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Abstract
The locus coeruleus (LC), a small subcortical structure in the brainstem, is the brain’s principal
source of norepinephrine. It plays a primary role in regulating stress, the sleep-wake cycle, and
attention, and its degradation is associated with aging and neurodegenerative diseases
associated with cognitive deficits (e.g., Parkinson’s, Alzheimer’s). Yet precisely how
norepinephrine drives brain networks to support healthy cognitive function remains poorly
understood – partly because LC’s small size makes it difficult to study noninvasively in humans.
Here, we characterized LC’s influence on brain dynamics using a hidden Markov model fitted to
functional neuroimaging data from healthy young adults across four attention-related brain
networks and LC. We modulated LC activity using a behavioral paradigm, and also measured
individual differences in LC neuromelanin. The model revealed five hidden states, including a
stable ‘arousal’ state that occurred when subjects actively engaged with the task. LC
neuromelanin correlated with this state’s stability across experimental manipulations, and with
subjects’ propensity to enter into and remain in this state. These results provide new insight into
LC’s role in driving spatiotemporal neural patterns associated with attention and arousal, and
demonstrate that neuromelanin variation can explain individual differences in these patterns
even in healthy young adults.
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1. Introduction
The locus coeruleus (LC) circuit is the main source of norepinephrine (NE) in the brain; it
projects to the entire brain and is deeply involved in cognitive functions related to arousal
including attention, stress, and the sleep-wake cycle (Aston-Jones and Cohen, 2005; Chen et
al., 2014; Guedj et al., 2017; Langley et al., 2017; Sara, 2009; Song et al., 2017). For example,
LC degradation, prevalent in normal aging, is thought to impair memory and cause cognitive
reserve depreciation (Mather and Harley, 2016), and LC dysfunction is hypothesized to occur in
prodromal stages of Alzheimer’s and Parkinson’s diseases (Braak et al., 2011, 2003). In normal
cognition, relationships among LC activity, arousal, attention, and performance have long been
observed and are now classically characterized by the Yerkes-Dodson curve (Aston-Jones and
Cohen, 2005): Moderate LC firing rates correspond to optimal task performance while low and
high LC firing rates are associated with inadequate task performance because subjects are
inattentive and distracted, respectively (Aston-Jones and Cohen, 2005).

But how do fluctuations in norepinephrine (due to fluctuations in LC activity) drive changes in
brain states? Despite many observed correlations between LC activity and attention, the
underlying mechanisms driving changes in network dynamics within this relationship are still not
well understood (Aston-Jones and Cohen, 2005; Sara, 2009; Song et al., 2017). Characterizing
these underlying mechanisms by studying normal cognition and LC behavior using
computational models could provide foundational insight not only into healthy cognition, but also
into disease states where LC structure and function is known to break down (Braak et al., 2011,
2003).

One primary measure of interest in developing such computational frameworks would be
fluctuations in the LC itself, of course. This is highly challenging in awake, behaving humans in
an noninvasive manner because of the extremely small size of the LC. The LC is only about 2
mm in diameter (Figure 1), meaning that even with recent advances in functional magnetic
resonance imaging (fMRI) technology, LC blood oxygen level dependent (BOLD) signal can be
incredibly noisy, as LC BOLD has been shown to be especially susceptible to noise due to
cardiac pulsation and respiration (Clewett et al., 2016; Glover et al., 2000; Liu et al., 2017;
Mather et al., 2017). Difficulties in accurately and precisely measuring the BOLD signal in LC
render even sophisticated methods ineffectual. Seeking to quantify functional connectivity with
LC, or using LC as a seed region for psychophysiological interactions analysis (O’Reilly et al.,
2012), for example, might simply discover covariations with noise.

Figure 1. Neuroanatomical location of the locus coeruleus as seen in a
neuromelanin-sensitive image. The locus coeruleus (LC) is a 2mm diameter nucleus
located in the brainstem, here illustrated by the two dots on either side of the region
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anterior to the fourth ventricle (Chen et al., 2014; Langley et al., 2017). The arrows
indicate the position of LC.

To complicate matters more, there also exist individual differences in the neuronal density of LC
even in young people (Keren et al., 2009). Although we are unaware of any documented
relationships between memory performance and LC microstructure in younger adults (Langley
et al., 2021, 2020; Mather and Harley, 2016) and neuronal loss in young adults is expected to be
minimal if present at all (Manaye et al., 1995; Shibata et al., 2006; Zucca et al., 2006), variations
in LC neuronal density may nevertheless lead to individual differences in the effectiveness (or
effect size) of any manipulation designed to elicit fluctuations in LC activity, reducing group-level
effect sizes further due to heteroscedasticity in post-manipulation behaviors across subjects.

One possible solution to these challenges is to use computational models that uncover and
characterize repeating patterns in activity-based brain states, i.e. spatial patterns of
co-activation that cycle repeatedly over a period of time. A popular tool for discovering these
brain states is the hidden Markov model (HMM). HMMs can be used to discover patterns in
complex, dynamic datasets, and are commonly used for weather prediction, in computational
biology, and in finance (Eddy, 2004; Khiatani and Ghose, 2017; Zhang et al., 2019); recently,
HMMs are becoming more popular in neuroimaging. Neuroimaging-based HMMs identify latent
brain states which quantify network or nodal interaction as well as the probability of transitioning
between those hidden states (Baker et al., 2014; Chen et al., 2016; Eavani et al., 2013;
Lindquist et al., 2007; Liu et al., 2014; Ou et al., 2015; Robinson et al., 2010; Shappell et al.,
2019; Stevner et al., 2019; Vidaurre et al., 2018a, 2018b, 2017, 2016). As a result, an HMM
could be applied to fMRI data to identify the spatiotemporal behavior of latent brain states as a
function of arousal or LC up-regulation overall, rather than simply covariation with LC BOLD
signal, in an attempt to characterize LC’s dynamic underlying relationship with arousal.

Here, we modified a squeezing task, previously shown to induce sympathetic arousal and
increase norepinephrine activity (Kozłowski et al., 1973; Lake et al., 1976; Mather et al., 2020;
Nielsen et al., 2015; Nielsen and Mather, 2015; Vecht et al., 1978; Wallin et al., 1992, 1987) to
create a pseudo-resting state fMRI paradigm to up-regulate LC (Hussain et al., 2019; Mather et
al., 2020). We then used an HMM to characterize spatial patterns of co-activation among 31
‘nodes’ comprising four known networks in the brain – the default mode network (DMN), dorsal
attention network (DAN), fronto-parietal control network (FPCN), and salience network (SN)
(Deshpande et al., 2011; Laird et al., 2005; Lancaster et al., 2007; Raichle, 2011) – as well as
the LC itself (Langley et al., 2021, 2020). We then examined the states and their behaviors
extracted via the HMM, including spatial patterns of brain activity and dynamics of state
occupancy and transitions between states. We also used custom MRI sequences to measure
LC neuronal density as a proxy for neuromelanin (Langley et al., 2020, 2017) to examine how
individual differences in LC structure affect these measures.

The HMM was able to extract five stable brain states, including a highly stable state we can
identify as a state of arousal that occurred when subjects engaged with the squeezing task; the
stability of this state was correlated with LC neuronal density. Further, propensity to dwell in this
state, as well as the propensity to transition into this state from a state of relative deactivation,
were both correlated with LC neuronal density. Together, our results reveal that our handgrip
task was effective at changing the ease of transition into an aroused state and the time spent in
that state once achieved, and that individual differences in LC neuromelanin explain important
individual differences in probability of attaining and maintaining a state of arousal even in
healthy young adults.
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2. Results and discussion

2.1 Neuromelanin results
We computed LC magnetization transfer contrast (MTC) using neuromelanin MRI (NM-MRI) to
quantify LC neuronal density and thus quantity of neuromelanin in this structure (Langley et al.,
2020, 2017). Across subjects, the mean (± s.d.) LC MTC was 0.1212 ± 0.0220 mm3. These
values were correlated with the various model outputs as described in Methods.

2.2 Descriptive model outputs
2.2.1 Activation state pattern characterization
Figure 2A shows the activation state patterns recovered by the fitted HMM. State 1 (S1)
appears to represent a DMN-dominant state because DMN showed the highest level of
activation, while State 2 (S2) corresponds to an attention-dominant state since DAN and SN
showed the highest levels of activation. State 3 (S3) shows all networks investigated to be
activated, and State 4 (S4) can be labeled as the squeeze/sham state because it was prevalent
during the squeeze/sham periods of the paradigm (Figure 3). Because this state was also
prevalent during the “squeeze” periods of the sham condition, where the subjects lifted their arm
to their chest but refrained from squeezing, S4 will be referred to as the arousal state. In
keeping with this labeling, S4 also shows a dramatic increase in the activation level of some
ROIs in the attention networks, DAN and SN – specifically the right anterior prefrontal cortex
and left insula – as well as relative deactivation of LC. Finally, all networks were deactivated in
State 5 (S5), perhaps because another network not examined in this investigation was activated
(e.g., visual networks). Furthermore, we note that many of these states showed qualitative
relationships to one another. For example, S1 and S4 visually appear to have similar patterns,
but with opposite signs, such that DMN showed high levels of activation in S1 but was
deactivated in S4. Conversely, right anterior prefrontal cortex and left insula in SN were
deactivated in S1 but were activated in S4.
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Figure 2. The five stable activation state patterns extracted by the fitted HMM. (A)
Activation state patterns show interpretable qualitative patterns, such that state 1 (S1)
appears to be DMN-dominant, S2 appears SN-dominant, S3 shows broad activation
across all networks, S4 appears to reflect an aroused brain state during squeeze periods
(see also Results Section 2.2.2), and S5 shows broad deactivation across networks.
(B) and (C) show activation state patterns as a function of active versus sham condition,
respectively, found by the Viterbi averaging method (Methods Section 3.3.1.1).
Activation state patterns for (B) active and (C) sham conditions show some qualitative
and quantitative similarities (especially in S4), but also display important differences,
shown in (D) which displays active minus sham. Units are normalized BOLD. See main
text for detailed analysis.

To facilitate direct comparison with the active- and sham-specific patterns, we next applied the
Viterbi averaging method to retrieve the state patterns separated into active versus sham
conditions (Figure 2B and 2C, respectively; see Methods Section 3.3.1.1), first at the whole
group mean level. For mean states across all subjects, state-wise Pearson correlation
coefficients between active and sham for S1-S5 and their significance (p-values) are given in
Table 1.

Pearson’s r p

State 1 0.3763 0.0369*

State 2 -0.1738 0.3499

State 3 0.2447 0.1846

State 4 0.7887 < 0.001*

State 5 0.1739 0.3494

6

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.07.483289doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483289
http://creativecommons.org/licenses/by-nd/4.0/


Table 1. Group-defined states show differences between active and sham conditions,
quantified by the (lack of) statistically significant Pearson correlation coefficients (r)
between active and sham versions of each state except for two states: S1, the
DMN-dominant state, and S4, the arousal state, showed significant correlations between
active and sham. * p < 0.05.

States 1 and 4, the DMN-dominant state and the arousal state, respectively, show quantitative
similarities between conditions, but the others states do not (Figure 2D). At the individual level,
we repeated this process and correlated active and sham for each subject and each state. All
but S4 showed a difference between active and sham conditions. This was revealed by a
one-way repeated measures ANOVA with state as a factor, testing the Fisher-z transformed
correlation coefficients between active and sham. This ANOVA showed a main effect of state
(F(4,108) = 5.803, p < 0.001). We followed this with step-down t-tests against 0 to explore which
state(s) were significantly correlated across active versus sham condition (Table 2).

Mean
Pearson’s r

σ t p

State 1 0.1770 0.3436 0.1888 0.8594

State 2 0.0086 0.3100 0.0584 0.9571

State 3 -0.0026 0.2998 0.7567 0.4915

State 4 0.2659 0.3360 5.4652 0.0055*

State 5 0.0113 0.3143 -0.7775 0.4803

Table 2. Mean Pearson correlation coefficients (r) and t-test results for comparing states
between active and sham conditions on a subject-by-subject basis. S4 showed a high
degree of stability (significantly positive Pearson correlation coefficients) between the
active and sham condition. All statistical tests were performed after the correlation
coefficients were Fisher z transformed, but the means and standard deviations are
presented in raw correlation coefficient units. * p < 0.05

Of the five t-tests against 0, only S4, the arousal state, reached significance. These tests
demonstrate that there are likely significant variations in the state patterns between active
versus sham conditions, but S4 remained highly stable across this manipulation even at the
individual subject level. Although this may seem surprising given that the experimental
manipulation was at its ‘largest’ during the squeeze periods (subjects either squeezed or held
the ball to their chest), further scrutiny suggests that the downstream effects on the other
networks are expected to exhibit the most variation as a function of the experimental squeeze
manipulation. That is, because of the difficulties in measuring LC activity or connectivity directly,
we should expect to see differences in states as a function of condition not precisely at the point
of LC up-regulation, but in downstream effects on network activation patterns throughout the
subsequent resting-state periods of the scan. Thus, going forward, we can see that S4 is indeed
a stable, arousal state that makes a strong anchor point to focus the remaining analyses.

7

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.07.483289doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483289
http://creativecommons.org/licenses/by-nd/4.0/


We can also characterize the differences between active and sham in the state patterns
themselves. S1 (DMN-dominant) displays higher activity levels in the sham than the active
condition, while the opposite is true for S2 (attention-dominant). That S2 has higher activity in
the active than sham condition suggests that LC activation in the active condition may have
increased attention and arousal; this is also consistent with the observation that S3 (all networks
activated) shows higher activity in active than sham, while the opposite is true for S5 (all
networks deactivated). And even visually, one can see that the smallest differences between
active and sham appear to occur in S4, consistent with the statistical analysis above.

Finally, we calculated the Euclidean distance between active and sham conditions for each state
and each subject, and then correlated these distances with LC MTC to determine whether LC
MTC moderated the effects of the active squeeze manipulation. We found that only S4 showed
a trending relationship with LC MTC (Table 3), but importantly that this trending relationship was
an inverse relationship: higher LC MTC was associated with smaller distance (i.e., greater
degree of similarity) between the active and sham condition instantiations of this state. This
finding suggests that LC neuromelanin is involved with stabilizing this state of arousal, and that
individual differences in LC MTC even in younger adults can exert significant effect on arousal
states of neural activity.

Spearman’s r p

State 1 -0.0482 0.8075

State 2 -0.0757 0.7066

State 3 0.0077 0.9700

State 4 -0.3629 0.0584†

State 5 0.1910 0.3287

Table 3. Spearman correlation coefficients between LC MTC and the Euclidean distance
separating state activation patterns during active and sham conditions as a function of
state. S4 showed a trending anti-correlation between LC MTC and distance, i.e. that
higher LC neuromelanin was associated with smaller distance between active and sham
conditions for the activity pattern associated with this state. † p < 0.1

2.2.2 Viterbi path
The Viterbi paths for active and sham conditions are illustrated in Figure 3. Remarkably, the
squeeze periods within the post-arousal (PostAr) block (after the first squeeze or hand-raise had
occurred; see Methods Section 3.1.1.2) were obvious, as almost all subjects visit S4 (the
orange state) in both active and sham conditions for almost the entire length of the PostAr
blocks at time points 151-159, 220-228, 289-297, 448-456, and 487-495 – visible as vertical
orange bars running through almost all subjects.

Visually, we see hints that the Viterbi paths may be different between active and sham
conditions. For example, S3 seems more prominent in active than sham, whereas S1 may be
more prominant in sham. S5 also appears to occur more often in sham. Rather than rely on
visual inspection, we quantitatively compared the behavior and dynamics of the active and
sham Viterbi paths and describe the results in the next sections.
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Figure 3. Viterbi paths for active and sham conditions. Visually, there appear to be
meaningful differences in the state trajectories between active (A) and sham (B)
conditions; these differences are quantitatively tested in the next sections. Vertical black
lines indicate the break between RS0 (before any squeezing or hand-raising) and PostAr
(after the first squeeze/hand raise) blocks (see Methods Section 3.1.1.2).

2.3 Brain state behavior & covariance with LC
structure
We next examined several dynamic aspects of the state space trajectories themselves (see
Methods Section 3.3.2). These measures were also correlated with LC MTC. See Methods for
details.

2.3.1 Average state duration
The first behavior we examined were the baseline-corrected average state durations (Methods
Section 3.3.2.1). An omnibus 2 (condition: active vs sham) x 5 (state) ANOVA showed a main
effect of state (F(4,116) = 11.155, p < .001) but no main effect of condition (F(1,116) = .355, p =
.556) and no interaction (F(4,116) = .231, p = .921) (Figure 4A). This pattern suggests that once
subjects entered a state, the amount of time they dwelled in that state differed from one state to
the next but did not differ across the active versus sham manipulation. We therefore collapsed
across conditions and recalculated average state duration on the collapsed dataset, and
followed this with a one-way repeated measures ANOVA testing for a main effect of state on
duration.

This process revealed a main effect of state (F(4,116) = 7.236, p < .001), which we then
followed with five t-tests against 0 to see which states had higher or lower average duration in
the PostAr block relative to baseline (RS0, before any squeezing or hand-raising had occurred;
see Methods Section 3.1.1.2). These tests revealed that three states were on average
significantly longer or shorter in duration in PostAr than in RS0 (Table 4): S3 (“everything is
activated”) and S4 (arousal state) were significantly longer in PostAr than in RS0, while S2
(attention-dominant state) was – perhaps surprisingly – significantly shorter in PostAr than in
RS0. S2 being longer in RS0 than PostAr may make sense because RS0 occurred at the
beginning of a relatively long scan session, so subjects may have been alerted by the sounds of
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the scanner or instructions from the experimenter. S3 being longer in PostAr may similarly be
related to the short duration of RS0, as well as the relatively less time spent in this state (see
Results Section 2.3.3, below). S4 being longer in PostAr makes sense also because this is
where the squeeze periods occurred, and so S4 rarely occurred during RS0 and only at the very
beginning of this first scan run (Figure 3) and therefore its duration was truncated.

Figure 4. Average baseline-corrected state durations ( ) in the active and sham∆𝐷𝑢𝑟
conditions, and correlations with LC MTC across subjects. (A) The 2 (condition: active vs
sham) x 5 (state) repeated measures ANOVA revealed no main effect of condition but a
main effect of state, which is visible in the nearness of the points to the identity line. (B)
Average durations for S4, the arousal state, showed significant (p = 0.0246) correlation
with LC MTC: the more neuromelanin present in a subject’s LC, the longer the
participant tended to dwell in S4 (after correcting for baseline). No other correlations with
LC MTC reached significance. Error bars in (A) show the standard error of the mean.
See main text for details. * p < 0.05

Mean (PostAr-RS0)∆𝐷𝑢𝑟 σ t p

State 1 0.1695 2.5420 0.3652 0.7176

State 2 -2.4595 5.5043 -2.4595 0.0201*

State 3 2.1018 3.7688 3.0545 0.0048*

State 4 1.2557 2.5320 2.7163 0.0110*

State 5 -0.3500 2.6876 -0.7133 0.4814

Table 4. Average changes in durations and t-test results for comparing state duration
changes relative to baseline across state, collapsed across conditions. Three states (S2,
S3, and S4) showed significantly different durations in PostAr relative to baseline (RS0):
S2 showed significantly shorter durations in PostAr, while S3 and S4 showed
significantly longer durations in PostAr. See main text for details. * p < 0.05
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Finally, we also wanted to see whether LC neuromelanin could predict changes in state duration
from baseline, across subjects. To answer this question, LC MTC was correlated with the
average duration of all five states after (Figure 4B) collapsing the data across conditions as
above since this factor was nonsignificant in the omnibus ANOVA. The Spearman’s r values in
Figure 4B were acquired by correlating LC MTC with the difference in average duration across
baseline, i.e. (concatenated across conditions).𝑐𝑜𝑟𝑟(∆𝐷𝑢𝑟, 𝐿𝐶 𝑀𝑇𝐶)

Here, we observed only one significant correlation between LC MTC and the average duration
of S4 (arousal state) (Table 5). This is particularly noteworthy as S4 occurs in both active and
sham conditions as a direct consequence of the task manipulation, and reflects engagement
with a cognitive and motor task. That is, this result shows that the amount of neuromelanin in a
subject’s LC impacts how long that subject persists in the arousal state, regardless of the active
versus sham condition manipulation: the higher the inferred neuronal density in a given subject’s
LC, the longer they persist in an arousal state once they achieve it. We noted in our first
characterization of S4 (Results Section 2.2.1) that S4 contains targeted increases in activity in
two nodes in particular, the right anterior prefrontal cortex and left insula, and relative
deactivation of LC. Nevertheless, we can see that LC structure significantly predicts how long
the aroused state persists once it is achieved. As we will see in the next sections, this focus on
S4 as being especially sensitive to task demands and LC MTC is maintained through the next
analyses.

Spearman’s r p

State 1 0.1762 0.3680

State 2 0.0837 0.6708

State 3 -0.0077 0.9700

State 4 0.4264 0.0246*

State 5 0.1100 0.5773

Table 5. Spearman correlation coefficients (r) comparing LC MTC to average state
duration change from baseline, collapsed across conditions. The change in duration
(relative to baseline) of S4, once entered into, was significantly correlated with LC MTC
across subjects. See main text for details. * p < 0.05

2.3.2 Transition probabilities
Next, we asked whether transition behavior between pairs of states was modulated by our
active versus sham condition manipulation, and how these changes might be related to LC
neuromelanin. This analysis involves computing the transition probability matrices (TPMs),
relative transition probability matrices (RTPMs), and their differences as a function of condition
(see Methods Section 3.3.2.2 for details).
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Figure 5. Transition probability matrices (TPMs), relative transition probability matrices
(RTPMs), and correlations with LC MTC. Each colored square in (A)-(F) shows the
transition probability from state to state , with represented by rows and represented𝑖 𝑗 𝑖 𝑗
by columns. (A) and (B) display the TPMs for RS0 in the active and sham conditions,
respectively. (C) and (D) show the TPMs for PostAr for active and sham conditions,
respectively. (E) and (F) show the RTPMs for active and sham conditions, i.e. the
differences between TPMs for PostAr and RS0 ((E) = (C) - (A) and (F) = (D) - (B)). (G)
shows that several of the differences in transition probability from baseline were
significantly larger in the active than the sham condition (S4→S1, S5→S4, and S1→S5;
(G) = (E) - (F), Wilcoxon sign rank test against 0), while one difference in transition
probably from baseline was trending smaller (S5→S3). Finally, (H) shows the Spearman
correlation coefficients relating values shown in (F) and LC MTC across subjects; one
relative transition probability (S5→S4) reached significance. See main text for details. * p
< 0.05; † p < 0.1

First, we can visually examine the average TPMs from RS0 and PostAr, in the active and sham
conditions (Figure 5A-D). Visually, we can see reasonable covariation among all of these,
suggesting that the pairwise transition behaviors are relatively stable across all blocks and
conditions. Recall, however, that RS0 occurred on different days for both active and sham
conditions. Therefore, to remove baseline effects, we really want to examine the RTPMs, not the
TPMs. RTPMs are defined as the difference in TPM between PostAr and RS0, i.e. how much
the TPM changes as a result of the introduction of the squeezing (active) or hand-raising (sham)
task relative to baseline transition probabilities occurring during the first resting state period
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(RS0). In this case, baseline was important to consider because one subject (or even one
condition’s RS0 in one subject, given that active and sham were collected on different days; see
Methods Section 3.1.1) may intrinsically have had a higher switching rate than another subject
or condition’s RS0. To understand how the handgrip task affected the transition probabilities,
we thus removed any baseline effects and corrected for individual differences across subjects
by computing the RTPMs. Panels E and F of Figure 5 show the mean RTPM results for active
and sham conditions, respectively.

To address how these transition probabilities relative to baseline changed as a function of active
squeeze, we examined the Euclidean distance between these RTPMs for each subject
(RTPMActive - RTPMSham, Figure 5G; see Methods Section 3.3.2.2). This process identified that
on the whole, the distances between RTPMActive and RTPMSham were significantly different from 0
across subjects (Wilcoxon sign rank, Mann-Whitney U = 465, p = 1.7344e-06), indicating that
the change in transition probabilities from RS0 to PostAr was different overall in active versus
sham conditions. In other words, the transition probabilities revealed differences between active
and sham that were obscured by the average state duration analysis described above.

However, the significant difference in overall RTPMs between active and sham does not
account for the transitions between specific states. To test whether state-specific changes in
transition probabilities from baseline were different between active and sham conditions, we
conducted separate Wilcoxon sign rank tests for each state in the off-diagonal transition
probabilities in RTPMActive – RTPMSham; that is, for all off-diagonal transition probabilities going
from state j to state k, we computed the difference, RTPMActive,i,j,k – RTPMSham,i,j,k ( )𝑖ϵ{𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠}
and then tested whether the distribution of these differences across subjects was significantly
different from 0 for every pairwise state transition using a Wilcoxon sign rank test. Now, we can
see which pairwise state transitions are likely to be driving the overall differences between
active and sham RTPMs. Several states showed significant differences between RTPMActive and
RTPMSham that were specific to certain state transition probabilities, summarized in Figure 5F.

Let us first focus on transitions into and out of S4, as that is the arousal state which we found to
have duration significantly correlated with LC MTC regardless of active versus sham condition
(Results Section 2.3.1). In the RTPM differences (RTPMActive – RTPMSham; Figure 5G), we now
see that two transitions that involve S4 were significantly different between active and sham
conditions after correcting for baseline effects. Namely, S4→S1 (p = 0.0467) and S5→S4 (p =
0.0226) were both significantly more likely to occur in the active than the sham condition. This
observation can be interpreted as when subjects actively squeezed, they were more likely to go
from a relatively deactivated state (S5) to an arousal state (S4) than when they simply brought
their hand to their chest, and likewise that once they achieved that arousal state (S4) they were
more likely to transition into a DMN-dominant state (S1) in the active than in the sham condition.
This suggests not only that the squeeze manipulation was successful in easing the transition
into an arousal state (Hussain et al., 2019; Kozłowski et al., 1973; Lake et al., 1976; Mather et
al., 2020; Nielsen et al., 2015; Nielsen and Mather, 2015; Wallin et al., 1992, 1987), but also that
once the arousal state was achieved, subjects more easily transitioned into an
internally-oriented mental state (DMN is associated with internally-oriented attention and
self-referential mind wandering (Raichle, 2015, 2011)) than in the sham condition.

This pattern might seem counterintuitive, as one might expect an attentional state (e.g. S2)
being the more likely transition after arousal. One possible explanation is that NE depletion
played a role, in that the arousing stressor (squeezing) depleted the LC’s supply of NE causing
subjects to return to the DMN-dominant state rather than switching into an attention-dominant
state (i.e., S2), thereby prompting an attention “reset” (Mather et al., 2016; Sara, 2016, 2015)
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rather than a direct transition into S2. Moreover, recall that, aside from the squeeze/hand-raising
task, there was no other task for the subjects to do in the scanner; therefore, after entering the
arousal state in the active condition, when it started to dissipate they may have had nothing
external to focus on and therefore focused on their own thoughts more than in the sham
condition. This interpretation is consistent with the observation that the S1→S5 transition was
also significantly more likely to occur in active than in sham after correcting for baseline effects
(p = 0.0168). Interestingly, this suggests the presence of a circular S1→S5→S4→S1 loop that is
more likely to occur in active than in sham, but which is broken by the (trending; p = 0.0937)
stronger presence of S5→S3 in the sham condition (recall that S3 is a more general “everything
is active” state rather than the internally-focused S1 or the externally-focused S2). Recall that
negative values in Figure 5G indicate instances where the change in transition probability
relative to baseline was lower during the active condition than in the active condition. Thus, the
trending negative value of S5→S3 occurred because the active squeeze impeded an increase
in this transition probability relative to baseline, rather than the active squeeze having no or a
reduction effect on this probability. This suggests a difference in LC activity between the active
squeeze versus the sham (bring arm to chest) control: While lifting the arm to the chest may
marginally up-regulate LC activity and induce some arousal (Hussain et al., 2019), there is also
a relatively high probability of transitioning between whole-brain activation and whole-brain
deactivation states in pure resting state (i.e., no actual task) paradigms (Chen et al., 2016).
These results are consistent with previous findings showing common back and forth transitions
between whole-brain activation states and whole-brain deactivation states in the absence of a
task (Chen et al., 2016). It is possible that the transition S5→S3 was trending significant but
S3→S5 was not because slight changes in LC activity led to increased probability to transition
out of a whole-brain deactivation state (S5) and into a whole-brain activation state (S3) where
attentional networks were activated, rather than the other way around (Hussain et al., 2019).

Although we can only speculate here as to why this S1→S5→S4→S1 loop was more likely to
occur in active than in sham, it appears that the increased arousal due to the active squeeze
may have kept participants more engaged throughout the scan, even if that engagement was
oriented inwards. It is of course also possible that subjects transitioning out of the
DMN-dominant state and into the whole-brain deactivation state could indicate that a network
not analyzed in this study is at work in response to the active squeeze; we leave exploration of
this possibility to future studies.

Interestingly, no subject experienced S3→S4 or S4→S3 transitions in either the active or sham
condition (darkest blue squares in Figure 5A-D). To understand the significance of this
observation, recall that S3 is the “everything is activated” state and S4 is the arousal state. One
possible explanation for this observation is that LC could be involved in allocating attention
(Sara, 2015). Previous studies have shown that an increase in LC activity may cause a rapid
shift in allocation of attention in response to the sudden onset of a stimulus (Sara, 2016, 2015).
This may be why subjects did not transition from the arousal state (S4) into the whole-brain
activation state (S3) where all attention-related networks were concurrently activated, and the
LC induced some phenomenon that could not be observed in this investigation. Instead
transitions from S4 into S1, S2, or S5 were seen where DMN, FPCN, DAN, and SN were not
synchronously activated – only a few (two at most as seen in S2) were activated at the same
time. The LC allocated attention to DAN and SN since the subjects were observed to transition
out of S4 into S2. Attention was also allocated to a resting state network (DMN in S1) since
some subjects returned to resting state following the squeeze periods. Some attention could
have been allocated to a network not examined (S5), albeit more so in the sham condition than
in the active, but never to DMN, FPCN, DAN, and SN at the same time. Because this idea of
attentional allocation is associated with network resetting, our results may provide preliminary
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evidence that HMM-derived states can test the LC network reset hypothesis (Sara, 2016, 2015).
However, additional tests focusing on attentional shift during these specific transitions are
needed.

Finally, we were interested in how LC neuromelanin levels were related to changes in transition
probabilities from RS0 to PostAr, especially given the observation that LC MTC significantly
correlated with S4 duration in the previous analysis. To answer this question, LC MTC values
were correlated with RTPMActive – RTPMSham across all subjects prior to obtaining the global
average (Figure 5G). Once again, we saw significant correlations having to do with S4, the
arousal state. A significant correlation was observed between LC MTC and the changes in the
S5→S4 transition from baseline (p = 0.0150), indicating that LC neuromelanin levels may
mediate the probability of subjects transitioning out of the whole-brain deactivation state and
into the arousal state as a function of the handgrip task relative to baseline.

Together, these results paint a compelling picture. LC MTC appears to moderate the persistence
of an arousal state (S4) once entered, regardless of how the subject ended up in the state, as
well as the propensity to transition into that state especially from positions of relative overall
deactivation. However, one potential confounding factor is that LC MTC might simply correlate
with the predominance of S4 in general: If S4 is more likely to occur in subjects with higher
neuronal density in LC regardless of task or previous state, that could offer a less exciting
explanation for why we have seen the patterns described here. We sought to rule out this
possibility by conducting the fractional occupancy analyses described next.

2.3.3 Fractional occupancy
To determine whether the results above may be trivially due to differences in fractional
occupancy in S4 (or other states) across active and sham conditions, or differences in LC MTC
that drove such a propensity to occupy S4, we directly examined the percent of time each
subject spent in each state. That is, we calculated the fractional occupancy (Methods Section
3.3.2.3) for each state and within each block (RS0 vs PostAr), and then performed analyses
similar to those done above for average state duration on the difference between these, .∆𝐹𝑂

The 2 (condition: active vs sham) x 5 (state) repeated measures ANOVA revealed a main effect
of state (F(4,100) = 14.51, p < .001) and a trending main effect of condition (F(1,100) = 3.90, p =
0.059), but no interaction (F(4,100) = 1.73, p = 0.150) (Figure 6A). We thus collapsed across
conditions and conducted a one-way repeated measures ANOVA to evaluate whether state
affected fractional occupancy regardless of active versus sham condition. This approach
revealed a main effect of state (F(4,116) = 14.27, p < .001), so we followed these findings with
five t-tests against 0 to discover which states deviated in their fractional occupancy between
RS0 and PostAr. These tests revealed that subjects spent a significantly higher percentage of
their time in S2 during the PostAr block versus RS0, but significantly lower percentage of the
time in S3 and S4 (Table 6). While these may seem surprising, recall that fractional occupancy
is defined as the percentage of time spent in a particular state relative to the total length of the
scan, and the RS0 block is only 150 TRs long while the PostAr block is 375. Thus, any
occupancy in short-lived states like S4 (see Results Section 2.3.1) during RS0 might lead to a
relatively outsized appearance of fractional occupancy.
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Figure 6. Average baseline-corrected fractional occupancy ( ) in the active and sham∆𝐹𝑂
conditions, and correlations with LC MTC across subjects. (A) The 2 (condition: active vs
sham) x 5 (state) repeated measures ANOVA revealed no main effect of condition but a
main effect of state, which is visible in the nearness of the points to the identity line. (B)
No state’s fractional occupancy significantly correlated with LC MTC. Error bars in (A)
show the standard error of the mean. See main text for details.

Mean (PostAr-RS0)∆𝐹𝑂 σ t p

State 1 -0.0009 0.0937 -0.0506 0.960

State 2 0.1215 0.1103 6.0354 < .001*

State 3 -0.0825 0.1262 -3.5827 0.001*

State 4 -0.0273 0.0511 -2.9240 0.007*

State 5 -0.0108 0.0878 -0.6754 0.505

Table 6. Average fractional occupancy and t-test results for comparing fractional
occupancy changes from baseline across state, collapsed across condition. Three states
(S2, S3, and S4) showed significant differences in fractional occupancy during PostAr
relative to baseline (RS0): S2 was occupied significantly more often in PostAr, while S3
and S4 were occupied significantly less often relative to the length of the block. See
main text for details. * p < 0.05

Nevertheless, our goal with this analysis was to identify a potential origin for the aforementioned
result demonstrating that average duration of S4, or transition into S4 or other states, was
related to LC MTC. Thus, as a final check we correlated with LC MTC across subjects. This∆𝐹𝑂
analysis revealed no significant correlations between the fractional occupancy in any state and
LC MTC (Figure 6B; Table 7). We can therefore be confident that the relative higher probability
of transitioning S5→S4 in the active condition, and the observed correlation between this
specific transition and LC MTC across subjects, is unlikely to be attributed to percent of time
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spent in S4 or any effect of LC MTC on this fractional occupancy. Instead, it seems likely that
the S5→S4 transition as well as the duration of S4 – and their correlations with LC MTC –
reflect a core role of LC neuronal density on the effectiveness of the active squeeze
manipulation on the ease of entering into an aroused state.

Spearman’s r p

State 1 0.0662 0.7371

State 2 0.1894 0.3344

State 3 -0.2715 0.1619

State 4 0.0673 0.7335

State 5 -0.0071 0.9722

Table 7. Spearman correlation coefficients comparing LC MTC to (average∆𝐹𝑂
fractional occupancy change from baseline), collapsed across conditions. No changes in
fractional occupancy were significantly correlated with LC MTC. See main text for
details.

2.4 Summary, limitations, & conclusions
Here, we sought to characterize the consequences of LC up-regulation on the spatiotemporal
dynamics of brain networks. We fitted a hidden Markov model (HMM) to whole-brain fMRI data
while healthy adult humans performed a pseudo-resting-state task designed to engage LC, and
examined how LC activation modulated brain states themselves as well as the dynamics of
transitions between them. The HMM identified five stable states corresponding to patterns of
activity in the default mode network (DMN), dorsal attention network (DAN), front-parietal control
network (FPCN), salience network (SN), and the LC. One of these states, the ‘arousal’ state –
which occurred during active engagement with the squeezing task (during both active and sham
conditions) – was highly stable across conditions, although other states showed significant
difference between active and sham. Interestingly, the stability of this arousal state, S4, was
correlated with LC neuromelanin (LC MTC). Further, the degree to which the squeeze task
affected subjects’ propensity to transit into S4 was also correlated with LC neuromelanin (LC
MTC), and LC MTC also showed correlations with the duration of that state once it was
achieved, regardless of active versus sham condition. We interpret these results to mean that,
even in healthy young adults, LC structure plays an important role in facilitating the transition
into an arousal state, moderating the efficacy of any task or condition that might engage the LC
circuit to cause norepinephrine release.

These findings can be applied in future studies to better characterize previous observations that
LC activation contributes to not just an aroused state but also a U-shaped function relating
arousal and performance, known as the Yerkes-Dodson curve (Aston-Jones and Cohen, 2005).
Our data-driven approach, using a HMM to reveal hidden states of network activity patterns,
clearly identified an arousal state in S4 which was highly stable even in the absence of an active
stress-type manipulation (the squeeze), but which nevertheless showed meaningful hallmarks
both of our behavioral manipulation and of individual differences in neuromelanin. In particular,
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under the active squeeze condition, network nodes in SN exhibited stronger activation and
subjects tended to persist longer in this state when they actively squeezed, depending on their
LC neuromelanin level. Notably, these results demonstrate that network-based approaches to
studying the effects of LC up-regulation can identify meaningful patterns even in the absence of
precise measurement of LC activity itself. That the squeeze manipulation also eased the
transition into this arousal state from a state of relative deactivation is not only consistent with
previous findings showing that arousal may be more easily achieved if LC is successfully
engaged (Hussain et al., 2019; Kozłowski et al., 1973; Lake et al., 1976; Mather et al., 2020;
Nielsen et al., 2015; Nielsen and Mather, 2015; Wallin et al., 1992, 1987), but also allow us to
examine what that state of arousal consists of: relative deactivation of nearly every other
network in the brain studied here with the exception of two nodes in FPCN (left and right
posterior inferior parietal lobule) and two nodes in DAN (left anterior prefrontal cortex and left
anterior insula). In contrast, DMN was almost entirely deactivated in this arousal state, in stark
contrast to its high degree of activation that likely occurred directly after presence in the arousal
state (in the DMN-dominant state, S1). Moreover, that the S4→S1 transition was more likely in
the active than sham condition – and that the subsequent S1→S5 transition was also more
likely – suggests a cycle of outward orientation (S4) followed by relatively inward-directed
attention (S1) and then a general resetting (S5) that is significantly driven by LC activity levels.
Future research may more explicitly explore these cycles and include more brain networks to
more fully characterize recurring patterns of transitions through state space and their
relationship to LC activity and neuromelanin content, as well as using this approach to study the
extreme ends of the U-shaped Yerkes-Dodson curve (Aston-Jones and Cohen, 2005).

Although robust across several metrics, the effects we found here were relatively small in size.
This may have occurred because the handgrip manipulation was not strong enough to induce
changes in LC activation (and consequences in brain states and dynamics) large enough to be
detected via fMRI. Future studies may wish to employ a more aggressive manipulation, such as
subjects dipping their hand in cold water, administering electrical pulses, or presenting jarring
sounds (Marmon and Enoka, 2010; Oyarzún et al., 2012; Redondo et al., 2008; Schwabe and
Schächinger, 2018; Stark et al., 2006). It is also possible that we would see stronger results in
older adults or in a diseased population (i.e., subjects with Parkinson’s or Alzheimer’s diseases),
as neuromelanin accrues with age and peaks between ages 50-60 (Manaye et al., 1995; Ma et
al., 1999; Zecca et al., 2004). Nevertheless, we did observe reasonable variation in LC
neuromelanin across subjects even in this young, healthy population, contributing to knowledge
of individual differences in LC structure and function.

On the other hand, if the squeeze manipulation we used did in fact induce a robust LC response
and consequences in brain dynamics, it is also possible that the measures used in this
investigation were not sensitive enough to detect it due to poor signal-to-noise ratio in the BOLD
signal. Future investigations could explore various denoising methods for BOLD data (Kundu et
al., 2012; Quian Quiroga and Garcia, 2003). As mentioned above, LC BOLD is subject to
physiological noise, specifically cardiac pulsation and respiration (Clewett et al., 2016; Glover et
al., 2000; Liu et al., 2017; Mather et al., 2017). Here, we were unfortunately unable to regress
out these potential noise sources because physiological data were not collected in conjunction
with functional data. Future studies should plan to collect cardiac pulsation and respiration data
so that physiological noise can be regressed out from the LC BOLD signal prior to HMM fitting
(Glover et al., 2000).

Overall, we have shown that individual differences in LC neuromelanin – even in healthy young
adults – impact the stability of an arousal-related brain state, and the propensity to enter and
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dwell in this state. Our results reveal important new insight into the role of LC in directing the
dynamics of brain states related to arousal and task engagement.

3. Methods
In this section we first explain the experimental paradigm and neuroimaging data collection and
analysis for both structural and functional data, including measures of LC neuronal density. We
also introduce four attention-related networks and describe the HMM to be fitted. The next
sections then describe how we approached answering questions about how activation of LC
through the behavioral task affects brain network activity and state dynamics. This includes
analyzing the HMM-derived brain states themselves as well as their behavior through time. In
the supplemental material (Supplementary Material Section S3.1), we present methods for
collecting and analyzing concurrent pupillometry data, as well as results of that analysis.

3.1 Datasets and Networks
3.1.1 Experimental paradigm and neuroimaging data

3.1.1.1 Participants
Thirty-one healthy human participants (18 females, mean age 25 years ± 4 years) enrolled in
this study at the University of California, Riverside Center for Advanced Neuroimaging. All
subjects gave written informed consent and received monetary compensation for their
participation. All procedures were approved by the University of California, Riverside
Institutional Review Board.

3.1.1.2 Paradigm
The experimental paradigm is illustrated in Figure 7. All subjects first underwent a five-minute
pure resting state block (RS0) prior to any squeeze. Following this RS0 block, subjects
underwent a 12.8-minute experiment where they alternated between resting state and bringing
their dominant hand to their chest to squeeze a squeeze-ball at maximum grip strength
(SQ1-RS5) (Hussain et al., 2019; Mather et al., 2020). All five squeeze periods lasted 18
seconds while the interspersed five resting state periods had durations of two-, two-, five-, one-,
and one-minute, respectively. SQ1 through RS5 occurred after the arousing stressor has been
introduced, so we refer to them collectively as the post-arousal (PostAr) block. RS0 and PostAr
blocks were collected separately within each condition, for a total of four runs of functional data
collection. In order to create a within-subject experimental design, all subjects underwent two
sessions corresponding to two different conditions: one where they executed the squeeze
(active condition), and one where they still brought their arm up to their chest but were
instructed simply to hold the ball and not to squeeze it (sham condition). Condition order was
pseudorandomly counterbalanced across subjects, and each condition occurred on a separate
day. Following this resting state paradigm, subjects took part in an auditory oddball detection
task, the details of which have been described elsewhere but which are not analyzed in the
present project (Yaghoubi et al., 2019).
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Figure 7.   Experimental paradigm consisting of a pure resting state block and a longer
alternating squeeze/resting state block to facilitate dynamic (time-varying) analysis
(Nielsen and Mather, 2015). Subjects underwent two conditions: (1) an active squeeze
condition, in which they lifted their arm to their chest and squeezed a squeeze-ball at
maximum grip strength for the duration of each squeeze period; and (2) a sham control
condition, in which they also lifted their arm to their chest during these periods but
refrained from squeezing. Within the post-arousal (PostAr) block, RS refers to resting
state periods, and SQ to periods in which subjects lifted their arm to their chest and
either squeezed (active condition) or did not squeeze (sham condition). The RS0 blocks
were used as a baseline for each condition.

3.1.1.3 Functional and structural neuroimaging data acquisition and
preprocessing
Magnetic resonance imaging (MRI) data were collected on a Siemens 3T Prisma MRI scanner
(Prisma, Siemens Healthineers, Malvern, PA) with a 64 channel receive-only head coil. fMRI
data were collected using a 2D echo planar imaging sequence (echo time (TE) = 32 ms,
repetition time (TR) = 2000 ms, flip angle = 77°, and voxel size = 2x2x3 mm3, slices=52) while
pupillometry data (see Supplementary Material Section S3) were collected concurrently with a
TrackPixx system (VPixx, Montreal, Canada). Anatomic images were collected using an
MP-RAGE sequence (TE/TE/inversion time = 3.02/2600/800 ms, flip angle =8°, voxel size =
0.8x0.8x0.8 mm3) and used for registration from subject space to common space. One subject
was excluded due to a history of attention deficit hyperactive disorder and consumption of
related medication, such that the final dataset contained n = 30 subjects (Hussain et al., 2019;
Yaghoubi et al., 2019).

The functional data underwent a standard preprocessing pipeline in the functional magnetic
resonance imaging of the brain software library (FSL): slice time correction, motion correction,
susceptibility distortion correction, and spatial smoothing with a full width half maximum value of
2mm (Smith et al., 2004; Woolrich et al., 2009). Finally, all data were transformed from individual
subject space to Montreal Neurological Institute (MNI) standard space using the following
procedure in FSL (Smith et al., 2004; Woolrich et al., 2009). First, the T1-weighted image was
skull stripped using the brain extraction tool. Next, brain extracted T1-weighted images were
aligned with the MNI brain extracted image using an affine transformation. Finally, a nonlinear
transformation (FNIRT) was used to generate a transformation from individual T1-weighted
images to T1-weighted MNI common space (Smith et al., 2004; Woolrich et al., 2009).

3.1.1.4 Regions of interest: attention-related networks
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To examine the impact of LC up-regulation on network states and dynamics, we selected four
networks often associated with resting state: default mode network (DMN), fronto-parietal
control network (FPCN), dorsal attention network (DAN), and salience network (SN). DMN (a
resting state network) and DAN (an attention network) were selected because squeezing ought
to invoke a transition from the resting state into a task-positive state (Greicius and Menon,
2004); FPCN because it is linked to DAN and regulates perceptual attention (Dixon et al., 2018);
and SN because it determines which stimuli in our environment are most deserving of attention
(Mather et al., 2020; Menon and Uddin, 2010). Talariach coordinates for regions of interest
(ROIs) within DMN, FPCN, and DAN were taken from Deshpande and colleagues (Deshpande
et al., 2011) and converted to MNI coordinates while SN MNI coordinates were taken directly
from Raichle’s 2011 paper (Deshpande et al., 2011; Laird et al., 2005; Lancaster et al., 2007;
Raichle, 2011). Two ROIs from FPCN (dorsal anterior cingulate cortex and left dorsolateral
prefrontal cortex) were excluded due to their close location to other ROIs.

The fifth ‘network’ we included in fitting the HMM was the bilateral LC itself. LC was localized
using the probabilistic atlas described in Langley et al. 2020 (Langley et al., 2021, 2020). Briefly,
a reference region was drawn in the pons and its mean (μref) and standard deviation (σref) were
calculated. Next, the LC atlas was transformed from MNI space to native NM-MRI space using
procedures outlined in Methods Section 3.1.1.3 using a threshold level of 0.01. After binarizing
and dilating the transformed LC atlas, voxels in the dilated LC region of interest with intensities
greater than I > μref + (4*σref) were considered part of LC.

Table S1 shows the labels and MNI coordinates for all networks and ROIs discussed and were
used to center a 5mm3 isotopic marker, including the LC (whose dilated voxels were split into
rostral and caudal regions) (Deshpande et al., 2011, 2009; Stilla et al., 2007). BOLD signal from
each voxel within an ROI were extracted and averaged to represent the overall signal for an
ROI. This was repeated for 31 total ROIs: 9 from DMN, 7 from FPCN, 6 from DAN, 7 from SN,
and 2 from LC. Although the LC is only a single ROI split into rostral and caudal portions, it is an
entity distinguishable from the large-scale networks and will henceforth be referred to as a
network in this paper.

3.1.1.5 Neuromelanin data acquisition and preprocessing
Neuromelanin MRI (NM-MRI) data were used to compute LC magnetization transfer contrast
(MTC), which quantifies LC neuronal density and therefore quantifies the amount of
neuromelanin in a subject’s LC (Langley et al., 2020, 2017). Data were acquired using a
magnetization-prepared 2D gradient recalled echo (GRE) sequence: TE/TR = 3.10/354 ms, 416
× 512 imaging matrix, 162 × 200 mm2 (0.39 × 0.39 × 3 mm3) field of view, 15 slices, flip angle =
40°, four measurements, MTC preparation pulse (300°, 1.2 kHz off-resonance, 10 ms duration),
and 470 Hz/pixel receiver bandwidth with a scan time of 10 minutes and 12 seconds (Chen et
al., 2014; Langley et al., 2015). The four measurements were saved individually for offline
registration and averaging. NM-MRI slices were prescribed perpendicular to the dorsal edge of
the brainstem in the T1-weighted image. Two subjects chose not to participate in the
neuromelanin scans, so all NM-MRI data analyzed in this project were done with n = 28.

To process the NM-MRI data in FSL, images from the four GRE measurements were registered
to the first image using a linear transformation tool in FLIRT and averaged (Smith et al., 2004;
Woolrich et al., 2009). A transformation between this averaged NM-MRI image and T1-weighted
image was derived using a rigid body transform with boundary-based registration cost function
in FLIRT. Prior to the rigid body transformation, the T1-weighted image was parceled into gray
matter, white matter, and cerebral spinal fluid regions. The quality of each registration between
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T1-weighted and NM-MRI images was assessed by overlaying the white matter-gray matter
boundary from the T1-weighted image on the NM-MRI image. No significant deviation was
observed in all subjects. Contrast from the magnetization transfer preparation pulse, denoted
MTC, was then calculated via

(1)𝑀𝑇𝐶 =
𝐼−𝐼

𝑟𝑒𝑓( )
𝐼

𝑟𝑒𝑓

where I denotes the intensity of a voxel in the NM-MRI image and Iref refers to the mean intensity
of a reference region in the NM-MRI image. To ensure consistent placement of reference region
in NM-MRI images across subjects, a reference region was drawn in the pons in MNI
T1-weighted common space and then transformed to individual NM-MRI images. A LC atlas in
MNI space was used in this study to localize the region around LC for MTC measurement
(Langley et al., 2020). The LC atlas was transformed to NM-MRI space using the
aforementioned transformations and using a threshold level of 0.5. After binarizing, each
subject’s mean MTC was measured in the LC ROI resulting in a total of n = 28 values. (Two
subjects did not undergo the neuromelanin scans.)

3.2 Hidden Markov model
To identify hidden brain state patterns and dynamics, and how they changed as a function of LC
activity, we fitted a Gaussian hidden Markov model (HMM) to the functional neuroimaging
dataset following previously-published methods (Chen et al., 2016; Hussain et al., 2022;
Stevner et al., 2019; Vidaurre et al., 2017). BOLD signals from the various ROIs (Section
3.1.1.4; Supplementary Material Section S1) were extracted, preprocessed, z-scored, and
concatenated across subjects. Note that the data for RS0 and PostAr (SQ1-RS5) were z-scored
separately within each condition because they formed four separate runs during acquisition, for
a total of four z-scorings performed per subject: RS0 for active and sham, and SQ1-RS5
(PostAr) for active and sham. These fMRI time series were then concatenated timewise across
all subjects to create a matrix of size (time * # subjects) x (# ROIs) and submitted as input to the
hmmlearn package to be fit with standard procedures described elsewhere (Pedregosa et al.,
2011). That is, the forward and Viterbi algorithms were used in conjunction to identify the most
likely sequence of hidden states given the observable BOLD signal. The Baum-Welch algorithm
was then implemented to calculate the transition and emission probabilities of a given state
(Jurafsky and Martin, 2009; Rabiner and Juang, 1986; Rabiner, 1989).

To determine the optimal number of states for the HMM employed here, we employed two
separate methods. These methods determined that a 5-state model fit the data best, and so all
subsequent analyses and results presented here are for a 5-state HMM. See Supplemental
Material Section S2 for details.

3.3 Analysis of model outputs
We analyzed the outputs of the fitted HMM in a number of ways. First, we examined the state
patterns themselves, i.e. how activity in each ROI changed as a function of state and across
active versus sham control conditions. We also analyzed aspects of the trajectory through state
space, including the Viterbi path itself, the percent of time spent in each state, the average state
duration, and the transition probability matrices describing the model’s behavior. These latter
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measures describing state trajectories were calculated separately for RS0 and the
“post-arousal” (PostAr) block containing SQ1-RS5, because this latter portion of the scan
occurred after the handgrip task (both active and sham). They were then compared across
active versus sham conditions as well as compared to baseline dynamics during RS0. Below,
we describe each of these approaches in detail.

3.3.1 Exploring descriptive model outputs

3.3.1.1 Activation state pattern characterization
The HMM fitting procedure directly outputs mean state patterns, i.e. the average activity shown
by each ROI for a given hidden state recovered by the model. We also analyzed activation state
patterns specific to the active and sham conditions as a means of determining whether a certain
state pattern was dominant in one condition and therefore driving the overall spatial patterns. In
accordance with Chen and colleagues’ (Chen et al., 2016) method of state pattern acquisition,
these spatial patterns were acquired by averaging the BOLD signal from TRs where the Viterbi
path labeled a state to be active, for active and sham conditions separately. That is, for a given
state within a given condition, we identified the TRs where that state was the most likely to be
occupied by the subject, and then averaged across all those TRs to produce an average BOLD
signal in each ROI that can be tied to each state within that condition. We refer to this process
as the Viterbi averaging method.

We compared the states recovered via the Viterbi averaging method across active versus sham
conditions by first calculating the Pearson correlation coefficient between active and sham for
each state, where state was defined as the average state found across all subjects.

Second, we again calculated the Pearson correlation coefficient between active and sham for
each state, but this time within each subject so that we could perform statistical analyses. After
Fisher-z transforming the correlation coefficients such that the distribution of data would not
violate the normality assumptions of an ANOVA, we conducted a one-way repeated measures
ANOVA on the transformed coefficients to seek a main effect of state. A significant main effect
was followed by t-tests against 0 within each state.

Finally, we also calculated on an individual subjects basis the Euclidean distance between
active and sham conditions for each state and each subject. The purpose of this analysis was to
determine whether LC MTC correlates with how different the states are across this condition
manipulation, so that these distances were then Spearman correlated with LC MTC across
subjects.

3.3.1.2 Viterbi path
The Viterbi path – a direct HMM output – was used to qualitatively assess differences between
active and sham conditions and to obtain qualitative insight into the temporal dynamics of the
LC dataset. Since the active and sham conditions were fitted together, the model provided the
hidden state sequence for concatenated active and sham conditions. We therefore separated
the first and second halves of the outputted Viterbi path to examine the active and sham state
sequences separately.
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3.3.2 Characterizing brain state behavior & covariance with LC
structure
We next examined and characterized not only the states themselves, but how they behaved as
a function of active versus sham conditions, and how these measures covaried with LC MTC
across subjects. This allowed us to ask questions about how the squeezing task induced or
changed transition into or occupancy of arousal-related states, including how LC neuronal
density (quantified by LC MTC) was related to these brain state behaviors.

We note again that each of the measures described in this section was computed separately for
RS0 versus PostAr (SQ1-RS5; see Methods). This is because RS0 provides a baseline before
any prompts are shown to either squeeze (active condition) or raise the hand to the chest (sham
control condition), and so provide a benchmark against which we can look for changes in each
measure, corrected for individual differences across subjects and conditions (and before
application of the covariate of LC MTC). This approach also provides a standardization across
active and sham conditions, such that the critical questions centered on whether each metric’s
deviation from baseline is dependent on whether the subject was actively squeezing or not.

For all metrics described in this section, the first omnibus test typically took the form of
computing the relevant metric separately in the active and sham conditions and in the RS0 and
PostAr blocks, such that every subject had four measures of the metric in question. To do
baseline correction within each scanning session (which occurred on two separate days; see
Methods Section 3.1.1.2) we then subtract the RS0 metric from the PostAr metric, separately
in the active and sham conditions. The resulting difference score is submitted to statistical tests
as appropriate, detailed in the following sections.

Finally, to determine the degree to which LC structure mediated the relationships found via the
analyses described below, we calculated the Spearman correlation between LC MTC and these
measures; Spearman correlations were chosen because we had no a priori reason to believe
LC MTC should be linearly related to any of these measures.

Below we describe these analyses in more detail.

3.3.2.1 Average state duration
After the hidden states were extracted and characterized, we were interested to know whether
the propensity to dwell in each state, once reached, changes across conditions or states. Thus,
we defined average state duration as the mean time spent in a state once a subject entered that
state. This was computed for each subject by calculating the number of consecutive TRs spent
in a state once the subjects entered it, and then averaging this number across the total number
of times the subject entered that state, separately for the active and sham conditions and also
separately within RS0 and PostAr blocks. This leaves us with four average state duration
measures for each subject: DurRS0,active, DurRS0,sham, DurPostAr,active, and DurPostAr,sham. Finally, we
subtracted RS0 from PostAr within each of the active and sham conditions to get a difference
score, i.e.

(2)∆𝐷𝑢𝑟
𝑖

= 𝐷𝑢𝑟
𝑃𝑜𝑠𝑡𝐴𝑟,𝑖

− 𝐷𝑢𝑟
𝑅𝑆0,𝑖

with referring to condition, either active or sham. The resulting difference scores were𝑖 ∆𝐷𝑢𝑟
submitted to a 2 (condition: active vs sham) x 5 (state) repeated measures ANOVA. We then
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conducted step-down ANOVAs and t-tests as appropriate; Greenhouse-Geisser corrections for
sphericity violations were used as needed.

Finally, to examine the degree to which changes in average state duration as a function of
condition were moderated by LC neuromelanin levels across subjects, we computed the
Spearman correlation between LC MTC and average state duration within subsets of the data
(condition and state) as appropriate.

3.3.2.2 Transition probabilities
A second question concerns how transition behavior changes as a function of active versus
sham condition, and the degree to which these changes are moderated by LC MTC. A transition
probability matrix (TPM) provides a summary of all the dynamics observed in the Viterbi path, in
that the value contained in describes the probability of switching from state to state at𝑇𝑃𝑀

𝑖𝑗
𝑖 𝑗

any given moment in time. The TPM directly outputted from the HMM fitting procedure provides
a general overview of transitions for both conditions as a whole, and also includes baseline
(RS0) effects since it reflects the fitting procedure applied to all data concatenated across
subjects and conditions. However, we were interested in changes in transition probabilities
across the several manipulations of our task.

First, we were interested to see how the TPM changed from baseline once the handgrip task
was introduced, i.e., during PostAr for both active and sham conditions. To calculate this, we
concatenated Viterbi paths within each of the active and sham conditions, respectively, during
the PostAr block and identified the number of times a subject transitioned out of a certain state
and into another, then divided that value by the total number of transitions in the block (374). To
remove the effects of baseline, the TPM was calculated similarly for RS0 separately in each
condition, and then subtracted from the overall PostAr transition probability matrix (again
separately in each condition) to produce a relative transition probability matrix (RTPM) for each
condition :𝑐ϵ{𝐴𝑐𝑡𝑖𝑣𝑒, 𝑆ℎ𝑎𝑚}

(3)𝑅𝑇𝑃𝑀
𝑐

= 𝑇𝑃𝑀
𝑐,𝑃𝑜𝑠𝑡𝐴𝑟

− 𝑇𝑃𝑀
𝑐,𝑅𝑆0

which describes the transition probabilities in the PostAr block relative to whatever baseline was
set during RS0 for that subject during that scanning session.

Next, we checked for differences between RTPMActive and RTPMSham. To do this, we first
computed the Euclidean distance between RTPMActive and RTPMSham for each subject via

(4)𝑑
𝑠
(𝑎𝑐𝑡𝑖𝑣𝑒, 𝑠ℎ𝑎𝑚) =

𝑖=1

20

∑ 𝑝
𝑎𝑐𝑡𝑖𝑣𝑒,𝑖

− 𝑝
𝑠ℎ𝑎𝑚,𝑖( )2

where ds is the Euclidean distance between the transition probabilities for a particular transition
excluding self-transitions (i.e., 20 pairwise transitions in𝑖 ϵ {𝑆1 → 𝑆2, 𝑆1 → 𝑆3,  ...  , 𝑆5 → 𝑆4}

total), p is the transition probability for that particular state transition, and . ds thus𝑠 ϵ {𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠}
indexes the total distance between the active and sham RTPMs for a particular subject s, across
all pairwise transitions. We compared the distribution of these distances to 0 using a
nonparametric Wilcoxon sign rank test; this process is akin to a nonparametric paired t-test.
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We were also interested in which particular pairwise transitions might drive these differences, so
we next computed for all pairwise transitions within RTPMActive and𝑝

𝑎𝑐𝑡𝑖𝑣𝑒,𝑖
− 𝑝

𝑠ℎ𝑎𝑚,𝑗
𝑖 → 𝑗

RTPMSham and for each subject, and tested whether each of these distributions was different
from 0 across subjects with a series of Wilcoxon sign rank tests.

Finally, to determine whether LC neuromelanin content mediated changes in pairwise transition
behavior – that is, differences between RTPMActive and RTPMSham – we Spearman correlated the
differences between RTPMActive and RTPMSham with LC MTC across subjects.

3.3.2.3 Fractional occupancy
Finally, we were also interested in the percent of overall time that subjects spent in each hidden
state. Was one state dominant over another, and did this change as a function of active versus
sham condition and/or was it correlated with LC MTC? This is especially important because any
differences in transition probabilities or state duration must be interpreted with respect to how
much time, overall, a subject spent in each state: If a particular state becomes highly dominant
in one condition over another, that might also carry increases in duration or transition
probabilities into that particular state.

Therefore, we defined fractional occupancy (FO) as the proportion of time spent visiting a state.
Fractional occupancy was calculated by first counting the total number of TRs each subject
spent in a certain state for each block, RS0 and PostAr; that value was then divided by the total
number of TRs in each block (150 for RS0 and 375 for PostAr) to obtain the fractional
occupancy of each state separately within either RS0 or PostAr. We performed this calculation
separately in the active versus sham conditions, and then subtracted RS0 from PostAr as done
previously for average state duration. That is, we computed

(5)∆𝐹𝑂
𝑖

= 𝐹𝑂
𝑃𝑜𝑠𝑡𝐴𝑟,𝑖

− 𝐹𝑂
𝑅𝑆0,𝑖

with again referring to condition, either active or sham. Following the previous design for𝑖
average state duration, the resulting difference scores were submitted to a 2 (condition:∆𝐹𝑂
active vs sham) x 5 (state) repeated measures ANOVA. We then conducted step-down ANOVAs
and t-tests as appropriate; Greenhouse-Geisser corrections for sphericity violations were used
as needed, and any outliers more than 3 standard deviations from the mean in any condition
were discarded. Finally, to examine the degree to which changes in fractional occupancy as a
function of condition were moderated by LC neuromelanin, we again computed the Spearman
correlation between LC MTC and fractional occupancy within subsets of the data (condition and
state) as appropriate.
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Data/code availability statement
Hidden Markov models were generated using the hmmlearn library in python
(https://github.com/hmmlearn/hmmlearn). The fMRI dataset is available from the authors upon
reasonable request.
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Supplementary material

S1. Regions of interest
ROI Abbrv. Full Name MNI (x,y,z) Source

Default Mode Network

1 PCC Posterior Cingulate Cortex (2,54,16) Deshpande et al. 2011

2 L pIPL Left Posterior Inferior Parietal Lobule (-46,-72,28) Deshpande et al. 2011

3 R pIPL Right Posterior Inferior Parietal Lobule (50,-64,26) Deshpande et al. 2011

4 OFC/vACC Orbitofrontal Cortex/Ventral Anterior
Cingulate Cortex (4,30,26) Deshpande et al. 2011

5 dMPFC BA 8 Dorsomedial Prefrontal Cortex
Brodmann Area 8 (-14,54,34) Deshpande et al. 2011

6 dMPFC BA 9 Dorsomedial Prefrontal Cortex
Brodmann Area 9 (22,58,26) Deshpande et al. 2011

7 L DLPFC Left Dorsolateral Prefrontal Cortex (-50,20,34) Deshpande et al. 2011

8 L PHG Left Parahippocampal Gyrus (-10,-38,-2) Deshpande et al. 2011

9 L ITC Left Inferolateral Temporal Cortex (-60,-20,-18) Deshpande et al. 2011

Fronto-Parietal Control Network

1 L aPFC Left Anterior Prefrontal Cortex (-36,56,10,) Deshpande et al. 2011

2 R aPFC Right Anterior Prefrontal Cortex (34,52,10) Deshpande et al. 2011

3 R DLPFC Right Dorsolateral Prefrontal Cortex (46,14,42) Deshpande et al. 2011

4 L aINS Left Anterior Insula (-30,20,-2) Deshpande et al. 2011

5 R aINS Right Anterior Insula (32,22,-2) Deshpande et al. 2011

6 L aIPL Left Anterior Inferior Parietal Lobule (-52,-50,46) Deshpande et al. 2011

7 R aIPL Right Anterior Inferior Parietal Lobule (52,-46,46) Deshpande et al. 2011

Dorsal Attention Network

1 L MT Left MidThalamus (-44,-64,-2) Deshpande et al. 2011

2 R MT Right MidThalamus (50,-70,-4) Deshpande et al. 2011

3 L FEF Left Frontal Eye Field (-24,-8,50) Deshpande et al. 2011

4 R FEF Right Frontal Eye Field (28,-10,50) Deshpande et al. 2011
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5 L SPL Left Superior Parietal Lobule (-26,-52,56) Deshpande et al. 2011

6 R SPL Right Superior Parietal Lobule (24,-56,-54) Deshpande et al. 2011

Salience Network

1 DAC Dorsal Anterior Cingulate (0,-22,36) Raichle 2011

2 L aPFC Left Anterior PFC (-34,44,30) Raichle 2011

3 R aPFC Right Anterior PFC (32,44,30) Raichle 2011

4 L Insula Left Insula (-40,2,6) Raichle 2011

5 R Insula Right Insula (42,2,6) Raichle 2011

6 L LP Left Lateral Parietal (-62,-46,30) Raichle 2011

7 R LP Right Lateral Parietal (62,-46,30) Raichle 2011

Locus Coeruleus

1 R LC Rostral locus coeruleus

left (-3.0, -36.7, -20.4)
right (4.4, -36.4. -19.5)

(Probabilistic atlas)

Langley et al. 2020

2 C LC Caudal locus coeruleus

left (-5.9, -38.1, -29.9)
right (7.0, -38.1, -30.3)

(Probabilistic atlas)

Langley et al. 2020

Table S1. List of MNI coordinates used for ROIs in the default mode network (DMN),
fronto-parietal control network (FPCN), dorsal attention network (DAN), salience network
(SN), and locus coeruleus (LC). Talaraich coordinates for DMN, FPCN, and DAN were
taken from Deshpande et al. (Deshpande et al., 2011) and were converted to MNI using
(Brett et al., 2002; Deshpande et al., 2011; Laird et al., 2005; Lancaster et al., 2007)
while MNI coordinates for SN were taken directly from Raichle 2011 (Raichle, 2011). MNI
coordinates for LC were taken from (Langley et al., 2017).

S2. Determining number of hidden states (stability
analyses)
HMMs are fitted with an a priori defined number of hidden states, so we must first find that
number before we can fit the model. For succinctness, in this section and the accompanying
results section below we refer to the number of hidden states of a particular HMM instantiation
as the model order. To determine the optimal model order for the HMM used here, we employed
two separate methods.

First, following previous approaches we adopted the Ranking and Averaging Independent
Component Analysis by Reproducibility (RAICAR) method (Chen et al., 2016; Hussain et al.,
2022; Yang et al., 2008); this approach computes the ‘stability’ of recovered hidden state
patterns to determine the appropriateness of a given a priori specified model order. Here, we
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examined the stability of model orders 3-15 through computing Pearson correlations among
states recovered across three initializations of the HMM fitting procedure: one with uniform
starting probability of residing in all states, and two with randomly assigned starting probabilities.
Note that, because within a given initialization the labeling of each state as “state 1” or “state 2”
is arbitrary, in order to assess whether the recovered states are actually the same across
initializations, we must first ‘match’ them up. We accomplished this matching via Pearson
correlations, such that e.g. state 1 from Initialization 2 was relabeled as state 2 just in case the
Pearson correlation between that state and state 2 from Initialization 1 was higher than any
other pairwise correlation. Thus, after relabeling, each state label across initializations
universally corresponded to the same spatial pattern to the maximal extent possible. Within
each state assignment, the matched state patterns were then Pearson correlated between all
initializations to obtain Pearson’s R2 values, thereby(# 𝑠𝑡𝑎𝑡𝑒𝑠)! /2! * (#𝑠𝑡𝑎𝑡𝑒𝑠 − 2)!
determining the maximal degree of similarity between the matched patterns for the model order
being currently tested. Finally, these values were then averaged, sorted from largest to smallest,
and plotted as a function of model order, and then compared to a critical threshold of R = 0.9.
That is, for a given state to be considered ‘stable’ across those initializations of the model, we
must be able to discover a pairing of (arbitrarily-labeled) states across those two initializations
such that the correlation between the two states is 0.9 or higher. Previously, a stability threshold
of 0.8 has been used when more ROIs are being tested (Chen et al., 2016; Yang et al., 2008),
but here we examined only 31 ROIs and so opted for a more conservative threshold of 0.9.
Model orders for which several states displayed ‘stability’ less than R2 = 0.9 were considered
unstable, i.e. too few or too many hidden states specified a priori. See the methods described
previously by Hussain and colleagues (Hussain et al., 2022) for more detail.

As a second, confirmatory approach, we also employed Euclidean distances to assess model
stability and model order. In this case, a smaller Euclidean distance between two matched
states indicates a better correspondence between model initializations. We followed similar logic
to that used in the RAICAR method, but with additional steps to ensure that states from
Initialization 2 were optimally matched with states from Initialization 1 and then relabeled, and
the same for Initialization 3. To do this, state assignments from two initializations, Ii and Ij, within
a certain model order were permuted and their spatial patterns matched via the smallest
Euclidean distance such that each state universally corresponded to the same spatial pattern.
For example, after permuting the state assignments from Ii and Ij, the Euclidean distance
between state 1 from Ii and all states from Ij are computed. The results may show that the
smallest Euclidean distance was computed with state 5 from Ij indicating that state 1 from Ri
best corresponds to state 5 from Rj. State 5 from Ij would thus be relabeled as state 1 from Ij,
then the process is repeated between state 2 from Ri and all states from Ij (except the relabeled
state 1 as it has already been matched). This permutation-and-matching procedure was
performed 100 times for all pairs of realizations (where matching Ii → Ij is not distinguished from
matching Ij → Ii) to ensure that the spatial patterns are paired uniquely without any bias of state
assignment. This was repeated for a range of model orders generating a total of

values for a particular model order which are100 * (# 𝑠𝑡𝑎𝑡𝑒𝑠)!
2!(# 𝑠𝑡𝑎𝑡𝑒𝑠 − 2)!  𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠( ) * (# 𝑠𝑡𝑎𝑡𝑒𝑠) 

then averaged to represent its overall stability. This single average was plotted as a function of
model order producing a curve where the smallest value succeeded by continuously increasing
values for higher model orders indicates the optimal number of states for a dataset. Although
this may seem similar to the RAICAR-based method, the Euclidean distance based method is
more conservative because stability is assessed by ensuring that the average of hundreds of
Euclidean distances is below a prespecified threshold rather than the average of a handful of R2

values.
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Figure S1 shows the results from performing the RAICAR-based and Euclidean distance-based
stability analyses for model orders 3-15 using three initializations. Both plots indicate that five
states were best for this investigation. This was the maximum model order where the stability
values for all states remained above the predetermined threshold, and where the Euclidean
distance remained as low as possible (zero) before dramatically increasing. Chen et al. 2016
(Chen et al., 2016) and Yang et al. 2008 (Yang et al., 2008) both used the RAICAR-based
method, explored 236 ROIs and 162 independent components respectively, and employed a
stability threshold of 0.8 (Chen et al., 2016; Yang et al., 2008). As discussed above we used a
0.9 threshold because we examined substantially fewer ROIs (Sara, 2009) so our analyses and
interpretations could afford to be more stringent. However, whether we used a threshold of 0.9
or 0.8 at least one stability value for model orders six and above fell below 0.8; so, a 5-state
model was selected via both standards.

Figure S1. Results of stability analysis to determine HMM model order (number of
hidden states). Stability analysis results via both the (A) RAICAR-based (B) and
ED-based methods for model orders 3-15 indicate that a 5-state model was best, as this
is the largest model order where the stability values were above the 0.9 threshold (thin
horizontal lines) in the RAICAR-based results and the mean Euclidean distance was as
small as possible with the largest number of states in the Euclidean distance-based
results.

S3. Pupillometry
We also collected simultaneous pupillary dilation as a proxy for LC activity, as a confirmatory
physiological measure. Fluctuations in pupil diameter have been validated in animal models
using invasive recordings (Joshi et al., 2016; Keren et al., 2009), allowing them to be used as a
noninvasive proxy measure for LC activity when simultaneously recorded with fMRI in humans
(Joshi et al., 2016; Keren et al., 2009; Murphy et al., 2014). As noted below, however, technical
challenges during data collection and relatively sparsity of data due to stringent exclusion
requirements precluded strong conclusions being drawn via the pupillometry data and analyses.
For completeness, here we present the exploratory analyses we were able to conduct, and
show how they qualitatively align with the findings presented in the main text.

S3.1 Pupillometry methods
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S3.1.1 Pupillometry data acquisition and preprocessing
Pupillometry data were collected using a TRACKPixx3 MRI/MEG (VPixx Technologies,
Saint-Bruno, QC Canada), an MRI compatible binocular eye tracker, with sampling rate of 2kHz.
Data were preprocessed using the ET-remove artifacts toolbox
(https://github.com/EmotionCognitionLab/ET-remove-artifacts), time-shifted by three TRs to
align with the hemodynamic response function delay (Murphy et al., 2014), and downsampled to
match the temporal resolution of the fMRI data by averaging within each TR (Mather et al.,
2020). The measure of interest is percent signal change so that we may measure pupil dilations
relative to baseline; therefore, each subject’s pupil dilation time series during PostAr blocks was
divided by that subject’s mean pupil dilation during RS0. Three subjects’ data were unfortunately
unusable due to technical difficulties during collection procedures, resulting in n = 27 for most
pupillometry-related calculations. These three subjects were different from the ones who
decided not to participate in the neuromelanin scans.

S3.1.2 Pupillometry analyses
Pupillometry analyses paralleled some of the state space trajectory analyses (see main text).
Specifically, we computed the mean pupil dilation changes for state-specific pairwise transitions
as a function of condition (active vs sham) to further explore how LC activity may be related to
brain state behaviors. Pupil dilation changes as a function of state switching were computed by
identifying a switch in subjects’ state sequences, then calculating the difference between the
normalized pupil size two TRs before the switch and the first TR after the switch. This
calculation was contingent on the subject remaining in the same state for two TRs before or
after the identified switch to ensure that they settled into a stable state. We cannot be less
stringent with the criterion of remaining in the same state for two TRs before and after the switch
because these criteria ensure that changes in pupil size were accompanying specific transitions,
and that dilations/contractions from previous or succeeding transitions did not bleed into that
calculation. After calculating these differences, the mean of these differences within a subject
was found.

Once the mean subject-specific changes in pupil size during state specific transitions were
found for both conditions (active and sham), the differences in these values were computed to
reveal how pupil dilation changes at specific state transition points might vary due to active
squeezing versus sham control. Finally, these differences were Spearman correlated with LC
MTC to determine whether LC neuromelanin content impacted pupil dilation during switches
between HMM-derived latent brain states. Because some subjects’ data were missing due to
improper data collection or the aforementioned exclusion criteria, only subjects whose data
were accounted for in both the pupillometry and neuromelanin datasets were included in these
correlations (at most n = 25).

S3.2 Pupillometry results and discussion
In the main text, we saw that the duration spent in S4 once it is entered was correlated with LC
MTC (Results Section 2.3.1), as were changes in transition probabilities between the active
and sham condition specifically regarding transitioning from S5→S4. We interpreted these
results to mean that LC structure (neuromelanin and cell density) plays a meaningful role in the
effectiveness of the squeeze manipulation and its consequent effects on brain dynamics, even
in the cohort of healthy young adults used here. This is consistent with previous results showing
similar causal relationships among LC structure integrity and arousal states in older adults
(Hussain et al., 2019; Langley et al., 2021, 2020; Mather and Harley, 2016).
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However, because of LC’s small size (~2mm in diameter), it is difficult to establish whether LC
activity itself (measured via the BOLD response) could also drive these behaviors, a problem
that is exacerbated by the poor temporal resolution of fMRI. Therefore, as a confirmatory
analysis, we turned next to pupillometry data as a proxy for LC activation. As introduced above,
pupillary diameter has been established as a viable proxy for LC activity levels (Joshi et al.,
2016; Keren et al., 2009; Murphy et al., 2014), which makes this measure valuable as a
mitigation strategy for the noisiness of LC BOLD signal in fMRI due to the small size of LC.

Importantly, we highlight here that the goal of this analysis was to establish consistency with the
results presented in the main text. Unfortunately, due to technical challenges and our stringent
criteria for establishing pupil dilation changes as a function of state transition, pupil diameter
data was unavailable for some subjects for some analyses (described in detail below).
Therefore, we present these results as qualitative confirmation of the patterns identified in the
main text, and future studies should seek to remedy the technical challenges we experienced so
that a fuller understanding may be gained.

First, we calculated the mean changes in pupil dilation (Supplementary Material Section S3.1)
for each pairwise transition between two states, separately as a function of active (Figure S2A)
and sham (Figure S2B) conditions. We then found the difference between them (Figure S2C)
to highlight distinct pupil size changes resulting from LC activity up-regulation. Finally, the
difference in pupil dilation for state-specific transitions across conditions (prior to taking the
global average across subjects) was correlated with LC MTC (Figure S2D). The criterion that
subjects must remain in the same state for two TRs before and after the switch was enforced
resulting in different numbers of subjects meeting this standard for a transition and consequent
correlation with LC MTC (Figure S2E; see also Supplementary Material Section S3.1).

Figure S2. Pupil dilations changes for (A) active and (B) sham conditions as well as (C)
the difference between them when subjects transitioned between specific states. (D)
The difference in pupil dilation changes relative to baseline across conditions was
correlated with LC MTC. We computed pupil dilation change for a transition only when
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the subject remained in the same state for two TRs before and after an identified switch.
Not all subjects underwent a switch that met this criterion, so (E) shows the number of
subjects that experienced each transition. The largest changes in transition-specific pupil
dilation to correlate with LC MTC (D) occurred for pairwise transitions S1→S5, S3→S5,
S4→S1, and S5→S4. Interestingly, three of these four (S1–S5, S4→S1, and S5→S4)
coincide precisely with the only three transitions that showed significant changes in
relative transition probability matrices (RTPMs; Figure 5), and the largest of these
(S5→S4) is precisely for the transition that previously showed significant correlation with
LC MTC. That is, LC MTC predicted how pupil would react in these specific transitions,
and these were also the specific transitions that showed the largest differences between
active and sham conditions. White squares occur along the self-transition diagonal as
well as marking transitions that never occurred or in (D) where no subjects were able to
be used for the correlation with LC MTC (see corresponding squares in (E), marked with
0s); see main text for more details.

With the heavy caveat that every ‘square’ in these matrices contains a different number of
subjects (Figure S2E), we can at least conduct some qualitative explorations. The aspects to
focus on are Figure S2C and S2D, which show the differences between active and sham in
transition-specific pupil dilation changes as well as the correlations between these changes and
LC MTC across subjects. The differences themselves (Figure S2C) may not appear particularly
meaningful, but four correlations with LC MTC (Figure S2D) stand out: S4→S1, S5→S4,
S1→S5, and S3→S5. Notably, three of these four (S4→S1, S5→S4, S1→S5) are the same
three that showed significant differences between active and sham conditions in the RTPM
analysis, and the largest one (S5→S4) is the specific pairwise transition that showed
correlations with LC MTC. This is also consistent with our first observation that S4 average state
duration (baseline corrected) significantly correlated with LC MTC as well.

Unfortunately, as mentioned above, the criteria used to define pupil dilation changes
(Supplementary Material Section S3.1) did require us to discard a large number of subjects in
many of these pairwise state transitions. We hope that this might be remedied by employing a
one-hour long paradigm rather than one lasting less than 20 minutes, and by collecting data
from more subjects. The chances of switching between states would increase and more
subjects would survive the rejection standard consequently increasing the effect size.
Nevertheless, despite this challenge we can see qualitative confirmation of the above findings,
i.e. that LC MTC moderates the effectiveness of the active squeeze task driving the ease of
transitioning into S4 (arousal state) as well as how long subjects persist in occupying S4 once
they’ve arrived there (regardless of condition).

Thus, we were only able to show qualitative confirmation of the HMM brain state transition result
with our pupillometry data. A likely cause of this result is the stringent criteria we adopted for
including a particular instance of pupil dilation changes as a function of a specific pairwise
transition (see Supplementary Material Section S3.1). As a result, many subjects were
unfortunately excluded as they did not meet this preset criterion of remaining in the same state
two TRs before or after a switch. Increasing the number of subjects would boost statistical
power to detect this potentially small effect; longer scan durations may also help avoid loss of
data usability. Unfortunately, it was not possible to increase the number of subjects or length of
scans here, so these possibilities must be left to future studies.

However, there is another possible interpretation of this somewhat weak pupillometry finding.
We opted to collect pupillometry data because it has been repeatedly shown that continuous
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measures of pupil diameter throughout both resting state and task stimuli may index tonic
variations in LC BOLD activity, and are less liable to trial-by-trial noise than pupil dilation locked
into task-related events (Murphy et al., 2014). Further, electrophysiological studies in monkeys
have often shown a reliable relationship between LC activity and changes in pupil diameter due
either to spontaneous fluctuations, or to external stimuli (Joshi et al., 2016). However, evidence
is now mounting that fluctuations in LC do not necessarily covary with pupil diameter in
statistically meaningful ways (Megemont et al., 2022; Yang et al., 2021). It therefore seems
reasonable to conclude that a lack of strong statistical support from the pupillometry analyses
should not color interpretation of our primary network analysis and correlation with LC
neuromelanin levels.
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