bodawatta et al. (2021a) did not find an influence of host phylogeny on gut 64 

microbiome structure. This is in contrast, however, to a study on 51 passerine species (21 65 

families) breeding in the Czech Republic (Kropáková et al. 2017) and a study on all 15 crane 66 

species (family Gruidae) in captivity which found a weak influence of host phylogeny, and only 67 

when examining female individuals (Trevelline et al. 2020).  68 
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 A favorable hypothesis to explain this marked difference in phylosymbiosis between bird 69 

and non-flying mammal gut microbiota is that because birds evolved a reduced and simplified 70 

gastrointestinal tract as an adaptation to flight, they have highly reduced gut retention times from 71 

consumption of food to defecation (Song et al. 2020). This reduced retention time and simplified 72 

gut environment may favor high turn-over in the avian gut microbiome, and a larger role of the 73 

diet and environment over host taxonomy in the structuring of the gut microbiome (Bodawatta et 74 

al. 2021a). 75 

 In Darwin’s finches, gut microbiome communities cluster more strongly by host habitat 76 

than by host species (Loo et al. 2019). Host phylogeny and diet in this group, which is known for 77 

adaptive divergence in beak morphology that is linked to foraging ecology, both show a 78 

moderate influence on gut microbiome variation (Loo et al. 2019). Further, the gut microbiome 79 

of the vampire finch, a diet specialist, is highly divergent from other species (Michel et al. 2018). 80 

Similarly, captive birds tend to have distinct gut microbiota from their wild counterparts (San 81 

Juan et al. 2021). These studies support a strong role of the environment, including diet, in 82 

shaping the avian gut microbiome. 83 

 Although many studies have detected effects of diet on the avian gut microbiome (Xiao et 84 

al. 2021, Bodawatta et al. 2021a, Davidson et al. 2020, Knutie 2020, Teyssier et al. 2020), few 85 

have analyzed host diet beyond broad categorizations of diet type (e.g., omnivore versus 86 

insectivore) and/or included birds that were fed standardized and non-natural diets (but see 87 

Bodawatta et al. 2022, Schmiedová et al. 2022). Further, many studies that have assessed 88 

species-specific differences in gut microbiome structure have had limited sample sizes including 89 

only one or a few individuals per species or included data collected and sequenced at different 90 

times or in different ways. To gain a holistic picture of the effects of host diet, evolutionary 91 
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history, and geography on gut microbiome structure, it will be necessary to sample natural 92 

populations using standardized methods. Understanding the factors that shape the avian gut 93 

microbiome is important for understanding host-symbiont interactions and co-evolutionary 94 

dynamics, and how these dynamics may differ from other taxonomic groups of animals (i.e., 95 

mammals). The role of the gut microbiome in host evolutionary processes is largely unexplored 96 

and its potential role in facilitating and responding to avian host adaptive radiation—where 97 

species diversification is tied to ecological differentiation—is a major outstanding question 98 

(Bodawatta et al. 2021b). 99 

Here, we characterize the gut microbiome of wood-warblers (family: Parulidae) breeding 100 

in sympatry in Eastern North America across a 4-year period and examine factors that may play 101 

a role in shaping gut microbiome structure. Parulidae is a passerine radiation of >100 102 

insectivorous species that evolved rapidly in the last 7 MY (Lovette et al. 2010, Barker et al. 103 

2015), and is a classic model for studies of ecological differentiation, including diet niche 104 

partitioning (MacArthur 1958). In the current study, we use 16S fecal metabarcoding to examine 105 

gut microbiomes of 15 species representing 7 genera (Figure 1a). Our aims are to characterize 106 

the “core” parulid gut microbiota (a common set of microbes across individuals) and to quantify 107 

differences in gut microbiome composition between hosts. We predict that due to genetic and 108 

ecological differentiation among host species, variation in the gut microbiome will be largely 109 

explained by host taxonomy. Further, we explicitly test the prediction of phylosymbiosis, where 110 

host phylogenetic relatedness should correlate with gut microbiome similarity. We also examine 111 

the relationship between gut microbiome diversity and diet diversity by analyzing COI 112 

metabarcoding sequences amplified from fecal samples of these same individuals. With the 113 

presumption that a diet characterized by a high diversity of arthropods will incur ingestion of a 114 
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greater diversity of bacteria—either associated with arthropod hosts, or the environments in 115 

which they are found—we predict that diversity of the warbler gut microbiome and diet will be 116 

positively correlated. Finally, we test for other environmental signals in the structuring of host 117 

gut microbiomes by examining effects of sampling year, locality, and diet specialization. 118 

 119 

Materials and Methods 120 

Sample collection and DNA extraction 121 

 We used mist nets to capture birds during four consecutive breeding seasons (May-July 122 

2017-2020). In all years, we targeted sampling locations in northern hardwood forests, both in 123 

Adirondack Park, New York, and in 2019 and 2020, we also sampled birds in central 124 

Pennsylvania (Figure S1, Table 1). We selected sites where a diversity of warbler species (up to 125 

eight) could be heard singing so as to maximize sympatry among species included in the study. 126 

Upon capture, we held individuals inside a brown paper bag for up to 10 minutes to allow ample 127 

time for excretion inside the bag before removal and subsequent banding. We removed feces by 128 

scraping it from the inside of the bag directly into a sample tube containing lysis buffer (100 mM 129 

Tris pH 8; 100 mM Na 2 EDTA, 10 mM NaCl; 0.5% sodium dodecyl sulfate; White & Densmore 130 

1992), and froze samples at -20 °C within two weeks of collection. Because we were interested 131 

in variation among individuals, we chose a single sample at random to include in our analyses 132 

from individuals that were recaptured in the same or subsequent years. In total, we sequenced 133 

samples from 408 individuals. 134 

 We extracted total DNA from fecal samples using an SPRI-bead fecal DNA extraction 135 

method modified from Vo & Jedlicka (2014). Samples were processed in two sets: those 136 

collected in 2017-2019 and in 2020. After thawing fecal samples at room temperature, we 137 
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centrifuged sample tubes and used bleach-sterilized laboratory spatulas after being thoroughly 138 

dried and/or pipetting to transfer ~5 mg of fecal material into 2mL screw-cap microcentrifuge 139 

tubes each containing 0.25g of 0.1mm and 0.25g of 0.5mm zirconia-silica beads. For samples 140 

that amounted to <5 mg of fecal material, we supplemented with a suitable volume of storage 141 

buffer from inside the sample tube as necessary. We immediately added 818 μL of warmed 142 

(65°C) lysis buffer (Vo & Jedlicka 2014) and homogenized samples using a Precellys 24 Tissue 143 

Homogenizer (Bertin Instruments) set to 3 cycles of 6800rpm for 30s with a 30s pause between 144 

cycles. After transferring the supernatant to clean microfuge tubes, we incubated samples with 145 

Qiagen Solution C3 (Qiagen DNeasy PowerSoil 12888-100-3) to remove PCR inhibitors. Next, 146 

we removed DNA from the supernatant using homemade solid phase reversible immobilization 147 

(SPRI) magnetic beads (“Serapure” beads) (Rohland & Reich 2012). Serapure beads were added 148 

at a 1.9x bead-to-supernatant volume ratio and, after cleaning with 80% ethanol, we eluted DNA 149 

in 10mM Tris-HCL. Extracted DNA was stored at -20°C before proceeding with library 150 

preparation. We also included negative extraction controls that followed the same procedure 151 

described above for which the input was sample storage buffer taken from tubes that were 152 

transported to the field, but were not used for collecting fecal material. 153 

 154 

16S and COI amplicon sequencing 155 

 As with DNA extractions, we prepared and sequenced metabarcoding libraries in two 156 

separate batches: (1) samples collected between 2017-2019, and (2) samples collected in 2020.  157 

We used a two-step multiplex dual-index amplicon approach to separately prepare 16S libraries 158 

and COI libraries for sequencing again following Vo & Jedlicka (2014) with some adjustments. 159 

We first used universal 515F/806R primers to amplify the V4 region of the bacterial 16S rRNA 160 
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gene (Caporaso et al. 2012) and the “ANML” general arthropod COI mitochondrial primers 161 

LCOI-1490/COI-CFMRa described in Jusino et al. (2019). Each primer pair was modified with 162 

overhanging Illumina adapter sequences. Prior to PCR, we randomized the order of samples to 163 

be amplified to avoid within-plate batch effects during amplification. Negative PCR controls 164 

were included on each plate. In addition to our fecal samples, we sequenced four negative 165 

controls per primer pair in each library pool, with the exception of the first batch COI library 166 

pool which did not contain any negative controls. Negatives included two “extraction controls” 167 

amplified and sequenced from DNA extractions made from sample tubes containing only buffer 168 

(and no feces) as well as two negative PCR controls. 169 

 We performed initial 16S PCR amplification for each sample in triplicate in 30 μL reactions 170 

comprising 0.2 μL Platinum II Taq Hot Start DNA Polymerase (Invitrogen 14966005), 5 μL 5X 171 

Buffer (Invitrogen 14966005), 1.25 μL of each primer (10uM concentration), 13.5 μL molecular 172 

grade water, and 0.5 μL 10mM dNTP mix (Promega U151A) and 3.3 μL of fecal DNA. Reaction 173 

conditions followed the 2-step PCR protocol recommended by the manufacturer: 94°C for 2m, 174 

followed by 34 cycles of 98°C for 5s, 68°C for 15s, followed by a final extension at 68°C for 175 

5m, and hold at 12°C. We performed initial COI PCR amplification in 30 μL reactions 176 

comprising 0.24 μL Platinum II Taq Hot Start DNA Polymerase, 6 μL 5X Buffer, 1.5 μL of each 177 

primer (10uM concentration), 16.16μL molecular grade water, and 0.6 μL 10mM dNTP mix, and 178 

4 μL of fecal DNA. Reaction conditions followed Jusino et al. (2019) with minor adjustments: 179 

94°C for 2m, followed by 5 cycles of 94°C for 15s, 45°C for 15s, 68°C for 15s, followed by 35 180 

cycles of 98°C for 5s, 68°C for 15s, followed by a final extension at 68°C for 5m, and hold at 181 

12°C. We cleaned initial PCR products by incubating with a 1x volume of serapure beads and 182 

eluting the bound DNA in 10mM Tris-HCL. Triplicate 16S reactions were pooled before this 183 
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cleaning step. Then we evaluated amplification success by visualizing cleaned product on a 1.5% 184 

agarose gel. 185 

 Next, we appended dual P5 and P7 Illumina indexes to each library via PCR. Reactions 186 

were 30 μL and contained 15 μL KAPA HiFi HotStart ReadyMix (Roche 7958935001), 3 μL of 187 

each primer (10uM concentration), and 9 μL DNA (cleaned initial PCR product). Reaction 188 

conditions followed manufacturer recommendations: 98°C for 45s, followed by 7 cycles of 98°C 189 

for 15s, 60°C for 15s, 72°C for 15s, followed by a final extension at 72°C for 1m, and hold at 190 

12°C. We then cleaned the indexed PCR product using a double-sided serapure bead procedure. 191 

We first removed potential high-molecular weight contamination by incubating PCR product 192 

with a 0.75x volume of serapure beads. After placing the samples on the magnet, we transferred 193 

the supernatant to fresh tubes and incubated it with a 1x volume of serapure beads to remove 194 

potential low-molecular weight contamination. DNA was eluted in 10mM Tris-HCL, and we 195 

evaluated amplification success as for the initial PCR. 196 

  We quantified DNA in our final PCR products with a Qubit 4.0 Fluorometer (Invitrogen). 197 

We then normalized library concentrations and pooled libraries to a final pool concentration of at 198 

least 2nM. We submitted the final pool to the Penn State Genomics Core Facility to perform 199 

final quality assessment on a Bioanalyzer Tape Station and confirm pool concentration with 200 

qPCR. Samples were then sequenced with Illumina MiSeq using the 600-cycle kit run as 201 

250x250 paired-end sequencing. 202 

 For the first batch of samples, 16S and COI libraries were independently pooled and each 203 

pool was sequenced in a single lane of Illumina sequencing. The second batch included a smaller 204 

number of samples, so to achieve a similar depth of sequencing as the first batch, we pooled and 205 

sequenced 16S libraries and COI libraries together in the same sequencing lane. 206 
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 207 

16S amplicon sequence processing 208 

 We used QIIME 2 v2020.8 (Bolyen et al. 2019) to process 16S sequencing reads and obtain 209 

a table of counts of amplicon sequence variants (ASVs, or amplicon sequences representing 210 

microbial taxonomic units) across samples. For each sequencing run, we imported demultiplexed 211 

paired-end sequences, used the function qiime dada2 denoise-paired to trim primer sequences 212 

from the 3’ ends of reads, and to trim five bases from the 5’ ends of reads before merging read 213 

pairs and detecting ASVs. We then assigned taxonomic classification to ASVs using the SILVA 214 

database (v138 SSURef NR99, Quast et al. 2013).  215 

 Upon classification, we removed mitochondrial, chloroplast, unassigned, and eukaryotic 216 

ASVs. We also identified and removed possible contaminant ASVs by contrasting the 217 

presence/absence of ASVs in our negative controls with their prevalence in positive fecal 218 

samples (i.e., non-negative controls) using the R package decontam (Davis et al. 2018). We used 219 

the “prevalence” method to identify and remove ASVs more prevalent in negative controls than 220 

in positive samples using a probability threshold of 0.5. We also manually removed ASVs 221 

present in negative controls, but absent in positive samples, as these were also likely 222 

contaminants. In total, we removed 87 and 359 contaminant ASVs from the batch 1 and batch 2 223 

datasets, respectively.  224 

 At this point, we used QIIME 2 to merge the feature table, representative sequences, and 225 

taxonomy files from the two separate sequencing runs. We finally generated a phylogenetic tree 226 

from the merged set of ASV sequences for downstream diversity analyses. We used qiime 227 

phylogeny align-to-tree-mafft-fasttree to perform multiple sequence alignment, mask highly 228 
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variable positions, and first generate an unrooted tree and finally a tree rooted at the midpoint of 229 

the longest tip-to-tip distance of the unrooted tree. 230 

 Finally, we applied several additional filtering steps to achieve a high-quality representation 231 

of warbler gut microbiomes. We excluded individuals from species represented by fewer than 5 232 

individuals in our dataset because we were interested in examining species-differences in gut 233 

microbiome structure. Because very low depth and uneven depth of sequencing among samples 234 

can affect diversity estimates (Hughes & Hellmann et al. 2005), we next generated a rarefied 235 

dataset by randomly downsampling ASVs to a minimum threshold to standardize total read 236 

counts across samples. We determined the minimum acceptable ASV count threshold by 237 

examining rarefaction curves constructed using the rarecurve function in vegan (Oksanen et al. 238 

2020) using a step size of 50. Based on this analysis, we determined a library size of 4,000 reads 239 

to be an acceptable threshold since the number of observed ASVs appears to plateau beyond this 240 

point (Figure S2a).  241 

 Because we detected a significant effect of sequencing batch on our diversity estimates (i.e., 242 

a “batch effect”, see Results), we also performed analyses on a subset of the data that only 243 

included the first batch of samples (collected between 2017-2019, referred to as “batch 1”). For 244 

these analyses, we performed the same sequence processing steps as above except for merging-in 245 

data from the samples collected in 2020. 246 

 247 

COI amplicon sequence processing 248 

We used the AMPtk (v1.5.3) pipeline to analyze COI metabarcoding data by applying the 249 

default clustering algorithm (VESEARCH v2.17.1) for operational taxonomic units (OTUs) and 250 

assigned taxonomy by pulling from the chordates and arthropods in the BOLDv4 database. We 251 
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rooted the OTU phylogeny output from AMPtk on a randomly chosen arachnid OTU, as 252 

arachnids split from the common arthropod ancestor prior to insects. We then imported the COI 253 

metabarcoding data into phyloseq for downstream analyses and applied a similar framework as 254 

we did with our 16S data. We first removed OTUs assigned to phylum Chordata as this 255 

represents off-target amplification, then rarefied depth to 15,000 reads per individual (full 256 

dataset), and 8,500 reads per individual (batch 1 subset) (Figure S2b). 257 

For analyses where we directly investigated the effect of diet on the microbiome at the 258 

individual level, we only analyzed individuals with data that passed filtering steps in both 259 

microbiome and diet datasets. This included 216 individuals in the full dataset representing 15 260 

species (mean 14 individuals per species) and 130 individuals in the batch 1 subset representing 261 

14 species (mean 9 individuals per species). 262 

 263 

Diet diversity and its relationship with gut microbiome diversity 264 

 We estimated within-individual diversity (alpha diversity) of the diet and gut microbiome 265 

using the Shannon index and the Chao1 index using the diversity function in vegan, and using 266 

Faith’s phylogenetic diversity using the estimate_pd function in btools (Battaglia 2022). The 267 

Shannon index quantifies ASV richness (the number of ASVs) as well as evenness (the equity in 268 

ASV abundances), while Chao1 just quantifies ASV richness. Faith’s phylogenetic diversity is a 269 

measure of ASV richness that is the sum of branch lengths in the phylogeny that connect all 270 

ASVs in the community assemblage. We estimated between-individual differences between 271 

microbiomes (beta diversity) using four different metrics: Bray-Curtis, Jaccard, UniFrac, and 272 

weighted UniFrac, calculated using the distance function in phyloseq (McMurdie & Holmes 273 

2013). Bray-Curtis measures differences in community composition and is based on ASV 274 
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abundances, whereas Jaccard is based only on presence/absence and does not rely on abundance. 275 

UniFrac measures the phylogenetic distance between communities based on presence/absence of 276 

ASVs, whereas weighted UniFrac is similar but weights branch lengths by ASV abundance. 277 

 We used three approaches to examine the relationship between diet and the gut microbiome. 278 

With the prediction that a generalized diet, characterized by a high diversity of arthropod taxa, 279 

supports a high gut microbiome diversity, we first tested for a positive correlation between 280 

individual diet alpha diversity and gut microbiome alpha diversity using a Kendall’s rank 281 

correlation test. 282 

 Second, at the species level, we tested whether gut microbiome structure differs among 283 

species with a more specialized and less diverse diet, and species with a more generalized and 284 

more diverse diet using permutational multivariate analysis of variance (PERMANOVA) of beta 285 

diversity distances using the adonis2 function in vegan. For this analysis, we categorized each 286 

species as either “low diversity” diet, “high diversity” diet, or “intermediate” by creating an 287 

index of diet specialization (Figure 1a). To calculate this index, we summed mean individual 288 

within-species diet alpha diversity and mean within-species diet beta diversity with the 289 

assumption that (1) more specialized diets are characterized by a lesser diversity of food items 290 

(low alpha diversity) and individuals within more specialized species eat a similar diet (low beta 291 

diversity), and (2) more generalized diets are characterized by a high diversity of food items 292 

(high alpha diversity), and individuals within more generalized species may have highly 293 

divergent diets depending on local food availability (high beta diversity). Thus, a low score 294 

reflects a less diverse and more specialized diet, and a high score reflects a more diverse and 295 

more generalized diet. We note this index quantifies diversity of the diet and that host species 296 
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within the same diet categorization may have dissimilar diets by way of diet content (e.g., 297 

proportion that is flying insects).   298 

 For both alpha diversity and beta diversity of the diet, the different diversity metrics we 299 

calculated were positively correlated (with the exception of weighted UniFrac and UniFrac beta 300 

distance when using the full dataset; Table S1) and diet type classification of each species was 301 

consistent across metrics. Thus, for simplicity we report the index of diet specialization using the 302 

Shannon index to estimate alpha diversity and the Bray-Curtis metric to estimate beta diversity.  303 

𝑖𝑛𝑑𝑒𝑥 𝑜𝑓 𝑑𝑖𝑒𝑡 𝑠𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 𝑚𝑒𝑎𝑛 𝑑𝑖𝑒𝑡 𝑆ℎ𝑎𝑛𝑛𝑜𝑛 + 𝑚𝑒𝑎𝑛 𝑑𝑖𝑒𝑡 
𝐵𝑟𝑎𝑦−𝐶𝑢𝑟𝑡𝑖𝑠

 304 

 We note that because we used a subset of individuals to calculate diet index for batch 1, for 305 

some species classification of diet diversity using the diet index is not consistent between this 306 

subset and the full dataset. Four species are classified as intermediate in one dataset and either as 307 

high diversity or as low diversity in the other dataset. However, species diet index values are 308 

positively correlated between the full dataset and batch 1 (τ=0.516, P=0.010, Figure S3), 309 

suggesting this index is robust to individual variation in diet. Our results do not change when 310 

excluding these four species from the analyses so we include them in our results. 311 

 Finally, we used topological congruence analysis to determine whether similarity in gut 312 

microbiome structure among host species reflects diet similarity with the expectation that if diet 313 

directly shapes host gut microbiomes, then clustering of species by diet similarity will mirror 314 

clustering of species by gut microbiome similarity. To generate dendrograms representative of 315 

each species, we generated a new ASV table—each for rarefied COI sequence counts and 316 

rarefied 16S sequence counts—grouped by host species by averaging ASV counts within each 317 

species, re-calculated dissimilarity matrices and constructed dendrograms by clustering distance 318 

matrices using the UPGMA method in the hclust function in R (following Trevelline et al. 2020). 319 
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We then compared the observed 16S dendrogram to the observed COI dendrogram using 320 

TreeCmp (Bogdanowicz et al. 2012) to compute the matching cluster metric of topological 321 

congruence (Bogdanowicz & Giaro 2013). Following Brooks et al. (2016), we then compared the 322 

observed 16S dendrogram with 10,000 dendrograms with randomized topology and calculated a 323 

normalized congruence score, which is the observed matching cluster score divided by the 324 

maximum congruence score between the observed dendrogram and one of the random 325 

dendrograms. Finally, we evaluated significance and report a p-value by dividing the number of 326 

randomized dendrograms with equal or more congruent scores to the observed 16S dendrogram 327 

than the score between the two observed dendrograms by 10,000. We also used Mantel tests as a 328 

complimentary analysis to examine correlations between the diet and microbiome beta distance 329 

matrices at the individual level, where each value represents the beta distance between a pair of 330 

individuals, using vegan::mantel with the spearman correlation method.  331 

 332 

Gut microbiome diversity and topological analyses 333 

 We identified a “core” wood-warbler gut microbiome as the collection of ASVs present 334 

across a large number of individuals using the rarefied dataset. Because most ASVs had a low 335 

prevalence among individuals (Figure S4), we report the core microbiome as ASVs present in 336 

>30% of all individuals. Although this threshold is arbitrary, we believe it is conservative as only 337 

39 ASVs were represented in greater than 30% of individuals (see below). We also report taxa at 338 

high relative abundance across all samples at phylum level. This set of ASVs represents bacteria 339 

that are most common in the gut microbiome among breeding male wood-warblers. 340 

 To quantify the effect of host taxonomy on the gut microbiome and the extent to which gut 341 

microbiomes covary with host phylogeny, we took two approaches using the full set of ASVs. 342 
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First, we estimated gut microbiome divergence (beta diversity) among individuals using four 343 

measures of community dissimilarity: Bray Curtis distance, Jaccard distance, and weighted and 344 

unweighted UniFrac distances. We then used vegan::adonis2 to conduct PERMANOVA tests to 345 

determine the effect of host species on community dissimilarity. Because our samples were 346 

collected across four breeding seasons, from two geographic localities, and were sequenced in 347 

two different batches we also tested for effects of these factors. We included each of these 348 

factors in our model and set the “by” parameter to “margin”. However, in the full dataset the 349 

effects of sampling year and sequencing batch are confounded since all samples collected in 350 

2020 were sequenced in batch 2, so we ran two separate models which included either host 351 

species + locality + year, or host species + locality + sequencing run. Results for host species and 352 

locality were similar between models, so we report results from the model that included 353 

sequencing run for simplicity. We also calculated multivariate homogeneity of group dispersions 354 

for significant variables using vegan::betadisper and assessed deviations from this expectation 355 

using vegan::permutest because a homogeneous dispersion among groups is an assumption for 356 

PERMANOVA tests. We visualized beta distances between gut microbiota using the principal 357 

coordinate analysis (PCoA) method of phyloseq::ordinate.  358 

 Our second approach was to test for congruence between the host phylogeny and 359 

microbiome, as phylosymbiosis predicts host relatedness and microbiome community similarity 360 

to exhibit a positive relationship (Brooks et al. 2016). To do this, we first used the same 361 

topological congruence approach as described above, but used the topology from and Baiz et al. 362 

(2021) for Setophaga species, and from Lovette et al. (2010) for outgroup taxa in place of the 363 

diet dendrogram (Figure 1a). We then also used Mantel tests to test for correlations between the 364 

gut microbiome distance matrix and a matrix of cophenetic distances, representing evolutionary 365 
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distances, between individuals. We calculated cophenetic distance between species using the 366 

stats::cophenetic function on a dendrogram representing the host phylogeny in Figure 1a, with 367 

branch lengths scaled using divergence times from TimeTree of Life (Kumar et al. 2017; Table 368 

S2). Note that an evolutionary distance of zero denotes a pair of individuals from the same 369 

species.  370 

 Because we found a significant influence of sequencing batch on gut microbiome diversity, 371 

we separately performed all analyses on the subset of samples sequenced in the first batch 372 

(collected between 2017-2019, referred to as “batch 1”) as this batch included a larger subset of 373 

samples that were collected across multiple years than the second batch, which only included 374 

samples collected in 2020. For topology and Mantel analyses, we also subset our data to account 375 

for potentially confounding effects of (1) geographic locality by only analyzing samples 376 

collected in New York between 2017-2019 (referred to as “batch 1-NY”) and (2) sampling year 377 

by only analyzing samples collected in 2020 (referred to as “batch 2”). 378 

  379 

Results 380 

16S sequencing output and composition of the warbler gut microbiome 381 

 The number of ASVs yielded by our first 16S sequencing run was 6,412 (per-individual 382 

median=36, mean=53, SD=65) while our second 16S sequencing run yielded 10,590 ASVs (per-383 

individual median=235, mean=218, SD=73). This discrepancy is likely explained by a higher 384 

average depth of sequencing across individuals in the second sequencing run (Figure S5), despite 385 

our attempt at normalization. Taxa that were detected in both sequencing runs represented a 386 

small proportion of the total number of ASVs across runs (6%), contributing to the gut 387 

microbiome differentiation we observed for individuals sampled in 2020 (see below). 388 
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 After merging our 16S datasets, applying our filtering steps and rarefaction, our full dataset 389 

consists of 270 individuals representing 15 species (mean 18 individuals per species, with 95% 390 

of individuals being male, 1% female, and 4% of unknown sex). Among these samples, we 391 

detected 12,048 ASVs from 39 bacterial phyla with the top phylum, Proteobacteria, representing 392 

60% of the total reads (Figure 1b). Firmicutes was the next most abundant phylum, representing 393 

13% of the total reads, followed by Actinobacteriota, representing 6.5% of the total reads. The 394 

remaining phyla each represented <5% of the total reads. We observed considerable variation in 395 

relative abundance of prevalent taxa between individuals of the same species (Figure S6a). 396 

Despite low overlap in ASV identity between sequencing runs, composition and relative 397 

abundance of prevalent phyla were very similar across host species when we separately 398 

examined samples that were sequenced in different batches (Figure S7). 399 

 Most ASVs were present in <10% of individuals, and only 39 ASVs were represented in 400 

>30% of individuals (Figure S4). Each of these core ASVs was represented in all but one or two 401 

of the host species we analyzed (Table S3 and S4). The most prevalent ASV was a 402 

Gammaproteobacteria of the family Yersiniaceae. This ASV was found in all 15 host species and 403 

~60% of samples in both the full dataset and the batch 1 subset. Gut microbiome alpha diversity 404 

did not differ among host species (Kruskal-Wallis rank sum test: Shannon index: full dataset 405 

d.f.=14, 𝜒2=14.68, P=0.400; batch 1 d.f.=13, 𝜒2 =16.354, P=0.231, Chao1 index: full dataset 406 

d.f.= 14, 𝜒2= 13.99 , P=0.451; batch 1 d.f =13, 𝜒2 =19.32, P=0.113, Faith’s PD: full dataset 407 

d.f.=14 , 𝜒2= 14.98 , P=0.380; batch 1 d.f.=13, 𝜒2=18.764, P= 0.131).  408 

 409 

COI sequencing output, diet diversity and its relationship with gut microbiome diversity 410 
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 Our first COI sequencing run yielded 3,235 OTUs, while the second yielded 2,668 OTUs. 411 

In contrast to the 16S dataset, there was moderate overlap in OTU identity between sequencing 412 

runs (37% of OTUs are represented in both batches).  413 

 Our analyses revealed 4,397 OTUs in the full COI dataset, which was reduced to 3,227 after 414 

filtering and rarefaction. Among warbler species, ~70% or greater relative abundance of diet taxa 415 

consisted of insects, particularly in the orders Diptera and Lepidoptera (Figure 1c, Figure S6b). 416 

The majority of other diet taxa included Arachnids in the family Araneae. There was a high 417 

degree of overlap among species in diet PCoA space (Figure 3b). These results were consistent 418 

between analyses that included all individuals and only individuals sequenced in the first batch. 419 

 Warbler species fell into three natural partitions along our index of diet specialization, thus 420 

we used these partitions to classify species according to diet type (Figure 2b). We classified 2-3 421 

warbler species with low diversity diets depending on the dataset being analyzed (batch 1: 422 

American Redstart (AMRE), Chestnut-sided Warbler (CSWA); full dataset: American Redstart 423 

(AMRE), Chestnut-sided Warbler (CSWA), Worm-eating Warbler (WEWA), 2-4 species with 424 

high diversity diets (batch 1: Black-throated Green Warbler (BTNW), Canada Warbler (CAWA); 425 

full dataset: Black-and-white Warbler (BAWW), Canada Warbler (CAWA), Common 426 

Yellowthroat (COYE), Hooded Warbler (HOWA)), and the remainder of species as intermediate 427 

(Figure 1a).  428 

 When considering within-individual diversity, we found no correlation between diet alpha 429 

diversity and microbiome alpha diversity when using Shannon index and Faith’s PD, as well as 430 

Chao1 when considering the full dataset (Kendall’s rank correlation, Shannon index batch 1: 431 

τ=0.029, P=0.619; full dataset: τ=0.005, P=0.906, Faith’s PD batch 1: τ=0.110 , P=0.064; full 432 

dataset: τ=-0.034, P=0.459, Chao1 full dataset: τ=-0.063, P=0.171,), but when considering the 433 
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batch 1 subset using Chao1, alpha diversity of the diet and microbiome were positively 434 

correlated (Figure 2a; Kendall’s rank correlation batch 1: τ=0.124 , P=0.038). This indicates that 435 

for batch 1, individuals that consumed high richness diets (more OTUs) tended to have more rich 436 

gut microbiota (more ASVs), but the correlation is weak. Alpha diversity of the microbiome was 437 

generally lower for individuals of species that were diet specialists, and higher for individuals of 438 

species that were diet generalists (Figure 2c), but alpha diversity of the microbiome did not 439 

significantly differ by species diet type (Kruskall-Wallis d.f.=2: Shannon index batch 1: 𝜒2=2.8, 440 

P=0.242; full dataset: 𝜒2=0.014, P=0.993, Chao1 batch 1: 𝜒2=5.4, P=0.068; full dataset: 𝜒2=0.31, 441 

P=0.855, Faiths PD batch 1: 𝜒2=4.4, P=0.110; full dataset: 𝜒2=0.13, P=0.936), even when only 442 

comparing low diversity diets to high diversity diets (Kruskall-Wallis d.f.=1: Shannon index 443 

batch 1: 𝜒2=1.934, P=0.1643, full dataset: 𝜒2=0.049, P=0.825, Chao1 batch 1: 𝜒2=1.8, P=0.181; 444 

full dataset: 𝜒2=0.29, P=0.592, Faith’s PD batch 1: 𝜒2=1.3, P=0.259; full dataset: 𝜒2=0.17, 445 

P=0.676). 446 

 447 

Factors accounting for warbler gut microbiome structure 448 

 When analyzing the full dataset which included microbiomes sequenced in two different 449 

sequencing runs, there was a very clear and strong batch effect where microbiomes sequenced in 450 

one run were more similar to each other than to microbiomes sequenced in the other run (Figure 451 

S8). Yet, principal coordinates analysis of gut microbiome dissimilarity matrices revealed a high 452 

degree of overlap among hosts of different species and among hosts from different geographic 453 

localities (Figure 3a). There was little clustering of microbiomes by diet type of host species as 454 

defined by our index of diet specialization (Figure 2d).  455 
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 Our PERMANOVA tests (Table 2) revealed that sequencing run explained a relatively high 456 

degree of variation in Bray-Curtis distances (13%, P=0.001), Jaccard distances (7.1%, P=0.001), 457 

and UniFrac distances (7.9%, P=0.001). This strong batch effect likely confounded tests of other 458 

variables, since the second sequencing run only contained samples collected in a single year 459 

(2020) and included an additional species (WEWA, Worm-eating warbler) that is not represented 460 

in the first sequencing run. Thus, we analyzed the subset of data from 2017-2019 (i.e., batch 1) 461 

separately to examine the effect of biological factors on microbiome structure in the absence of 462 

the sequencing batch effect, because of the two sequencing runs this batch included the largest 463 

sample size of individuals and included three years of sampling. This analysis revealed sampling 464 

locality had a significant effect when using all four distance metrics, although the effect size was 465 

small (~1-2% of variation explained; Table 2). Similarly, year explained a small amount of 466 

variation (~1.5%) when using Jaccard and UniFrac distances. In the absence of the sequencing 467 

batch effect, host species identity accounts for the highest degree of variation in microbiome 468 

structure when using Bray-Curtis (9%, P=0.048), Jaccard (9.3%, P=0.001) and UniFrac 469 

distances (10.3%, P=0.001), generally explaining ~6-fold more of the variation than any other 470 

factor considered. Permutation tests indicated that dispersion among species Jaccard and UniFrac 471 

distances is not homogenous, which could account for the significant PERMANOVA result. 472 

However, this does not seem to be the case because although dispersion is high for several 473 

species causing overlap in PCoA space, species’ centroid positions are largely non-overlapping 474 

when using Bray-Curtis, Jaccard and UniFrac distances (Figure S9), likely reflecting true gut 475 

microbiome structuring among species.  476 

 In line with our findings of little-to-no correlation between individual diet diversity and gut 477 

microbiome diversity, host species diet type did not significantly explain variation between 478 
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microbiomes in the full dataset, nor in the batch 1 subset--with the exception of using Jaccard 479 

and UniFrac distance, in which case diet type explained a small amount of variation (~2%; Table 480 

2). Dispersion among diet types for Jaccard distance was not homogenous (F=9.067, P=0.001), 481 

yet diet type centroid positions for Jaccard and UniFrac distances were non-overlapping in PCoA 482 

space especially for low diversity diets (Figure S10), indicating some differentiation among gut 483 

microbiota for species with more specialized diets. 484 

 485 

Topological congruence analyses 486 

  Normalized matching cluster congruence scores for the gut microbiome-host phylogeny 487 

topological comparisons were between ~0.4-0.8. As congruence scores of zero indicate complete 488 

topological congruence, and scores of 1 indicate complete incongruence, these scores reflect 489 

intermediate congruences. When analyzing all individuals in the full dataset, and within the 490 

batch 1 and batch 1-NY subsets, the observed warbler gut microbiome dendrogram was 491 

significantly more congruent with the host phylogeny than with randomized dendrograms using 492 

Bray-Curtis, Jaccard and weighted UniFrac distances (Table 3, Figure 4a). In the batch 2 subset, 493 

the gut microbiome dendrogram was more congruent with the host phylogeny than with 494 

randomized dendrograms using Bray-Curtis and UniFrac distances (Table 3). Thus, the majority 495 

of comparisons (N=11 of 16 comparisons) indicate a positive association between gut 496 

microbiome similarity and host phylogenetic relatedness. As Bray-Curtis and weighted UniFrac 497 

metrics are weighted by ASV counts, this may indicate that relative abundances of microbial 498 

taxa help contribute to the phylogenetic signal in the warbler gut microbiome. 499 

 To determine whether gut microbiome similarity better reflects host evolutionary history or 500 

host diet similarity, we repeated the topological analyses above instead using a dendrogram 501 
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clustered from the diet OTU distances in place of the host phylogeny (Table 3). Among 502 

comparisons, congruence scores were generally lower (indicating better congruence) for 503 

microbiome-host phylogeny comparisons than for microbiome-diet comparisons (Figure S11), 504 

although there are some exceptions. Importantly, only six of sixteen microbiome-diet 505 

comparisons were significantly more congruent than random. Three of these comparisons were 506 

of Jaccard distance, which only considerers ASV presence/absence. Further, in two other 507 

instances both considering Bray-Curtis distances, congruence scores for the microbiome-host 508 

phylogeny comparison were lower than for the microbiome-diet comparison (batch 2, batch 1-509 

NY; Table 3). Collectively, these results suggest a closer association between gut microbiome 510 

structure and host evolutionary history than with host diet.  511 

 Finally, we examined the association between the host phylogeny and diet dendrograms 512 

from the batch 1 subset to determine whether the significant associations we detected between 513 

the gut microbiome and diet could be due to a phylogenetic signal of the diet. For all four 514 

distance metrics, the diet-host phylogeny comparison was significantly more congruent than 515 

random (Bray-Curtis normalized matching cluster score=0.56, P=0.007, Jaccard normalized 516 

matching cluster score=0.52, P=0.003, UniFrac normalized matching cluster score=0.51, 517 

P=0.001, weighted UniFrac normalized matching cluster score=0.57, P=0.017). These scores 518 

reflect intermediate congruence between the diet dendrogram and host phylogeny, and are 519 

similar but slightly higher (less congruent) on average than congruence scores between the 520 

microbiome dendrogram and host phylogeny (Figure 4A). 521 

 522 

Mantel tests 523 
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 Mantel tests indicated a positive relationship between individual-level microbiome 524 

distances and pairwise evolutionary distances (Mantel r ~0.09-0.27) in the batch 1 and batch1-525 

NY datasets for Bray-Curtis, Jaccard, and UniFrac distances, and in the full dataset for UniFrac 526 

distance (Table 3, Figure 4b). Mantel tests also indicated a positive relationship between 527 

individual-level microbiome distances and diet distances (Mantel r ~0.06-0.25) in the full 528 

dataset, batch 1, and batch 1-NY subsets using Bray-Curtis, Jaccard, and UniFrac distances 529 

(Table 3, Figure 4b).  530 

 We also tested the relationship between diet matrices and pairwise evolutionary distances in 531 

the batch 1 subset, and found a positive association for Jaccard diet distance (Mantel r=0.10, 532 

P=0.027), and UniFrac diet distance (Mantel r=0.13, P=0.004). Notably, across all Mantel tests, 533 

most significant correlations were detected when using unweighted distance matrices (Jaccard 534 

and UniFrac).  535 

 536 

Discussion 537 

 We performed fecal metabarcoding to examine environmental and evolutionary influences 538 

on gut microbiome structure in breeding wood warblers. Our analyses collectively support host 539 

taxonomy as the strongest driver of gut microbiome structure while environmental factors, 540 

including diet diversity, showed lesser effects. At the individual level, diet diversity—both 541 

within and between individuals—showed little-to-no association with microbiome diversity. 542 

Further, on average, more closely related species tended to harbor more similar gut microbiomes, 543 

and gut microbiome similarity was less closely associated with diet similarity, suggesting host 544 

evolutionary history may play a large role in shaping host-microbe interactions in this clade. We 545 

also detected a relatively strong batch effect of sequencing run on gut microbiome diversity, and 546 
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by analyzing within-batch subsets of our data we saw this had obscured the signal of the 547 

biological factors we considered in our analyses. Thus, these results highlight caution for other 548 

researchers about whether or not to divide samples across sequencing lanes and this should be a 549 

serious consideration in future metabarcoding studies. 550 

 551 

The wood warbler gut microbiome 552 

 Wood warbler gut microbiomes were dominated by Proteobacteria and Firmicutes, which is 553 

consistent with other studies of other free-living passerines (e.g., Hird et al. 2015, Bodawatta et 554 

al. 2021a). The most prevalent ASV, a Proteobacteria in the family Yersiniaceae, was observed 555 

in ~60% of individuals and occurred in all host species examined, but only a very small 556 

proportion of ASVs were represented in >30% of the individuals sequenced. These results may 557 

reflect a shared signature of the passerine gut microbiome in wood warblers at higher taxonomic 558 

levels, yet a high level of variability among individuals, especially for lower abundance taxa. 559 

 The most dominant bacterial phyla in the current study were also identified as highly 560 

abundant in the only migratory cycle study of re-captured warblers to-date, which focused on 561 

Kirtland’s warblers (Setophaga kirtlandii; Skeen et al. 2021), a species that does not breed in our 562 

study areas. Although arrival on the breeding grounds was accompanied by a shift from a 563 

Kirtland’s warbler gut microbiome dominated by Firmicutes to one dominated by Proteobacteria, 564 

both phyla were highly abundant across the migratory cycle. The most prevalent taxonomic 565 

classes in the current study (Gammaproteobacteria, Alphaproteobacteria, and Bacilli) also 566 

dominated gut microbiomes of breeding Kirtland’s warblers (Skeen et al. 2021). However, 567 

Clostridia was one of the most abundant taxa in Kirtland’s warblers but was found at low 568 

prevalence among individuals in the current study and made up only <2% of the total reads 569 
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sequenced. This may suggest that Kirtland’s warblers, a near threatened Caribbean migrant with 570 

highly specialized habitat requirements, differ in gut microbiome structure from closely related 571 

parulids breeding nearby. This differentiation would be consistent with our findings of a 572 

relatively strong role of host taxonomy and evolutionary history, and/or associated 573 

environmental factors that we were unable to resolve with our dataset, in shaping the parulid gut 574 

microbiome (see below). 575 

 In this study, sampling locality consistently explained 1-2% of variation between 576 

microbiomes across datasets and distance metrics considered. Samples were collected from two 577 

forested localities in Eastern North America roughly 400 km apart, a distance that is likely not 578 

large enough to generate significant population genetic structure within warbler host species due 579 

to a lack of potential barriers to gene flow (e.g., yellow-rumped warblers, S. coronata; Toews et 580 

al. 2016). However, our results suggest this distance may be sufficient in scale to affect subtle 581 

changes in gut microbe communities. Interestingly, the amount of variation explained by 582 

sampling locality here is similar to that reported in other passerine studies (San Juan et al. 2021, 583 

Teyssier et al. 2020), despite this study encompassing a larger geographical area. For example, 584 

habitat type explained ~4% of variation between passerine microbiomes within a 43 km 585 

agricultural study area in Costa Rica (San Juan et al. 2021), suggesting habitat features may be 586 

more important than geographic distance between sites. Although we did not include habitat 587 

features as a factor in our analyses, notable differences between our study sites include an 588 

abundance of Rhododenron (R. maximum) and mountain laurel (Kalmia latifolia) in the 589 

understory at our Pennsylvania localities, whereas these shrubs do not occur in our New York 590 

localities. This and other habitat differences could conceivably contribute to the differences we 591 

observed in gut microbiota between our sites. 592 
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 When analyzing a subset of samples from a single sequencing run, sampling year explained 593 

a similar proportion of variation between microbiomes as did sampling locality, but tended not to 594 

be significant. This may indicate that wood warbler microbiomes are stable across breeding 595 

seasons, despite annual long-distance longitudinal migration to-and-from tropical non-breeding 596 

grounds, which is likely associated with changes in foraging strategies. This is consistent with 597 

other passerine studies which found no difference in gut microbiome diversity across consecutive 598 

breeding seasons (Escallón et al. 2019, Benskin et al. 2015), but it is important to note that in our 599 

dataset, each year represents a different cohort of individuals. In migratory species, it will be 600 

desirable to re-sample the same individuals on the non-breeding and breeding grounds across 601 

multiple cycles to disentangle temporal effects from those of habitat, diet and geographic locality 602 

(Skeen et al. 2021). 603 

 604 

Diet diversity is not tightly linked to gut microbiome diversity in wood warblers 605 

 By sequencing arthropod COI metabarcoding libraries from the same fecal samples we 606 

amplified bacterial 16S libraries, we were able to directly examine the relationship between 607 

natural diet diversity and gut microbiome diversity. Our strategy revealed that when analyzing 608 

three different metrics of within-individual (alpha) diversity, diet diversity was not correlated 609 

with microbiome diversity with the exception of a weak correlation in the batch 1 data when 610 

using the Chao1 index which is neither phylogenetically aware nor weighted by ASV/OTU 611 

abundance (Figure 2a). Although individuals of species with low diversity diets tended to have 612 

reduced gut microbiome alpha diversity and individuals of species with high diversity diets 613 

tended to have increased microbiome alpha diversity, this pattern was not significant (Figure 2c). 614 

Further, when looking at between-individual (beta) diversity, diet type only explained ~2% of 615 
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the variation between individuals and only when using unweighted distance metrics. In this case, 616 

individuals of species with more specialized (less diverse) diets tended to drive this pattern 617 

(Figure S10). This provides some evidence that diet richness may be weakly associated with gut 618 

microbiome richness, although we were unable to detect significant associations with these 619 

analyses when using our full dataset which may be due to the batch effect. Thus, in contrast to 620 

our prediction, diversity of the diet generally did not explain variation in the gut microbiome. 621 

This may suggest a high diversity diet either does not generally provide wood warblers an 622 

increased availability of potential gut colonists, or gut microbe colonization is not affected by 623 

diet diversity. Similarly, in a study of two species of freshwater fish, Bolnick et al. (2014) found 624 

the relationship between diet diversity and gut microbiome diversity was not linear and fish with 625 

a specialized diet actually harbored a more diverse gut microbiome. 626 

 Despite our finding of little relationship between diet diversity and gut microbiome 627 

diversity, many studies have shown host diet indeed influences the avian gut microbiome. Broad 628 

categorization of natural feeding guild and diet type explain differences in the gut microbiomes 629 

of wild passerines in New Guinea and of zoo and farm birds in China, respectively (Bodawatta et 630 

al. 2021a, Xiao et al. 2021). Further, experimental manipulations of passerine diets have been 631 

associated with shifts in gut microbiome diversity and composition (Davidson et al. 2020, 632 

Tyssier et al. 2020, Knutie 2020, Perkarsky et al. 2021). In the current study, we analyzed natural 633 

diets of breeding wood warblers, which are known to primarily eat insects (MacArthur 1958, 634 

Birds of the World 2022). Our metabarcoding results indicate a substantial portion of the diet is 635 

also Arachnid-based. However, diet alpha diversity did not differ among species and relative 636 

proportions of arthropod classes in the diet were similar (Figure 1c). The lack of species with a 637 

highly specialized diet (at the scale analyzed here) that were included in this study may make 638 
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wood-warblers a poor system for untangling the effect of diet diversity on gut microbiome 639 

diversity, and future dual diet-microbiome metabarcoding studies could also include birds with 640 

clear distinctions in dietary guild for comparison (e.g., extreme diet specialists, aerial 641 

insectivores). We note that we did not consider fine-scale spatial partitioning of the feeding niche 642 

as an explanatory variable in this study, something wood-warblers are well known for 643 

(MacArthur 1958). Further, it is possible that because we examined broad-scale patterns in diet 644 

diversity at the OTU level, we were not able to identify components of the diet (e.g., nutritional 645 

values of arthropods) that possibly underlie gut microbiome structure. We also note that although 646 

wood-warblers are primarily insectivores, some species are known to supplement their diet with 647 

fruit, especially in the non-breeding season (Birds of the World 2022). Our study design did not 648 

allow us to examine effects of any non-arthropod components of the diet, which may influence 649 

gut microbiota. Nevertheless, our results suggest dietary arthropod diversity does not scale 650 

directly with gut microbiome diversity in breeding wood-warblers. 651 

 652 

Host evolution as the main driver of wood-warbler gut microbiome structure 653 

 Amongst the biological factors considered in this study, host species stands out as the 654 

variable that explains the largest amount of variation between microbiomes. Further, species-655 

level 16S dendrograms were generally more concordant with the host phylogeny than with COI 656 

dendrograms (Figure 4A, Table 3). We also found the host phylogeny to be concordant with COI 657 

diet dendrograms, suggesting the weaker associations we did detect between the diet and gut 658 

microbiome may have arisen due to a phylogenetic signal of both the diet (Miller al. in prep) and 659 

microbiome. Together with our findings of little environmental influence on the wood warbler 660 

microbiome, this may suggest that host evolutionary history rather than differences in species’ 661 
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ecological niche, is the main driver of microbiome differentiation between wood-warbler 662 

species.  663 

 Mantel analyses of individual-level matrices revealed a somewhat contrasting pattern, 664 

showing support for positive associations between the gut microbiome and evolutionary distance 665 

and a similar level of support for a positive relationship between the gut microbiome and diet 666 

distance. Similar to the topological congruence analysis, these analyses also showed some 667 

support for a relationship between the diet and evolutionary distance. In these analyses, most of 668 

the significant associations involving the diet arose using unweighted distance metrics. These 669 

results are consistent with our other diet diversity analyses by suggesting community richness is 670 

driving these patterns.  671 

 The conflicting pattern revealed by the topological congruence analyses and Mantel tests 672 

may be explained by at least two factors. First, although they are complimentary tests of 673 

phylosymbiosis, topological congruence analyses and Mantel tests fundamentally rely on 674 

different information. Topological congruence analyses do not rely on branch lengths or directly 675 

consider evolutionary or beta distances, whereas Mantel tests measure the correlation between 676 

two distance matrices. Because changes in microbiome community structure may be much more 677 

rapid than evolutionary changes between host genomes, topological congruence analyses may be 678 

a more conservative test of phylosymbiosis (Lim & Bordenstein 2020). 679 

 Second, we used species-averaged ASV/OTU counts in the topological congruence analyses 680 

in order to summarize variation within each species, whereas our Mantel tests were of distance 681 

matrices based on individual-level data. Across all of our analyses of individual-level data, both 682 

alpha and beta diversity of the diet and microbiome were quite variable, even within species. For 683 

example, Bray-Curtis distances between individuals of the same species ranged from ~0.07-1 for 684 
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the gut microbiome, and from ~0.25-1 for the diet (Figure 4b). This may suggest that the high 685 

level of variation within-species obscured phylogenetic signal in gut microbiome and diet 686 

similarities at the individual level in Mantel tests.  687 

 Host species identity was the biological factor that explained the highest degree of variation 688 

between microbiota (Table 2), suggesting the mean ASV counts used in topological congruence 689 

analyses may capture unique features within host species. Collectively, our analyses support a 690 

tighter association between the gut microbiome and host evolutionary history than between the 691 

gut microbiome and diet when looking at the level of host species. This phylogenetic signal of 692 

gut microbiome structure is well-supported in non-flying mammals and insects, but has been less 693 

well-supported in birds. Avian gut microbiome studies generally support differences between 694 

host species (Hird et al. 2015, San Juan et al. 2020, Capunitan et al. 2020, but see Hird et al. 695 

2014), but phylosymbiosis was not supported in New Guinean passerines (Bodawatta et al. 696 

2021a) and the signal was weak among captive cranes and in two passerine studies (Trevelline et 697 

al. 2020, Kropáčková et al. 2019, Loo et al. 2019). In the current study, concordance between the 698 

wood warbler phylogeny and gut microbiome dendrogram was moderate and similar to that 699 

reported for cranes in captivity (Trevelline et al. 2020) and passerines in the Czech Republic 700 

(Kropáčková et al. 2019). Thus, our results support the view that phylosymbiosis is weaker in 701 

birds than in mammals (Song et al. 2020, Youngblut et al. 2019) and uniquely demonstrate that 702 

in wood-warblers, a stronger influence of diet (as measured by species-level diet diversity) does 703 

not account for this discrepancy. Our findings of high variability of gut microbiomes for 704 

individuals within the same species may explain the lack of a consensus about phylosymbiosis in 705 

the avian literature, and particularly among studies that analyzed fewer individuals per species. 706 
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 A phylogenetically conserved gut microbiome may provide the opportunity for co-707 

adaptation between hosts and their gut microbes, which could implicate microbiomes in complex 708 

host evolutionary processes, including speciation (Brucker & Bordenstein 2012). Long-term 709 

coevolution between hosts and microbiota could explain phylosymbiosis, but this pattern could 710 

also arise under ecological filtering. Mazel et al. (2018) used simulations to show that under 711 

ecological filtering, the strength of phylosymbiosis is determined by the strength of the 712 

phylogenetic signal in the host trait underlying microbe colonization. It has been hypothesized 713 

that convergence of bat and avian gut microbiomes is due to reduced gut length, an adaptation to 714 

powered flight, which may favor rapid turnover in gut microbiota thus accounting for the 715 

weakened phylogenetic signal in gut microbiomes compared to non-flying mammals (Song et al. 716 

2020). Consistent with this, Bodawatta et al. (2021a) found a negative association between 717 

passerine body mass—a proxy for gut length—and both gut microbiome richness and 718 

divergence. This might lead to the prediction that phylogenetic signal of the gut microbiome 719 

should be strongest in large-bodied birds, and weakest in small-bodied birds. However, the 720 

current data do not support this, as is highlighted by the results presented here. The strength of 721 

phylosymbiosis reported here for wood-warblers—small-bodied species weighing ~6-20 g—is 722 

similar to that reported for cranes (Trevelline et al. 2020), which are several hundred times 723 

heavier. Thus, additional study is necessary to elucidate the effect of gut retention time on gut 724 

microbiome structure, and of other phylogenetically conserved avian traits or habitat preferences, 725 

including diet, that may mediate the colonization and maintenance of gut microbiomes.    726 

 Further study is also necessary to understand the biological relevance of taxonomic 727 

differences and of phylogenetic signal in gut microbiome structure between hosts. Experimental 728 

studies have shown antibiotic treatment administered to nestlings results in faster growth rates 729 
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(Coates et al. 1963, Potti et al. 2002, Kohl et al. 2018), and caeca of germ-free chickens exhibit 730 

altered gene expression and notably do not express immunoglobulins (Volf et al. 2017). Thus, it 731 

is clear gut microbiota impose constraints on host development and immune function but how 732 

species-differences in natural gut microbiota composition might impact host fitness is unknown. 733 

It is important to note that although we observed an effect of host taxonomy on gut microbiome 734 

structure, this does not necessarily imply functional differences in gut microbiota between hosts. 735 

However, due to microbiome differentiation between host species we may predict disruption of 736 

these communities for admixed individuals upon hybridization (Brucker & Bordenstein 2012). 737 

Wood-warblers are well known to hybridize and occasionally even form intergeneric hybrids 738 

(Toews et al. 2018, 2020), making this clade an excellent system that can be used to tease apart 739 

evolutionary from ecological influences on the gut microbiome as well as the potential role of 740 

the microbiome in hybrid dysfunction. 741 

 742 

Caution against sequencing batch effects 743 

 We prepared and sequenced our 16S libraries in two different batches and the resulting 744 

yields were quite different (Figure S5). This strategy was desirable because it allowed us to 745 

process samples as they became available and it increased our overall sample sizes. However, we 746 

found the technical artifacts this introduced were not trivial (Figure S8), and similar to batch 747 

effects in other studies (Gibbons et al. 2018, Lou & Therkildsen 2022) it obscured the signal of 748 

the biological factors we tested (Table 2). Our topological congruence analysis seemed to be 749 

robust to the batch effect as our results were similar across datasets, although it is possible that 750 

batch effects obscured the signal of phylosymbiosis in previous avian gut microbiome studies. It 751 

is possible that batch effects are less of a concern for mammalian and other systems, where the 752 
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signal of host phylogeny on gut microbiome structure is stronger than in birds. Similarly, the 753 

batch effect was less strong in the COI data which we also processed and sequenced in two 754 

batches (37% of total arthropod OTUs detected in both batches compared to 6% for bacterial 755 

ASVs). This may be due to a more rapid saturation of the accumulation curve for arthropod taxa 756 

than for bacterial taxa that are present in the warbler gut (Figure S2). 757 

 Future methodological study of the consequences of batch effects in metabarcoding studies 758 

is warranted. We recommend metabarcoding studies to report on sequences of technical 759 

replicates (PCRs amplified from the same sample within a batch) and positives (same sample 760 

sequenced across batches) which may help clarify when it is appropriate to make direct 761 

comparison of data sequenced in different batches.  762 

 763 

Concluding remarks 764 

 Our data highlight many outstanding questions about avian microbiomes and the ongoing 765 

need to characterize microbiomes of wild birds (Hird 2017). Wood-warbler gut microbiomes are 766 

dominated by Proteobacteria and Firmicutes, and on average, closely related host species share 767 

more similar gut microbiomes. We found little influence of sampling year, geographic locality, 768 

or diet diversity on gut microbiome structure and thus the majority of the variation between 769 

microbiota was left unexplained. Our results may suggest the phylogenetic signal in gut 770 

microbiome structure is tied more closely to host traits than to host ecology, yet the mechanisms 771 

driving this signal and possible functional consequences for hosts are not clear.  772 

 The level of phylogenetic signal in gut microbiome structure we detected is similar to that 773 

detected for larger-bodied birds (Trevelline et al. 2020), suggesting small body size does not 774 

preclude phylosymbiosis. Further study is necessary to understand the relationship between host 775 
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body size, gut retention time, and gut microbe colonization. Although we found that broad-scale 776 

measures of diet diversity are not closely related to gut microbiome diversity, future studies 777 

should explore how components of the diet (e.g., dominant arthropod taxa, energetic values of 778 

food items) might influence the gut microbiome, including by way of their influence on host 779 

traits (e.g., gut pH). Wood-warblers represent a promising system to continue addressing 780 

outstanding ecological and evolutionary questions about the avian microbiome, including how 781 

microbiomes may influence and respond to adaptive radiation (Bodawatta et al. 2021b).  782 
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Tables 1091 

Table 1. Sampling information for species included in this study. NY=New York, 1092 
PA=Pennsylvania. Subset batch 1 includes samples collected between 2017-2019, which were 1093 
sequenced together in a single sequencing run. 1094 

   2017 2018 2019 2020 Total 

Species 

code 

English 

common 

name Latin name NY PA NY PA NY PA NY PA 

Subset  

batch 

1 

Full 

dataset 

AMRE American 

Redstart 

Setophaga 

ruticilla 

2 0 3 0 5 6 4 4 16 23 

BAWW Black-and-

white Warbler 

Mniotilta 

varia 

0 0 7 0 1 1 4 9 9 22 

BLBW Blackburnian 

Warbler 

Setophaga 

fusca 

1 0 4 0 3 1 5 6 9 20 

BTBW Black-throated 

Blue Warbler 

Setophaga 
caerulescens 

2 0 4 0 2 5 5 10 13 28 

BTNW Black-throated 

Green Warbler 

Setophaga 
virens 

3 0 4 0 4 3 5 7 14 26 

CAWA Canada 

Warbler 

Cardellina 

canadensis 

2 0 4 0 3 3 4 1 12 17 

COYE Common 

Yellowthroat 

Geothlypis 

trichas 

1 0 4 0 3 1 3 2 9 14 

CSWA Chestnut-

sided Warbler 

Setophaga 

pensylvanica 

5 0 2 0 1 5 3 3 13 18 

HOWA Hooded 

Warbler 

Setophaga 

citrina 

0 0 0 0 0 6 0 5 6 11 

MAWA Magnolia 

Warbler 

Setophaga 
magnolia 

1 0 6 0 4 1 4 1 12 17 

MYWA Myrtle 

Warbler 

Setophaga 
coronata 

4 0 5 0 5 1 5 0 15 20 

NAWA Nashville 

Warbler 

Leiothlypis 

ruficapilla 

2 0 4 0 5 0 0 0 11 11 

NOPA Northern 

Parula 

Setophaga 

americana 

2 0 4 0 5 0 5 0 11 16 

OVEN Ovenbird Seiurus 

aurocapilla 

2 0 4 0 4 1 5 6 11 22 

WEWA Worm-eating 

Warbler 

Helmitheros 
vermivorum 

0 0 0 0 0 0 0 5 0 5 

Total individuals 161 270 

 1095 
 1096 
 1097 
 1098 
 1099 
 1100 
 1101 
 1102 
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Table 2. Results of permutational multivariate analysis of variance (PERMANOVA) tests and 1103 
permutation tests of dispersion on beta distances between gut microbiomes. Diet type reflects 1104 
categorization based on our index of diet specialization (i.e., high diversity, low diversity, 1105 
intermediate). Asterisks denote significant results: *** P<0.001 , ** P<0.01 , *P<0.05 level. 1106 
  PERMANOVA Permutation test on 

dispersion 

Distance 

matrix Variable d.f. R2 P F P 

Full dataset (2017-2020)   

Bray-

Curtis 

Species 

Locality 

Year 

Sequencing run 

Diet type 

14 

1 

3 

1 

2 

0.047 

0.007 

0.138 

0.130 

0.009 

0.162 

0.011* 

0.001** 

0.001** 

0.435 

 

13.186 

52.964 

171.570 

 

 

0.001** 

0.001** 

0.001** 

Jaccard Species 

Locality 

Year 

Sequencing run 

Diet type 

 0.053 

0.005 

0.080 

0.071 

0.010 

0.001** 

0.009** 

0.001** 

0.001** 

0.167 

4.481 

30.959 

151.68 

527.04 

0.001** 

0.001** 

0.001** 

0.001** 

UniFrac Species 

Locality 

Year 

Sequencing run 

Diet type 

14 

1 

3 

1 

2 

0.057 

0.006 

0.087 

0.079 

0.010 

0.001** 

0.012* 

0.001** 

0.001** 

0.191 

3.189 

0.098 

8.033 

21.312 

0.001** 

0.761 

0.001** 

0.001** 

Weighted 

UniFrac 

Species 

Locality 

Year 

Sequencing run 

Diet type 

14 

1 

3 

1 

2 

0.062 

0.013 

0.016 

0.006 

0.013 

0.163 

0.020* 

0.146 

0.194 

0.190 

 

2.155 

 

 

0.146 

 

Batch 1 (2017-2019)   

Bray-

Curtis 

Species 

Locality 

Year 

Diet type 

13 

1 

2 

2 

0.090 

0.014 

0.012 

0.020 

0.048* 

0.002** 

0.385 

0.062 

0.703 

0.759 

0.762 

0.397 

Jaccard Species 

Locality 

Year 

Diet type 

 0.093 

0.011 

0.015 

0.020 

0.001** 

0.001** 

0.001** 

0.001** 

2.409 

5.607 

5.889 

9.067 

0.009** 

0.020* 

0.004** 

0.001** 

UniFrac Species 

Locality 

Year 

Diet type 

13 

1 

2 

2 

0.103 

0.009 

0.015 

0.022 

0.001** 

0.014* 

0.034* 

0.013* 

3.049 

0.002 

2.212 

2.161 

0.002** 

0.971 

0.099 

0.118 

Weighted 

UniFrac 

Species 

Locality 

Year 

Diet type 

13 

1 

2 

2 

0.085 

0.017 

0.008 

0.021 

0.380 

0.039* 

0.732 

0.246 

 

0.183 

 

0.655 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted July 19, 2022. ; https://doi.org/10.1101/2022.03.07.482310doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.482310


 51 

Table 3. Summary of topological congruences between species-level gut microbiome 1107 
dendrograms and the host phylogeny (left), and between species-level diet dendrograms (right), 1108 
and of individual-level Mantel tests. N spp.=number of species analyzed, and matching cluster 1109 
congruence scores are normalized where 0=complete congruence, and 1=complete incongruence. 1110 
Asterisks denote significant results: *** P<0.001 , ** P<0.01 , *P<0.05 level. 1111 

   Microbiome-host phylogeny Microbiome-diet 

 

N 

spp. 

Distance 

metric 

Matching cluster 

congruence score Mantel r 

Matching cluster 

congruence 

scores Mantel r 

Full dataset 

(2017-2020) 
15 

Bray-Curtis 0.52*** 0.02 0.57 0.06* 

Jaccard 0.58** 0.04 0.56*** 0.17** 

UniFrac 0.68 0.10** 0.74 0.16** 

Weighted 

UniFrac 

0.58** 0.01 0.51** 0.03 

Batch 1 

(2017-2019) 
14 

Bray-Curtis 0.45*** 0.09* 0.70 0.09* 

Jaccard 0.45*** 0.18** 0.39*** 0.21** 

UniFrac 0.71 0.19** 0.64 0.22** 

Weighted 

UniFrac 

0.57** -0.003 0.61 -0.05 

Batch 1-NY 

(2017-2019) 
13 

Bray-Curtis 0.44*** 0.15** 0.53* 0.11* 

Jaccard 0.52** 0.23** 0.44*** 0.23** 

UniFrac 0.73 0.27** 0.69 0.25** 

Weighted 

UniFrac 

0.52** 0.07 0.74 -0.09 

Batch 2 

(2020) 
14 

Bray-Curtis 0.56** 0.07 0.62* 0.01 

Jaccard 0.72 0.03 0.67 -0.03 

UniFrac 0.59* 0.04 0.64 -0.02 

Weighted 

UniFrac 

0.79 -0.02 0.73 0.06 

 1112 
 1113 

 1114 

 1115 

 1116 

 1117 

 1118 

 1119 
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Figure captions 1120 

Figure 1. A) Phylogenetic relationships between host species in this study. Upside down 1121 
triangles indicate low diversity diet, triangles indicate high diversity diet, and squares indicate 1122 
intermediate diet diversity based on our COI diet index. The full dataset represents all samples 1123 
collected between 2017-2020, and batch 1 represents all samples collected between 2017-2019. 1124 
Illustrations © Lynx Edicions. B) Relative abundance of bacterial phyla in the full 16S dataset, 1125 
and C) Relative abundance of arthropod orders in the full COI dataset. See Table 1 for host 1126 
species codes. 1127 
 1128 
Figure 2. Relationship between diet diversity and gut microbiome diversity. A) Within-1129 
individual diversity of the gut microbiome is weakly correlated with within-individual diet 1130 
diversity as measured by the Chao1 index in the batch 1 dataset. Dashed line is a linear model fit 1131 
to the data. Point color reflects warbler species (see Table 1 for species codes). B) Distribution of 1132 
diet index scores by host species, where a low score is reflective of low diet diversity or diet 1133 
specialization. Color indicates assignment to diet type and is consistent with part C and D, C) 1134 
Microbiome alpha diversity does not differ among diet types, as classified by diet index. D) 1135 
Principal coordinate analysis (PCoA) of Bray-Curtis distance between host gut microbiomes 1136 
sequenced in batch 1. Point color represents species diet type as defined by our index of diet 1137 
specialization. Ellipses are drawn at 50% confidence level. In each panel, data shown are from 1138 
sequencing batch 1. 1139 
 1140 
Figure 3. Principal coordinate analysis (PCoA) of Bray-Curtis distance between A) host gut 1141 
microbiomes and B) individual diet. In both panels, data are from samples sequenced in batch 1. 1142 
Point color represents host species, and shape represents geographic locality. See Table 1 for 1143 
species codes.  1144 
 1145 
Figure 4. Summary of phylosymbiosis analyses. A) Topological congruence analyses of the 1146 
association between the gut microbiome and host phylogeny (left), the gut microbiome and diet 1147 
(middle), and the diet and host phylogeny (right). Microbiome and diet dendrograms were 1148 
constructed using Bray-Curtis distances of mean within-species ASV/OTU counts. Matching 1149 
cluster congruence scores are normalized where 0=complete congruence, and 1=complete 1150 
incongruence. See Table 1 for species codes. B) Scatter plots of individual-level microbiome 1151 
versus host evolutionary distances (left), microbiome versus diet distances (middle), and diet 1152 
versus host evolutionary distances. Diet and microbiome distances are of the Bray-Curtis metric. 1153 
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