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Abstract— Upper body function is lost when injuries are
sustained to the cervical spinal cord. Assistive machines can
support the loss in upper body motor function. To regain
functionality at the level of performing activities of daily living
(e.g., self-feeding), though, assistive machines need to be able
to operate in high dimensions. This means there is a need
for interfaces with the capability to match high-dimensional
operation. The body-machine interface provides this capability
and has shown to be a suitable interface even for individuals
with limited mobility. This is because it can take advantage of
people’s available residual body movements. Previous studies
using this interface have only shown that the interface can
control low-dimensional assistive machines. In this pilot study,
we demonstrate the interface can scale to high-dimensional
robots, can be learned to control a 7-dimensional assistive
robotic arm, to perform complex reaching and functional
tasks, by an uninjured population. We also share results from
various analyses that hint at learning, even when performance is
extremely low. Decoupling intrinsic correlations between robot
control dimensions seem to be a factor in learning—that is,
proficiency in activating each control dimension independently
may contribute to learning and skill acquisition of high-
dimensional robot control. In addition, we show that learning to
control the robot and learning to perform complex movement
tasks can occur simultaneously.

I. INTRODUCTION

Functionality to the upper body is forfeited when indi-
viduals sustain injuries to the cervical spinal cord. How
much is forfeited and how much availability of muscle
groups remains to the central nervous system (CNS) can vary
drastically depending on the severity of injury, the time since
the onset of injury, and the scale in which the reorganization
in the brain can occur [1]. Assistive machines have shown
to be effective at providing support to people with loss
of motor function. For instance, wheelchairs allow patients
with cervical spinal cord injury (cSCI) to navigate the
physical world using simple control interfaces such as sip-
and-puff and head-operated joysticks. To achieve the level of
functionality and ability to control assistive machines to per-
form activities of daily living (e.g., self-feeding), though—
without assistance from caregivers—demands machines and
interfaces with the capability to operate at higher degrees-
of-freedom.

Wearable sensor technologies have been used to interface
a person’s body movements to control machines such as
assistive and rehabilitation devices and robots [2], [3]. In
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Fig. 1: An uninjured participant attempts to control the
7-DoF robotic arm using the body-machine interface to
complete a reaching task.

general, this interface is known as the body-machine inter-
face (BoMI) [2]; it is non-invasive, capitalizes on a patient’s
residual availability of body movements, and can adapt at
the interface-level [4], [5]. A common strategy to control
a robot using the interface is to engineer a decoder that is
designed to map the high-dimensional body movements to
a lower-dimensional robot control signal space. Whenever
the intrinsic dimension of the body motions are higher
than the machine to be controlled, dimensionality reduction
techniques, such as principal component analysis (PCA) [6]
or autoencoders [7], can be used to implement efficient
simultaneous and continuous control of lower-dimensional
devices [8], [9], [10], [11]. However, the design and the
operation of such interfaces become challenging when re-
dundancy of the body signals is reduced due to pathological
conditions that impact mobility or when controlling complex
multi-articulated robotic machines [12], [13]. In addition, it
has yet to be shown that the BoMI is (1) scalable to high-
dimensional assistive robots, such as multi-jointed robotic
arms and (2) learnable by uninjured and injured populations.
Moreover, if it is learnable, it is unclear (3) how learning is
achieved and (4) whether reaching and functional tasks can
be learned alongside learning to control.

In this paper, we demonstrate that the BoMI is (1) scalable
to a 7-DoF assistive robotic arm and (2) learnable, with some
constraints, by uninjured individuals. We also show results
from analyses that start to address (3) how learning can
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Fig. 2: An overview of the interface-robot pipeline and the study tasks. Participants are asked to wear a sensor net on
their upper bodies that control the JACO robotic arm in either task-space (3D position + 3D orientation) or joint-space
(6D joint angles) to perform reaching and functional tasks. The relative quaternion orientation of the four IMUs in the net
(16-dimensional) is mapped to a 6-dimensional subspace using PCA. The PCA map is precomputed using data from an
experienced user, performing a predefined set of movements, and this same map is used for all participants. The lower-
dimensional subspace consists of 6D velocity commands—3D position (x, y, z) and 3D rotation (roll , pitch, yaw )—which
are used online to control a 7-DoF JACO robotic arm.

Fig. 3: A summary of the pilot study protocol. Tasks include:
(1) Free Exploration (FE); (2) DoF all-but-one freezing (DF);
(3) Training, Reaching; (4) 3D-star Evaluation, Reaching; (5)
Evaluation, Functional ADLs. Each row describes the various
tasks participants are asked to perform on a particular day,
and each column describes how often each task is performed
throughout the entirety of the pilot study.

occur, even when task performance is low. We hypothesize
that uncorrelating dimensional couplings is important to
performance and learning and share our current observations
that seems to show signs that this holds true. Lastly, we
show that complex movement tasks and robot control can be
learned simultaneously.

We provide some background material in Section II,
describe the experimental methods in Section III, share our
results in Section IV, and discuss our findings and their
implications in Section V.

II. RELATED WORK

Restoring functionality to individuals with cSCI can mean
restoring independence and quality of life. Assistive ma-
chines can support people with their loss in functionality and
can act as a replacement to their loss or as an intervention
for physical rehabilitation. They can range from simple
machines such as wheelchairs to more complex machines,
such as robotic arms. In general, the level of complexity
varies with the number of degrees-of-freedom (DoFs) the
machine can operate. Assistive devices that require higher
degree-of-freedom control, such as robotic arms (e.g., 6 or
7 degrees-of-freedom), create problems for typical assistive
interfaces. This is due to a mismatch in the number of inputs
the operator has access to on the interface (1 or 2) versus

the number of output dimensions necessary to control the
device (6 or 7). As a result, the mismatch requires people to
discretely traverse the output control dimensions via mode
switching, which has shown to increase time, increase cog-
nitive load, and decrease user satisfaction [14]. In addition,
existing interfaces do not allow patients to control robots
simultaneously and continuously with more than two DoFs,
such as robotic arms. Moreover, these interfaces do not factor
the residual movement available to the patients, which can be
significantly different, even if the level of injury is diagnosed
to be categorically similar [1].

There is a long history of studies that suggest that even
with spinal cord injury (SCI), sensory motor practice can lead
to neuroplasticity in the central nervous system [15], [16].
This can hold true for even populations who are quadriplegic
or tetraplegic and suffer C3 and C4 levels of injury. Evidence
for plastic changes has been extended in recent work, show-
ing that the use of the body-machine interface (BoMI) and
motor practice and exercise can result in increased shoulder
strength and muscle force [17]. However, these promising
benefits have yet to be shown for populations with severe
levels of spinal cord injury, as well as with high-dimensional
assistive robots.

Nevertheless, studies such as [17], [2] involving patients
with cSCI as well as uninjured populations provide us
the assurance this is a viable leap. The BoMI has also
been shown to be a suitable interface to control a 6-DoF
assistive robotic arm, with the help of robot autonomy [3].
Furthermore, there is rich body of literature from an adja-
cent community made up of brain-computer interface (BCI)
researchers, where technologies, approaches, and scientific
questions align greatly. Instead of trying to capture residual
signals from the upper body, BCI researchers capture signals
from the brain or muscles using methods that range from
non-invasive methods such as electroencephalogram (EEG)
and electrocardiogram (ECG) to invasive methods such as
surgically implanting electrodes and directly recording from
the brain [18]. For example, principal component analysis
(PCA)—the dimensionality reduction technique deployed in
this study—is a common algorithm used to study human
movement and decoder design for brain-computer interfac-
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Fig. 4: Correlation coefficients (ρ) between the six decoded robot control signals, collected during 3D-star evaluation task. The
control signal data is represented as the magnitudes of applied robot commands. (a) Annotated group analysis; (b) analysis
on selected participants, where P1,lo and P2,lo (top) show relatively little to no correlation between control dimensions, P1,hi

and P2,hi show relatively high levels of correlations. Correlation coefficients range between [−1,+1], where ρ = [0,+1]
implies positive linear correlation, ρ = [−1, 0] implies negative correlation, and ρ = 0 implies no correlation between
variables. ∗p < 0.05.

ing.

III. METHODS

A. Materials

The sensor net consists of four inertial measurement unit
(IMU) sensors (Yost Labs, Ohio, USA), placed bilaterally
on the scapulae and upper arms and anchored to a custom
shirt designed to minimize movement artifacts. The relative
quaternion orientation of the four IMUs in the net (16-
dimensional) is mapped to a 6-dimensional subspace using
PCA. The PCA map is precomputed using data from an
experienced user, performing a predefined set of movements,
and this same map is used for all participants. The lower-
dimensional subspace consists of 6D velocity commands—
3D position (x, y, z) and 3D rotation (roll , pitch, yaw )—
which are used online to control a 7-DoF JACO robotic arm
(Kinova Robotics, Quebec, Canada). A GUI is displayed on
a tablet to provide a visualization, for the participant, of the
robot velocity control commands as well as a score for each
trial.

B. Protocol

There are three phases to the study protocol: (a) familiar-
ization, (b) training, and (c) evaluation (Figure 3). During
familiarization, participants are encouraged to explore and
become familiar with the system on their own, with minimal
constraints enforced. Both of the next phases make use of a
set of ten fixed targets G. During training, two categories of
reaching tasks are employed: reaches from a fixed center

position out to a target gi ∈ G, and sequential reaches
between multiple targets gj ∈ G. The ordering of targets is
random and balanced across days to avoid ordering effects,
and it is identical across participants. The evaluation phase
is split into a reaching and a functional task. In the reaching
task, participants reach to five targets that comprise a 3D-
star gk ∈ G in fixed succession. The functional tasks are
designed to emulate four ADL tasks: (a) take a cup (upside-
down) from a dish rack and place it (upright) on the table,
(b) pour cereal into a bowl, (c) scoop cereal from a bowl,
and (d) throw away a mask in the trash bin.

A trial ends upon successful completion or timeout. For
reaching any target g ∈ G, success is defined within a
strict positional (1.00 cm) and rotational (0.02 rad, or 1.14°)
threshold, and the timeout is 90 seconds. For the functional
tasks, experimenters follow codified guidelines to determine
when the tasks complete and the timeout is 3 minutes.
Participants are informed of the timeouts and asked to
perform tasks to the best of their ability. If there is any
risk of harm to the participant or the robot, study personnel
intervene and teleoperate the robot to a safe position before
proceeding.

C. Participants

Each participant completes five sessions, executed on
consecutive days for approximately two hours each. All
sessions are conducted with the approval of the Northwestern
University IRB, and all participants provide their informed
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Fig. 5: Variances of the magnitudes of decoded robot commands on the 3D-star evaluation task. (a) Group-level analysis;
(b) analysis of selected participants, where selection and order is preserved from Fig. 4.

consent. Ten uninjured participants from this study are re-
ported in this paper.

IV. RESULTS

Figure 4 shows the results of the correlation coefficient
analysis between the six decoded robot control signals, on
the 3D-star evaluation task. Figure 4a shows that the group’s
(N = 10) control signal data shares negative linear rela-
tionships in 3 of the 15 combinations of control dimensions
(D = {(1, 5), (3, 4), (4, 6)}; p < 0.05). Signs of positive
relationships are also shown between D = {(3, 6), (4, 5)},
but these combinations at a group-level are not statistically
significant. Figure 4b distinguishes how correlation coeffi-
cients may differ between individuals. While the data of
P1,lo and P2,lo displays no or very little correlation between
control dimensions—especially D = {1, 2}—P1,hi and P2,hi

shows strong signs of correlation between dimensions, both
positive and negative. More specifically, 5 of the 15 (33.3%)
combinations for P1,hi; and 6 of the 15 (40%) combinations
for P2,hi. Interestingly, among the dimensional combinations
with statistical significance, 80% or more are correlated
negatively for P1,hi and P2,hi, which corroborates somewhat
with the group analysis, where 100% (3 out of 3) of the
combinations are negatively correlated.

The change in variances of the magnitudes of applied
robot control commands, on the 3D-star evaluation task,
are shown in Figure 5. In general, there are only minor
changes in variances between Days 1 and 5 in Figure 5a.
Of the minor deltas, two-thirds of the control dimensions
(D = {2, 3, 5, 6}) increase, whereas only one dimension
decreases. Variance of D4 appears to change the least, as
well as result in the smallest variances (0.007 compared to
[0.011, 0.020]). Lastly, the spread of the variances appear
to be consistent in the group. Figure 5b shows the same
analysis on the selected participants. A significant decrease

in variances is experienced by P2,lo, in particular on three
dimensions D = {2, 3, 5}. Moreover, the spread of variances
also decreases greatly on all six control dimensions. Changes
in variance for P2,hi are major in 5 out of 6 dimensions,
where variances decrease in 2 out of the 5 dimensions
(D = {1, 6}) and increase in the remaining 3 dimensions
(D = {2, 3, 5}). P1,lo and P1,hi both do not experience
much change in variance overall between first and last days.
However, the two dimensions that decrease for P1,lo (D =
{3, 5}) are the two dimensions that start on Day 1 with the
largest variances; P1,hi shows a similar pattern in the fifth
control dimension.

Figure 6a shows the counts of collision and intervention
instances during the 3D-star task, where the selection of
participants and order is preserved from Figure 4. P1,lo

experiences no interventions and only one collision on Day
3. P2,lo, however, experiences the most amount of collisions
(47) among participants on Day 1, but this dramatically
reduces as early as Day 2 and decreases similar to a decaying
exponential. P1,hi and P2,hi’s data show signs of similarities
in the number of collisions and their flat trend across the
five days. Overall, the number of collisions are relatively
small, ranging from [0, 3], among the selected participants.
P2,lo’s interventions occur early in the week on Days 1-
3, whereas P1,hi and P2,hi experience interventions in the
latter half of the week, on Days 4 and 5 and on Day 4,
respectively. However, while the protocol has strict policies
on when study personnel should intervene, there remains
some level of subjectivity; therefore, this is only a small
observation.

The study workspace is broken down into three distinct
zones, with respect to a given target, in the analysis in
Figure 6b. Especially because there were zero successful
reaching trials, we instead demarcate three zones at 10%
and 100% of the total reaching distance needed in position
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Fig. 6: (a) Counts of collision (light) and intervention (dark) in the 3D-star evaluation task across days. (b) Proportion of
time the robot endpoint spends proximal or remote, relative to reaching targets on the 3D-star evaluation task. Proximal
zone (green) is within 10% of reaching distance, and remote zone (red) is outside of 100% of reaching distance. Selected
participants and order is preserved from Fig. 4.

and orientation: (1) proximal (green), (2), peripheral (grey),
and (3) remote (red) zones. Among the selected participants,
P1,lo spends no time in the remote zone (farther than 100%
of the reaching distance) and increases the the time spent in
the proximal zone (within 10% of the reaching distance) over
the five days. P1,hi, on the other hand, spends significantly
more time in the remote zone compared to the time spent
in the proximal zone, spending the most amount of time in
this zone on Day 3 (27%). On Days 4 and 5, though, time
spent in the remote zone dramatically reduces, showing some
signs of learning. P2,lo and P2,hi both start the week spending
much of their time in the remote zone and very little in the
proximal zone. By the second half of the week, they decrease
their time spent in the remote zone while increasing the time
spent in the proximal zone.

V. DISCUSSION

In this pilot study, we examined whether the body-machine
interface is scalable to a 7-DoF assistive robotic arm, able
to be learned by an uninjured population, even when task
performance can be low, and complex tasks can be learned
in parallel with learning to control. Our results suggest
that uncorrelating dimensional couplings, in the control of
complex robots using high-dimensional interfaces, may be
involved during learning as people try to gain proficiency.
They also suggest that learning to control and learning to
complex tasks can occur simultaneously, rather than having
to be learned serially.

The BoMI has been shown to be an effective interface to
control assistive and rehabilitation devices and robots [2], [3],
drones [19], and quadcopters [20]. Especially in the domain
of assistive and rehabilitation machines, though, previous
demonstrations on physical robots have been in only one

or two dimensions of control [21], [11] and not six or seven
dimensions of control. Despite some undesirable properties
such as control axes not being preserved in body motion
space , uninjured participants were able to learn to control the
robot to perform complex reaching movements and several
functional tasks.

P1,lo seems to be an exemplar to our hypothesis that
uncorrelating dimensional couplings is key to performance
and learning. P1,lo keeps variances of control command
magnitudes and their spreads low along dimensions on Days
1 and 5, compared to the other participants (Figure 5).
While variances can be dependent on the task, based on
the results from other analyses, low variances seem to be
a characteristic of the 3D-star task. In addition, instances
of collision and intervention are also kept extremely low
(Figure 6a); in fact, on both measures, P1,lo shows the
least amount of collisions and interventions among all ten
of the participants. P1,lo also avoids spending any time,
with the robot end-effector, beyond the distance between
starting position and targets and reaches within 10% of the
reaching distance on all five targets by Day 5. However,
it is important to note that despite outperforming all other
participants in these metrics, P1,lo was not able to complete
any of the reaching tasks in the 3D-star evaluation task. We
believe part of the reason is, results from Figure 6b do not
account for meeting any orientation goals. Further analysis in
orientation space could provide better context. An alternative
explanation could be there are other aspects to learning than
isolating robot control dimensions. This learning strategy
is actually counterintuitive, because, in general, isolating
movements along dimensions is inefficient (e.g., manhattan
distance versus cartesian distance; cerebellar patients versus
healthy [22]), and it is not how the human brain chooses
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to make voluntary movements with our anthropomorphic
limbs. Uncorrelating control dimensions here is what we
posit as critical to learning robot control, not to make efficient
movements. Therefore, it is perhaps necessary to design
additional experiments to study how individuals can learn to
make efficient movements once proficiency in robot control
is achieved. Another option could be to delegate movement
efficiency to robot autonomy.

Similar to P1,lo, P1,hi presents another (negative) example
to our hypothesis. Variances in the last two dimensions are
especially elevated, with wider spreads of variances, and do
not change much between first and last days. Counts of
collisions are generally high, and they do not decrease over
days. We notice proportionally more time spent farther away
from the targets relative to the starting distances, compared
to within 10% of the distances. We also see a small increase
in visits to the proximal zone and decreases in both time
spent and visits to the remote zone—all positive signs in
terms of learning. Interestingly, given that P1,hi experienced
less coupling in the first two control dimensions, this did not
seem to necessarily result in compensatory behavior, where
D = {1, 2} are activated more than others (not shown).
Uncorrelating control dimensions was perhaps not part of
this participant’s learning strategy or it was and was aban-
doned early on. Further analysis may show the likelihood
that someone adopts this kind of learning strategy, whether
implicit or explicit. In the event this is a strategy that most
do not favor, but is a statistical correlate to performance and
learning, prescribing learning strategies, like uncorrelating
dimensions, to people may be interesting to investigate in
the future.

P2,hi could be a counterexample and was a surprise to
us on measures especially assessed in Figure 6b. Even
without the context of orientation measures, it is interesting
to observe how this participant was able to move the robot
endpoint into proximal zone 100% of trials by Day 5, spend
significant time within the proximal zone on multiple days,
and show desired trends in both increase in time spent
in the proximal zone and decrease in time spent in the
remote zone across days. This is especially considering the
strong dimensional correlations P2,hi experienced, as shown
in Figure 4. This could mean that proportions of time spent
within 10% or beyond 100% of the reaching distance are
not strong indicators of learning. The time series analysis of
endpoint distances to target in Figure 10 hints why this could
be the case, based on the inconsistency and erratic patterns
of this metric. More complex time series analyses may be
pursued to achieve a better understanding of the relationship
between dimensional coupling and performance and learning.
For instance, trajectory smoothness [23] and dimensionless
jerk [24] might provide a more complete picture when erratic
patterns like this is observed.

It is possible that providing assistance to reduce the
burden of uncorrelating dimensional couplings may facilitate
learning as well and could be a promising intervention
for rapidly teaching high-dimensional robot control. This
especially holds true for individuals similar to P1,hi and

P2,hi who are not able to implicitly learn to separate the
robot control signals consistently. In addition, while PCA has
many attractive properties, such as linearity, when designing
a decoder, there were signs that the decoding map (more
specifically, the covariance) had dimensional properties that
were intrinsically coupled (not shared). In other words,
identifying those dimensional combinations, a priori, that are
intrinsically coupled may provide strategic insights on how
to provide assistance. Targeting these combinations early on
could speed the learning process.

Finally, we acknowledge the importance of rethinking our
study design such that tasks are achievable. However, if the
long-term aim is to provide a path for patients with cSCI
to rehabilitate and restore motor function via controlling the
robotic arm, then the solution to this issue is not simple. We
can perhaps add simpler evaluations that, for instance, tests
a participant to access control dimensions on demand. But,
the other challenge or limitation is time, because we cannot
expect patients to quickly adapt to longer training times
(over 2 hours a day). We suspect the design needs a delicate
balance between increasing the likelihood of task success
versus time—and being vigilant about what is required to
achieve the longer-term aim.
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Fig. 7: Time series of distance to target in the 3D-star evaluation task for P1,lo.
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Fig. 8: Time series of distance to target in the 3D-star evaluation task for P2,lo.
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Fig. 9: Time series of distance to target in the 3D-star evaluation task for P1,hi.
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Fig. 10: Time series of distance to target in the 3D-star evaluation task for P2,hi.
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