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Abstract 19 

Spatial models show that genetic differentiation can be explained by factors ranging from 20 

geographic distance to environmental resistance across the landscape. However, genomes exhibit 21 

a landscape of differentiation, which could indicate that multiple factors better explain divergence 22 

in different portions of the genome. We test whether the best-predictors of intraspecific 23 

differentiation vary across the genome in ten bird species that co-occur in Sonoran and Chihuahuan 24 

deserts. Using population-level genomic data, we characterized the genomic landscapes across 25 

species and modeled five predictors that represented historical and contemporary mechanisms. 26 

The extent of genomic landscapes differed across the ten species, influenced by varying levels of 27 

population structuring and admixture between deserts. General dissimilarity matrix modeling 28 

indicated that the best-fit models differed from the whole genome and partitions along the genome. 29 

The most important predictors of genetic distance were environment and contemporary 30 

demography, which each explained 25–38% of observed variation, with paleoclimate and the 31 

position of the biogeographic barrier explaining 14–16%, and distance only explaining 9%. In 32 

particular, the genome was best explained by the biogeographic barrier in regions where the 33 

genome showed high fixation between populations. Similar levels of heterogeneity were observed 34 

among species and phenotypic divergence within species. These results illustrate that the genomic 35 

landscape of differentiation was influenced by alternative spatial factors operating on different 36 

portions of the genome. 37 

 38 

Introduction 39 

Levels of nucleotide diversity and the degree of differentiation both vary across genomes 40 

(e.g., Ellegren et al., 2012; Li and Ralph 2019). These so-called genomic landscapes are produced 41 

by a range of variable processes including ones intrinsic to the genome (meiotic recombination, 42 

mutation) and those extrinsic (introgression, selection, and drift). Fluctuating levels of genetic 43 

diversity across the genome have been shown to be associated with recombination rate indicating 44 

that linked selection reduces variation (e.g., Thom G, Moreira LR, Batista R, Gehara M, Aleixo 45 

A, Smith BT, unpublished data, https://www.biorxiv.org/content/10.1101/2021.12.01.470789v1). 46 

Likewise, speciation genes, mutation rates, and coalescent times are all known to cause variation 47 

in differentiation across the genome (Nosil and Schluter 2011,Benzer 1961; Hodgkinson and Eyre-48 

Walker 2011). In contrast to intrinsic processes, extrinsic processes are mediated through 49 

interactions with the adaptive and demographic factors operating across space. Despite evidence 50 

of the patterns and processes driving a heterogeneous genomic landscape (e.g., Li and Ralph 2019, 51 

Wang et al., 2020), studies examining the spatial predictors of genetic differentiation often treat 52 

genomic data as homogeneous. Clarifying the relationship between the heterogeneity of the 53 

genomic landscape and spatial predictors of differentiation will elucidate how intraspecific 54 

variation arises in the complex physical landscape. 55 

The spatial processes attributed to population differentiation operate over historical 56 

through contemporary time scales. For example, population history is often linked to Pleistocene 57 

glacial cycles that shifted and fragmented distributions over the last 2.6 million years. An 58 

association of genome-wide structuring linked to population fragmentation can be tested under 59 

isolation-by-history (IBH), where genetic distances are modeled against paleo-climatic suitability 60 

(Vasconcellos et al., 2019; Moreira et al., 2020). There are also atemporal manifestations of 61 

historical isolation, such as isolation-by-barrier (IBB; sensu Mayr 1942), which posits that 62 

population differentiation is best predicted by a landscape feature, for example a mountain range 63 

or river. Over shallower evolutionary scales, non-random mating with individuals in closer 64 
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geographic proximity can cause genetic differentiation. Geographic distances alone may not be the 65 

best predictors of differentiation because adaptation to local climatic conditions causes selection 66 

to generate intraspecific differentiation across environmental gradients, which is known as 67 

isolation-by-environment (IBE; Wang and Bradburd 2014, Myers et al., 2019, Berg et al., 2015; 68 

Zamudio et al., 2016). Because local environmental conditions change rapidly, for example due to 69 

species turnover or succession (Phillips 1996, Nuvoloni et al., 2016), associations between 70 

differentiation and environment are likely more recent phenomena than historical associations. 71 

The increased availability of ecological data for many organisms, such as census data, allows for 72 

testing even shallower associations with genetic structuring across the landscape. Contemporary 73 

demographic data can be used to test isolation-by-abundance (IBA), where genetic differences are 74 

associated with abundance troughs that restrict gene flow (Barton and Hewitt 1981, Hewitt 1989, 75 

Barrowclough et al., 2005). Local population size is also known to be a strong driver of genetic 76 

structure, especially when compounded with environmental change determining local suitability 77 

(Weckworth et al., 2013). While the focus of these models is often on genetic variation, they can 78 

also be applied to phenotypic variation (e.g., Moreira et al., 2020). Phenotypic variation is often 79 

the product of many loci with little effect that are not always distinguishable from the genome 80 

itself. As such, looking directly at phenotype can help reveal whether a particular process is 81 

associated with trait variance. Examining the genomic landscape in the context of these alternative 82 

spatial models will provide evidence for how factors of varying temporal resolutions influence the 83 

peaks and valleys of differentiation. To investigate how landscape features impact genotype and 84 

phenotype, we use an exemplar community of co-distributed taxa across the Sonoran and 85 

Chihuahuan deserts of the southwestern USA and northern Mexico. 86 

Here we characterize the genomic landscapes of birds occurring across the Sonoran and 87 

Chihuahuan deserts and test the relative effect of alternative spatial models in predicting patterns 88 

of intraspecific differentiation. To do this, we integrate population-level whole-genome 89 

resequencing, specimen-based morphometrics, and comparative sampling across ten co-90 

distributed species that occur across the deserts. We hypothesize that the best-predictors of genetic 91 

diversity will vary across species and different partitions of the data, reflecting the multiple 92 

extrinsic factors that structure variation across the genomic landscape (Supplementary Figure 1). 93 

Alternatively, species could show homogeneous patterns either by the same spatial modeling 94 

predicting differentiation in windows across the whole genome or by species exhibiting congruent 95 

genomic landscapes shaped by the same geographic barrier. We further evaluate whether summary 96 

statistics, reflective of alternative evolutionary processes, could explain alternative spatial 97 

predictors of genomic landscapes. This comparative framework will provide resolution to the 98 

extent at which peaks and valleys of the genomic landscape correspond to historical through 99 

contemporary factors. 100 

 101 

Results 102 

 103 

Genomic results 104 

We sequenced the genomes of 221 individuals across 10 focal species of passerine 105 

distributed in the Sonoran and Chihuahuan deserts. Based on the amounts of missing data, we 106 

created three datasets: a complete dataset, a dataset where up to 75% missing data was allowed, 107 

and a dataset where up to 50% missing data was allowed. We found that the three missing data 108 

partitions did not vary substantially with respect to coverage or number of SNPs. As such, here we 109 

describe the results for the complete dataset (for the 75% and 50% missing data partitions, see 110 
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Supplementary Information). We recovered sequences with a mean coverage of 2.9 per individual 111 

(range 0.4–8.8), 6–25 million reads per individual, and 5–28 million SNPs per species. Mean 112 

coverage within species ranged from 2.1–4.2 Phainopepla nitens the lowest coverage and 113 

Melozone fusca having the highest. The average missing data per species ranged from 48–64%. 114 

Across individuals, missing data ranged from 13–93% with a mean of 53% (Table 1).  115 

We estimated recombination rates using ReLERNN (Adrion et al., 2020). Mean 116 

recombination rates for the entire genome ranged from 8.8–10.6 x 10-10 c/bp (where c is the 117 

probability of a crossover) across species. Correlations between species in mean recombination 118 

across chromosomes range from -0.57 to 0.61 (mean±SD 0.01±0.29). Correlations in mean 119 

recombination at the same genomic positions ranged from -0.31 to 0.36 (mean±SD -0.03±0.17).  120 

 121 
Table 1: Chromosome-wise values for the recombination rate, FST, DXY, and proportion of missing data per each 122 
species. Values given as mean±standard deviation (number of chromosomes). These are calculated by weighting all 123 
chromosome means equally; for size-weighted values see Supplementary Table 1. Note that the number of 124 
chromosomes is based off of the pseudo-chromosomes we generated, with a maximum of 36. “Rec”=population 125 
recombination rate, or rho. Values are given for the complete dataset; for the 50% and 75% values, see Supplementary 126 
Table 2.  127 
Species Rec (x 10-10) FST DXY % Missing Sites 

Vireo bellii 9.7±1.2 (33) 0.06±0.09 (35) 0.011 ±0.005 (31) 0.64±0.79 (36) 

Amphispiza bilineata 10.0±1.2 (2) 0.02±0.001 (35) 0.018 ±0.005 (20) 0.55±0.43 (36) 

Campylorhynchus brunneicapillus 10.4±0.3 (31) 0.03±0.001 (34) 0.011 ±0.008 (31) 0.55±0.02 (36) 

Toxostoma crissale 10.5±0.4 (31) 0.04±0.004 (34) 0.01 ±0.006 (31) 0.52±0.41 (36) 

Toxostoma curvirostre 10.0±0.5 (34) 0.10±0.023 (34) 0.013 ±0.009 (32) 0.52±0.41 (36) 

Auriparus flaviceps 10.2±0.7 (34) 0.05±0.006 (36) 0.015 ±0.007 (35) 0.56±0.47 (36) 

Melozone fusca 10.1±0.5 (35) 0.04±0.004 (35) 0.015 ±0.01 (24) 0.51±0.47 (36) 

Polioptila melanura 9.7±0.7 (29) 0.03±0.001 (34) 0.014 ±0.01 (23) 0.52±0.43 (36) 

Phainopepla nitens 10.0±0.6 (30) 0.02±0.001 (34) 0.012 ±0.007 (28) 0.65±0.01 (36) 

Cardinalis sinuatus 9.8±0.6 (36) 0.03±0.005 (36) 0.015 ±0.01 (26) 0.52±0.35 (36) 

 128 

Lostruct outliers and FST outliers 129 

We divided the genome into three kinds of partitions. First, we analyzed chromosomes 130 

independently. Second, we identified high FST outliers and analyzed those. Finally, we performed 131 

a multidimensional scaling (MSDS) analysis the using R package lostruct version 0.0.0.9000 (Li 132 

and Ralph 2019), which subdivided genomes into four partitions, three outliers (LS1, LS2, LS3) 133 

and one non-outlier partition (Figure 1; Supplementary Figure 2). Note that outlier groupings of 134 

the same color are not analogous across taxa. On average across all species 85.3% of labeled values 135 

were non-outliers, and ~4.88% each were LS1, LS2, and LS3.  136 
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 137 
Figure 1: Lostruct partitions vary across species and across chromosomes. Two exemplar species pictured, Toxostoma 138 
crissale (panels A, D, F) and Melozone fusca (panels B, E, G). For all 10 species see Supplementary Figure 2. Panels 139 
A and B: Multidimensional scaling coordinates 1 (x-axis) vs 2 (y-axis) for each species, with outlier points highlighted 140 
in orange, green, and purple as different partitions, and non-outlier points in black. Panel C: Legend describing colors 141 
and shapes in panel C, with black X’s showing non-outlier partitions, orange crosses showing lostruct outlier 1, green 142 
circles showing district outlier 2, and purple triangles showing lostruct outlier 3. Panels D and E: Proportion of 143 
chromosomes assigned to lostruct outliers and non-outliers in panels D and E. Width of bars approximately 144 
proportional to length of windows assessed in each chromosome. Panels F and G: FST values for windows across the 145 
genome, colored by lostruct partition, with windows without lostruct data in gray. Note that FST values are not on the 146 
same scale. Chromosomes separated by red lines, with legend at the top. 147 
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We calculated FST values across the genome using ANGSD’s realSFS function (Meisner 148 

and Albrechtsen 2018). FST outlier analysis for our species across the datasets with complete, 75%, 149 

and 50% missing data found largely congruent results (see Supplementary Information for 75% 150 

and 50% datasets). The number of high FST outliers for the complete dataset ranged from 28–758 151 

across species (with the total number of windows analyzed per species ranging from 100,733–152 

113,555). The outlier lostruct partitions identified above (LS1, LS2, LS3) vary in the proportion 153 

of the FST outliers examined (for the complete dataset), ranging from 0.0%–3.4% (mean 0.2%) for 154 

peaks. Though not significant, there appears to be a trend where species with generally higher FST 155 

have more high FST outliers identified.  156 

 157 

Population differentiation 158 

Population differentiation across the Sonoran and Chihuahuan deserts was estimated using 159 

PCAngsd in ANGSD (Meisner and Albrechtsen 2018). Species ranged from being highly 160 

structured among deserts in four species (T. curvirostre, V. bellii, A. flaviceps, and P. melanura), 161 

showing a gradient of structuring with admixture in three (T. crissale, M. fusca, and Cardinalis 162 

sinuatus), or unstructured in the remaining taxa (A. bilineata, C. brunneicapillus, P. nitens; 163 

Supplementary Figure 3). FST values for the species within these three groups varied accordingly: 164 

highly structured=0.03–0.10; gradient=0.03–0.04; and unstructured=0.02–0.03. Population 165 

differentiation estimated from the chromosomal partitions were generally concordant with 166 

genome-level patterns, but smaller chromosomes and/or those with fewer SNPs showed different 167 

patterns (Figure 2, Figure 3, Supplementary Figure 4).  168 

After estimating population differentiation, we calculated clines of population assignment 169 

across the range of each species, examining cline width and cline center. For cline-based analyses, 170 

mean cline width ranges from 6.94–15.89° longitude, where the total area encompassed by each 171 

species was ~18° longitude (with zero on the cline defined as 116.10°W longitude; Supplementary 172 

Table 3; Figure 2; Figure 3; Supplementary Figure 1). Cline width increases as chromosome size 173 

decreases (p=1.4x10-6, adjusted R2=0.06), though this varies across species (range p 7.7x10-7–0.43, 174 

range adjusted R2 -0.01–0.51). Mean cline center location ranges from 3.58° along the cline 175 

(~112.52°W) to 12.70° along the cline (~103.4°W). We found that there were negative correlations 176 

between the degree of population structure (measured by FST; see Supplementary Information) and 177 

both mean cline width and the standard deviation of cline center locations, which is expected based 178 

on how clines are calculated. Species with higher FST between populations had narrower clines 179 

and less variation among partitions in the locations of their clines (Supplementary Figure 5).  180 
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 181 
Figure 2: Cline width and center location vary across species and across chromosomes. X-axis shows distance (in 182 
degrees longitude) along the sampled area. Y-axis shows the projected cline from population assignments of 0 to 1 in 183 
each taxon (panel) and each chromosome (colored lines). Hash marks show population assignments for each 184 
individual. Species are as follows: A) Vireo bellii, B) Amphispiza bilineata, C) Campylorhynchus brunneicapillus, D) 185 
Toxostoma crissale, E) Toxostoma curvirostre, F) Auriparus flaviceps, G) Melozone fusca, H) Polioptila melanura, 186 
I) Phainopepla nitens, J) Cardinalis sinuatus.  187 
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 188 
Figure 3. Species vary in their chromosomal structure, population structure, ecology, and abundance across the 189 
Sonoran and Chihuahuan deserts. A) Standard deviations of Robinson-Foulds distances across species; see 190 
Supplementary Figure 4. Warmer colors indicate lower standard deviations. Chromosomes are arranged in 191 
alphanumeric order. B) Mean cline width in degrees vs. mean cline center across chromosomes for each species; see 192 
Figure 2. Lines from each point show standard deviations. Species names are shortened for legibility (“bel”=Vireo 193 
bellii, “bil”=Amphispiza bilineata, “bru”=Campylorhynchus brunneicapillus, “cri”=Toxostoma crissale, 194 
“cur”=Toxostoma curvirostre, “fla”=Auriparus flaviceps, “fus”=Melozone fusca, “mel”=Polioptila melanura, 195 
“nit”=Phainopepla nitens, “sin”=Cardinalis sinuatus). C) Predicted abundance-habitat suitability relationships for 196 
each species; see Supplementary Figure 6, Supplementary Figure 7, Supplementary Figure 8. Colors indicate 197 
individual species. Points are large for actual abundance metrics for each species; small points show predicted 198 
suitability at non-observed higher abundances. Species names as in Part B.  199 
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Morphological variation across the Cochise Filter Barrier 200 

Across the 10 focal species, we measured 294 individuals, including bill, wing, tail, and 201 

leg morphology. We collapsed these metrics into a principal components analysis. There were no 202 

clear, desert-specific patterns in variation across the Cochise Filter Barrier (N=234), with 203 

morphological changes ranging from subtle to significantly different. In our principal components 204 

analysis, the first three principal components (PC1, PC2, PC3) explained 74%, 12%, and 6% of 205 

the variation in morphology and corresponded approximately to overall body size, bill size/shape, 206 

and wing size/shape, respectively (Supplementary Table 4, Supplementary Table 5; 207 

Supplementary Figure 9). We found significant differences across the Cochise Filter Barrier in six 208 

species in at least one analysis (see Supplementary Information for more details). Between deserts 209 

T. crissale and C. sinuatus differed in body size and bill shape. Vireo bellii and M. fusca differed 210 

in bill shape. Polioptila melanura and A. flaviceps differed in body size. No species showed 211 

significant differences in wing shape.  212 

 213 

Climatic suitability and abundance across the Cochise Filter Barrier 214 

Using MaxEnt (Phillips et al., 2006), WorldClim (Hijmans et al., 2005), and other 215 

environmental variables (see Methods), we calculated ecological niche models for the present, the 216 

mid-Holocene, and the Last Glacial Maximum. During the Last Glacial Maximum, the most 217 

suitable areas for all taxa were projected to be further south than the most suitable areas during the 218 

present and mid-Holocene. Regions that are predicted to be suitable through all three periods are 219 

often reduced compared to current distributions (Supplementary Figure 8; Supplementary Figure 220 

10). We calculated abundance for each species using the Breeding Bird Survey (Pardieck et al., 221 

2019). Abundance was correlated with predicted climatic suitability across all taxa, with adjusted 222 

R2 values of fit lines (log-scaled) ranging from 0.42–0.62 (Figure 3, Supplementary Figure 6, 223 

Supplementary Figure 7).  224 

 225 

Phenotypic and genotypic datasets are idiosyncratic with respect to landscape features 226 

We chose five metrics of landscape variation (IBA, IBB, IBD, IBE, and IBH) to evaluate 227 

against genetic and phenotypic variation within taxa. Differences in variation were attributed to 228 

each of these landscape metrics using generalized dissimilarity matrix (GDM) modeling. We 229 

evaluated models that were univariate (variation ~ landscape metric), bivariate (variation ~ IBB + 230 

landscape metric), and trivariate (variation ~ IBB + IBD + landscape metric); we focus on 231 

univariate models. Performance of the GDM models was consistent whether looking at univariate, 232 

bivariate, or trivariate data partitions (see Supplementary Information). 2,945/3,030 univariate 233 

models converged successfully with an overall 98% convergence. Of the 505 datasets tested, 234 

30.0% selected IBE as the best factor explaining variation, 21.3% selected IBB, 18.2% selected 235 

IBA, 14.2% selected IBD, 11.5% selected IBH, and the remainder were ambiguous, with multiple 236 

models equally explaining variation. Within the ambiguous models, of which there were 23, 82.6% 237 

had IBH as one of the best models, 73.9% had IBE as one of the best models, 56.5% had IBA as 238 

one of the best models, 23.1% had IBD as one of the best models, and notably, none of them had 239 

IBB as one of the best models.  240 

Across all of the GDMs performed, percent deviance explained by the best model was 241 

variable, ranging from 0.1% to 81.9%. The mean±SD percent deviance explained across all 242 

datasets was 16.8%±18.2%. Percent deviance explained for the whole genome was lower on 243 

average, ranging from 0.5%–6.9% (mean±SD 3.9%±2.2%). FST outliers, both high and low, tended 244 

to have higher percent deviances explained, ranging from 0.14%–69.9% (mean±SD 245 
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25.9%±22.4%). Lostruct outliers ranged from 1.0%–54.25% (mean±SD 11.0%±12.6%). Percent 246 

deviance explained had the most extreme range in morphology, from 0.3% to 81.9% (mean±SD 247 

17.5%±20.8%). The percent deviance explained varied across taxa, with means ranging from 7.5% 248 

(M. fusca) to 27.9% (P. nitens) and standard deviations ranging from 12.1%–24.0%.  249 

For the models examining signals across the whole genomes, three species had IBB as the 250 

most important predictor, three had IBE, two had IBH, one had IBA, and one had IBD. (Figure 4; 251 

Supplementary Figure 11). It is notable that all of the genomes identified as having IBE as the best 252 

predictor are taxa that are structured across the Cochise Filter Barrier. Chromosome length does 253 

not significantly predict any differences between models (p>0.47, n=347).  254 

 255 
Figure 4: Generalized Dissimilarity Modeling revealed heterogeneous associations between genomic and phenotypic 256 
differentiation and alternative spatial hypothesis. Shown is the GDM model summary for each species and partition. 257 
Species are along the y-axis and arranged from most to least differentiated across the Cochise Filter Barrier. Individual 258 
partitions (genome, FST high and low outliers, morphology) are along the x-axis. Color indicates the best model. Shade 259 
of color indicates how much support the model has (with darkest shade indicating up to 75% support and lightest 260 
shade indicating 0%). White boxes have no associated data due to failure of models to converge. The alternative 261 
models were as follows: isolation by abundance (IBA), isolation by barrier (IBB), isolation by distance (IBD), isolation 262 
by environment (IBE), and isolation by history (IBH). “Ambig” is shorthand for ambiguous partitions that show a 263 
mixture of models that best explain the data. White boxes represent models that failed to converge or did not have 264 
corresponding datasets. For more partitions of data see Supplementary Figure 11. 265 

 266 

For the lostruct partitions, the three outlier partitions (LS1, LS2, LS3) had 5/30 with IBA 267 

as the best model, 10/30 IBB, 3/30 IBD, 9/30 IBE, and 3/30 IBH. Most species showed at least 268 

some overlap in which model best explained partitions: for example, A. bilineata, T. crissale, and 269 

C. sinuatus all have at least two lostruct partitions best explained by IBB. For the non-outlier 270 

partitions (LS0, and the “empty” partition for V. bellii and A. flaviceps), these best model chosen 271 

is the same as the best model explaining whole-genome variation in four species (V. bellii, P. 272 

melanura, C. sinuatus, M. fusca) and that of one of the outlier partitions in all but two species (V. 273 
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bellii, A. bilineata). Notably, for P. melanura IBE explains all three outlier partitions, the genome, 274 

and the non-outlier lostruct partitions. Likewise, for C. sinuatus, all of these are explained by IBB.  275 

All ten species had high-FST partitions identified (see Supplementary Information for 75% 276 

and 50%) across the complete, 75%, and 50% datasets. The genome matched at least one of the 277 

high or low partitions in four taxa: Vireo bellii, A. bilineata, Toxostoma crissale, and Melozone 278 

fusca. With respect to significance, none of the FST outlier partitions were significantly different 279 

(but see Supplementary Information).  280 

There was little congruence across the best landscape predictor of morphological data 281 

within species. Overall morphological differentiation had the same explanatory variables as PC3 282 

for P. nitens (IBE), and as PC1 for C. sinuatus (IBD). Additionally, some individual PCs did match 283 

each other: IBD best explained PC1 and PC3 in C. brunneicapillus, IBA best explained PC2 and 284 

PC3 in T. crissale and PC1 and PC2 in A. flaviceps, and for T. curvirostre, PC2 and PC3 both 285 

showed ambiguous results. Neither overall morphology nor the PCs were significantly different 286 

than expected in the univariate dataset (though some were in the bivariate and trivariate datasets; 287 

see Supplementary Information).  288 

Like overall variation, PC1 (body size) showed an even distribution between all models 289 

across the 10 species (i.e., 20% each IBA, IBB, IBD, IBE, and IBH). PC2 (bill shape) was best 290 

explained in 30% of species by IBA, 20% by IBE, 10% by IBD, and 40% of the species showed 291 

ambiguous results. Lastly, PC3 (wing shape) was best explained in 40% of species by IBD, 20% 292 

each by IBA and IBE, 10% IBD, and 10% of species had ambiguous results.  293 

 294 

Data characteristics of best-fit models 295 

We looked at whether differences in summary statistics could explain our univariate 296 

models (IBA, IBB, IBD, IBE, IBH) across taxa (Supplementary Figure 12; Supplementary Figure 297 

13; Supplementary Figure 14). The summary statistics we examined were recombination rate, 298 

missing data, FST, DXY calculated using ngsTools (Fumagalli et al., 2014), and the length of the 299 

chromosome. The clearest pattern was that datasets with ambiguous results among models had 300 

more missing data than all others except IBH models (p<0.0001). IBH results also tended to have 301 

more missing data than most other models (p<0.02), but we found that this relationship was not 302 

significant when we excluded P. nitens, which had both the largest proportion of models explained 303 

by IBH and a high proportion of missing data (p>0.70). FST was significant overall (p<0.04), with 304 

IBB models having significantly higher FST than IBH models. This relationship was no longer 305 

significant in bivariate or trivariate models because IBB was not present (see Supplementary 306 

Information). DXY was also significant overall (p<0.05), but Tukey's honestly significant 307 

difference tests showed that none of the individual comparisons were significant (p>0.06). 308 

Recombination rate and chromosome length were not significant for univariate models (p>0.07) 309 

though recombination rate was significant for bivariate and trivariate models (see Supplementary 310 

Information).  311 

 312 

Landscape predictors are not influenced by habitat suitability 313 

 From the ENMs, we calculated habitat suitability for each species across the deserts. 314 

Species with more variable suitability across the contact zone have a higher proportion of IBH as 315 

the best model (adjusted-R2=0.54, n=10, p<0.01). As P. nitens has both the highest proportion of 316 

IBH and the highest variance in suitability, we removed this species in case it was acting as an 317 

outlier. After removing this species, the relationship was only nearly significant, but strong 318 
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(adjusted-R2=0.28, n=9, p<0.09). Evaluating this relationship with ANOVA tests finds the same 319 

results, where no comparisons are significant without P. nitens.  320 

 321 

Significance evaluation of hypotheses of evolution across the Cochise Filter Barrier 322 

 Species differ more than expected with respect to what spatial models best explain their 323 

genotypes and phenotypes. Best-predictors vary across individual species (χ2=284.0, p~0.0, df=54, 324 

simulated p<0.0005), individual partitions of genotype and phenotype differed (χ2=685.6, p~0.0, 325 

df=324, simulated p<0.0005), and with respect to phylogeographic structure across the Cochise 326 

Filter Barrier (χ2=62.9, p<6.5x10-9, df=12, simulated p<0.0005).  327 

 328 

Discussion 329 

We found that the best-fit spatial model differed across partitions at multiple scales. Our 330 

taxa, which varied in levels of genomic diversity, showed evidence that different spatial processes 331 

(reflecting historical through contemporary phenomena) had distinct impacts on the genome 332 

compared to targeted subsets of the genome. Similar patterns of heterogeneity were observed 333 

among species and with their phenotypic datasets. The disparity in predictors of intraspecific 334 

differentiation among the whole genome versus windows and between windows extends the view 335 

that evolutionary inferences are dependent on which portions of the genome are examined in a 336 

spatial framework. The heterogeneity in model fit across partitions was consistent with the 337 

expectation that various evolutionary processes contribute to the peaks and valleys of the genomic 338 

landscape. By applying this framework across an assemblage of birds that evolved across a 339 

common, dynamic region we showed that at the community-scale, predictors of genomic structure 340 

remain idiosyncratic, which may reflect taxa at different stages of the evolutionary histories and 341 

responses to the biogeographic barrier. 342 

 343 

Extrinsic drivers of the genomic landscape 344 

Our modeling showed that environmental distance was often a strong predictor of levels of 345 

intraspecific differentiation, but this pattern was species- and partition-dependent. Genome-wide 346 

patterns of differentiation across the Cochise Filter Barrier are partially shaped by environmental 347 

adaptation as observed in non-avian taxa distributed across the barrier (Myers et al., 2019). 348 

Environmental adaptation is often recovered in taxa who respond to environmental gradients via 349 

altered phenotypes (Branch et al., 2017, Dubec-Messier et al., 2018), genotypes (Berg et al., 2015, 350 

Manthey and Moyle 2015), or both (Ribeiro et al., 2019). However, our analyses show there was 351 

considerable variation among individual regions in the genome, indicating a more nuanced pattern. 352 

The species-specific results we found suggests that individual taxa had unique responses to shared 353 

aspects of the landscape. Although the focal taxa are co-distributed, we showed how environmental 354 

suitability, their general morphologies, and abundances across space varied among species, which 355 

may help explain why best-fit models differed. As such, these species-specific factors may explain 356 

isolation-by-environment was the best explanatory variable for many, but not all, of the species 357 

we investigated.  358 

Individual partitions of the genome also varied with respect to how much environmental 359 

variation played a role. At one extreme, environmental variation appears to have little impact on 360 

the sex chromosomes. The Z chromosome often showed the barrier (i.e., IBB) as being the most 361 

important factor, even in unstructured species such as Amphispiza bilineata and Campylorhynchus 362 

brunneicapillus, perhaps because the locus evolves faster than sites under selection for adaptation 363 

to local environmental conditions. Sex chromosomes are known to diverge faster than autosomes 364 
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due to their differences in effective population size (Mank et al., 2010), importance in sexual 365 

selection (Kirkpatrick 2017), and the presence of speciation genes (Sæther et al., 2007). Given the 366 

lack of evidence for environmental variation predicting spatial genetic differentiation on the Z 367 

chromosome, this would suggest that any speciation genes present in these taxa may not be 368 

involved in adaptation to the environment.  369 

Environment was the most important driver for species with genetic structure. The most 370 

intuitive explanation for this was that population structuring in these taxa was facilitated by natural 371 

selection to different environments. There was some evidence that this could have happened across 372 

other taxa that occur across the Cochise Filter Barrier, as IBE was the best predictor of genome-373 

wide divergence in a community of snakes distributed across the barrier (Myers et al., 2019). 374 

However, we must stress that while this explanation was the most intuitive and aligns with 375 

predictions, there are numerous processes that can produce IBE (Wang and Bradburd 2014), and 376 

it is possible that divergence led to adaptation to these environments secondarily, rather than the 377 

reverse, or the patterns are being influenced by some unknown factors that we did not quantify. 378 

Nevertheless, at present our results are consistent with the importance of ecologically mediated 379 

population differentiation, or isolation-by-environment, in structuring communities across the 380 

deserts of North America.  381 

 382 

Contemporary versus historical predictors of genomic differentiation 383 

Our finding that the best-fit models varied across species was consistent with the 384 

expectations that species idiosyncratically respond, over a range of time scales, to the Cochise 385 

Filter Barrier. The spatial patterns we examined vary temporally, with Pleistocene environmental 386 

changes being a historical process, while geographic distances, abundances, and environmental 387 

variation reflecting more contemporary processes. Historical signatures of Pleistocene isolation 388 

are commonly recovered patterns for the Cochise Filter Barrier (Provost et al., 2021) and other 389 

communities (Shafer et al., 2010; Ralson et al., 2021), but our data showed that isolation in glacial 390 

refugia often did not best explain genome-wide differentiation. This could be due to erosion of 391 

historical signals as the Cochise Filter Barrier filters taxa and changes contemporary patterns of 392 

gene flow. Alternatively, our proxy for IBH (resistance over projected Pleistocene habitat 393 

suitability) may be a poor model for actual historical isolation. For example, paleoenvironmental 394 

gradients may no longer be as readily detectable. The presence of the barrier alone was a better 395 

predictor despite being atemporal.  396 

In contrast, current environments best explain three genomes and the majority of partitions 397 

for five species (with abundances and geographic distances playing a lesser role), suggesting that 398 

phenomena operating on more recent timescales influenced genetic and morphological variation 399 

across the landscape. If some of the taxa herein are going through incipient speciation, then these 400 

contemporary factors should be most potent. Our identification of species abundances as a 401 

relatively important predictor of genetic divergence aligns well with landscape genetic studies that 402 

use proxies for the effects of contemporary phenomenon and ecological factors on genetic 403 

variation (Burney and Brumfield 2009, Paz et al 2015). For example, urbanization, which 404 

fragments and reduces population sizes, is well known to impact rates of gene flow and drift, acting 405 

as a strong barrier of gene flow since the 20th century (Miles et al., 2019). Our use of available 406 

abundance data across large spatial scales shows a more direct relationship between varying 407 

abundances across the landscape with levels of differentiation. Further, while both historical and 408 

contemporary processes are influencing taxa across this biogeographic barrier, contemporary 409 

patterns are seemingly more influential.  410 
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 411 

Relationship between best-models and window summary-stats 412 

 In contrast to the extrinsic drivers of the genomic landscape that we have focused on here, 413 

there were no clear associations between partition characteristics and support for a particular 414 

model. For example, we found no significant differences in any species between recombination 415 

rate across chromosomes and which spatial models were most important on that chromosome. At 416 

the phylogeographic-scale, low recombination regions of the genome have been shown to be more 417 

likely to reflect population structure (Manthey et al., 2021) and the species tree topology (Thom 418 

G, Moreira LR, Batista R, Gehara M, Aleixo A, Smith BT, unpublished data, 419 

https://www.biorxiv.org/content/10.1101/2021.12.01.470789v1). The avian recombination rate 420 

landscape is thought to be conserved across taxa, even though exact genomic locations of 421 

divergence across taxa are not (Singhal et al., 2015, Turbek et al., 2021), with our ten focal species 422 

ranging in divergence time from ~75 thousand to ~12 million years between taxa (Harris et al., 423 

2018; Kumar et al., 2017; Barker et al., 2015; Mason and Burns 2013; Price et al., 2014; Pasquet 424 

et al., 2014; Hooper and Price 2017; Mitchell et al., 2016; Gibb et al., 2015). Correlations in 425 

recombination rates at the same genomic position in these species are greater than 0.37 across 426 

chromosomes and always positive (Turbek et al., 2021). The ten desert birds we investigated, in 427 

contrast, have estimated divergence times ranging from ~10 to ~60 million years between taxa 428 

(Kumar et al., 2017; Barker et al., 2015; Mason and Burns 2013), with correlations in 429 

recombination rates at the same genomic position that were often smaller in magnitude and 430 

negative. This could reflect a real pattern, where the recombination landscapes are only conserved 431 

within more closely related species; our closest taxa, the two non-sister Toxostoma, do have the 432 

highest correlation in recombination rates across windows and are in the top 25% of the 433 

distribution in correlations. However, the differences found could have been caused by coverage 434 

depth, differences in the recombination rate estimators used, or missing data allowance. In 435 

addition, genetic partitions with higher FST were more likely to show isolation-by-barrier as the 436 

best model. These two metrics should be correlated; the former quantifies the degree of 437 

differentiation across the Cochise Filter Barrier, and the latter assigns individuals to their 438 

respective sides of the Cochise Filter Barrier. In species where there was differentiation, these two 439 

measures should describe the same phenomenon. This likely reflects the gradient in differentiation 440 

across species in the community. Given the wide variation across taxa, future work must be done 441 

to clarify the relationship between genomic architecture and evolutionary signal at multiple 442 

phylogenetic scales. 443 

We explored the signal in our data by examining multiple ways of partitioning genomic 444 

windows, using different thresholds of missing data, and evaluating how data attributes influenced 445 

model support. We found that genetic partitions with more missing data were more likely to have 446 

ambiguous results. Genetic summary methods like PCA are impacted by missing data, particularly 447 

when they are imputed, which can cause individuals with disproportionately high levels of missing 448 

data to appear like they are admixed between populations (Yi and Latch 2021). It is likely that the 449 

reverse is true, where individuals with disproportionately low levels of missing data should fall 450 

out as their own populations more readily. For example, in some of our species (namely Vireo 451 

bellii, Auriparus flaviceps, Polioptila melanura) the individuals with highest missing data 452 

clustered as their own population before detecting any other spatial patterning. We ameliorated 453 

this by dropping individuals with too much missing data in some of our datasets. Overall, we did 454 

not find qualitative differences in population assignments, but it did generally inflate our fixation 455 

values and deflate our genetic diversity values. This is sensible, as reducing the number of 456 
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individuals should both increase the likelihood of fixation due to sampling error as well as decrease 457 

the overall amount of nucleotide diversity.  458 

 459 

Morphological versus genetic associations  460 

We found that in most taxa, genotypic and phenotypic variation within species, and even 461 

different aspects of morphological phenotype within species, were not associated with the same 462 

landscape factors. Phenotypes were better explained by abundance, whereas genotypes were better 463 

explained by the contemporary environment. Discordance between genetic and phenotypic 464 

predictors of spatial variation have been observed in other systems, where phenotypic variation 465 

was better explained by the environment (Moreira et al., 2020). This discordance could be due to 466 

polygenic traits, where genotype-phenotype associations may be mediated by multiple loci of 467 

small effect working in concert, either by changing protein structure or regulation (Yusuf et al., 468 

2020, Knief et al., 2017, Duntsch et al., 2020, Aguillon et al., 2021). However, for some 469 

phenotypes like plumage color, single genes of large effect have been implicated which should 470 

strengthen correlations between genotype and phenotype, at least for those loci (Sin et al., 2020; 471 

Toews et al., 2016). For desert birds in particular, phenotypic variation in metabolism (as well as 472 

in microbiomes) has been linked to genes that vary with the environment (Ribero et al., 2019). In 473 

our study, as with genetic differentiation, the extent of phenotypic structuring varied across 474 

species, with bill and body size being significantly different between deserts in a few taxa, but 475 

somewhat surprisingly, environmental variation did not usually explain morphological 476 

differences. For example, adaptations in bill morphology are frequently observed, such as in Song 477 

Sparrows on the Channel Islands that have higher bill surface area in hotter climates (Gamboa et 478 

al., 2021). The lack of a tight correlation between environment and phenotype were likely 479 

reflective of the shallowness of the evolutionary divergences and the subtlety of the environmental 480 

gradient across deserts. The two Toxostoma species in our study have previously shown 481 

contrasting patterns with respect to climate on beak morphology: T. crissale has larger bills in drier 482 

habitats, which may aid in cooling while conserving water, while T. curvirostre showed a pattern 483 

contrary to thermoregulatory predictions with larger bills in cooler climates (Probst et al., 2021), 484 

suggesting even in closely related species climate may not have the same role on morphological 485 

variation. Even though phenotypic data partitions often did not have the same explanatory factor 486 

with respect to the general dissimilarity modeling, there was a correlation between population 487 

structure in the genome (and chromosomes to a lesser extent) and phenotypic variation across these 488 

ten birds, in that taxa lacking morphological change also lack genetic variation overall.  489 

 490 

Conclusion 491 

By quantifying patterns in genotypic and phenotypic variation in communities distributed 492 

across a biogeographic barrier, we found that multiple co-occurring processes occur that impact 493 

variation within taxa. Although we found that isolation across an environmental gradient was 494 

among the most important associations in predicting genetic and phenotypic variation, the best-fit 495 

model varied across species and data partitions to reflect these multiple processes. These findings 496 

underscore the importance of accounting for heterogeneity in the genome, phenome, and 497 

diversification mechanisms acting across time and space to have the most comprehensive picture 498 

of spatial structuring in species. This will allow for an assessment of whether best-fit models that 499 

are proxies for neutral and adaptive processes are consistent with partitions that are evolving under 500 

the same conditions. Without a holistic understanding at each of these levels of organization, as 501 

well as the addition of future work that concurrently estimates selection at the organismal and the 502 
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nucleotide levels, the actual mechanisms that shape communities will remain obscured. Further, 503 

while we did not find consistent predictors of phenotypic divergence, it is still an open question 504 

whether other measures of phenotypic variation (e.g., behavioral) may better track divergence, or 505 

phenotypic divergence does not follow a deterministic pattern along weak environmental 506 

gradients. Overall, this work displays the necessity of integrating spatial predictors of population 507 

divergence, differentiation across the genomic landscape, and phenotypic variation in 508 

understanding the multiple different mechanisms that have produced the population histories we 509 

see across contemporary communities of birds in North America.  510 

 511 

Methods and Materials 512 

 513 

Study system 514 

The Sonoran and Chihuahuan deserts contain environmental and landscape variation that 515 

make them suitable for testing if any of the five discussed spatial models (IBA, IBB, IBD, IBE, 516 

and IBH) structure intraspecific variation in taxa. Across the two deserts and the transition zone 517 

between them, there is variation in precipitation, elevation, temperature, and vegetation that could 518 

result in local adaptation and isolation-by-environment. (Shreve, 1942; Reynolds et al., 2004). 519 

Pleistocene glacial cycles repeatedly separated and connected, such that some taxa experienced 520 

dramatic range shifts (Zink 2014, Smith et al., 2011), which could have isolated taxa in each desert. 521 

Further, there is a well-studied biogeographic barrier separating the deserts, the Cochise Filter 522 

Barrier, which is an environmental disjunction that demarcates the transition between the Sonoran 523 

and Chihuahuan deserts of southwestern USA and northern Mexico. The barrier is thought to have 524 

begun forming during the Oligo-Miocene and completed during the Plio-Pleistocene (Morafka, 525 

1977, Van Devender, 1990; Van Devender et al., 1984, Holmgren et al., 2007, Spencer, 1996) and 526 

has formed a community ranging from highly differentiated taxa to unstructured populations 527 

(Provost et al., 2021). Demographic troughs caused by spatially varying population abundances 528 

could impact the frequency of gene flow across the landscape and the degree of genetic 529 

connectivity across the deserts.  530 

 531 

Genetic sequencing and genome processing 532 

We performed whole-genome-resequencing across 10 species of birds from the Sonoran 533 

and Chihuahuan deserts, obtaining genetic samples from new expeditions and loans from natural 534 

history museums (Cardinalis sinuatus; Toxostoma crissale, Toxostoma curvirostre; Amphispiza 535 

bilineata, Melozone fusca; Polioptila melanura; Phainopepla nitens; Auriparus flaviceps; 536 

Campylorhynchus brunneicapillus; Vireo bellii; Supplementary Table 6; Supplementary Figure 537 

15). These species reflect different songbird morphotypes and ecologies in the deserts (e.g., large- 538 

to small-bodied, insectivorous to granivorous, migratory to resident). Three of these species (V. 539 

bellii, T. curvirostre, M. fusca) have shown evidence of structure across the Cochise Filter Barrier, 540 

while an additional three (P. melanura, A. flaviceps, C. brunneicapillus) have shown evidence of 541 

no structure (Zink et al., 2001; Rojas-Soto et al., 2007; Teutimez, 2012; Klicka et al., 2016, Smith 542 

et al., 2018). 543 

Using 221 individuals across our 10 focal species, we sequenced 8–14 individuals in both 544 

the Sonoran and Chihuahuan deserts per species for a total of 18–25 samples per species. Library 545 

preparation and sequencing was performed by RAPiD Genomics (Gainesville, FL). We mapped 546 

raw reads of each species to their phylogenetic closest available reference genomes 547 

(Supplementary Table 7): notably, A. bilineata and M. fusca were mapped to the same genome, as 548 
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were C. brunneicapillus, T. crissale, T. curvirostre, P. melanura, and P. nitens (see Supplementary 549 

Information). Before mapping, we created pseudo-chromosomal assemblies of these genomes 550 

using Satsuma version 3.1.0 (Grabherr et al., 2010) by aligning to the Taeniopygia guttata genome 551 

(GCF_000151805.1), retaining pseudo-chromosomes with the prefix “PseudoNC”. Hereafter, 552 

pseudo-chromosomes will be referred to as chromosomes.  553 

We filtered our sequences with FastQ Screen version 0.14.0 (Wingett et al., 2018) to 554 

remove contamination by filtering out reads that mapped to PhiX and the following genomes: 555 

Homo sapiens, Escherichia coli, Enterobacteriophage lambda, and Rhodobacter sphaeroides. 556 

From our raw reads, we used a pipeline that produced genotype likelihoods using ANGSD version 557 

0.929 (Korneliussen et al., 2014). We converted cleaned FastQ files to BAM using bwa version 558 

0.7.15 (Li and Durbin 2009, Li and Durbin 2010) and picard version 2.18.7-SNAPSHOT from the 559 

GATK pipeline (McKenna et al., 2010, DePristo et al., 2011, Van der Auwera et al., 2013). Next, 560 

we prepared the BAM files to be used in the ANGSD pipeline using samtools version 1.9-37 (Li 561 

et al., 2009; Li 2011), bamUtil version 1.0.14 (Jun et al., 2015), and GATK version 3.8-1-0 562 

(McKenna et al., 2010). This pipeline creates genotype likelihoods to account for uncertainty for 563 

low-coverage sequences.  564 

We investigated the impact of missing data on our analyses using three thresholds for 565 

retaining sites: a complete dataset, in which all individuals were retained irrespective of missing 566 

data; a 75% dataset, in which individuals were only retained if they had less than 75% missing 567 

sites; and a 50% dataset, in which individuals were only retained if they had less than 50% missing 568 

sites. These different datasets were used for a suite of downstream analyses to assess the sensitivity 569 

of the results to individuals with missing data.  570 

 571 

Evaluating population structure across the Cochise Filter Barrier 572 

We characterized the degree of population structure across the whole genome and in 573 

individual chromosomes across the Cochise Filter Barrier in our focal species. First, using 574 

PCAngsd in ANGSD (Meisner and Albrechtsen 2018), which assigns individuals to K clusters and 575 

estimates admixture proportions for each individual. To evaluate whether there was structure 576 

across the Cochise Filter Barrier, we selected K=2 (though we visualized K values from two to 577 

three). We performed this for the complete, 75%, and 50% missing data datasets, but found that 578 

these values were largely congruent across the datasets, and so we only use the complete dataset 579 

for describing population structure (Supplementary Figure 16, Supplementary Figure 17, 580 

Supplementary Figure 18). Second, we plotted population assignment changes over space using a 581 

cline analysis via the hzar version 0.2-5 R package (Derryberry et al., 2014) and custom scripts 582 

(modified from Burbrink et al., 2021). Analyses were conducted in R version 3.6.1 (R Core Team 583 

2019). We did this to quantitatively evaluate the differences in population structure across 584 

chromosomes and in the genome more broadly. We thus were able to calculate the location and 585 

width of clines for the entire genome and each chromosome.  586 

 Complementing our genome-wide analyses, we ran a local principal components analysis 587 

along the genome on the complete dataset using the R package lostruct version 0.0.0.9000 (Li and 588 

Ralph 2019). Different chromosomes showed different relationships between individuals (see 589 

Supplementary Information). Because of this, we wanted to cluster regions of the genome together 590 

that showed similar relationships between individuals in case specific evolutionary processes were 591 

causing this pattern. The lostruct method performs principal component analysis on individual 592 

windows of the genome, then uses multidimensional scaling (MSDS) to summarize how similar 593 

the windows’ principal component analyses are when dividing the genome. We extracted three 594 
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subsets of outliers for each species, which we designated LS1, LS2, and LS3, and compared it to 595 

the remainder of the genome, representing non-outliers.  596 

 597 

Genomic summary statistics  598 

We characterized genetic variation across each species’ genome and partitions of the 599 

genome by calculating a suite of summary statistics and metrics. To quantify genetic 600 

differentiation within each species, we calculated pairwise genetic distances between individuals 601 

from VCF files using the bitwise.dist function in poppr R package version 2.9.2 (Kamvar et al., 602 

2014; Kamvar et al., 2015), which served as the genetic distance matrices for our generalized 603 

dissimilarity matrix models (see below). The function bitwise.dist calculates the Hamming 604 

distance of the DNA (i.e., number of differences between two strings). We scaled this distance 605 

such that missing data was assumed to match sites without missing data, but final distances were 606 

scaled such that comparisons with more missing data would have inflated distances. Neighbor-607 

joining trees were calculated from these matrices to contrast genealogies across the genome. 608 

Genealogies across the genome were visualized by calculating pairwise and normalized Robinson-609 

Foulds (RF) distances between all pairs of trees per species (Robinson and Foulds 1981). 610 

Recombination rates (in crossovers per base pair, c/bp) across the genome were estimated using 611 

the program ReLERNN (Adrion et al., 2020). This program combines simulation with a recurrent 612 

neural network to estimate the recombination rate on each chromosome in 100,000 bp windows. 613 

We also performed a sliding window DXY analysis using the calcDxy R script included with 614 

ngsTools version 1.0.2 (Fumagalli et al., 2014), which gives site-wise DXY values, and then 615 

averaged across windows. Windows were overlapping with a size of 100,000 base pairs and offset 616 

by 10,000 base pairs. Missing data were calculated using vcftools (Danecek et al., 2011). This was 617 

calculated per window, per chromosome, per genome, per site, and per individual.  618 

Using ANGSD’s realSFS function, we performed a sliding window FST analysis by 619 

converting SAF output from ANGSD to a site frequency spectrum for both desert populations in 620 

each species. Detailed settings can be found in the supplementary information. We performed FST 621 

outlier analysis for our species using the calculated FST values. Z-scores for FST for each species 622 

were calculated using the formula ZFST=(observedFST-meanFST)/SDFST. We split the genome into 623 

two different partitions based on these z-scores: FST peaks, for values of FST greater than five 624 

standard deviations above the mean (z-score>5) and FST troughs for values of FST greater than five 625 

standard deviations below the mean (z-score<-5). We only report the FST peaks in the main 626 

manuscript: for FST troughs, see the supplementary information. We performed this outlier 627 

detection for the complete, 75%, and 50% missing datasets.  628 

 629 

Morphological data   630 

We quantified morphological variation in our 10 focal species to assess which of the spatial 631 

models best explain morphological variation across the landscape (see Generalized Dissimilarity 632 

Matrix Models). We measured 366 specimens (19–59 per species), excluding known females and 633 

known juveniles to account for any variation attributed to sex and age. Of those, 29 were also 634 

present in the genomic dataset, with 0–8 individuals per species.  635 

We generated seven raw plus seven compound morphological measurements, which we 636 

designated as proxies for thermoregulation and dispersal, respectively (see Supplementary 637 

Information). We reduced the dimensionality of the 14 morphological measurements using a 638 

principal components analysis (PCA). We then calculated four distance matrices between 639 

individuals: one Euclidean distance matrix for all morphological variables, where we calculated 640 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.07.483329doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483329
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

the euclidean distance between individuals among all raw and calculated measurements; and three 641 

euclidean distance matrices for the first three principal components, PC1, PC2, and PC3. We 642 

assessed whether there were differences in morphological PCA space between the Sonoran and 643 

Chihuahuan Desert populations in each species using DABEST tests in the dabestr package version 644 

0.3.0 (Figure 5; Supplementary Figure 19; Supplementary Figure 20; Ho et al., 2019). Note that 645 

this method does not give explicit significance values, instead it shows whether expected 646 

confidence intervals overlap zero (i.e., no difference between deserts) or not. 647 

 648 

 649 
Figure 5: Distribution of unpaired mean differences between Sonoran and Chihuahuan desert individuals for each 650 
species from DABEST analysis for morphological PC1 (A), PC2 (B), and PC3 (C). Black horizontal line is at zero, 651 
black points and vertical lines show mean and confidence intervals for each distribution in gray. Comparisons that do 652 
not cross the zero line are considered significant in DABEST tests, indicated with red asterisk. On the X axis are each 653 
species with images (scale does not reflect size differences) with species names are shortened for legibility 654 
(“bel”=Vireo bellii, “bil”=Amphispiza bilineata, “bru”=Campylorhynchus brunneicapillus, “cri”=Toxostoma crissale, 655 
“cur”=Toxostoma curvirostre, “fla”=Auriparus flaviceps, “fus”=Melozone fusca, “mel”=Polioptila melanura, 656 
“nit”=Phainopepla nitens, “sin”=Cardinalis sinuatus). 657 

 658 
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Isolation across the landscape at different temporal resolutions 659 

We calculated IBD matrices by calculating the euclidean geographic distance between the 660 

latitude/longitude pair of each specimen in R. We used the WGS84 projection for all data. These 661 

variables were somewhat correlated with one another, though less so after accounting for 662 

geographic distance (Supplementary Figure 21). 663 

To produce data for the IBH model, we calculated environmental resistances in the Last 664 

Glacial Maximum (LGM; ~21,000 years ago) for each species. To do this, we created ecological 665 

niche models (ENMs) using 19 layers representing contemporary climate (WorldClim; Hijmans 666 

et al., 2005) at a resolution of 2.5 arcminutes. We used MaxEnt (Phillips et al., 2006), with 667 

ENMeval version 0.3.1 as a wrapper function for model selection (Muscarella et al., 2014). 668 

ENMeval optimizes MaxEnt models based on different sets of feature classes and regularization 669 

values (see Supplementary Information). The contemporary ENMs (see IBE section below) were 670 

then backprojected to the LGM using WorldClim paleoclimate data (Hijmans et al., 2005). We 671 

also backprojected to the Mid-Holocene, but contemporary and Mid-Holocene ENMs were highly 672 

correlated, so we excluded the Mid-Holocene values from downstream analyses. We then scaled 673 

the LGM suitability values to range between 0–1 and calculated resistances across the environment 674 

using the least cost path distance method in ResistanceGA version 4.0–14 (Peterman et al., 2014, 675 

Peterman 2018). Regions of high resistance are predicted to reflect poor habitat and be costly to 676 

traverse through. The ENMs were thresholded to equal sensitivity-specificity values for 677 

visualization (Supplementary Figure 22).  678 

We approximated IBB by assigning individuals based on their location relative to the 679 

Cochise Filter Barrier (see Supplementary Information). For proximity to the Cochise Filter 680 

Barrier, we assigned individuals to either Sonoran or Chihuahuan populations either based on the 681 

results of the K=2 clustering analysis, if there was structure across longitudes, or according to a 682 

cutoff of longitude if there was no structure. We chose 108 °W longitude as our cut off—683 

individuals west of this point were deemed Sonoran, and individuals east of this point were deemed 684 

Chihuahuan (but see Provost et al., 2021). In some cases, species with genetic breaks had some 685 

uncertainty due to unsampled areas or admixed individuals—we labeled these individuals as being 686 

unclear with respect to their desert assignment. Georeferencing on some morphological specimens 687 

was poor, but all except two specimens (see Results) were identified at least to county level if not 688 

to a specific locality. When localities were given, we georeferenced the specimens to the nearest 689 

latitude/longitude. Otherwise, we assigned individuals to the centroid of their state or county.  690 

We independently tested IBE by using two datasets: contemporary environmental distance 691 

and resistance. For the environmental distances, we used the 19 WorldClim bioclimatic layers (see 692 

IBH section). For the latitude/longitude location of each specimen used in both the morphological 693 

and genomic analysis, we extracted the values on those WorldClim layers and then calculated the 694 

euclidean distances in environmental space between specimens. This gave us an estimate of how 695 

different the environments were at each specimen’s locality. For the environmental resistances, we 696 

created ENMs using the WorldClim layers, then added layers for soil properties, distance to water, 697 

terrain features, and vegetation, and occurrence data for the focal species (see Supplementary 698 

Information). We then calculated resistances and thresholded as described above.  699 

 To assess IBA, which had a temporal scale of the last 50 years, we obtained abundance 700 

information from the Breeding Bird Survey (Pardieck et al., 2019). This dataset consists of 701 

replicated transects where individual birds are counted across the whole of the United States. The 702 

methodology for counting is standardized and covers multiple decades of observations, with our 703 

dataset comprising data from 1966–2018. We downloaded raw data for all points, then subsetted 704 
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our data to our ten focal species. We averaged the number of individuals across years (though 705 

some points only had a single year). We then interpolated across points using inverse distance 706 

weighted interpolation in the spatstat version 2.1-0 package in R (idp=5). The interpolations were 707 

converted to rasters with extents and resolutions matching those of the ENMs. We then calculated 708 

resistances such that regions of high abundance had low resistance, to generate an abundance 709 

distance matrix between individuals.  710 

 711 

Generalized dissimilarity matrix models 712 

We assessed the relative effect of alternative spatial models on intraspecific variation in 713 

our focal species by building generalized dissimilarity matrix models (GDMs). As spatial layers 714 

representing our five models, we calculated geographic distances, abundance resistances, 715 

environmental distance and resistance, separation by barrier, and paleoenvironmental resistance 716 

between all individuals in each species. The models represent different temporal resolutions, with 717 

IBH spanning millions to tens of thousands of years ago, IBD spanning thousands to tens of years, 718 

IBE spanning hundreds to tens of years, IBA spanning tens to single years, and IBB describing the 719 

present-day configuration of the barrier. These predictors served as the input parameters for our 720 

GDMs and will be discussed in detail below. With our numerous response matrices (four 721 

morphological matrices, three genome matrices for each missing data cutoff, 35 matrices for 722 

chromosomes, five matrices for the lostruct partitions, and six matrices for the FST outliers with 723 

missing data cutoffs) and our six predictor matrices (with two for IBE: environmental distance, 724 

environmental resistance), we generated generalized dissimilarity matrix models using the gdm 725 

package version 1.3.11 in R (Manion et al., 2018). We tested which of IBA, IBB, IBD, IBE, IBH, 726 

or a combination best explained the variation in the response matrix (see below). Not all species 727 

had all chromosomes sequenced, and not all models converged: we have omitted those data. For 728 

each of the 45 response matrices per species, we built a univariate model where the 729 

genomic/chromosomal variable was predicted solely by one of the six predictor matrices. We also 730 

built models with combinations of two (bivariate) or three variables (trivariate), which we present 731 

in the Supplementary Information. Further, we present the GDM results for the chromosomes in 732 

the supplementary information. We compared the models based on the highest percent deviance 733 

explained. 734 

To identify any overarching patterns with respect to which model of landscape evolution 735 

best explained genetic diversity (Supplementary Figure 23), we calculated four summary statistics 736 

for each chromosome, each lostruct and FST outlier partition, and the genome as a whole. We tested 737 

whether genomic summary statistics on each chromosome (FST, DXY, missing data, recombination 738 

rate) were correlated with explained percent deviance with an analysis of variance (ANOVA) test 739 

and a Tukey's honest significant difference test (Chambers et al., 1992, Miller 1981, Yandell 1997) 740 

using the stats v. 3.6.1 package in R. We did this for the complete dataset; for 75% and 50% 741 

missing data datasets, see Supplementary Information. We also calculated linear models 742 

comparing the proportion of each model to species-wide estimates of habitat suitability across the 743 

barrier. For all significance tests, we used an alpha value of 0.05 as our significance cutoff. 744 

 We evaluated whether the best-predictors of genomic landscapes varied across species and 745 

across partitions of the data using Chi-squared tests of significance, via the chisq.test function in 746 

the stats package in R. For each, the expected distributions assuming no differences between 747 

species, partitions, or structure were calculated and compared to the observed distributions. Chi-748 

squared tests were performed both with and without Monte Carlo simulations (N=2000 simulations 749 

each repeated 1000 times).  750 
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