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Abstract

Metabolism is fundamentally intertwined with the ageing process. We here report that a key

determinant of cellular lifespan is not only nutrient supply and intracellular metabolism, but also

metabolite  exchange interactions that occur between cells.  Studying chronological  ageing in

yeast,  we observed that metabolites exported by young, exponentially growing,  cells are re-

imported during the stationary phase when cells age chronologically, indicating the existence of

cross-generational  metabolic  interactions.  We  then  used  self-establishing  metabolically

cooperating communities (SeMeCos) to boost cell-cell metabolic interactions and observed a

significant  lifespan  extension.  A search for  the underlying  mechanisms,  coupling  SeMeCos,

metabolic profiling, proteomics and genome-scale metabolic modelling, attributed a specific role

to  methionine  consumer  cells.  These  cells  were  enriched  over  time,  adopted  glycolytic

metabolism and increased export of protective metabolites. Glycerol, in particular, accumulated

in the communal metabolic environment and extended the lifespan of all cells in the community

in  a  paracrine  fashion.  Our  results  hence  establish  metabolite  exchange  interactions  as  a

determinant of the ageing process and show that metabolically cooperating cells shape their

metabolic environment to achieve lifespan extension.

Keywords:  Metabolite  exchange  interactions,  yeast  chronological  ageing,  self-generated

metabolic microenvironment, organic sulphur cycle metabolites, eukaryotic cell physiology and

longevity. 

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 7, 2022. ; https://doi.org/10.1101/2022.03.07.483228doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483228
http://creativecommons.org/licenses/by/4.0/


Introduction 

Metabolism is interlinked with the ageing process and determines lifespan at multiple levels.

Processes  driven  or  dependent  on  metabolism  include  cellular  growth,  ageing  and  death,

energy  production  and  the  formation  of  molecular  building  blocks  required  for  cellular

homeostasis and repair, and even regulation of antimicrobial responses 1–6. Moreover, metabolic

sensing and metabolic  signalling  systems that  regulate cell  growth and energy expenditure,

such as the AMPK, Sirtuin and mTOR pathways, are also central pathways regulating cellular

ageing  and  lifespan  7–11.  Indeed,  metabolism  is  a  source  of  both  damaging  and  protective

molecules, and hence strongly intertwined with ageing processes. For example, metabolites like

NADPH  and  glutathione  fuel  the  metabolic  antioxidant  machinery  and  protect  cells  from

oxidative  damage that  occurs  during  cellular  ageing  12.  On the other  end  of  the  spectrum,

reactive products of metabolism such as methylglyoxal or superoxide, indiscriminately react and

damage  cellular  membranes,  proteins  and  nucleic  acids,  accelerating  cellular  ageing

phenotypes 13–15. As a consequence, metabolic activity that determines the equilibrium between

the levels of protective and damaging reactive molecules inside a cell is a critical determinant of

ageing and lifespan 16,17. 

Cellular metabolism not only occurs inside cells, it also involves the exchange of metabolites

between cells and tissues  18–22. In microbes, metabolite exchange interactions are a result of

cells  exporting  metabolites  into  their  surrounding  and re-importing  metabolites  produced by

themselves  or  neighbouring  cells.  Metabolite  exchange  interactions  can be costly  for  cells,

because the exported metabolites can be lost to competitors or diffusion 23, but are critical for

cell  growth  and  emerge  for  at  least  three  reasons.  First,  the  ability  to  uptake  and  exploit

metabolites that are available environmentally renders cells more competitive. This means cells

profit  from  possessing  metabolite  uptake  systems  even  in  situations  where  there  are  no

advantages to be gained from cell-cell  cooperation  21,24.  Second, cells export  metabolites for
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many  different  reasons.  For  instance,  the  intracellular  biochemical  network  needs  constant

balancing which is achieved through an overflow of metabolites 20,25–27. The export of metabolites

also mediates metabolic  cooperation,  a situation that  can arise when unrelated biochemical

reactions  interfere  and inhibit  each other,  and where  smaller  metabolic  networks  are  more

efficient  28. Finally,  the biosynthetic burden caused by expensive metabolic reactions can be

mitigated through the sharing of labour. This helps cells to reduce energetic costs as well as the

load of toxic intermediates 21,29,30. 

Intercellular metabolic interactions hence emerge because cells constantly export a broad range

of metabolites and, at the same time, harbour an array of mechanisms which sense and uptake

extracellular  nutrients  20,31–33.  This  situation  has,  however,  a  significant  impact  on  cellular

physiology.  Once a cell  has started to uptake extracellular  metabolites,  its own biosynthetic

pathways  typically  become  inhibited  32,34.  As  a  consequence,  metabolic  and  physiological

properties that also impact ageing, such as growth rate, stress tolerance, or the formation or

consumption  of  metabolites  such  as  NADPH,  are  altered  depending  on  the  uptake  of

metabolites  32,35–38.  For example,  cells  that  uptake lysine from the environment mount better

protection against oxidants, via increased pools of NADPH 37, and cells that rely on the uptake

of amino acids, including histidine, leucine, and methionine, are more drug tolerant 38.

While there is an increasing understanding of the role of the metabolic environment in stress

resilience and growth, the role of cell-cell metabolic interactions in the ageing process is still

barely understood  2.  A measure of  eukaryotic cell  ageing is chronological  lifespan (CLS) in

yeast. CLS refers to post-mitotic cell ageing, assessed by the length of time quiescent (non-

dividing) cells can survive post entry into the stationary phase 39,40. CLS has been pivotal in the

discovery of several of the most critical and conserved regulatory pathways of ageing that are

now known to be important across eukaryotes, including the AMPK, mTOR and sirtuin pathways

8–11.  Monitoring  metabolic  consumption  and production  during CLS using metabolomics  and

isotope tracing  experiments,  we observe  that  metabolites  exported by  young,  exponentially

growing,  cells  are  re-imported  during  the  stationary  phase  when  cells  age  chronologically,
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indicating the existence of cross-generational metabolic interactions. As this result implied that

metabolite  exchange  interactions  could  be  impact  CLS,  we  boosted  metabolite  export  and

metabolic interactions through the use of self-establishing metabolically cooperating (SeMeCo)

communities,  a  yeast  community  model  that  allows  the  tracing  of  metabolite  consumer  or

producer  cells  of  four  different  metabolic  pathways  in  their  sixteen  possible  combinations

(metabotypes) 41. We observed a significant extension of the yeast chronological lifespan when

cell-cell metabolic interactions are boosted. In the search for the underlying mechanisms, we

coupled  lifespan  assays  with  proteomics,  metabolomics  and  genome-scale  metabolic  flux

analysis, and discovered a role for the extracellular metabolic environment that is created by the

cooperating  communities.  We find  that  cells  cooperating  for  the  biosynthesis  of  methionine

generate a protective metabolic environment,  in which methionine consumers obtain a more

glycolytic  metabolism  and  overflow  glycolytic  products,  glycerol  in  particular.  The

exometabolome created this way, in turn, extends the lifespan of all cells in the community via a

paracrine effect. Our results show that widespread metabolome changes, occurring when cells

cooperate metabolically,  create a pro-survival  metabolic environment leading to extension of

their  own  lifespan.  Ultimately,  these  findings  establish  cell-cell  metabolic  interactions  and

generated exometabolomes as a longevity modulating mechanism.

Results

Yeast  cells  establish  cross-generational  metabolite  exchange  interactions  during

chronologic ageing

As cells  sense extracellular  metabolites and feedback inhibit  their  own metabolite  synthesis

pathways when grown in rich media  25,31,34,41, we conducted CLS experiments using synthetic

minimal  (SM)  growth  media  lacking  amino  acid  and  nucleotide  supplements.  We  used  a
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common  lab  strain  in  which  four  artificially  introduced  metabolic  biosynthetic  deficiencies

(auxotrophies) in three amino acids (his3Δ1,  leu2Δ,  met15Δ) and one nucleobase (ura3Δ)  42

were repaired through genomic integration of the wild-type alleles 38. 

The prototrophic  cells,  metabolically  competent  for  the  biosynthesis  of  the  four  metabolites

(wild-type cells) were grown in batch culture through exponential, early stationary and stationary

phases (1, 2 and 8 days of culture respectively) (Fig 1a). Initially, cells grow exponentially (E),

consuming glucose supplemented to the culture media, followed by a decline in growth rate as

cells transition from diauxic shift to stationary phase (early stationary phase, ES), and then enter

stationary phase (S) once preferred carbon sources are exhausted. While exponential cells are

mostly  glycolytic,  they  then  start  consuming  released  products  of  glucose  catabolism  (like

ethanol or glycerol) during the diauxic shift, before entering stationary phase, when cells arrest

growth and mostly use oxidative phosphorylation to generate ATP (Fig. 1a). In order to evaluate

the intracellular metabolome of chronologically ageing prototrophic cells,  we used a targeted

LC-MS/MS method 43. The concentration profile of intracellular amino acids, nucleotides as well

as glycolysis and tricarboxylic acid (TCA) intermediates was specific to the growth phase; the

profiles clustered in a principal component analysis (PCA) according to growth phase (Fig. 1b

i)). The metabolite concentration changes measured reflected the known metabolic transitions

from exponential  to  the  stationary  phase  44–46.  Consistent  with  a  shift  from fermentation  to

oxidative metabolism, the overall concentration of glycolytic metabolites decreased, while we

detected an increase in the concentration of TCA derived metabolites (Fig. 1b ii)). Moreover,

reflecting  the  ceasing  of  growth,  the  concentration  of  nucleotides  decreased  during  early

stationary  and  stationary  phases  46.  Interestingly,  a  differentiated  picture  was  obtained  for

intracellular  amino acids. While the concentration of overall  amino acids did increase in the

stationary phase, we observed a spread in the concentration range (Fig. 1b ii)), unpaired two-

sided Wilcoxon Rank Sum test and multiple testing correction using the Benjamini & Hochberg

(BH) method, adjusted p-values in Supplementary File 1). For example, isoleucine, glycine and

leucine increased from exponential to stationary phase, but aspartate, alanine and glutamate
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decreased, most likely reflecting their role in interconversion reactions in the biosynthesis of

other  metabolites,  including  other  amino  acids  and  pyruvate  (Fig.  1c),  unpaired  two-sided

Wilcoxon Rank Sum test and multiple testing correction using the BH method, adjusted p-values

in Supplementary File 2).

As amino acids can be exported by yeast cells into the surrounding environment  25,41,47–49, we

therefore continued our analysis with a quantification of the extracellular amino acid pools using

a targeted LC-MS/MS method  50.  Despite  having  inoculated  our  cells  in  a  minimal  medium

lacking amino acid supplements, we found that by mid-log phase (exponential  phase) yeast

cells had produced and exported amino acids to reach significant concentrations in the medium.

Further,  14  of  the  19  analysed  amino  acids  are  increased  by  more  than  >10%  in  the

extracellular  medium in the stationary compared to the exponential  phase medium (Fig.  1c

inlet). Indeed, only glutamate and aspartate were reduced in the extracellular metabolome of

stationary cells when compared to the medium formed by exponential cells (Fig. 1c, unpaired

two-sided Wilcoxon Rank sum test and multiple testing correction with BH method, adjusted p-

values in Supplementary File 2). The source of these metabolites can be metabolite export as

well as cell death in the stationary phase. As most of the metabolites were already increasingly

detected in the exponential and early stationary phases where cell death is negligible (~95% live

cells)  (Supplementary Fig. 2a)  and also because in stationary cultures, the concentration of

metabolites  did  not  correlate  with  the  number  of  live  cells  (Supplementary  Fig.  2b),  we

concluded  that  the  main  source  of  metabolites  is  export  during  the  exponential  and  early

stationary phases.

Amino  acids  are  sensed  and  efficiently  uptaken  by  actively  growing  yeast  cells  25,31,47.  We

therefore  asked  if  cells  during  the  stationary  phase,  no  longer  actively  proliferating,  would

uptake the amino acids previously produced in the exponential phase (Fig. 1d). We exploited

13C-glucose isotope labelling to test for the consumption, by stationary cells, of metabolites that

had been produced during the exponential  phase.  We cultured wild-type yeast  cells  on SM

media supplemented with 12C-glucose or 13C-glucose for 48h, a duration which ensured that the
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glucose in the media had been exhausted - catabolized into unlabeled (12C) and labelled (13C)

metabolites, respectively. Then we swapped the media between labelled and unlabelled cells. In

parallel, we set control cultures growing on SM media supplemented with  13C-glucose, which

were then swapped into SM media only supplemented with amino acids (without glucose), to

allow distinguishing if intracellular amino acid levels were a direct result of import, or indirectly

derived from catabolism of imported carbohydrates. Levels of fully labelled (13C) or unlabeled

(12C) intracellular amino acids (from glucose catabolism) were quantified using a targeted LC-

MS/MS method  50 (Fig. 1e i)).  Growth on SM media supplemented with  12C-glucose or  13C-

glucose did not change cell growth parameters prior or post swap (Supplementary Fig. 3a-b,

unpaired two-sided Wilcoxon Rank sum test;  p-values are listed in  Supplementary File 3).

Notably, cells in exponential phase synthesise sufficient amounts of amino acids so that they

can  be  exported  and  then  uptaken  by  neighbouring  cells,  as  shown  by  the  increased

intracellular levels of 13C- or 12C-containing amino acids in cultures initially grown on 12C- or 13C-

glucose, respectively, or when unlabeled amino acids were added to cells previously cultured in

13C-glucose in the control cultures (Fig. 1e ii), Supplementary Fig. 3c). Hence amino acids that

are produced and exported during the exponential growth phase are taken up by yeast cells

during the stationary phase, indicating that yeast cells establish cross-generational metabolite

exchange interactions during chronological ageing.

Metabolite exchange interactions extend lifespan in yeast communities

We next  questioned what  impact  the exchange of  metabolites  might  have on chronological

lifespan.  The export and import  of  metabolites cannot be prevented without  imposing major

metabolic  constraints  on  cells.  We  overcame  this  issue  by  choosing  to  boost  metabolite

exchange  interactions  instead  and  made  use  of  self-establishing  metabolically  cooperating

communities  (SeMeCos)  41.  SeMeCos  exploit  the  segregation  of  plasmids  that  encode  for
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essential metabolic enzymes, to stochastically introduce auxotrophies (metabolic deficiencies),

upon which cells can only continue proliferation by exchanging metabolites. Because plasmid

segregation continues until a maximum amount of auxotrophic cells is reached, SeMeCos boost

metabolite exchange interactions within the communities. Indeed, compared to wild-type cell

communities,  SeMeCos  are  characterised  by  increased  metabolite  export,  an  increase  in

extracellular  metabolite  concentrations,  and  increased  metabolic  interactions  38. Despite

boosting metabolite exchange interactions, SeMeCos still exploit the native metabolite export

and import capacities of yeast cells and do not have artificially altered metabolic pathways or

metabolite sensing properties 38,41,51 (Fig. 2a). 

Analysing chronological lifespan of SeMeCos (Fig. 2b), we observed that in comparison to the

isogenic wild-type strain, SeMeCos were long-lived, as assessed by monitoring colony forming

units (CFUs) over time. SeMeCos lost more CFUs immediately after reaching the stationary

phase, but in later time-points contained more CFUs and were alive after the wild-type cultures

lost viability (Fig. 2c, unpaired two-sided t-test, p-value = 0.00661 at day 18 of culture; CLS p-

values listed in  Supplementary File 4).  To have an independent assessment of survival, we

also monitored cell viability using Live/DeadTM cell staining assays. At late timepoints, SeMeCos

also contained significantly more viable cells (Supplementary Fig. 4a, unpaired two-sided  t-

test; CLS p-values listed in  Supplementary File 4). Finally, we exploited the situation where

due  to  the  higher  cell  density  and  proximity,  metabolite  exchange  is  amplified  in  colonies

compared to liquid cultures. Yeast cells survived much longer in colonies than in liquid culture

(~65 vs 20 days). Moreover, also in the colony, SeMeCos had a significantly longer CLS than

the isogenic wild-type cells  (Fig. 2c, unpaired two-sided  t-test, p-value = 0.0338 at day 65 of

growth,  CLS p-values listed in  Supplementary File 4).  We ruled out  that  the difference in

lifespan  between  SeMeCos  and  wild-type  was  explained  by  differences  in  pH,  a  common

confounder of lifespan experiments  52 (Supplementary Fig. 4b, unpaired two-sided t-test, p-

values listed in Supplementary File 5). Moreover, our data suggests that SeMeCo cells were

not long-lived due to amino acid starvation, a known lifespan extending intervention 53. Indeed,
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corresponding to the increased exchange of metabolites, the extracellular medium was more

metabolite rich in stationary SeMeCos than in wild-type cells, including H, L, M and U (Fig. 2d,

Supplementary  Fig.  5,  unpaired  two-sided  Wilcoxon  Rank  sum  test  and  multiple  testing

correction BH method, adjusted p-values in Supplementary File 6).

The lifespan extension in SeMeCos is mediated by a paracrine mechanism 

Next,  we tested if  the lifespan extension is  associated with specific  metabotypes,  i.  e.  with

specific metabolic dependencies between cells in a community. The SeMeCo model is based

on the stochastic  segregation  of  four  plasmid-encoded auxotrophic  marker  enzymes (HIS3,

LEU2,  URA3  and  MET15)  resulting  in  16  metabotypes  (metabolic  genotypes,  Fig.  2a)

distinguishable  by  genetics.  Because  of  the  coupling  to  other  metabolic  processes,  the  16

metabotypes are connected to broad changes in metabolism and, together, affect differential

expression of 2/3rds of the genome 54. We monitored occurrence and relative contributions of

the different auxotrophies to the ageing SeMeCo cultures over time. Generally, we observed

that the proportion of prototrophic cells declined over time and that during the late stationary

phase ~98% of viable cells were auxotrophs. Among the auxotrophs, the  met15Δ segregants

dominated, and increased in relative abundance with time (Fig. 3a, paired two-sided t-test, p-

values in Supplementary File 7).

To  test  the  contribution  of  the  individual  auxotrophies  to  the  lifespan  extension,  we  next

generated  additional  versions  of  the  SeMeCo  communities,  in  which  each  one  of  the

auxotrophic markers (HIS3, LEU2, URA3 or MET15) was genomically repaired, and hence, only

three  plasmids  segregate  (‘3p-SeMeCos’)  (Fig.  3b). The genomic  repair  of HIS3,  LEU2  or

URA3 did not significantly change the lifespan of SeMeCos, whereas the 3p-SeMeco in which

the MET15 locus was no longer segregating had significantly shorter lifespan (Fig. 3c, unpaired

two-sided Wilcoxon Rank sum test, p-value at day 20 of culture for: SeMeCo vs wt = 0.0294
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SeMeCo vs HIS3-SeMeCo = 0.3428, SeMeCo vs LEU2-SeMeCo = 0.3428, SeMeCo vs URA3-

SeMeCo = 0.2000, SeMeCo vs MET15-SeMeCo = 0.0210; p-values across CLSs are listed in

Supplementary  File  8).  Moreover,  SeMeCos  that  only  segregate  the  MET15  marker  (pM-

SeMeCo) also had increased lifespan compared to wild-type communities (Supplementary Fig.

6, unpaired two-sided Wilcoxon Rank Sum test, p-value at 28 days of culture = 3.27e-05; p-

values across CLS are listed in Supplementary File 9). Both the accumulation of the met15Δ

segregants during the CLS, and the loss of the phenotype when  MET15 is not segregating,

associated the lifespan extension with the methionine biosynthetic pathway and the organic

sulphur cycle.

Methionine and other sulphur containing amino acids have repeatedly been linked to ageing,

and typically it was a methionine restriction that caused a lifespan extension in model organisms

55–60.  Interestingly  however,  the high prevalence  of  met15Δ cells  in  SeMeCos  and the high

concentration of  methionine produced by cells  in  the growth media did not  suggest  that  an

underlying methionine restriction would apply. To confirm that the fundamental mechanism of

our observation is not methionine restriction,  we conducted a control  experiment,  where we

supplemented  met15Δ  cells with 2g/L of methionine.  Despite the high methionine levels,  we

observed a robust lifespan extension in  met15Δ  cells  (Supplementary Fig. 6, unpaired two-

sided Wilcoxon Rank Sum test, p-value at 28 days of culture = 3.27e-05; p-values across CLS

are listed in Supplementary File 9). In search of an alternative explanation, we found evidence

for a paracrine effect. We performed an independent CLS experiment, comparing SeMeCos and

‘3p-SeMeCos’ unable to segregate the MET15 locus, confirmed the dependency of the lifespan

extension on the organic sulphur cycle pathway  (Supplementary Fig. 7, unpaired one-sided

Wilcoxon Rank Sum test, p-values in Supplementary File 10), and coupled the CFU analysis

with metabotyping analysis (see Methods). Strikingly, we noted that the presence of the met15Δ

cells significantly increased the maximum lifespan of the other cells in the community (Fig. 3d-e,

unpaired one-sided Wilcoxon Rank Sum, p-values in Supplementary File 11).
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Lifespan extension in cooperating communities is mediated by an exometabolome rich

in protective metabolites

To explore the cell-extrinsic factors that mediate the lifespan extension phenotype, we started

by  dissecting  the  metabolic  changes  emerging  when  cells  metabolically  interact.  First,  we

simulated  the  likely  flux  changes  using  a  community-adapted  version  of  the  flux  balance

analysis  (FBA)  that  allows  monitoring  the  exchange  of  metabolites  between  cells  38.  We

simulated the exchange of metabolites between a prototroph and each of the 15 auxotrophic

metabotypes  that  emerge  from  all  possible  combinations  of  H,  L,  U  and  M  auxotrophies

(Supplementary Fig. 8a). The community-FBA revealed that interactions between MET15 and

met15Δ cells  cause broad metabolic  flux changes affecting a range of  metabolic  pathways,

including  central  metabolism.  The  broad response  involves  not  only  downstream effects  of

metabolism  intracellularly  but,  in  addition  to  methionine,  also  results  in  the  exchange  of  a

plethora  of  other  metabolites.  (Supplementary  Fig.  8b,  Supplementary  Fig.  9,

Supplementary  File  12).  This  result  opened  the  possibility  that  it  is  not  only  methionine

exchange itself, but the metabolic changes introduced by the metabolic cooperation that cause

the lifespan extension. In order to get a deeper understanding of the pathways involved, we

continued with proteomics analysis.  We extracted proteins from the communities,  generated

tryptic peptides, and analysed them using microLC-SWATH-MS 61 and processed the data with

DIA-NN  62.  We then performed differential  protein  expression  analysis  comparing  otherwise

identical SeMeCos that differ in the segregation of the  MET15 marker (SeMeCos vs  MET15-

SeMeCos). We measured proteomes during exponential phase (day 1), early stationary (day 2)

and  stationary  (day  8)  growth  phases  (Fig.  4a).  We consistently  quantified  1951  proteins,

around half the typically expressed yeast proteome 63. The first principal component (PCA1) in a

PCA analysis explained 33% of the variance and separated the proteomes according to growth
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phase.  The  second  principal  component  (PCA2),  which  accounts  for  a  further  23% of  the

variance,  separated the samples based on whether  or  not  the communities  segregated the

MET15 marker  (SeMeCos  vs  MET15-SeMeCos  and  wild-type,  respectively)  (Fig.  4b,

Supplementary Fig. 10). Moreover, a comparison of the different communities revealed that

most of the differential protein expression occurs when MET15 and met15Δ cells interact (Fig.

4c, Supplementary Fig. 11, unpaired two-sided  t-test and multiple testing correction with BH

method,  adjusted  p-values  in  Supplementary  File  13).  A  Gene  Set  Enrichment  Analysis

(GSEA) 64 revealed that > 50% of the differentially expressed proteins (unpaired two-sided t-test,

BH  adjusted  p-value  <  of  0.05))  comprised  gene  ontologies  (GO)  belonging  to  metabolic

processes  (Supplementary Fig. 12,  Supplementary File 14). Mapping of metabolic enzyme

expression levels to the metabolic network allowed visualisation of the changes in metabolism

that span over central metabolism and intermediate metabolism, in communities where MET15

and met15Δ cells interact (Fig. 4d, Supplementary Fig. 13). Continuing with a pathway-centric

analysis  of  the proteome did point  our attention to glycolysis.  Enzymes associated with the

glycolysis  pathway  were  generally  upregulated  in  the  communities  that  contained  MET15

segregants  (Fig.  4e).  Moreover,  an  increase  in  the  expression  of  glycolytic  metabolites  in

stationary cells  that  typically  rely on oxidative  phosphorylation  for  energy production  44 was

somewhat  a  surprise  (Fig.  5a-b).  Indeed,  both  glycolytic  activity  and  glycolytic  overflow

metabolites are associated with chronological ageing. While glucose restriction itself extends

lifespan 65, the glycolytic overflow metabolites ethanol and acetate both shorten lifespan 52,66, but

another glycolytic overflow metabolite, glycerol, increases CLS 67 . We speculated that a change

in release of such metabolites might very well change the lifespan of cells that share a common

metabolic  environment.  We  therefore  measured  ethanol,  acetate  and  glycerol  in  the

exometabolome  of  the  different  SeMeCos  and  wild-type  communities  during  CLS.  In  the

stationary phase, levels of all three metabolites were higher in the communities where MET15

and  met15Δ segregants interacted. Most striking changes were observed for glycerol, whose

levels were ~8 fold increased, whilst ethanol and acetate levels were ~2 fold higher (Fig. 5b i),
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unpaired two-sided t-test, p-values in Supplementary File 15). In order to explain the sources

of  the  increase  in  glycerol,  we  studied  the  intracellular  metabolome.  SeMeCos  revealed

concentration changes in upper and lower glycolytic metabolites across all growth phases: the

most  significant  changes  were  however  detected  in  the  glycerol-associated  three  carbon

phosphates (G3P, DHAP, and PEP) in the stationary phase. These were increased specifically

in the communities where MET15 and met15Δ cells interacted (Fig. 5b ii), unpaired two-sided t-

test, p-values in Supplementary File 15). In parallel, we conducted oxygen consumption (OC)

analysis.  We  found  that  the  OC  was  reduced  in  the  communities  containing  the  MET15

segregants (Fig. 5c, unpaired two-sided Wilcoxon Rank Sum test, p-values in Supplementary

File  16).  The  three  results  were  all  consistent  with  the  accumulation  of  glycerol  in  the

extracellular  medium: glycolytic  enzymes and glycerol  precursors were up,  while  respiratory

metabolism, required for the use of a non-fermentable carbon source as glycerol, was reduced. 

To test  whether an accumulation  of  glycerol  could be associated with extending lifespan of

cooperating communities, we performed a CLS assay where cells were grown in SM media

supplemented with glycerol. Glycerol supplementation extended lifespan to 62 days of culture

as compared to previously observed (Fig. 3c) <20 days in wild-type and MET15-SeMeCos. The

SeMeCos also profited from the glycerol treatment, albeit the relative gain was lower than in

wild type cells (mean fold change survival  to wild-type in early stationary phase of 5.060%,

0.006% and 0.286% in SeMeCos, wild-type and MET15-SeMeCos, respectively, at 62 days of

culture) (Fig. 5d, unpaired two-sided Wilcoxon Rank Sum test, p-values in Supplementary File

17).

While these results demonstrated that glycerol accumulation is beneficial, the glycerol increase

alone might not sufficiently reflect the complexity of the yeast exometabolome. To validate if the

community-created  exometabolome  is  indeed  mediating  the  lifespan  extension,  we  hence

complemented these results with a media swap experiment. We cultured wild-type communities

in SM media until the early stationary phase (48h of culture) and then transferred them to a

SeMeCo  exometabolome  (48h  culture  media  generated  in  parallel).  Control  cultures  were
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generated by placing wild-type communities back in their own exomebolome  (Fig. 5e). Wild-

type communities cultured on the exometabolome harvested from SeMeCos showed significant

lifespan extension, with mean percentage survival of 20 % in cultures chronologically aged in a

SeMeCo  exometabolome  vs  2%  in  cultures  chronologically  aged  in  a  control  wild-type

exometabolome, representing a 10-fold increase in CFU formation at 18 days of culture,  (Fig.

5e, unpaired two-sided Wilcoxon Rank Sum test; p-value = 0.0286 at day 18 of culture, p-values

across CLS in Supplementary File 18). Hence, the metabolic changes emerging when MET15

met15Δ cells interact generate a pro-survival metabolic environment that extends lifespan of all

cells in a community. 

Discussion

The classical view of the metabolic network is the one of a biochemical network operating inside

the cell. However, with increased understanding of single cell properties, microbial landscapes

and phenotypic heterogeneity this view is rapidly evolving 68. The individual cell is increasingly

seen  to  be  part  of  a  metabolic  environment  spanning  across  cells,  and  thus,  metabolite

exchange interactions between cells are an essential  part  of metabolism  32,69,70.  In microbes,

metabolic networks span not only over single, but also over multiple species that interact within

microbial communities  36,49,71–73. The degree of metabolite exchange within those communities

appears to be extensive.  For instance, a majority of microbes are uncultivable outside their

community  environments,  with metabolic  co-dependencies  being one of  the key reasons  74.

Another interesting observation is that from all 12,538 microbial communities sequenced as part

of  the  Earth  Microbiome  project  75 only  6  contained  no  amino  acid  auxotrophs  38.  The

interactions  between  amino  auxotrophs  and  prototrophs  is  hence  a  common  situation  in

microbial  communities, which also shows that amino acids are effectively exchanged all  the

time.
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In ecology, metabolite exchange interactions can lead to competition or cooperativity 21,23, but in

any case, they have fundamental physiological implications. For instance, we have previously

shown  that  cells  that  uptake  lysine  from  the  environment  mount  better  protection  against

oxidants 37, or that the presence of auxotrophs enriches metabolic environments and increases

drug tolerance 38. Despite being fundamentally important in modulating cellular processes that

also impact on ageing - in particular to growth rate, metabolic signalling, and stress tolerance -

to our knowledge, the impact of metabolic intercellular interactions has barely been studied in

the  context  of  cellular  ageing  and  lifespan.  Indeed,  studying  the  physiological  impact  of

metabolite exchange interactions is technically challenging.  Metabolite exchange interactions

between cells are not captured by many typical  single-cell  techniques,  such as microscopic

imaging or single cells RNA sequencing,  nor does the concentration of a metabolite explain

whether it was produced or consumed by the analysed cell. Moreover, the export and import of

metabolites  can not  be prevented without  imposing major  metabolic  constraints.  We herein

hence address this problem by using a combination of various omic, metabolic modelling and

genetic  techniques,  and  use  synthetic  SeMeCo communities  to  boost  metabolite  exchange

interactions.  It  is  important  to  stress  here  that  SeMeCos  do  not  rely  on  new  or  artificial

metabolite exchange interactions to yeast cells; they are based on the exchange of metabolite

intermediates, that are a result of the native biosynthetic capacity of yeast, which is boosted

through the progressive segregation of plasmids  41,51. Certainly, as a tool of synthetic biology,

SeMeCo will not capture all features of natural metabolite exchange interactions. Indeed, with

the  increasing  amount  of  auxotrophies,  SeMeCos  become  less  metabolically  versatile

compared to prototrophic wild-type cells. However, SeMeCos are one of the very few tools at

hand that allow tracing of metabolite exchange between cells, that can flexibly switch between

metabolite uptake and consumption. SeMeCos hence prove to be highly useful for studying the

physiological consequences of metabolite exchange interactions, by enabling us to boost and

trace them.
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In studying metabolite exchange interactions in the context of chronological lifespan in yeast, we

made two observations  that  triggered our  curiosity.  The first  was that  metabolites  exported

during the exponential phase, label the cells during the stationary phase, reflecting their import

by post-mitotic cells. In the batch-culture, there exists hence a ‘cross-generational’ exchange of

metabolites.  Ecologically  speaking,  the  batch culture  might  have been seen as  an artificial

situation.  However,  in  natural  yeast  colonies,  old  and  young  yeast  cells  co-exist  in  close

physical distance 76. That means that metabolite exchange interactions are even more likely in a

natural colony than in batch culture. It is consistent with this notion, that a switch from liquid

culture to colony growth tripled the chronological lifespan of our cells. To us, this result hence

implies there could be extensive metabolic interactions that apply to both growth and ageing

phases of the yeast cell communities. 

The second observation was that upon boosting metabolic interactions by using the SeMeCo

model, a significant extension of the CLS was achieved. Studying the metabotype composition

within SeMeCos attributed a special role to the methionine biosynthetic pathway that is part of

the organic  sulphur  cycle.  We observed that  cells  that  had segregated the  MET15  plasmid

comprised the highest proportion of long-lived cells in ageing communities. Sulphur amino acids

include methionine, cysteine, homocysteine and taurine 77 and have previously been associated

with lifespan extension. Methionine restriction in particular can extend lifespan in a number of

organisms 55–60, prevent the development of a variety of diseases 78 and influence response to

anti-cancer  therapies  79,80.  Our  results  differed,  however,  from  many  of  these  studies  in  a

fundamental aspect, as they did not indicate the lifespan extension is caused by methionine

restriction. We hence speculated that another mechanism could be at play in the communal

cells. The key observation which eventually led to a better understanding of the mechanism,

was that the presence of the  MET15 segregants did not only increase their own lifespan, but

also the lifespan of the other cells found within SeMeCos. This result strongly suggested that

only part of the answer is to be found in the intracellular metabolic reconfiguration in the MET15
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segregants, and that we need to search for a paracrine effect, like a change in the extracellular

metabolite pool, to understand the lifespan extension of the entire community.

In order to identify the metabolic changes, we combined metabolite profiling, proteomics and

genome-scale  metabolic  modelling.  We  detected  widespread  metabolic  changes  in  the

communities  containing  MET15  segregants,  but  were  most  intrigued  by  an  upregulation  of

glycolytic  enzymes,  in  a  growth  phase  where  typically  oxidative  metabolism  dominates.  In

following this, we confirmed a decrease in oxygen consumption and an 8-fold increase in the

glycolytic  overflow  metabolite  glycerol.  Glycerol  is  known  as  a  protective  and  pro-survival

metabolite  67,  and also in our hands, significantly extends the lifespan of both wild-type and

SeMeCo  communities.  Glycerol  stimulates  several  survival-associated  processes,  including

osmoregulation,  lipid biogenesis, cell  wall  integrity  81 and increase in autophagy  67,  a known

regulator of lifespan 82. It is likely that glycerol extends lifespan in a systematic way. Our data

does not exclude the possibility that next to glycerol, other protective metabolites enrich in the

communal environment, but it shows that in sum, the protective metabolites compensate for the

release of acetate and ethanol, that typically result in short-living phenotypes  52,66: the media

collected from SeMeCo cells did extend the chronological lifespan of wild-type cells. Our results

have interesting evolutionary implications. It has so far been debated if unicellular organisms

would profit from a longer lifespan and if they have been selected for longevity  83. Our study

does not address this question directly, but it reveals an interesting new possibility, in the light

that a vast majority of natural microbial communities contain auxotrophs  38,74. Evolution could

increase longevity by selecting for populations of cells that metabolically interact in a way that

they generate a protective exometabolome. Specifically, the MET15 segregants, which cannot

synthesise methionine and require an organic sulphur source for growth 84, cannot survive on

their  own  in  the  absence  of  methionine  producers.  They  would  benefit  if  the  lifespan  of

methionine producers is extended. Auxotrophy-prototrohy interactions might hence select for

longevity in microbial communities, in other words that metabolic dependencies would not only

drive species co-occurrence 71 but boost their longevity and evolution. In any case, our results
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prompt  future  studies  for  closely  examining  the  exometabolome  as  a  cause  of  lifespan

extension,  specifically  when  metabolic  interventions,  such  as  metabolite

restriction/supplementation or metabolic modulating drug treatments are applied. 

In  summary,  we  uncover  a  protective  metabolic  paracrine  effect  occurring  in  metabolically

interacting eukaryotic microbial communities. Glycolytic methionine consumer cells enrich the

intercellular  space  for  the  pro-survival  metabolite  glycerol,  increasing  the  survival  of  their

producer counterparts and overall community longevity. Impairment or inability to metabolically

interact drives cellular dysfunction, which accompanies ageing and disease, therefore dissecting

the metabolic dynamics and emerging metabolic environment when cells metabolically interact

will  aid the development  of  therapies targeting these processes. Often lifespan extension is

associated  with  restriction  conditions,  but  our  data  shows  that  a  differentiated view is  also

necessary, as simple nutritional interventions like the exchange of amino acids can have broad

changes in the metabolic network dynamics, reflected in the exometabolome, and alter lifespan

this way. Future investigations are necessary to determine how broadly this situation impacts on

other nutritional and/or metabolic contexts influencing lifespan.

Methods

Yeast cultivation and growth assays

Plasmids and strain construction

The  haploid  BY4741 S.  cerevisiae  strain  (his3∆1,  leu2∆0,  ura3∆0,  met15∆0)  was  used  to

generate all subsequent strains used in the study. Prototrophy was restored either by genomic

knock-in, with primer design based on information from Brachmann  et al. 1998  42, or plasmid

complementation generated by Mülleder et al. 2016 85, followed by standard cloning and yeast
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transformation  techniques  86.  Primers  and  plasmids  details  are  in  Tables  S2  and  S3,

respectively.

SeMeCo generation and culture

The generation and culture of SeMeCos was performed as previously described 38. The pH, pL,

pU and pM plasmid used to generate a SeMeCo strain in the BY4741 background are described

in Table S3. All SeMeCo strains were cultured in minimal synthetic (SM) media, composed of

yeast nitrogen broth without amino acids (YNB, 6.8 g/L; Sigma #Y0626) + 2% glucose (20 g/L;

Sigma #G8270), so cells rely on the exchange of self-synthesised metabolites for growth and

survival. Briefly, cryostocks were streaked onto SM + 2% agar medium and cultured at 30 ºC for

3 days. Then, a micro-colony was diluted in 500 µl dH2O, and normalised to OD600nm = 0.8. Then,

5  µl  were  spotted  onto  solid  SM  medium  to  generate  a  giant  colony.  This  initial  spotting

corresponded to ~7.2 x 104 cells using a predefined OD-to-cell number standard curve. Cells

were incubated for 2 days at 30 ºC, then giant colony generation was repeated, to ensure cells

have  undergone  enough  proliferation  cycles  and  plasmid  segregation,  enabling  metabolic

cooperation, whilst being continuously kept in an exponential growth phase. Pre-cultures were

generated by diluting the giant spots into 1 ml dH2O, normalised to OD600nm  = 1 in SM liquid

medium and cultured for 16 hours at 30 ºC. Cultures were then generated by diluting the pre-

cultures to OD600nm  = 0.1 in SM liquid medium and cultured for the duration of the CLS. This

relatively high starting OD600nm ensures cells are kept at a density that minimises disturbing the

relative proportions of auxotrophs and prototrophs generated in SeMeCos. Cells were collected

for downstream experiments at different  growth phases,  as indicated in figure legends.  The

control wild-type (BY4741, quadruple knock-in - HIS3, LEU2, URA3 and MET15) strain followed

the exact same procedures as SeMeCos. Strain details are in Table S1.

For CLS assays where cells were grown on glycerol, SM was supplemented with 3% Glycerol

(Sigma # G2025) and 1% Glucose; SeMeCo generation and respective wild-type controls were
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grown on solid SM supplemented with glucose prior to being cultured in SM supplemented with

glycerol from pre-culture stage onwards.

Knockout strains culture

Knockout  strains  cultures  followed  the  exact  same  procedure  as  described  for  SeMeCo

generation and culture. In the case of metabolic knockout mutants (met15∆), cells were grown

on  SM  media  supplemented  with  the  metabolite  for  which  the  strain  was  biosynthetically

impaired  (2g/L  L-methionine),  with  respective  wild-type  controls  also  being  cultured  in  SM

supplemented with the metabolite. Strain details are in Table S1.

Isotope tracing

Wild-type yeast cells were cultured in SM media supplemented either with 12C-glucose (12C-glu;

Sigma #G8270) or  13C-glucose (13C-glu;  Sigma #389374),  during 48 hours, then media was

swapped for tracing amino acid export/import, using targeted metabolomics 50 (HPLC-MS/MS),

at different time points post media swap. Control cultures were swapped from SM supplemented

with  13C-glucose to SM solely supplemented with  12C-amino acids (12C-AA; Sigma #Y1896) at

standard culturing concentrations. 

Exometabolome exchange 

Wild-type and SeMeCo yeast cells were cultured in parallel, in SM media, for 48 hours (until the

stationary phase). Culture media was then collected by spinning down cells in each culture at

3000g for 5 min at room temperature (RT) followed by supernatant (media) filtering with a 0.22

μm syringe filter. Some wild-type culture cell pellets were then gently resuspended in the filtered

media  (exometabolome)  from SeMeCos  whilst  others  were resuspended  back  in  their  own

filtered media as control. Wild-type cultures in SeMeCos or wild-type exometabolomes were

then followed for CLS.
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Growth assays

Growth was assessed by monitoring biomass formation using optical density absorbance at a

wavelength  of  600  nm (OD600).  OD600 was  recorded  either  manually  during  the  CLS,  on  a

Ultrasepc  2100  pro  manualTM  (Amersham  Biosciences),  or  automatically  on  a  plate  reader

NanoQuant PlateTM, Infinitive 200 PRO (Tecan), every 10 minutes, until cells reached stationary

phase, at 30 ºC for growth curve recording. Both maximum growth and time to mid log phase

were determined from growth curves using the R ‘grothcurver’ package 87 . 

Chronologic Lifespan

Conventional and High-throughput Colony Forming Unit (CFU) assays 

Conventional  CFU analysis  was  performed as  described  previously  88 by  aliquoting  ageing

cultures  throughout  CLS,  and  plating  cells  at  different  dilution  factors  into  solid  rich  media

(YPD), composed of yeast extract (10 g/L; Sigma), peptone (20 g/L; Sigma), dextrose (20 g/L;

Sigma) and agar (20 g/L; Sigma). Cells were incubated for 2 days at 30 ºC and the number of

CFUs were recorded. Increasing numbers of cultures analysed in parallel required the usage of

a high-throughput CFU (HTP-CFU) method as described in 89. Briefly, 200 μL aliquots of ageing

culture were loaded into the first column of a 96-well plate (8 cultures in parallel per plate). The

rest of the plate was loaded with 100 μL of dH2O. Using a Biomek NXP automatic liquid handler

(Beckman Coulter), 50 μL of the ageing culture from the first column were serially diluted 3-fold

across the plate, ensuring each dilution factor was well mixed. Droplets of serially diluted ageing

cultures were immediately dispensed onto solid YPD, in quadruplicate (384-well format) using a

Singer RoToR HDA pinning robot (Singer Instruments). For this, long-pin 96-density pads were

used, making sure that the source plate was revisited before each pin onto the agar. Plates

were incubated for 2 days at 30 °C until patterns of colonies appeared. Images of agar plates

were acquired with Pyphe-scan 90 using an Epson V700 scanner in transmission mode. Plate

image analysis and quantification of the number of CFUs in the ageing culture, based on the
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colony  patterns  observed,  were  performed  using  the  R  package,  DeadOrAlive  89.  In  both

conventional-  and HTP-CFU assays, survival  of the different strains was normalised,  first  to

biomass at time of sample collection, as measured by OD600, and then to the survival of the

respective wild-type controls at the beginning of the stationary phase (48 hours from the start of

culture).

Live/Dead Staining

Cell death was assessed using the LIVE/DEAD™ Fixable Far Red Dead Cell Stain Kit, for 633

or 635 nm excitation (ThermoFisher Scientific, Cat no. L10120) according to the manufacturer’s

instructions, followed by high-throughput flow cytometry (HTP-FC). Briefly, an aliquot of 300 uL

of each ageing culture was transferred to a 96-deep well plate. Plates were then spun down at

3000 g for 3 min RT, supernatant was discarded and cells were resuspended in 300 uL of

diluted dye (1:1000 diluted stock dye in dH2O), followed by an incubation of 30 minutes in the

dark. Cells were then washed in 500 uL of dH2O, resuspended in 300 uL of ~4% formaldehyde

(dilute  1:10  37% Formaldehyde  in  PBS 1x)  and incubated  10  min  in  the  dark.  Cells  were

washed in PBS 1x and stored in 500 uL fresh PBS 1x at 4ºC, protected from light, until analysis

by  HTP-FC.  Immediately  prior  to  analysis,  samples  were  sonicated  for  20 s  at  50W (JSP

Ultrasonic Cleaner model US21), and 250 uL were transferred to a 96-well plate for HPT-FC

analysis. For HTP-FC, 30,000 cells/sample were measured in a Fortessa X20 Flow cytometer

(BD Biosciences), using the HTS plate mode on the DIVA software and a 633 nm excitation

laser to capture the dye staining. Populations of interest were gated using the FlowJo software

version 10.3.0.  Features of  interest  (dead and live  cell  populations)  were then exported for

further analysis using R studio. 

Metabotyping

Metabotype  performed  as  previously  described  51,  with  the  difference  that  colonies  were

cryostocked prior to replica-plating, so cells collected at different time points across the CLS
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would be analysed in parallel. Firstly, conventional CFUs were performed as described above.

Then 96 individual  CFUs per biological  replicate were resuspended in 100 µl  of liquid YPD

supplemented with 30% glycerol in a 96 well plate (NuncTM Sigma), as one colony/well, and then

incubated  at  30  ºC  ON prior  freezing  at  -80  ºC.  Once  all  samples  across  the  CLS  were

collected,  plates  were defrosted and then replica  plated on six  plates,  containing  either  (a)

complete  medium  (SM  with  all  four  missing  nutrients  -  2g/L  of  L-histine,  L-uracil  and  L-

methionine and 6g/L of L-leucine, Sigma), (b) SM medium, and plates with SM and all nutritional

supplements except (c) L-histidine, (d) L-leucine, (e) L-uracil, or (f) L-methionine. The absence

of  growth  in  a  particular  drop-out  medium  reflects  the  clone  auxotrophy  for  that  specific

metabolite. The combinatorial growth ability in the six different media allows determination of

each clone metabotype (total auxotrophies it contains). This method permits identification of all

16 possible metabotypes resulting from all possible combinations of the four auxotrophies.

 

pH analysis

Aliquots of 1 mL were collected per culture at different time points during the CLS and pH was

measured using a Mettler-Toledo InLab® Micro & Micro Pro pH electrode coupled to pH/Ion

bench meter SC S220-B (Mettler Toledo).

Oxygen consumption measurements

Ten mL of CLS cultures were collected during exponential (day 1) and early stationary phase

(day 2) and placed into a 10-mL Erlenmeyer flask and stirred at 900 rpm using a magnetic

stirrer bar. An oxygen probe (Hanna HI 98193), held with a clamp, was inserted into the flask,

resulting in it being completely filled with no remaining air inside it, and the flask was sealed with

multiple layers of parafilm. The oxygen saturation of the culture was recorded every ~1 min for 5

min. Oxygen levels were normalised to biomass, as measured by OD600, and to levels of wild-

type at the end of measurements (5 min).
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Metabolomics

Targeted metabolomics for intracellular glycolytic and TCA intermediates, nucleotides

and amino acids 

Sample preparation

Ageing cultures, at several time points reflecting different growth phases, were sampled and

400 uL of each culture were quenched in 1600 uL dry-ice-cold methanol, into a 48-deep-well

plate. This suspension was spun down (600 g, 3 min, 4°C), and the supernatant was discarded

by inversion, followed by a short spin (600 g, 1 min, 4°C) to ensure complete removal of the SN.

Cell pellets were immediately placed on dry ice and then transferred to  −80 °C until analysis.

Intracellular metabolites were then extracted as described 91. Briefly, 140 μl of 10:4 MeOH/water

were added and vortexed. Then, 50 μl chloroform was added, followed by 50 μl water and 50 μl

chloroform with thorough mixing in between. Phases were separated by centrifugation at 3,000

g for 10 min. The aqueous phase was recovered and used without further conditioning. One

microlitre was injected for HPLC-MS/MS analysis. Before analysis by HPLC-MS/MS the order of

samples was randomised and during analysis  a quality  control  sample (QC) was assessed

every 24 samples.

Sample acquisition

Metabolites were resolved on an Agilent 1290 liquid chromatography system by HILIC coupled

to an Agilent 6470 triple quadrupole instrument operating in dynamic MRM mode, as previously

described 43. In short, the gradient program started at 30% B (100 mM ammonium carbonate)

and was kept constant for 3 min before a steady increase to 60% B over 4 min. Solvent B was

maintained at 60% for 1 min before returning to initial conditions. The column was washed and
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equilibrated for 2 min resulting in a total analysis time of 10 min. We used acetonitrile as solvent

A and a Waters BEH Amide column (2.1 × 100 mm, 1.7 μm particle size) for separation. The

flow rate was set to 0.3 ml/min and column temperature to 35C. Compounds were identified by

comparing  retention  time  and  fragmentation  patterns  with  analytical  standards.  Metabolite

quantifications  were  then  normalised  per  biomass,  as  measured  by  OD600,  at  the  time  of

collection.

Targeted  metabolomics  for  intracellular  and  extracellular  amino  acids  &  uracil

quantification 

Sample preparation

Ageing cultures, at several time points reflecting different growth phases, were sampled and

500 uL of each culture were collected into a 96-deep-well plate for amino acid & uracil profiling.

Samples were centrifuged at 4,000 g for 3 min and supernatants (SN) were transferred into a

new 96-deep-well  plate for  extracellular  metabolite  profiling,  whilst  cell  pellets  were washed

once in dH2O, spun down at 4,000 g for 3 min and SN was discarded (followed by a 1 min spin

for complete removal of SN) for later intracellular metabolite profiling. Both cell pellets and SN

were immediately frozen in dry ice and samples were then stored at −80 °C until analysis. 

The  amino  acid  extraction  and  uracil  extraction,  separation  and  detection  protocols  were

adapted  from  50.  Briefly,  200  µl  of  80% ethanol  at  80 °C were  added  to  the  yeast  pellets.

Samples were heated for 2 min at 80 ºC, vigorously mixed on a vortex mixer and incubated for

further 2 min at 80 ºC followed by vigorous vortexing. The extracts were removed from debris by

centrifugation at 12,000 g for 5 min. SN were also centrifuged at 12,000 g for 5 min to further

purify samples from any debris. Before analysis by HPLC-MS/MS the order of samples was

randomised and during analysis a quality control sample (QC) was assessed every 24 samples.
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Sample acquisition

Analysis by LC-MS/MS, amino acids & uracil were separated by hydrophilic interaction liquid

chromatography (HILIC) using an ACQUITY UPLC BEH amide column (130A˚ , 1.7 mm, 2.1

mm  X  100  mm)  on  a  liquid  chromatography  (Agilent  1290  Infinity)  and  tandem  mass

spectrometry  (Agilent  6460)  system.  Buffer  A  was  composed  of  50:50  acetonitrile/water

(Greyhound Bio-012041, Greyhound 23214125), 10 mM ammonium formate (Fluka, Cat. No.

14266),  0.176%  formic  acid  (Fluka,  Cat.  No.  O6454)  and  buffer  B  of  95:5:5

acetonitrile/methanol/water  (Greyhound BIO-13684102),  10 mM ammonium formate,  0.176%

formic acid. The gradient elution was performed at a constant flow rate of 0.9 ml/min. Starting

conditions  were  85% buffer  B,  after  0.7  min  the  concentration  of  buffer  B  was  decreased

gradually  to  5%  until  2.55  min  and  kept  for  a  further  0.05  min  before  returning  to  initial

conditions.  The  column  was  then  equilibrated,  resulting  in  a  total  runtime  of  3.25  min.

Compounds  were  identified  by  matching  retention  time  and  fragmentation  (MS2)  with

commercially obtained standards (Sigma-Aldrich, Cat. No. LAA21). Signals for free amino acids

were then acquired in dynamic SRM mode in the MassHunter Software Agilent. Amino acid &

uracil quantifications were then normalised per biomass, as measured by OD600, at the time of

collection.

Extracellular amino acids and uracil data from wild-type in exponential phase are a re-analysis

of data in  38; experiments, including cell culture, metabolite extraction and sample acquisition,

were performed in parallel.

HPLC method for ethanol, acetate and glycerol exometabolome quantification

Sample preparation

Frozen SN in  96 deep-well  plates (collected as  described above for  amino acid and uracil

analysis) were defrosted and kept shaking using plate shaker for 20 minutes 900 rpm room

temperature, just before the filtration, using a multiscreen filtered plate with 0.45 um durapore
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membrane  (MVHVN4525)  and  Strata  well  plate  manifold

(https://phenomenex.blob.core.windows.net/documents/863d86a0-3aba-4591-979b-

bf54b1188038.pdf) and a Welch vacuum pump. 

Sample acquisition

The  target  compounds  were  quantified  using  a  Shimadzou  Prominance  HPLC

(https://www.ssi.shimadzu.com/products/liquid-chromatography/prominence-hplc.html)

equipped with a refractive index detector RID20A and a Sil20-ACT auto sampler with a 96 well

plate  injector  tray.  The  separation  was  performed  on  an  Agilent  Hi-plex  H  column

(https://www.agilent.com/cs/library/applications/5990-8801EN%20Hi-Plex

%20Compendium.pdf).  The  temperature  of  the  column  and  detector  was  50  and  41  °C,

respectively. The eluent was 0.00125 N H2SO4 in Type 1 water (0.6 mL min−1). The samples

were  kept  in  96  well  plates  (https://www.sarstedt.com/en/products/laboratory/cell-tissue-

culture/cultivation/product/83.3926/)  covered  with  silicone  mat

(https://www.phenomenex.com/Products/Part/AH0-8633) at  4 ºC in  the autosampler prior  the

injection for no longer than 2 days. 5 uL was injected from the samples / well plates as well as

standard compounds. The method works with 26 minutes cycle time. To keep the retention

times and detector response constant 5 L of eluent was mixed in one batch.

For the data analysis the Shimadzou data processing software was used. Target compounds

were identified by using automatic retention time matching with individual standards of in the

house overflow metabolite library dissolved in SD minimal media. Compound concentrations

were  calculated  using  peak  area  integration  with  pre-optimized  integration  parameters  and

external calibration for each compound. All the calibration curves showed high linearity R2 >

0.9999  at  3  orders  of  magnitude  concertation  range.  The  integration  and  compound

identification were manually overviewed. Data was then exported and further processed using

R. Metabolite quantifications were then normalised per biomass, as assessed by OD600, at the

time of collection.
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Proteomics

Sample preparation

Ageing cultures, at several time points reflecting different growth phases, were sampled and

500 uL of each culture were collected into a 96-deep-well plate. Samples were centrifuged at

4,000 g for 3 min and supernatants (SN) were discarded. Samples were centrifuged again at

4,000 g for 1 min to fully remove any residual SN. Cell pellets were immediately placed on dry

ice  before  being  stored at  -80ºC,  until  all  samples  were  collected.  Sample  preparation  for

proteomics was performed as previously described 61. Briefly, cell pellets were processed in a

bead beater for 5 min at 1,500 r.p.m. (Spex Geno/Grinder), in a lysis buffer where proteins were

denatured  in  8 M  urea  (Sigma-Aldrich,  33247)  plus  0.1 M  ammonium  bicarbonate  (Sigma-

Aldrich, 09830) at pH 8.0. Samples were spun down for 1 min at 4000 r.p.m, before they were

reduced in 5 mM dithiothreitol (Sigma-Aldrich, 43815) for 1h at 30 ºC and then alkylated in 10 

mM iodoacetamide (Sigma-Aldrich, I1149) for 30 min at RT protected from light. Samples were

diluted to less than 1.5 M urea in 0.1 M ammonium bicarbonate at pH 8.0, before proteins were

digested overnight at 37 °C with trypsin (Promega, V511X). Trypsin was neutralised with 1%

formic  acid  (FA)  (Fisher  Scientific,  13454279),  before  peptides  were  cleaned-up  in  96-well

MacroSpin plates (Nest Group): 1. plates were first equilibrated in a series of Methanol (1x)

(Greyhound Chromatography,  BIO-13684102),  50% ACN (2x)  (Greyhound Chromatography,

Bio-012041-2.5L), and 3% ACN 0.1% FA (2x), between each wash plates were spun down for 1

min at 100 g and flow through was discarded;  2.  samples were loaded into the plates and

peptides were cleaned-up in a series of 3% ACN, 0.1% FA (3x), between each wash samples

were spun down for 1 min at 100 x g and flow through was discarded; 3. peptides were eluted

into a new collection plate with 50% ACN (3x) and spun dried overnight at RT in speed vacuum.

Peptides  were  then  dissolved  in  40  uL  of  3%  ACN  0.1%  FA.  Peptide  concentration  was

measured at Absorbance 280 nm using the Lunatic (Unchained Labs). 
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Sample acquisition

The  digested  peptides  were  analysed  on  a  nanoAcquity  (Waters)  (running  as  5 µl  min−1

microflow liquid chromatography) coupled to a TripleTOF 6600 (SCIEX). Protein digest (2 µg)

was injected and the peptides were separated with a 23 min non-linear gradient starting with 4%

acetonitrile in 0.1 % formic acid and increasing to 36% acetonitrile in 0.1% formic acid. A Waters

HSS T3 column (150 mm × 300 µm, 1.8 µm particles) was used. The DIA method consisted of

an MS1 scan from m/z 400 to m/z 1250 (50 ms accumulation time) and 40 MS2 scans (35 ms

accumulation time) with a variable precursor isolation width covering the mass range from m/z

400 to m/z 1250. Data quantification was performed using DIA-NN version 1.7.1 software  62.

Post-processing data analysis was conducted in R 92.

Genome-scale metabolic modelling (Flux balance analysis)

Constructing auxotroph-prototroph community metabolic models 

The community metabolic models were reconstructed using the approach from our previous

study  38. Briefly, the genome-scale metabolic model of S. cerevisiae  93,94 was used to create

auxotrophic strain models by switching off respective metabolic reactions. Then the reactions

from auxotroph (H, L, U and/or M) and prototroph (WT) models were combined to make the

community,  using the compartment per guild  approach,  where both strains were treated as

separate compartments and metabolic exchange between strains were allowed. The community

biomass was the combined biomass of all strains. The Cobra toolbox 95 was used to perform the

model simulations.

Data analysis and statistics

All statistical analyses were done in R (R Core Team, 2015)  92 using specific packages as

indicated throughout the methods section. For the basic data manipulation and visualisation we

used the R tidyverse package compilation and for statistical analysis we used the R ggpubr

package. Hypothesis testing to assess means of population differences were mainly done using
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t-test whenever the variables could be assumed continuous, or otherwise using Wilcoxon Rank

Sum test,  as  indicated  in  the  respective  figure  legends.  Sample  size  estimations  were not

performed  in  any  of  the  experiments.  All  experiments  were  performed  using  at  least  n=3

biological replicates. Post-processing data analysis was conducted in R. Missing values in the

proteomics data were median imputed. Differential protein expression analysis was performed

using the limma package v3.48.3 in  R  96.  Gene Ontology (GO) terms were retrieved using

GO2ALLORFS  object  of  org.Sc.sgd.db  v3.14.0  package  97 and  enrichment  analysis  of

differentially expressed proteins was performed using hypergeometric statistical tests. GO slim

term mapper from SGD database 98 was used to map differentially expressed proteins with GO

slim terms. KEGG term mapper from KEGG database 99 used to map differentially expressed

proteins  with KEGG terms.  Metabolic  enzyme expression levels  were mapped to the yeast

metabolic network using iPATH3 100.

Data availability

The data supporting the findings of this study are available within the paper, its Supplementary

Information  and  will  be  deposited  within  publicly  accessible  repositories  (before  formal

acceptance). The proteomic datasets generated during the current study that are relevant to

data shown in  Fig.  4  and Supplementary  Fig  10-13 will  be  available  from the PRoteomics

IDEntifications  database  (PRIDE,  https://www.ebi.ac.uk/pride/)  as  part  of  the  global

Proteomexchange (PX) consortium 101. Yeast gene functions and GO slim term mapper can be

accessed  at  the  Saccharomyces  Genome  Database  (SGD,  https://www.yeastgenome.org/).

Protein sequence databases used for the identification and mapping of proteins from proteomics

can  be  accessed  via  Uniprot  (https://www.uniprot.org/)  and  KEGG

(https://www.genome.jp/kegg/pathway.html), respectively. 
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Code availability

No custom codes were generated as part of this study. All analyses conducted in R v3.6.1 used

standard, publicly accessible packages obtained either through GitHub (https://github.com/), the

Comprehensive  R  Archive  Network  (CRAN,  https://cran.r-project.org/)  or  via  Bioconductor  

(https://www.bioconductor.org/). 
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Figure  1.  Metabolites  exported  by  exponentially  growing  yeast  cells  are  imported  by

chronologically ageing cells in the stationary phase. a)  Scheme: Growth phases of yeast in batch

culture, and the measurement of chronological lifespan (CLS) as survival in the stationary phase. (E)

exponential growth phase, (ES) early stationary phase and (S) stationary phase. Red dotted lines indicate

the  time  points  of  sample  collection  for  metabolomic  analysis  (1,  2  and  8  days  from culture  start,

indicating E, ES and S phases). b) Targeted intracellular metabolome (intra-metabolome) analysis for the

quantification of nucleotides, amino acids, glycolysis and tricarboxylic acid cycle (TCA) metabolites, in

wild-type yeast cells cultured in synthetic minimal (SM) medium at 1 (E), 2 (ES) and 8 (S) days from

culture  start,  respectively. i) Principal  component  analysis  (PCA)  reflects  metabolomic  differences

between E,  ES and S growth phases.  Data are n=4 independent  cultures (individual  dots  represent

independent cultures). ii) Intracellular metabolite concentrations shown as fold change (FC to exponential

phase)  of  different  metabolites  according  to  metabolite  classes  in  the  different  growth  phases.

Concentration of  each metabolite was first  normalised by biomass,  as assessed by OD600.  Box plots

represent median (50% quantile, middle line) and lower and upper quantiles (lower (25% quantile) and

upper  (75% quantile),  respectively)  of  pooled  metabolite  levels  of  4  independent  cultures.  Each  dot

represents a metabolite in a biological replicate. Statistics by unpaired two-sided Wilcoxon Rank Sum test

and multiple testing correction using the BH method; adjusted p-values *<0.05, **<0.005, ***<0.0005 and

****<0.00005; adjusted p-values are listed in  Supplementary File 1.  c)  Intracellular  and extracellular

amino acids levels in wild-type cultures during exponential (E), early stationary (ES) and stationary (S)

phases.  Bar  plots  show mean±SEM fold  change  (FC to  levels  in  the  exponential  phase)  of  n  =  4

independent  wild-type  yeast  cultures.  Statistics  by  unpaired  two-sided  Wilcoxon  Rank Sum test  and

multiple testing correction using the BH method; adjusted p-values are listed in Supplementary File 2.

Inlets represent the fraction of amino acids (from a total of 19) that show minimal changes, are decreased

or increased in the FC to exponential phase (E), as shown by FC<10%, FC >10% down and FC>10% up,

respectively. d) Scheme: Cells synthesise metabolites, following the stoichiometric rules of the metabolic

network, wherein some metabolites are exported in order to maintain metabolic homeostasis (overflow

metabolism),  contributing  to  the  metabolic  enrichment  of  the  extracellular  environment  (rich-

exometabolome).  At  the  same  time,  cells  can  sense  and  import  metabolites  from  the  surrounding

environment. These dynamic export/import properties result in the exchange of metabolites between co-

growing cells and the establishment of intercellular metabolic interactions. e) i) Scheme: Isotope tracing
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experimental design. Prototrophic yeast cells were grown in SM media supplemented either with  12C-

glucose or  13C-glucose, during 48 hours, then the media was swapped for isotope tracing amino acid

analysis using targeted metabolomics by HPLC-MS/MS 50, at 2, 6, 24, 48 and 72 hours post media swap

(plus  a  control  0  h  collection,  just  prior  swapping  media).  Control  cultures  were  swapped  from SM

supplemented  with  13C-glucose  to  SM  solely  supplemented  with  12C-amino  acids  (AA)  at  standard

culturing concentrations (see Methods).  ii) Fractions of  12C and  13C labelled  amino acids in  cultures

initially grown in SM + 12C-glucose and swapped to 13C-glucose, at different time points post media swap,

as described in i). Data represents the mean of 4 independent cultures; Individual fraction values are

listed in Supplementary File 3. 
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Figure 2. Boosting Metabolite exchange interactions extends chronological lifespan a)  Scheme:

Self-establishing  metabolically  cooperating  communities  (SeMeCos)  maximise  metabolite  exchange
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interactions  through  the  segregation  of  plasmid-encoded  auxotrophic  markers.  The  SeMeCo system

starts with a prototrophic cell  that carries four essential metabolic markers on centromeric metastable

plasmids (pHIS3, pLEU2, pMET15 and pURA3) instead of stable integration in the genome (prototrophic

wild-type).  When these cells  grow into  a community,  the stochastic  plasmid segregation leads to an

increasing number of auxotrophs that continue to proliferate on the basis of metabolites produced by

other  cells.  Segregation  continues  until  a  maximum number  of  auxotrophs  that  the  community  can

maintain is reached. Sixteen different metabotypes (metabolic genotypes) can arise from the differential

segregation of the four metabolic markers.  b)  Chronological lifespan (CLS) of wild-type and SeMeCo

communities grown in liquid SM media cultures,  start  by spotting giant  colonies twice to ensure cell

proliferation,  plasmid  segregation  and  ultimately  cross-feeding  between  auxotrophs  and  prototrophs

(SeMeCos generation),  followed by pre-culture and culture,  set  at  high cellular  density (assessed by

OD600) to minimally disturb the composition of SeMeCos in conditions of unsupplemented media. (bottom)

CLS of  cells  grown  in  a  colony  follow  the  same initial  SeMeCo generation  before  re-spotting  giant

colonies into 6-well plates containing solid SM media. Samples are collected at different time points for

survival assessment. c) (top) Culture and (bottom) colony CLS analysis assessing survival of wild-type

and SeMeCos. Survival was evaluated using colony forming units (CFU) analysis, normalised to biomass

(see Methods).  Data are mean±SEM survival  (percentage fold change) compared to wild-type mean

survival at the beginning of stationary phase (48h culture); n = 4 independent cultures per strain (Culture

CLS) or n = 3 independent colonies per strain (Colony CLS). Statistics using unpaired two-sided t-test, p-

value = 0.00661 at day 18 of culture and p-value = 0.0338 at day 65 in the colony; p-values across CLSs

are listed in Supplementary File 4. d) Extracellular amino acids and uracil levels, measured by HPLC-

MS/MS 50, in wild-type and SeMeCos cultures during exponential (E), early stationary (ES) and stationary

(S) phases. Data are individual metabolite fold-change (FC to mean wild-type levels in the exponential

phase) of n = 4 independent cultures per strain. Data comparing wild-type values from Fig 1c; samples

were cultured, extracted and measured in parallel. Concentration of each metabolite was first normalised

to biomass, as assessed by OD600. (left) Box plots showing overall metabolite FC distribution over time;

box  plots  represent  median  (50% quantile,  middle  line)  and  lower  and upper  quantiles  (lower  (25%

quantile) and upper (75% quantile). (right) Bar plots show the mean±SEM FC of the shared metabolites

(HLUM) in SeMeCos over time. Statistics by unpaired two-sided Wilcoxon Rank Sum test and multiple
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testing correction using the BH method; adjusted p-value *<0.05, **<0.005, ***<0.0005 and ****<0.00005;

adjusted p-values are listed in Supplementary File 6. 
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Figure 3. Metabolic interactions between  MET15 and  Δmet15 cells promote a paracrine lifespan

extension  of  SeMeCo  communities  a)  (left)  Frequency  of  overall  segregant  cells  (at  least  one

auxotrophy for H, L, U and/or M) and genetically prototrophic (bearing the four wild-type locus) cells

during CLS. (right) Frequency of the individual segregants, i.e. per auxotrophy for H, L, U or M over time.

Bar plots show the mean±SEM of n=6 independent SeMeCo cultures across 2 independent experiments

(dots  represent  independent  cultures).  Statistics  by  paired  two-sided  t-test;  p-values  listed  in

Supplementary File 7. The proportion of all auxotrophs increases, with  Δmet15 segregants becoming
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the most abundant metabotype during CLS. b) Schematics: Wild-type, SeMeCos and four ‘3p-SeMeCos’,

in which one of the markers (HIS3, LEU2, MET15 or URA3) is genomically integrated and does no longer

segregate.  c) Survival percentage of wild-type, SeMeCos and 3p-SeMeCos during CLS (assessed by

high-throughput CFU (HTP-CFU) normalised per biomass). Data are mean±SEM survival (percentage

fold change) compared to wild-type mean survival at the beginning of stationary phase (48h culture); n=4

independent  cultures  per  strain.  Survival  curves  are  shown  separately  for  each  3p-SeMeCos  for

visualisation purposes (all strains were cultured and analysed in parallel). Statistics by unpaired two-sided

Wilcoxon Rank Sum test; p-value at day 20 of culture for: SeMeCo vs wt = 0.0294 SeMeCo vs  HIS3-

SeMeCo = 0.3428, SeMeCo vs LEU2-SeMeCo = 0.3428, SeMeCo vs URA3-SeMeCo = 0.2000, SeMeCo

vs  MET15-SeMeCo  =  0.0210;  p-values  across  CLSs  are  listed  in  Supplementary  File  8. d)  The

segregation of the four metabolic markers gives rise to 16 different metabotypes, eight of which have

segregated  the MET15 plasmid  (Fig.  2a).  e) Maximum  lifespan  of  the  eight  MET15 wild-type

metabotypes,  in  the  presence  (SeMeCo,  red)  or  absence  (MET15-SeMeCo,  yellow)  of  MET15

segregants. Dots are independent cultures per SeMeco type. Data are from n=3 independent cultures per

SeMeCo. Statistics by unpaired one-sided Wilcoxon Rank Sum test; p-values in Supplementary File 11. 
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Figure 4.  Widespread proteome and metabolome changes in yeast communities where  MET15

and  met15Δ cells interact. a)  Wild-type, SeMeCos, and  MET15-SeMeCos (that do not segregate the

MET15 marker) cells were collected at exponential (E), early stationary (ES) and stationary (S) growth

phases.  Proteomes were  analysed  using  micro-flow LC-SWATH MS  61  and  DIA-NN  62.  Proteomics

analysis was performed on four independent cultures (biological replicates) per yeast strain (total n=12

cultures). b) Principal component analysis (PCA) reveals that major proteome changes are driven by the

transition from exponential to stationary phase (PC1, 33%) and the segregation of the  MET15 marker

(PC2, 23%). Individual data points represent biological replicates per strain.  c)  Volcano plots illustrate

differential protein expression as log2 fold change (FC) to wild-type expression levels and -log10 adjusted

p-value by BH method. Blue dots denote proteins above an absolute log2 FC of 1 (vertical dashed lines)

and adjusted p-value <0.05 (horizontal dashed line) (left), with total number of proteins defined as per

blue dots represented as bar graphs (right), per growth phase and pairwise comparison. Statistics by

unpaired two-sided  t-test  and multiple testing correction using the BH method; adjusted p-values are
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listed in  Supplementary File  13.  d) Differential  metabolic  enzyme expression levels,  from proteome

analysis in a), mapped to the yeast metabolic network using IPATH3  100 in the early stationary phase

(exponential and stationary phases are shown in Supplemental Fig. 13). Red and blue lines represent

significantly  (BH  adjusted  p-value  <0.05)  up-  or  down-regulated  proteins  in  SeMeCos  and  MET15-

SeMeCos  when  compared  to  wild-type;  grey  lines  represent  non-mapped/absent  proteins  in  the

measured proteomes. Thickness of the lines represent absolute log2 fold change (Abs(log2FC)) changes

(thickening = increased Abs(log2FC)).  e) Expression of enzymes belonging to the glycolysis pathway

(columns), derived from the proteome analysis in a) and normalised to a -1 to 1 scale, per growth phase
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and  yeast  communities  (rows).

Figure  5.  Lifespan  extension  in  SeMeCos  is  promoted  by  a  self-generated  protective

exometabolome. a)  Fermentation (light  blue) and glycolysis  (black) reaction scheme and associated

metabolites b) Quantification of i) the glycolytic overflow metabolites ethanol, acetate and glycerol in the

exometabolome (by HPLC) and  ii) intracellular glycolytic intermediates (by HPLC-MS/MS) of wild-type,

SeMeCos, and  MET15-SeMeCos  that do not segregate the MET15 gene (top). Data are mean±SEM
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metabolite levels (mM, normalised to biomass (OD600)); n= 4 independent cultures per strain (total n = 12

cultures). Inlets in i) indicate fold change (FC) to mean wild type levels in the stationary phase (S, day 8);

individual dots represent independent cultures. Statistics by unpaired two-sided t-test; ns= not statistically

significant,  p-values *<0.05,  **<0.005; p-values are listed in  Supplementary File 15.  c)  Oxygen (O2)

consumption, as measured by O2 saturation in culture post 5 minutes of O2  levels recording (using a

Hanna  HI  oxygen  meter),  in  wild-type,  SeMeCos,  and  MET15-SeMeCos,  that  do  not  segregate  the

MET15 gene,  cultures  in  exponential  (E)  and  early  stationary  (ES)  growth  phases. O2 levels  were

normalised to biomass, as measured by OD600, and to mean levels of wild-type in exponential phase.

Data are mean±SEM fold change to wild-type mean levels in stationary phase, n=3 independent cultures

per strain (total n=9 cultures). Statistics by unpaired two-sided Wilcoxon Rank Sum test; p-values are

listed in  Supplementary File 16.  d) Chronologic lifespan assay, shown as survival measured by HTP-

CFU normalised to biomass, of wild-type communities, SeMeCos, and MET15-SeMeCos, cultured on SM

supplemented with glycerol. Data are mean±SEM survival (percentage fold change) compared to mean

wild-type survival at the beginning of stationary phase (48h culture); n = 4 independent cultures/ strain

(total n=12 cultures). Statistics by unpaired two-sided Wilcoxon Rank Sum test;  p-value at day 62 of

culture for wt vs SeMeCos = 0.0285 and wt vs  MET15-SeMeCos = 0.1142, p-values across CLS are

listed in  Supplementary File 17. e)  Chronologic lifespan assay, shown as survival measured by HTP-

CFU  normalised  to  biomass,  in wild-type  cultures  swapped  to  SeMeCos  culture  media  (SeMeCo

exometabolome (exoM)) or kept in their culture media (WT exoM) at the start of stationary phase (48h of

growth). Data are mean±SEM survival (percentage fold change) compared to mean wild-type survival at

the  beginning  of  stationary  phase  (48h  culture);  n=4  independent  cultures  per  exoM.  Statistics  by

unpaired two-sided Wilcoxon Rank Sum test; p-value =0.0286 at day 18 of culture; p-values across CLS

are listed in Supplementary File 18.
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