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Barbara Schnitzer ∗1,2, Linnea Österberg ∗1,2,3, Iro Skopa 1,2, Marija Cvijovic 1,2

March 7, 2022

∗ These authors contributed equally
1 Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
2 Department of Mathematical Sciences, University of Gothenburg, Gothenburg, Sweden
3 Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden

Corresponding Author: Marija Cvijovic, e-mail: marija.cvijovic@chalmers.se

Abstract1

The accumulation of protein damage is one of the major drivers of replicative ageing, describing a cell’s2

reduced ability to reproduce over time even under optimal conditions. Reactive oxygen and nitrogen species3

are precursors of protein damage and therefore tightly linked to ageing. At the same time, they are an4

inevitable by-product of the cell’s metabolism. Cells are able to sense high levels of reactive oxygen and5

nitrogen species and can subsequently adapt their metabolism through gene regulation to slow down damage6

accumulation. However, the older or damaged a cell is the less flexibility it has to allocate enzymes across the7

metabolic network, forcing further adaptions in the metabolism. To investigate changes in the metabolism8

during replicative ageing, we developed an multi-scale mathematical model using budding yeast as a model9

organism. The model consists of three interconnected modules: a Boolean model of the signalling network,10

an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth11

and protein damage accumulation with discrete cell divisions. The model can explain known features of12

replicative ageing, like average lifespan and increase in generation time during successive division, in yeast13

wildtype cells by a decreasing pool of functional enzymes and an increasing energy demand for maintenance.14

We further used the model to identify three consecutive metabolic phases, that a cell can undergo during its15

life, and their influence on the replicative potential, and proposed an intervention span for lifespan control.16

1 Introduction17

Cellular ageing is a complex multifactorial process affected by an intertwined network of effectors such as18

protein translation, protein quality control, mitochondrial dysfunction, and metabolism. Due to the con-19

served nature of hallmarks of ageing [1] unicellular organisms, such as the yeast Saccharomyces cerevisiae,20

have served as model organisms to gain deeper understanding of their synergistic effects and consequently21

mechanisms of ageing on a cellular level [2–4].22

Loss of proteostasis is recognised as one of the hallmarks of replicative ageing [1, 5, 6], and is linked to the23

accumulation of damaged proteins over time [7, 8]. In yeast, a driving mechanism for the growing damage24

burden is the asymmetric distribution of damaged components between mother and daughter cell [8, 9]. An25

important precursor of protein damage is oxidative stress that is shown to increase with age [10–12] and is26

a byproduct of metabolic activity in the cells’ mitochondria [12–15]. Reactive oxygen and nitrogen species27
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(ROS/RNS) are one of the most well-studied byproducts to which cells are constantly exposed even under28

normal conditions [16, 17]. The ability of cells to maintain protein homeostasis in response to intrinsic cellu-29

lar and environmental factors, which accumulate over time, is one of the main determinants of lifespan [18].30

Nutrient-sensing pathways are main contributors to the maintenance of the proteome during ageing. When31

inactivated, they affect a multitude of downstream processes, resulting in the cellular loss of proteostasis.32

Thus, they are one of the earliest events dictating ageing progression. To combat the loss of proteostasis33

associated with cellular ageing, cells have multiple stress-responsive mechanisms. For instance, Msn2 and34

Msn4, as general stress response proteins, as well as Yap1 and Skn7, as specific oxidative stress response35

proteins, are able to react to high levels of oxidative stress and can enhance the removal of ROS/RNS via36

adaption of gene expression [19, 20]. Nevertheless, the accumulation of protein damage during replicative37

ageing cannot be prevented and in turn, affects the metabolism and its activity. It has been shown that cells38

to undergo distinct metabolic phases during their replicative life [21, 22], exhibiting a switch from energy39

production via fermentation to cellular respiration.40

41

Hitherto, many mathematical models describing protein damage accumulation (reviewed in [23, 24]), sig-42

nalling pathways (reviewed in [25, 26]) and metabolism [27] have been developed. Flux balance analysis (FBA)43

models have been extensively applied to predict fluxes through genome-scale reconstructions of metabolic44

networks of many different organisms and conditions [27–30]. In order to improve their predictive power,45

they have been extended by additional constraints, such as enzymatic and regulatory constraints [31–35] and46

lately proteome constraints [36]. Extensive and condition-specific regulatory constraints can be obtained by47

reconstructions of signalling pathways. Due to their size and availability of vast qualitative data, they are48

typically represented and simulated using logic or Boolean modelling [37–40]. Recent studies aimed at com-49

bining those two approaches into so-called hybrid modes, to understand the connection between signalling50

and the metabolism [35, 41]. However, most existing models are answering isolated questions regarding the51

cellular metabolism and its regulation with focus on short time scales compared to the lifespan of a cell.52

Further, they have not been used to understand damage accumulation over long time scales, i.e. ageing,53

despite the tight connection between the metabolism, ROS/RNS and damage accumulation. Recently, an54

FBA-based model was used to rationalise metabolic data at distinct time points during the replicative life of55

yeast cells [21]. While the study is based on the qualitative interpretation of the acquired data, mechanistic56

insights and dynamics are missing. On the other hand, dynamic models of protein damage accumulation57

have been applied to investigate replicative ageing on a single-cell level and the effect on the population level,58

however disregarding metabolic effects [42–45].59

Taken together, while existing models have greatly improved our understanding of these key processes, they60

have also revealed gaps in the understanding of the complex interactions between them, as they are mainly61

studied individually and, in addition, lack both the complexity of the dynamics and the effects of the crosstalk62

between multiple components.63

64

To overcome this gap, and to study the complex interplay and feedback between the metabolism and replica-65

tive ageing, in the context of damage accumulation and reactive oxygen species, we built a multi-scale model66

of yeast replicative ageing, that includes an enzyme-constrained FBA model, a Boolean model of nutrient67

signalling pathways and dynamic model of protein damage accumulation and cell growth. The model can68

simulate the lifespan of a cell being controlled by the metabolism, allowing to explore metabolic changes as69

the cell ages and becomes exposed to oxidative stress and protein damage.70

2 Results71

Construction of a multi-scale yeast replicative ageing model72

To elucidate how nutrient and stress signalling, metabolism and protein damage accumulation influence and73

regulate each other during the life of a cell, we developed a multi-scale model of yeast replicative ageing74

(yMSA). The model consists of three interconnected modules: a Boolean model of the signalling network,75

an enzyme-constrained flux balance model of the central carbon metabolism and a dynamic model of growth76

and protein damage accumulation with discrete cell divisions (Fig 1, Table 1).77

The first step in the construction was to extend a hybrid model of the central carbon metabolism and nutrient78
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signalling in budding yeast [35] by reactions and components attributed to the production and removal of79

ROS and RNS, as well as the signalling response to it. In particular, we built a Boolean model of the Yap180

and Sln1 pathways (Fig 1A) and incorporated it in the already existing Boolean model of the nutrient sensing81

pathways PKA, Snf1 and TOR [35]. While Msn2 and Msn4 are part of the PKA pathway, we also included82

the crosstalk to the Yap1 pathway. In addition, we summarised reactions that create and remove ROS/RNS83

(Fig 1B) and added them to the existing model of the central carbon metabolism [35]. The modules of84

signalling and metabolism are connected by a transcriptional layer, that modifies the enzyme consumption85

in the metabolic model depending on the binary activities of transcription factors in the Boolean model by86

imposing regulatory constraints. In turn, the optimal fluxes of the enzyme constrained FBA (ecFBA) model87

determine the states of input components in the Boolean model.88

To validate the extensions, we demonstrated that the steady-state activity of the transcription factors in89

the Boolean model is consistent with the presence or absence of oxidative stress (Fig S1). In addition,90

we confirmed that the included production, sensing and removal of oxidative stress in the metabolic and91

signalling network does not affect the exchange fluxes measured in a chemostat experiment [46], a widely92

used experiment to validate metabolic models (Fig S2).93

In the second step, we connected the described regulated ecFBA model to an ordinary differential equations94

(ODE) model of cell growth and protein damage accumulation with discrete cell divisions (Fig 1C). Here,95

the parameters of the ODE model depend on the optimal fluxes through the regulated ecFBA model. After96

solving the ODE for one time step given those parameters, the resulting fraction of intact and damaged97

proteins constrain the regulated ecFBA model for the next time step.98

To simulate the whole lifespan of a cell, the model was iterated over time steps. Cell death automatically99

occurs when the ecFBA becomes infeasible, caused by a too high protein damage burden such that the cell100

is not able to generate enough energy for maintenance and growth anymore. Each time step is based on the101

assumption that the signalling and metabolic adaptions happen on a much faster time scale than damage102

accumulation and ageing. We furthermore accounted for a delay between an actual signalling event and its103

effect on the metabolism through gene expression by applying the regulation step only after ndelay time steps.104

All mathematical and computational details of each individual module as well as the crucial interfaces can105

be found in the Methods section and in Text S1 and S2.106

Module Type Total number

Signalling network components 86

rules 122

Metabolic network components 138

enzymes 140

fluxes 375

Damage accumulation components/states 3

yMSA components 367

rules 122

fluxes 375

Table 1: Size of the individual modules and the yeast multi-scale model of ageing (yMSA).

The model predicts features of replicative ageing with distinct metabolic phases107

To validate our multi-scale model, we tested if it can reproduce features of replicative ageing in yeast cells.108

We focused firstly on the number of divisions (replicative lifespan) and the time between divisions (generation109

time), and secondly on metabolic paths cells use to gain energy in the course of damage accumulation.110

In each simulation, we started with a damage-free cell and let the model evolve over time until cell death111

occurs. The objective of the metabolic model is always maximal growth, but a certain flexibility is allowed112

to be able to reallocate enzymes when regulating.113
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Given the signalling and metabolic networks, we tested the effect of the ODE model parameters (non-114

metabolic damage formation f0 and damage repair r0) on the lifespan. Our model predicts replicative115

lifespans between 17-32 cell divisions in the tested parameter regime (Fig 2A), in accordance with measured116

yeast wildtype lifespans of on average around 23 divisions [47–49]. The slower damage forms, the higher is the117

replicative potential of the cell. An increase in the repair rate has a positive effect on the lifespan, however118

it cannot counteract the large increase of dysfunctional proteins in mother cells caused by the asymmetric119

damage segregation at cell division, being a major driver of replicative ageing [8, 9, 50, 51]. Only if repair120

rates are more than approximately one order of magnitude higher than non-metabolic formation rates the121

damage burden of retention can be overcome (Fig S3D).122

To illustrate the dynamics of the model’s components, we selected a representative wildtype cell with 23123

divisions and an average generation time of around 1.5 hours and followed the optimal fluxes through the124

metabolic network, the signals that the cell senses and its protein composition over time (Fig 2B). A typical125

in silico cell starts with a fully functional protein pool that mediates chemical reactions in the metabolic126

network. The resources can be fully exploited and allow for high growth and cell division rates. Over time,127

as damage accumulates, the functional pool shrinks continuously, passing a point when the cell needs to128

decrease the growth rate and metabolic fluxes have to be redistributed. Along with an increasing demand of129

ATP for repairing damage, the cell needs to become more efficient in the ATP production. While most energy130

during the maximal growth phase is produced via fermentation (high production of ethanol), respiration gets131

more and more prominent when the growth rate drops (increase in oxygen O2 uptake and acetate and carbon132

dioxide CO2 production). Consequently, damage is increasingly produced by ROS/RNS and the cell signals133

oxidative stress, followed by an increased use of enzymes that are needed to remove those again. Older cells134

with low growth rates produce less damage, and stress signalling is not active anymore. Instead, cells take135

in less nutrients and eventually signal glucose limiting conditions. That old cells show signatures of starved136

cells was recently confirmed experimentally [52]. Close to death, cells also take in ethanol to produce energy137

and prolong lifespan. However, they can only grow slowly (Fig 2B).138

Decreasing growth rates in our model induces slower generation times, i.e. times between cell divisions. In139

particular, the last few divisions before cell death last significantly longer, as observed previously [48, 53].140

In contrast to published models of protein damage accumulation that have to assume this decline in growth141

[44, 45], here it is a direct output of the model.142

Taken together, our model can reproduce characteristics of replicative ageing in wildtype yeast cells, being143

a consequence of a shrinking pool of functional proteins available for the metabolism and an increasing144

demand of energy for non-growth associated maintenance such as damage repair. In particular, simulated145

cells undergo distinct metabolic phases: (I) maximal growth phase mainly mediated by fermentation, (II)146

switching phase to respiration characterised by a mixed metabolism, a decrease in growth rate and an increase147

in ROS/RNS production, and (III) slow growth phase defined by ethanol uptake (Fig 2D).148

Metabolic regulation by the signalling network is beneficial for the replicative149

lifespan150

To identify the effect of stress signalling on the replicative lifespan, we simulated cells with varying regulation151

strengths. By regulation strength we mean the magnitude of the constraints on the protein abundance caused152

by stress signalling affecting the metabolic model. The regulation strength is different for every protein153

depending on the solution space, and is controlled by a global regulation factor ε, as specified in Eq (1).154

The model showed that increasing the strength of the regulation of enzymes is beneficial for the replicative155

lifespan up to ε ≈ 0.04 (Fig 2C, 3A), corresponding to constraining a down- or upregulated enzyme in its156

usage from above or below respectively by 4% of its enzyme variability. Wildtype cells, i.e. cell with around157

23 divisions and an average generation time of 1.5 to 2h, can only be generated with this maximal regulation158

strength and low damage formation rates (Fig 2C, Fig S3B). We observed that regulation has a particularly159

strong effect on the maximal growth phase, i.e. phase I. Due to regulation the amount of damage that is160

produced in this phase is reduced while the amount of divisions increased (Fig 3A, Fig S3C). An increase161

in the number of divisions in phase II is only possible for a large impact of regulation on the metabolism162

(ε > 0.02). There is a similar maximal amount of damage that a cell can tolerate (damage at end of phase163

III) regardless of the regulation, indicating that a decreased damage accumulation in the early life of the cell164

is essential for the replicative lifespan.165
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The model cannot handle higher regulation factors than ε = 0.05. If enzymes are too heavily constrained, i.e.166

ε is large, the model sooner or later becomes over-constrained and infeasible only because of the regulation,167

observed in a drop in time spent in respective phases (Fig 3A). The higher the regulation factor, the earlier168

the drop occurs. We therefore restricted all following analysis to ε = 0.04.169

To further understand the impact of regulation in our model, we performed knockout experiments of key170

proteins in the signalling pathways Snf1, PKA, TOR, Yap1 and Sln1, and combinations that are know from171

literature to modulate lifespan (Fig 3B). The model qualitatively predicts a lifespan increase for deletion of172

Msn2/4 and Rim15 while deletion of Msn2/4 alone decreases the lifespan [54]. Deletion of the TOR pathway173

by inhibiting the TOR complex increases the lifespan [55]. Our model can however not predict lifespan174

extension by Sch9 deletion [55], being an important cross-talk protein in the included pathways. While the175

oxidative stress response proteins Yap1, Skn7 and Msn2/4 cannot modulate lifespan if deleted alone, only176

the triple deletion reduces the lifespan, indicating a robustness of the cellular response to stress. Other177

tested deletions, including the knockout of the PKA pathway, do not have an influence on the lifespan, but178

potentially change the growth behaviour and consequently the cells’ average generation times in our model.179

In addition, the knockout experiments showed that the increase in the lifespan is in all cases due to a larger180

number of divisions in phase I, while a reduction in the lifespan is often caused by fewer divisions in phase181

II compared to the wildtype (Fig S4).182

An increased ATP demand for damage repair during ageing can explain the183

switch from fermentation to respiration184

Our model emphasised that the maximal growth phase I is particularly important for the replicative life of a185

cell. However, a cell cannot maintain that state forever since the pool of functional proteins decreases over186

time, eventually leading to a drop in the growth rate and an increase in the protein damage. To understand187

why cells at that point start switching from fermentation to respiration, we asked if it could be explained188

by an increased energy (ATP) demand while ageing, i.e. a non-growth associated maintenance (NGAM).189

We considered protein damage repair as one crucial type of NGAM, and therefore modelled NGAM(t)190

to be linearly dependent on the fraction of damaged components D(t) in the cell (Eq (5)), reaching its191

maximal value NGAMmax when the cell has a fully damaged proteome. We then simulated wildtype cells192

with increasing NGAMmax to evaluate the effect of the added ATP cost on the metabolic phases.193

Our model demonstrated that the growth rate drops regardless of the additional ATP cost and cells enter194

phase II and III. However, without NGAM (NGAMmax = 0), cells only ferment at lower rates, and do not195

switch to a predominantly respiratory energy metabolism (Fig 3C). Only for larger NGAMmax, cells make196

increasingly use of O2 and produce CO2, indiciating respiratory activity. Furthermore, phase III is only197

reached with a non-zero NGAMmax.198

Moreover, we observed that NGAM affects the damage tolerance of the cells, measured by the fraction of199

damage in old cells at cell death (Fig 3D). It can be explained by the higher energy demand associated to200

NGAM, which the cells can at some point during ageing not satisfy anymore given the metabolic network201

and the resources. As a consequence, cell death is induced earlier. Only for NGAM= 0, the in silico cells202

can be solved until it has a fully damaged proteome (here ∼ 0.46 g(gDW )−1 [56]), being however biologically203

unreasonable.204

In accordance with the value used in the yeast consensus model [27], we picked NGAMmax = 0.7 [mmol(gDWh)−1]205

in other simulations, leading to a damage tolerance of about half of the proteome in our model.206

Lifespan can be modulated by intervention in specific metabolic phases207

Next, we asked if it is possible to control lifespan in our model by enhancing or repressing the right processes208

in the right moment. We performed deletions and overexpressions of all enzymes, as well as of combinations209

of isoenzymes that catalyse the same reaction, and analysed the resulting replicative lifespans compared to210

the wildtype (Fig 4A-B, File S1). All simulations were performed for the respective perturbation during211

the whole life, only in phase I, only in phase II and only in phase III. Deletion in the model corresponds to212

restricting the usage of the enzyme(s) to 0. In contrast, overexpression is modelled by constraining the usage213

of the enzyme(s) to 150% of the optimal usage after the regulation step.214
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In both cases the enzyme perturbation can generate non-dividing cells (not necessarily non-viable but possibly215

growing at very low growth rates), if the enzyme is perturbed over the whole life or only in phase I. Generally,216

we observed that deletions are in our model the harsher intervention, and can often be more disadvantageous217

for the number of divisions in the respective phases. This can be partly explained by the fact that the218

metabolic model is limited to the central carbon metabolism and many of the reactions are crucial for the219

functioning of the cell.220

However, a perturbation can also cause an increase in the replicative lifespan. Interestingly, cells can divide221

more often if the enzyme is perturbed only in one specific specific phase. Those enzymes do not necessarily222

coincide with enzymes that increase lifespan in the case of perturbation during the whole lifespan. This can223

happen because an enzyme that is beneficial for the lifespan in one metabolic phase can at the same time be224

disadvantageous in another phase. Examples for that are particular overexpressions in phase I (Fig 4A) and225

particular deletions in phase I and II (Fig 4B), that do not appear to beneficial if perturbed over the whole226

lifespan. Since phase III is in general the shortest and least important in replicative ageing, as well as not all227

cells reach that phase, we did not observe large differences between perturbations in that phase compared to228

the wildtype.229

Enzyme perturbations can enforce metabolic adaptions during replicative ageing230

To gain further insight on how those enzyme perturbations affect the replicative lifespan, we studied the231

changes in the cumulative enzyme usage compared to the wildtype. We further looked for patterns between232

enzyme usages, related pathways and effects on the number of divisions (Fig 4C-D and Fig S5). The data233

that the following results are based on can be found in detail in File S1.234

A perturbation of an enzyme can naturally result in an increase or decrease in the enzyme usage compared to235

the wildtype. Here, we showed that both can have a similar effect on the replicative lifespan of the cell. An236

increase in the lifespan can be induced by an increased usage of an enzyme, likely by enhancing processes that237

are beneficial for the number of divisions. On the other hand, a similar increase in the lifespan can arise from238

using less of a certain enzyme, indicating that high usage of this enzyme is disruptive for certain processes239

that correlate with lifespan. Interestingly, we found cases where an overexpression leads to a decreased usage240

(Fig 4C, marked with TCA cycle) and a deletion can result in an increased usage (Fig 4D, marked with241

glycolysis) of the enzyme in relation to the wildtype, showing that cells compensate for the loss or overuse242

in the successive metabolic phases, caused by altered preconditions.243

To study more closely how the cells adapt to the perturbations (File S1), several scenarios have been tested.244

We found that prolonging the time spent in phase I, can result in an increase of cell divisions. A prolongation245

of phase I can be reached by overexpressing particular enzymes from the oxidative phosphorylation pathway246

in phase I, or by deleting particular enzymes in the glycolysis in phase I. More specifically, we found that247

those enzymes typically shorten lifespan instead when overexpressed over the whole lifespan (Fig S5A, e.g.248

NDI1, TIM11, OLI1, several ATPs, and Fig S5B, e.g. PGI1, TPI1).249

Another possibility to increase lifespan is enhancing certain enzymes that remove ROS/RNS, being benefi-250

cial in both phase I and II. Similarly, overexpressing particular enzymes in the TCA cycle can as well be251

advantageous in those two phases. Effectively, all cases described so far lead to a decreased growth rate that252

is responsible for an increase in lifespan. It is a consequence of forcing a bit of respiration already in phase253

I. In addition, supporting a faster switch from phase II to III can lead to more cell divisions, for instance by254

deleting specific enzymes in the oxidative phosphorylation in phase II. In those cases, phase III is prolonged255

instead. Also here, the respective enzymes are typically only beneficial for the lifespan when deleted in phase256

II but not over the whole lifespan (Fig S5B, e.g. PGI1, TPI1).257

Enzymes responsible for removing hydrogen peroxide affect lifespan258

Lastly, we investigated in more detail how sensitive the lifespan is to changes in the enzymes added for259

ROS/RNS production and removal (Fig S5B). We found that the system is in general robust towards per-260

turbations in those enzymes. Most perturbations do not affect the lifespan, with few exceptions [57]. Double261

deletion of Trx1 and Trx2 or the deletion of Trr1, enzymes that involved in the transformation from H2O2 to262

water, are harmful for cell growth and divisions in all three phases [58]. Double deletion of Sod1 and Sod2,263

enzymes that create hydrogen peroxide of superoxide, show similar behaviour [57]. Further, we observed that264
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overexpression of Sod1, Sod1 and Sod2, Gpx3, and Glr1 completely or in phase II surprisingly reduce the265

replicative lifespan of the cell [54]. In contrast, overexpression of Trx1, Trx1 and Trx2 and Trr1 in the same266

phases increase lifespan, likely by enhancing removal of reactive oxidative species efficiently.267

3 Discussion268

Here, we presented a novel multi-scale model consisting of the metabolism, stress signalling and damage269

accumulation in the budding yeast S. cerevisiae that allowed us to study key features of replicative ageing.270

We incorporated reactive oxygen and nitrogen species (ROS and RNS), as a crucial interface between the271

metabolism and ageing, and accounted for the asymmetric damage segregation at cell division. The model272

is based on established modelling techniques in Systems Biology, such as Boolean modelling, flux balance273

analysis and ordinary differential equations, but stands out due to the combination of the three modules to a274

larger interconnected model (Table 1), that tackles the challenge to deal with the complexity and multi-scale275

nature of ageing. Our model could reproduce realistic values for both the replicative lifespans and generation276

times of yeast wildtype cells, as characterised by experiments. We further showed that a regulatory layer277

is crucial for replicating wildtype cells in our model. Previously proposed metabolic phases [21, 22] are a278

direct outcome of our model, and here we demonstrated that those phases are tightly linked to the replicative279

lifespan using enzyme overexpressions and deletions.280

We identified the non-growth associated maintenance (NGAM) as a key feature of the metabolic phases.281

Traditionally, NGAM is defined as the substrate yield that is used for other processes than growth [59–62].282

NGAM is a dynamic variable, highly dependent on for instance the metabolic state of the cell or the nutrient283

composition in the media. However, there is a lack of consensus in what is included in the NGAM, since284

there are no direct ways to experimentally assess and quantify ATP demands specific to certain processes.285

Here, we assumed that protein repair and replacement of damaged proteins with functioning proteins are the286

main contributions to the NGAM, such that the NGAM should scale with protein damage. In the model,287

NGAM is defined to be linearly dependent on the damaged protein fraction, which increases with age. This288

simplified age-dependent definition provides a new perspective on the cost, based on the idea that the more289

damage there is in a cell, the more energy it needs for repair and degradation.290

We tested how sensitive the model is to the maximal value of NGAM, when damage levels are the highest,291

and studied its effect on ageing phenotypes. We found that the increased ATP cost connected to the NGAM292

has a major effect when lower enzyme availability causes a decrease in the growth rate, since in that moment293

damage accumulation starts to increase in speed. More specifically, the NGAM changes the dynamics of the294

switch from fermentation to respiration happening in phase II. Leupold et al. [21] speculated that an increase295

in cellular volume and thus a decreased volumetric substrate intake lead to the switch of metabolic phenotype296

by inhibiting the carbon uptake rate [63]. In our model, NGAM plays a crucial role in determining the ratio297

between respiration and fermentation in the mixed metabolism that characterises phase II, and the model298

showed that without NGAM the switch is not induced properly, but fermentation is mainly slowed down.299

Since cellular respiration has a higher ATP yield compared to fermentation, we propose that an increased300

ATP demand due to a non-zero NGAM together with a decreasing capacity to take up nutrients is another301

explanation for the metabolic switch during replicative ageing.302

303

Gene regulation is a crucial mechanism to adapt to stressful conditions and to ensure that the right proteins304

are expressed in the proper time. In our model, regulation acts upon internal stress caused by ageing. It305

helps to increase the replicative lifespan, even under nutrient rich conditions without artificial stress, by306

inhibiting damage formation predominantly in phase I, but also in phase II. Delaying the onset of protein307

damage accumulation further prolongs the cell’s health span, and in that way has a positive effect on the308

progeny and thus the whole cell population [45]. The model demonstrated that regulatory constraints are an309

important extension of FBA models in the context of ageing, as they are key in predicting wildtype lifespans.310

Regulation and stress have been extensively studied in relation to replicative ageing [64–66]. Gene modi-311

fications of proteins in the nutrient and stress signalling systems, such as Msn2/4 and Tor1/2, have been312

connected to longevity [64], and our model was able to qualitatively predict long- or short-lived mutants for313

some gene knockouts. Similarly, we simulated perturbations in the enzymes contained metabolic model, and314

were able to confirm some qualitative correlations between enzyme deletion or overexpression and lifespan,315
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focusing on enzymes connected to ROS/RNS. Nonetheless, the model cannot capture all known relations.316

There are both technical reasons and knowledge gaps that could cause the discrepancies when comparing317

the model to an observed phenotype. Firstly, connecting transcription factor activity to changes in gene318

expression is a non-trivial problem. Advanced methods utilising high-throughput data can provide means to319

improve the connection between signalling and the metabolism, estimating probabilistic mappings between320

transcription factor activities and gene expression, and translating those to the metabolic fluxes [41, 67].321

However, those models are non-mechanistic and highly context-dependent, and the ability to extrapolate to322

other conditions, where data is limited, is questionable. Secondly, the topology of the signalling network is323

not completely elucidated and there are still conditions under which we cannot explain responses given our324

current knowledge [25, 40]. Moreover, by implementing signalling as a Boolean model, we reduced the com-325

plexity of the system which automatically limits the complexity of the model responses. Lastly, even though326

FBA models are good in predicting exchange fluxes and qualitative changes in pathway fluxes, individual327

enzyme predictions remain a challenge [35].328

329

Motivated by the distinct metabolic phases a cell undergoes during ageing, we propose an intervention span330

for lifespan control. Our model showed that an enzyme perturbation in a specific phase can prolong lifespan,331

while the same perturbation over the whole lifespan can shorten lifespan. The same thought can be reversed,332

and such models can help to identify enzymes that shorten lifespan when perturbed in a specific metabolic333

phase, but do not affect or even prolong lifespan when perturbed over the whole life. While we focused334

solely on lifespan extensions in the context of ageing, phase-dependent interventions using our modelling335

approach can have further applications. Phase I is dominated by fermentation, and genetic modifications336

that prolong this phase can be of great interest in industrial applications to increase production yields. For337

this purpose, replacing the reconstruction of the central carbon metabolism by a reconstruction of the yeast338

consensus metabolic network [27] together with the addition of relevant production pathways can extend the339

applicability of our model and enables testing of a greater variety of interventions.340

Practically, to realise such a phase-specific intervention, induceable and conditionally expressed genes in341

genetically modified production strains have established experimental methods.342

Mathematical modelling typically is a balance between biological realism and mathematical simplicity, such343

that also our model is naturally based on numerous assumptions and simplifications. Yet, the model we344

constructed constitutes a first attempt to shed light on replicative ageing from a multi-scale perspective,345

incorporating several hallmarks of ageing. We could replicate important features of replicative ageing, and346

moved a step further in understanding and utilising the connection between the metabolism and ageing.347

Moreover, the modularity of our approach facilitates developing and extending the model further, and trans-348

lating it to other organisms. Multi-scale mathematical models, like the one presented here, are an important349

aid to bridge the gap between biological realism, the knowledge we have and experimental feasibility, and to350

test hypotheses in a complex phenomenon like ageing.351

4 Methods352

Extension of a regulated enzyme-constrained metabolic model by production of353

reactive oxygen and nitrogen species and the cellular response to them354

We based our work on a previously published hybrid model of nutrient signalling and the metabolic network355

of the central carbon metabolism, that consists of a Boolean modelling approach of the nutrient signalling356

pathways TOR, PKA and Snf1 combined with an enzyme-constrained flux balance analysis approach (ecFBA)357

via a transcriptional layer [35]. In this model, the first step is to optimise the ecFBA model for a given358

objective. The optimal glucose uptake flux then determines the state of glucose in the Boolean model, i.e.359

glucose is present if the glucose intake exceeds a critical threshold glcin
c . A switch of the state induces a360

cascade of events in the Boolean model and eventually its steady state gives rise to which of the transcription361

factors in the pathways are active. For each transcription factor in the Boolean model the database Yeastract362

[68] can tell which genes are subsequently expressed or inhibited. Since also enzymes of the ecFBA model363

are included in the target lists from Yeastract the constraints on their usages in the ecFBA model can be364

altered accordingly.365
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In particular, for each enzyme i a rank based on the number of transcription factors that up- or down-regulate366

it determines if the netto regulation is positive or negative. The bounds of the enzymes ei,min and ei,max in367

the ecFBA are then constraint according to:368

upregulation : ei,min ← ei,min + ∆i · ε (1)
downregulation : ei,max ← ei,max −∆i · ε,

with ε being a regulation factor, and ∆i being the range of enzyme usages that the model can take (result369

from enzyme variability analysis) without varying the objective value of the original optimisation up to some370

flexibility. The solution of the ecFBA with the new constraints corresponds to the regulated metabolic371

network.372

We used the same methodology but increased the size of the metabolic network by including reactions in373

the ecFBA that produce and remove reactive oxygen (ROS) and nitrogen (RNS) species (Fig 1A). The374

major source are electrons that escape from the electron transport chain in the mitochondria during cellular375

respiration [15] and react with oxygen to produce superoxide. Superoxide can via RNS be transformed to376

hydroxyl radicals which can oxidise and thus damage proteins. A second way to create protein damage from377

superoxide is via hydrogen peroxide. Hydrogen peroxide in the model is either removed or reacts further to378

become the dangerous hydroxyl radical [12, 16, 19, 20, 64, 69, 70]. Subsequently, certain levels of oxidative379

stress in the cell trigger stress signalling [19]. Therefore, we added the oxidative stress sensing pathways380

Yap1 and Sln1 to the Boolean model (Fig 1B), that induce regulation of the metabolic network via gene381

regulation by the transcription factors Yap1 and Skn7 [71–85]. To improve the transcriptional layer, we382

extended the data from Yeastract by data from [86], that particularly focused on the effects of Yap1 and383

Skn7. The presence of oxidative stress in the Boolean model is steered by the production of proteins with384

oxidative damage in the ecFBA model, that if larger than dc switches the presence of H2O2 to 1. Similarly,385

the enzyme usage of Trx1/2, proteins known to regulate the Yap1 pathway as well as to activate Msn2/4,386

determines if the protein is present in the Boolean model, in particular if it exceeds a critical threshold trcc.387

In total, we added 9 new components and 13 new rules to the existing model of nutrient signalling to account388

for oxidative stress signalling by the Yap1 and the Sln1 pathway. Moreover, the ecFBA model was extended389

by 53 new reactions and 41 new components including 13 new enzymes.390

Multi-scale model construction of the regulated cellular metabolism and replica-391

tive ageing392

We used the extended regulated enzyme-constrained FBA model described above and optimised it for maximal393

growth and parsimony. Besides the resulting optimal value of the growth rate g(t), the model now also outputs394

a protein damage formation rate fm(t) that is caused by oxidative stress.395

To evaluate the protein damage formation over time, we incorporated a third module: a dynamical model396

based on a simple system of ordinary differential equations. The states are the cell’s dry weight M(t), its397

fractional intact protein content P (t) and its fractional damaged protein content D(t). The latter two can398

be transformed between each other, however the total fraction of proteins P (t) +D(t) is assumed to remain399

constant over time (⇔ d
dt (P (t) +D(t)) = 0).400

dM(t)
dt = g(t)M(t) (2)

dP (t)
dt = −(fm(t) + f0)P (t) + r0D(t) (3)

dD(t)
dt = +(fm(t) + f0)P (t)− r0D(t). (4)

Besides the parameters that are directly obtained from the solution of the ecFBA, we included a non-metabolic401

damage formation rate f0 to account for all other processes that produce damage, and a damage repair rate402

r0 that represents all mechanisms that repair damaged proteins.403

The solution of the ODE model (2)-(4) for a small time step determines the fraction of the enzyme pool that404

is available in the ecFBA model in the next time step. Moreover, an increasing amount of damage increases405
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the non-growth associated ATP cost (NGAM) in the ecFBA model, assuming that the cell needs to allocate406

more energy to repair damage. In particular,407

NGAM(t) = D(t)
P (t) +D(t) ·NGAMmax. (5)

In this way, we can simulate ageing as the accumulation of damage in the cell over time. Consequently, the408

amount of enzymes available in the ecFBA model shrinks, and the metabolic fluxes are forced to adapt in409

the course of the cell’s lifespan.410

As soon as a cell has built up enough in biomass, M(td) = s−1M(0), it divides into a mother and a daughter411

cell, according to a size proportion s ∈ [0.5, 1] that corresponds to the fraction of biomass that remains in the412

mother cell at cell division. While the total fraction of proteins is constant in both cell compartments, the413

composition of functional and damaged proteins is determined by damage retention. The larger the retention414

factor re ∈ [0, 1], the more damage is retained in the mother cell. The states of mother and daughter cell are415

updated according to416

mother
M ← sM(td) = M(0)
P ← (1− re)P (td)
D ← (1 + re)D(td)

daughter (6)
M ← (1− s)M(td) = (1− s)s−1M(0)
P ← (1 + re)P (td)
D ← (1− re)D(td).

417

Cell death occurs when the enzyme-constrained FBA becomes infeasible, i.e. when the cell is not able to418

obtain enough energy for maintenance and growth anymore.419

By including the dynamic module for damage accumulation, we incorporated the notion of time to the420

regulated metabolic model, under the assumption that the steady state of the metabolism is reached fast in421

the time scale of replicative ageing. It further led us to introduce a time delay between the moment the cell422

receives a stress signal and the moment the metabolic network is affected by altered gene regulation.423

A schematic view of the complete model is shown in Fig 1. All details about the individual models and the424

extensions made in this work can be found in Text S1.425

Simulation details426

All simulations and their analysis were performed in the programming language Julia version 1.6 [87] and427

were run on a normal computer with 2.3 GHz Dual-Core Intel Core i5 and 8GB RAM. The linear program428

(ecFBA) was solved using the JuMP and Gurobi packages. The developed model can be downloaded from429

https://github.com/cvijoviclab/IntegratedModelMetabolismAgeing. Model parameters, constraints430

and pseudo code for a lifespan simulation can be found in Text S2.431
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Figures

Figure 1: Multi-scale model construction (A) Yap1 and Sln1 signalling in response to oxidative stress via H2O2.
The two pathways were added to Boolean signalling network. Trx1/2 exhibits cross-talk to Msn2/4, a component that
is also part of the nutrient sensing pathway PKA. The figure is made with Cell Designer [88]. (B) ROS/RNS reactions
that were added to the enzyme-constrained FBA model. The cell is exposed to oxidative stress as a consequence
of electron leakage in the electron transport chain (ETC). (C) Schematic view of one time step in the multi-scale
model. The enzyme-constrained FBA fluxes based on the current fraction of intact and damaged proteins determine
the input states of the Boolean signalling layer. A set of Boolean rules alter the states of the signalling proteins, that
eventually induce gene ex-/repression via a transcriptional layer, leading to constraints in individual enzyme usages.
Solving the regulated enzyme-constrained FBA gives rise to a growth rate as well as a metabolic damage formation
rate, that feed into the ODE model of growth and damage accumulation that is then solved for one time step. If the
cell has accumulated enough biomass, the cell divides in an instantaneous event. Iterating the model over time-steps
until the model becomes infeasible corresponds to a lifespan simulation.
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Figure 2: Lifespan simulations of yeast wildtype cells. (A) Replicative lifespans for typical yeast wildtype cells
with varying damage repair r0 and non-metabolic damage formation rates f0. The model reproduces 17-32 divisions.
(B) Zoom into variables of all three model parts over time for a specific exemplary parameter set (f0 = 0.0001, r0 =
0.0005): cell mass, fraction of intact and damaged proteins, growth rate, exchange fluxes normalised by the glucose
uptake rate (dashed black line) in the metabolic model (> 0: production rates, < 0: uptake rates), functional enzyme
pool and input signals received by the signalling network (green: present, grey: not present). As cells age they
accumulate damage, the growth rate drops and the metabolism needs to adapt. (C) Zoom out for varying damage
repair r0 and non-metabolic damage formation rates f0 and regulation factors ε. If the tile is not filled (f0 = 0.0 and
ε = 0.04), the simulated cell did not stop dividing in the simulation time. Stronger regulation increases the replicative
lifespan and wildtype cells with more than 22 divisions cannot be achieved in this resolution if the regulation factor
ε < 0.4. (D) Schematic view of the metabolic phases a cells undergoes during its replicative life: from maximal growth
and fermentation (I) it slowly switches to respiration when the growth rate drops (II) until it eventually can also take
up ethanol to produce energy close to cell death (III).
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Figure 3: Effect of regulation and NGAM on lifespan All distributions are based on 29 wildtype parameter
sets with f0 ≤ 5 · 10−4 and r0 ≤ 2 · 10−2 that lead to 23 divisions (from data in Fig 2A). (A) Effect of the regulation
factor ε, i.e. how strong gene expression changes caused by stress signalling affect the metabolic model, on the
lifespan simulations (line: mean, ribbons: 5% and 95% quantiles). Our model can only handle ε ≤ 5%. Weak
regulation ε ≤ 2.5% mostly affects phase I, and stronger regulation ε > 2.5% phase II. (B) Distributions of replicative
lifespans and average generation times for cells with knockouts of signalling proteins in the different pathways of the
Boolean model (line: median, box: IQR, whiskers: median ±1.5 IQR). (C) Effect of the age-dependent non-growth
associated maintenance NGAM (Eq (5)) on the transition between the phases (line: mean, ribbons: 5% and 95%
quantiles). Increasing cost for non-growth associated maintenance, such as damage repair, can explain the switch from
fermentation to respiration in phase II, indicated by higher O2 uptake, lower ethanol and higher CO2 and acetate
production. The fluxes are normalised by the glucose uptake rate, negative fluxes are uptake and positive production
rates. (D) Damage at cell death depending on NGAM (line: mean, ribbons: 5% and 95% quantiles). Increasing
NGAM leads to lower damage tolerance before cell death, that happens in phase II for low NGAM and in phase III
for higher NGAM.
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Figure 4: Effect of enzyme perturbations on lifespan The simulations are based on f0 = 0.0001 and r0 = 0.0005
(as in Fig 2B) and perturbations (deletion or overexpression) in individual enzymes or isoenzyme combinations (140 +
23 cases) for different phases in the metabolic model. (A-B) Distribution (line: median, box: IQR, whiskers: median
±1.5 IQR) of the number of divisions in total and in particular phases upon overexpression or deletion of enzymes
during specific times (facets) in relation to the wildtype (grey lines). An intervention in a specific phase can have a
different effect than an intervention over the whole lifespan. (C-D) Relation between replicative lifespan and total
enzyme usage relative to the wildtype. Each dot represents one simulation with the perturbation in a specific phase
of an enzyme/isoenzymes. Both enzyme deletion and overexpression can lead to an increased but also decreased total
usage of the enzyme compared to the wildtype.
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