
1 
 

 

TITLE: Erbb4 deletion from fast-spiking interneurons causes psychosis-relevant neuroimaging 

phenotypes 

 

RUNNING TITLE: Neuroimaging markers of interneuron dysfunction 

 

Kiemes, A.1, Serrano Navacerrada, M. E.2, Kim, E.2, Randall, K.2, Simmons, C.2, Rojo Gonzalez, L.2, 

Petrinovic M.M.3,4, Lythgoe, D.J.2, Rotaru, D.2, Di Censo, D.2, Hirshler, L.5, Barbier, E. L.6, Vernon, A. 

C.3,7, Stone, J. M.8, Davies, C.1, Cash, D.2*, & Modinos, G.1,2,3* 

 

 

1. Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s 

College London, London, UK 

2. Department of Neuroimaging, School of Neuroscience, Institute of Psychiatry, Psychology and 

Neuroscience, King’s College London, London, UK 

3. MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK 

4. Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology 

and Neuroscience, King’s College London, London, UK 

5. C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical 

Center, Leiden, Netherlands; Department of Radiology, Leiden University Medical Center, 

Leiden, Netherlands 

6. Grenoble Institut des Neurosciences, Inserm, Univ. Grenoble Alpes, Grenoble, France 

7. Department of Basic and Clinical Neuroscience, School of Neuroscience, Institute of 

Psychiatry, Psychology and Neuroscience, King’s College London, UK 

8. Brighton and Sussex Medical School, University of Sussex, Brighton, UK 

 

Corresponding Author: Amanda Kiemes, Psychosis Studies, King’s College London, London, SE5 

8AF, UK; +44 (0)7935 472451; amanda.s.kiemes@kcl.ac.uk 

 

 

* Contributed equally as senior authors  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.07.483347doi: bioRxiv preprint 

mailto:amanda.s.kiemes@kcl.ac.uk
https://doi.org/10.1101/2022.03.07.483347
http://creativecommons.org/licenses/by/4.0/


2 
 

Abstract 

Converging lines of evidence suggest that dysfunction of cortical parvalbumin-expressing (PV+) 

GABAergic interneurons is a core feature of psychosis. This dysfunction is thought to underlie 

neuroimaging abnormalities commonly found in patients with psychosis, particularly in the 

hippocampus. These include increases in resting cerebral blood flow (CBF) and levels of glutamatergic 

metabolites, and decreases in binding of GABAA α5 receptors and the synaptic density marker synaptic 

vesicle glycoprotein 2A (SV2A). However, direct links between PV+ interneuron dysfunction and these 

neuroimaging readouts have yet to be established. Conditional deletion of a schizophrenia 

susceptibility gene, the tyrosine kinase receptor Erbb4, from cortical and hippocampal PV+ 

interneurons leads to several synaptic, behavioral and cognitive phenotypes relevant to psychosis in 

mice. Here, we investigated how this PV+ interneuron disruption affects the hippocampal in vivo 

neuroimaging readouts in the Erbb4 model. Adult Erbb4 conditional mutant mice (Lhx6-Cre;Erbb4F/F, 

n=12) and their wild-type littermates (Erbb4F/F, n=12) were scanned in a 9.4T magnetic resonance 

scanner to quantify CBF and glutamatergic metabolite levels (glutamine, glutamate, GABA). 

Subsequently, we assessed GABAA receptors and SV2A density using quantitative autoradiography. 

Erbb4 mutant mice showed significantly elevated CBF and glutamine levels, as well as decreased SV2A 

density compared to wild-type littermates. No significant GABAA receptor density differences were 

identified. These findings demonstrate that specific disruption of cortical PV+ interneurons in mice 

recapitulate some of the key neuroimaging findings in psychosis patients, and link PV+ interneuron 

deficits to non-invasive, translational measures of brain function and neurochemistry that can be used 

across species. 

 

Keywords: mice, Erbb4, neuroimaging, parvalbumin interneurons, psychosis, hippocampus  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.07.483347doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483347
http://creativecommons.org/licenses/by/4.0/


3 
 

Introduction 

Multiple lines of evidence suggest that inhibitory GABAergic interneuron dysfunction is a core feature 

of psychosis1, and that this dysfunction underlies the abnormalities in hippocampal activity commonly 

observed in the disorder2. More specifically, post-mortem human brain studies in psychosis have 

identified reductions in the GABA-synthesizing enzyme GAD673, inhibitory interneuron number4, 

calcium-binding protein parvalbumin (PV) expressed by some GABAergic interneurons5,6, and 

increases in GABAA receptor density7. Among these, PV+ interneurons, a type of fast-spiking 

GABAergic cells that modulate neural network oscillations at the gamma frequency8, have been 

implicated in the pathophysiology of psychosis9–11. Abnormal gamma oscillations have been identified 

in individuals with psychosis spectrum disorders12,13 and are thought to underlie their cognitive 

symptoms14. Experiments in a neurodevelopmental animal model (methylazoxymethanol model, 

MAM) demonstrated that PV+ interneuron loss in the hippocampus leads to psychosis-relevant 

neurophysiological and cognitive deficits (i.e. reduced oscillatory activity and impaired latent 

inhibition)11. These findings led to the hypothesis that PV+ interneuron dysfunction in the 

hippocampus plays a critical role in the pathophysiology of psychosis15,16. Briefly, PV+ disruption in the 

hippocampus disinhibits glutamatergic excitatory cell activity, resulting in local hyperactivity. This 

drives an increase in striatal dopamine through descending projections, proposed to underlie 

psychosis symptoms. A hyperactive and dysrhythmic hippocampus can also interfere with the function 

of hippocampal-prefrontal cortex projections, disrupting prefrontal activity and rhythmicity, leading 

to cognitive deficits15,16. 

 

In humans, neuroimaging studies have identified hippocampal abnormalities consistent with a 

fundamental role of GABAergic dysfunction in the pathophysiology of psychosis. Patients with 

psychosis exhibit hippocampal hyperactivity as indexed by increased regional cerebral blood flow 

(CBF)17,18 and cerebral blood volume (CBV)19–23. Such hyperactivity has been linked to higher severity 

of positive symptoms such as delusions and hallucinations2,15,24. Increases in CBF are also observed in 
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psychosis vulnerability states, including individuals at clinical high-risk (CHR) for psychosis and healthy 

individuals with high schizotypy25–28. As mentioned above, such activity increases are proposed to 

result from GABAergic interneuron dysfunction2. Supporting this premise, a positron emission 

tomography (PET) study with the non-selective GABAA receptor (α1-3;5GABAAR) tracer [11C]flumazenil 

found increases in in vivo GABAA receptor binding in antipsychotic-naïve psychosis patients, that were 

linked to their cognitive symptoms and abnormal cortical oscillations29. More recently, studies using 

the more selective PET radiotracer [11C]Ro15-4513, reported binding decreases in hippocampal 

GABAA α5 receptors (α5GABAAR) in antipsychotic-free patients30 but not in patients currently 

undergoing treatment30,31. Seeking to further characterize the nature of hippocampal dysfunction in 

psychosis, reductions in the synaptic vesicle glycoprotein 2A (SV2A) – a putative marker of synaptic 

density – have  been reported in the hippocampus of patients by in vivo [11C]UCB-J PET imaging32,33. 

This corroborates post-mortem34–39 findings of decreased dendritic spines and synaptic markers, as 

well as genetic evidence of variants in synaptic protein coding genes40–43. Finally, other studies using 

proton magnetic resonance spectroscopy (1H-MRS) to quantify excitatory and inhibitory metabolites 

in the hippocampus identified increases in the levels of combined glutamine and glutamate (Glx)44,45, 

but not GABA46,47, in patients with psychosis compared to healthy controls. Despite these recent 

human neuroimaging advances supporting a key mechanistic role for GABAergic dysfunction in 

psychosis, such neuroimaging assessments cannot inform whether these signal changes are 

associated with specific neuronal subpopulations, such as PV+ interneurons. 

 

One way to address this issue is by targeted (e.g. genetic) modification of specific cell types in animal 

models. This allows the effects of such genetic modifications to be assessed using the same 

neuroimaging modalities used in human (clinical) studies48,49, providing more direct evidence linking 

cellular defects to macroscopic in vivo neuroimaging changes. For example, previous work in the cyclin 

D2 knockout model identified increased CBV as a result of hippocampal PV+ interneuron reduction50. 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.07.483347doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.07.483347
http://creativecommons.org/licenses/by/4.0/


5 
 

In another mouse model, deletion of the tyrosine kinase receptor Erbb4 (a susceptibility gene linked 

to psychosis51,52) from PV+ interneurons53,54 in the cortex and hippocampus leads to several psychosis-

relevant phenotypes55–58. These include synaptic deficits (e.g., decreased interneuron signaling in the 

hippocampus, dysregulated glutamatergic activity of hippocampal pyramidal cells)55, elevated striatal 

dopamine58 and psychosis-relevant behaviors (e.g., hyperlocomotion, impaired prepulse inhibition, 

impaired cognitive and social behavior)55. Erbb4 mutant mice thus represent a suitable model in which 

to analyze the contribution of PV+ interneuron dysfunction to hippocampal abnormalities associated 

with psychosis using non-invasive, clinically translational neuroimaging methods.  

 

Our study used the Erbb4 mouse model to determine how the PV+ interneuron dysfunction affects in 

vivo functional neuroimaging readouts commonly used in humans: arterial spin labeling (ASL) to 

measure CBF, and 1H-MRS to measure glutamate, glutamine and GABA levels in the hippocampus. 

Next, we sought to characterize hippocampal receptor and synaptic densities in this model, using ex 

vivo quantitative autoradiography with radioligands previously used in human in vivo PET studies: 

[3H]Ro15-4513 to measure α5GABAAR, [3H]flumazenil for α1-3;5GABAAR, and [3H]UCB-J for SV2A. 

Based on the synaptic deficits previously reported in these animals55, and the evidence that PV+ 

interneuron deficits underlie hippocampal hyperactivity in psychosis2, we hypothesized that Erbb4 

mouse mutants would show increases in CBF, glutamatergic metabolites and α1-3;5GABAAR density, 

as well as decreases in α5GABAAR and SV2A density in the hippocampus compared to wild-type 

littermate controls.  
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Methods 

Animals 

All animal procedures were performed in accordance with UK Home Office Animals (Scientific 

Procedures) Act 1986 and approved by the local King’s College London Animal Welfare Ethical Review 

Body. Animals were maintained under standard laboratory conditions on a 12:12 light/dark cycle with 

water and food ad libitum. Mice carrying loxP-flanked Erbb4 alleles56 were crossed with Lhx6-Cre 

mice59 to generate Lhx6-Cre;Erbb4F/F conditional mutants. Wild-type Erbb4F/F littermates were used as 

controls. 

 

Experimental design 

Twelve Lhx6-Cre;ErbB4F/F (9 female; 3 male) and 12 Erbb4F/F control (5 female; 7 male) adult (PD98 ± 

11 days) mice underwent in vivo MR imaging. MR images were acquired using a 9.4T Bruker BioSpec 

94/20 scanner with an 86-mm volume transmission coil and receive-only 2x2 surface array coil. All MR 

data were acquired from anesthetized animals (see Anesthesia section below) in a single scanning 

session and the brains were collected immediately after scanning for quantitative autoradiography. 

 

Anesthesia 

Mice were initially anesthetized with 5% isoflurane in a mixture of 70% air and 30% oxygen. Once they 

were positioned on the scanner bed, a subcutaneous bolus of medetomidine (0.05 mg/kg) was 

administered and the isoflurane reduced to 1.5%. Eight minutes after the bolus, a subcutaneous 

infusion of medetomidine (0.1 mg/kg/hr) was started and maintained until the end of the ASL scan60,61. 

Then, the medetomidine infusion was stopped and the isoflurane level was increased to 2% for the 

remaining scans. 
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Arterial Spin Labeling 

Pseudo-continuous ASL (pCASL) was used to quantify CBF. The pCASL protocol includes a perfusion 

scan and two pre-scans to determine the optimal label and control phase increments and an inversion 

efficiency (IE) scan for each mouse62. The labeling slice was positioned 5 mm upstream of the carotid 

bifurcation identified by localizer scans of the neck. The labeling duration (𝜏) and post-label delay were 

3000/300 ms, 1500/300 ms, and 200/0 ms for the perfusion scan, pre-scans, and IE scan, respectively. 

The pre-scans and perfusion scan used a 2D spin-echo echo-planar imaging readout: echo time 

(TE)/repetition time (TR) = 14.1/4000 ms, readout bandwidth = 300 kHz, matrix = 92x60, field-of-view 

(FOV) = 18.4x12 mm. Ten 1-mm-thick slices were acquired for the perfusion scan, and a single 4-mm-

thick slice for the pre-scans. For the IE scan, a single 1-mm-thick slice 3 mm downstream of the labeling 

slice was acquired using a flow-compensated gradient echo sequence: TE/TR = 5.2/220 ms, flip angle 

(FA) = 25°, matrix = 200x180, FOV = 20x18 mm, 4 averages. The perfusion scan comprised 40 

label/control image pairs. Four additional control images were acquired with reversed phase-encoding 

blips for distortion correction, which was performed using FSL topup (v5.0.1063). 

 

T1 maps were acquired for CBF quantification using an MP2RAGE sequence: TE/TR = 2.5/7 ms, 

MP2RAGETR = 7000 ms, inversion times TI1/TI2 = 800/2500 ms, FA = 7/7°, matrix = 108x108x64, FOV 

= 16.2x16.2x9.6 mm. The qi_mp2rage command from the QUantitative Imaging Toolbox (QUIT 

v2.0.264) was used to compute T1 maps from the complex MP2RAGE images.  

 

Custom MATLAB scripts were written to calculate the mean IE in manually drawn regions of interest 

(ROIs) around both carotid arteries and quantitative CBF maps using the following equations: 
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𝐼𝐸 =
|𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙  −  𝑀𝑙𝑎𝑏𝑒𝑙|

2𝑀𝑐𝑜𝑛𝑡𝑟𝑜𝑙
 

𝐶𝐵𝐹 =
6000 ⋅  𝜆 ⋅  (𝑆𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙  − 𝑆𝐼𝑙𝑎𝑏𝑒𝑙)  ⋅  𝑒𝑃𝐿𝐷/𝑇1𝑏𝑙𝑜𝑜𝑑

2 ⋅  𝐼𝐸 ⋅  𝑇1𝑏𝑙𝑜𝑜𝑑  ⋅  𝑆𝐼𝑐𝑜𝑛𝑡𝑟𝑜𝑙  / (1 −  𝑒−𝑇𝑅/𝑇1)  ⋅  (1 − 𝑒𝜏/𝑇1𝑏𝑙𝑜𝑜𝑑)
 

 

Mcontrol and Mlabel are the complex signals from the control and label images from the IE scan, SIcontrol 

and SIlabel are the time-averaged signal intensities of the control and label images from the perfusion 

scan, assuming the blood-brain partition coefficient 𝜆 = 0.9 ml/g, and T1blood = 2.4 s. 

 

The T1 images were used to register all subjects to the Allen mouse brain Common Coordinate 

Framework v3 (CCFv3) using antsRegistration to perform sequential rigid-body, affine, and SyN 

diffeomorphic registrations (ANTs v2.1.065). CBF maps were normalized by the mean CBF of the whole 

brain, and then mean CBF values were calculated for 21 ROIs derived from the CCFv3 atlas labels. We 

focused our analyses on the dorsal and ventral hippocampus (Figure 2A). For completeness, 

exploratory independent t-tests of other atlas-derived ROIs are presented in the supplementary 

materials (Table S2). 

 

Magnetic resonance spectroscopy 

1H-MRS was used to quantify hippocampal metabolite profiles66 in conditional Erbb4 mouse mutants 

and control animals. After manually placing the voxel at the hippocampus (Figure 3A), with the aid of 

T1 structural images, individual spectra were acquired using a Point REsolved Spectroscopy (PRESS) 

pulse sequence67 with the following parameters: TE = 8.23 ms, TR = 2500 ms, 512 averages, acquisition 

bandwidth = 4401 Hz, 2048 acquisition points, voxel size = 1.5×1.5×3 mm. Outer volume suppression 

and water suppression with variable pulse power and optimized relaxation delays (VAPOR) were used 
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in order to mitigate the contribution of signal from outside the prescribed voxel and suppress 

unwanted signal from water.  

 

MR spectra were analyzed with two software packages: FID Appliance (FID-A68) and Linear 

Combination (LC) Model version 6.369,70. First, FID-A was used to pre-process 1H-MRS 

data, simulate the metabolites and create a basis set (model spectra). Then, we 

used LCModel to calculate the water-referenced concentration (in mM) of the different metabolites 

by applying linear combinations of the model spectra to determine the best fit of the individual 1H-

MRS data71. Finally, the method of Cramér Rao (Cramér Rao Lower Bound, CRLB) was applied to 

ensure the reliability of the metabolite quantification, by which metabolite concentrations with S.D. ≥ 

20% are classified as not accurately detectable and are discarded72,73. Using these criteria no data had 

to be discarded for our metabolites of interest: gamma-aminobutyric acid (GABA), glutamine (Gln), 

and glutamate (Glu) (Figure 1).  

 

Quantitative autoradiography 

Following the MR scanning, mice were sacrificed, the brains dissected, and flash frozen in cold (-40°C) 

isopentane on dry ice, then stored at -80°C. Frozen brains were coronally cryosectioned at 20µm and 

mounted onto glass slides, then dried on a hotplate. Quantitative autoradiography was performed as 

previously described74,75 using radioligands [3H]Ro15-4513, [3H]flumazenil and [3H]UCB-J. All slides 

were soaked in Tris buffer (50mM) for 20 minutes prior to incubation with radioligands for specific or 

non-specific binding, and this was followed by two washes in Tris buffer for 2 minutes each, and a 

rinse in dH2O, before overnight air-drying.  

 

To quantify density of α5GABAAR76–78 sections were incubated for 60 minutes at room temperature in 

2nM [3H]Ro15-4513 (Perkin Elmer, NET925250UC), or in 2nM [3H]Ro15-4513 with 10 µM bretazenil 
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(Sigma, B6434) for nonspecific binding. To quantify α1-3;5GABAAR79 sections were incubated for 60 

minutes at 4°C in 1nM [3H]flumazenil (Perkin Elmer, NET757001MC), or in 1nM [3H]flumazenil with 10 

µM flunitrazepam (Sigma Aldrich, F-907 1ML) for nonspecific binding. To quantify SV2A density80, 

sections were incubated for 60 minutes at room temperature in 3nM [3H]UCB-J (Novandi Chemistry 

AB, NT1099), or in 3nM [3H]UCB-J with 1mM levetiracetam (Sigma Aldrich, L8668) for nonspecific 

binding.  

 

Dried slides and [3H] standards (American Radiolabelled Chemicals, Inc., USA, ART-123A) were placed 

into light-proof cassettes, and a [3H]-sensitive film (Amersham Hyperfilm, 28906845) was placed on 

top. The films were exposed 2 weeks for [3H]UCB-J, 4 weeks for [3H]flumazenil and 8 weeks for 

[3H]Ro15-4513. All films were developed with a Optimax 2010 film developer (Protec GmbH & Co, 

Germany) and autoradiographs captured using an AF-S Micro NIKKOR 60mm lens on top of a light box 

(Northern Lights, USA). Lighting conditions were kept the same during imaging capture of each film. 

Optical density was measured in standards and ROIs of autoradiographs using ImageJ (1.52e). 

Receptor binding (µCi/mg) was calculated with robust regression interpolation in GraphPad Prism 

(v9.2.0 for Windows) using standard curves created from optical density measurements of [3H]-

standards slide for each film. 

 

For [3H]Ro15-4513 and [3H]flumazenil, four ROIs were sampled: CA1 of the dorsal hippocampus, CA3 

of the middle hippocampus, CA1/2 of the middle hippocampus, and the CA3 of the ventral 

hippocampus (Figure 1A). Owing to better signal/contrast to noise ratio of [3H]UCB-J autoradiographs 

(Figure 1B), we were also able to analyze the binding in the dentate gyrus. These hippocampal ROIs 

were selected based on previous evidence implicating their involvement in psychosis19,22,24,55,81,82. For 

completeness, further non-hippocampal ROIs (amygdala, retrosplenial cortex, visual cortex, prelimbic 
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cortex, motor cortex, orbital cortex) were sampled, and their exploratory statistical analysis for all 

three radioligands is presented in the supplementary materials (Table S3-5). 

 

Figure 1. Representative hippocampal regions of interests. (A) Regions of interests sampled for 

[3H]Ro15-4513 and [3H]flumazenil. (B) Regions of interests sampled for [3H]UCB-J. dHip CA1: dorsal 

hippocampus CA1; mHip CA3: middle hippocampus CA3; mHip CA1/2: middle hippocampus CA1/CA2; 

vHip CA3: ventral hippocampus CA3; dHip DG: dorsal hippocampus dentate gyrus; mHip DG: middle 

hippocampus dentate gyrus. 

 

Statistical Analysis 

Statistical analysis was conducted using GraphPad Prism software (v9.2.0 for Windows). To investigate 

the group differences in CBF and autoradiography data, we used mixed-effects analyses, with the 

genotype (Lhx6-Cre;Erbb4F/F vs Erbb4F/F control mice) as between-group factor and ROI as within-

group factor. Any significant interaction effects of genotype x ROI were investigated by follow-up 

multiple comparisons and p values were adjusted using Bonferroni correction (pcorr). For metabolite 

data, we analyzed group differences using independent t-tests per metabolite and Bonferroni-

adjusted p values. Significance threshold was set to p < 0.05. Cohen’s d and partial eta squared effect 
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sizes were calculated from test statistics using the effectsize library (v 0.583) in RStudio (v1.3.1093). 

Due to technical failures such as scanning faults, inadequate tissue preparation, and Covid-19 

restrictions limiting laboratory access, the following mouse data were missing: 2 Erbb4F/F mice for CBF, 

3 Erbb4F/F and 1 Lhx6-Cre;Erbb4F/F mice for [3H]UCB-J autoradiography, 1 Erbb4F/F and 2 Lhx6-

Cre;Erbb4F/F mice for [3H]-Ro15-4513, and 2 Erbb4F/F and 3 Lhx6-Cre;Erbb4F/F mice for [3H]flumazenil. 

To better graphically depict the comparison between different 1H-MRS metabolites (Figure 3B), we 

calculated z scores of individual concentrations in relation to the pooled group mean metabolite 

concentration.  
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Results 

Ventral hippocampal CBF is increased in Lhx6-Cre;Erbb4F/F mice 

There was no significant main effect of genotype on CBF (F(1,20)=2.75, p=0.11, 𝜂𝑝
2=0.12), but we 

identified a genotype x ROI interaction effect (F(1,20)=11.91, p=0.003, 𝜂𝑝
2=0.37). Follow-up analysis 

(Figure 2B) revealed a significant increase in CBF values in Lhx6-Cre;Erbb4F/F mice compared to wild-

type littermates in the ventral (t(40)=2.54, pcorr=0.03, d=0.80), but not in the dorsal hippocampus 

(t(40)=0.67, pcorr>0.9, d=0.21).  

 

Figure 2. Regional cerebral blood flow in Lhx6-Cre;Erbb4F/F mice is increased in the ventral 

hippocampus. (A) Hippocampal regions of interest for sampling overlaid on the mouse brain template 

(approximate distance from Bregma84, top -2.8, bottom -3.2); yellow = dorsal hippocampus and blue 

= ventral hippocampus. (B) Regional cerebral blood flow is increased in the ventral hippocampus, but 

not in the dorsal hippocampus in Lhx6-Cre;Erbb4F/F mutants (n=12) compared to control mice (n=10; 

multiple comparison independent t-tests). vHip: ventral hippocampus; dHip: dorsal hippocampus. 
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Glutamine levels are increased in ventral hippocampus of Lhx6-Cre;Erbb4F/F mice 

Lhx6-Cre;Erbb4F/F mice showed increased glutamine levels in the ventral hippocampus compared to 

control animals (t(22)=4.60, p<0.001, d=1.96, Figure 3B and Table 1). There were no significant group 

differences in either glutamate or GABA concentrations (Table 1). 

Table 1. 1H-MRS absolute metabolite concentrations in millimolar 

 Erbb4F/F 

(n=12) 

Lhx6-Cre;Erbb4F/F 

(n=12) 

Erbb4F/F vs. Lhx6-Cre;Erbb4F/F 

 Mean (SD) Mean (SD) t p* 

Glu 6.77 (0.51) 6.68 (0.80) 0.31 >0.9 

Gln 2.29 (0.23) 2.84 (0.34) 4.60 <0.001 

GABA 2.08 (0.49) 2.02 (0.30) 0.38 >0.9 

Glu: glutamate; Gln: glutamine; *Bonferroni-adjusted p values 
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Figure 3. (A) Representative 1H-MRS PRESS voxel (red) and corresponding shim (green) placement in 

ventral hippocampus (left) and 1H-MRS spectrum (right). (B) Z-scores of 1H-MRS metabolites in the 

ventral hippocampus. Glutamine was significantly increased in Lhx6-Cre;Erbb4F/F mutant mice (n=12) 

compared to control mice (n=12; independent t-tests). GABA: gamma-aminobutyric acid; Glu: 

glutmate; Gln: glutamine. 
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Lhx6-Cre;Erbb4F/F mice display decreased [3H]-UCB-J binding in the hippocampus 

There was a significant main effect of genotype on [3H]UCB-J binding (F(1,18)=7.27, p=0.02, 𝜂𝑝
2=0.29), 

indicating reduced synaptic density in Lhx6-Cre;Erbb4F/F mice compared to control animals across all 

hippocampal ROIs (Figure 4A). No genotype x ROI interaction effect was observed (F(4,66)=0.68, p=0.61, 

𝜂𝑝
2=0.04).  

 

[3H]Ro15-4513 binding, as a measure of α5GABAAR density, did not differ significantly between the 

two genotypes (F(1,19)=0.05, p=0.82, 𝜂𝑝
2<0.01; Figure 4B). Similarly, α1-3;5GABAAR density as measured 

by [3H]flumazenil binding did not differ between the genotypes (F(1,17)=0.07, p=0.79, 𝜂𝑝
2<0.01; Figure 

4C).  

 

Figure 4. [3H]UCB-J, but not [3H]Ro15-4513 or [3H]flumazenil binding in Lhx6-Cre;Erbb4F/F mice is 

decreased across the hippocampus. (A) [3H]UCB-J showed a significant decrease in synaptic density in 
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Lhx6-Cre;Erbb4F/F mice (n=11) compared to control animals (n=9) across all hippocampal ROIs (mixed 

effects analysis; main effect of genotype: F(1,18)=7.27, p=0.02, ηp
2=0.29). (B) [3H]Ro15-4513 (n=10-

11/group) and (C) [3H]flumazenil (n=9-10/group) binding did not differ by genotype. dHip CA1: dorsal 

hippocampus CA1; mHip CA3: middle hippocampus CA3; mHip CA1/2: middle hippocampus CA1/CA2; 

vHip CA3: ventral hippocampus CA3; dHip DG: dorsal hippocampus dentate gyrus; mHip DG: dentate 

gyrus.  
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Discussion 

In this study, we used conditional Erbb4 mutants to examine the effects of PV+ inhibitory interneuron 

dysfunction on key neuroimaging markers of psychosis. We identified abnormalities in hippocampal 

activity, neurochemistry and synaptic density that are largely convergent with clinical neuroimaging 

findings in patients. More specifically, compared to wild-type mice, Erbb4 mutants showed increased 

CBF and glutamine levels in the ventral hippocampus, as well as decreases in SV2A levels across 

hippocampal sub-regions. GABA and glutamate levels did not significantly differ between the groups, 

and there were no differences in the density of any of the measured GABAergic receptors. 

Interestingly, in our exploratory analysis of regions outside of the hippocampus (see Supplementary 

Tables S1, S3-5 and Supplementary Discussion) we found additional group differences, although these 

did not survive multiple comparisons correction. Thus, in Erbb4 mutant mice, we observed further 

elevations of CBF in the entorhinal cortex and increases of α5GABAAR density in the retrosplenial 

cortex. Additionally, decreases in α1-3;5GABAAR density in the retrosplenial cortex approached 

significance. 

 

Our investigation focused primarily on the hippocampus, based on pre-existing hypotheses suggesting 

that PV+ interneuron loss in the ventral part of this region contributes to its hyperactivity and is 

associated with further electrophysiological and cognitive deficits relevant to psychosis2,15. Indeed, 

hippocampal disinhibition is suggested to disrupt cognitive functioning in schizophrenia15, consistent 

with the vital role of PV+ interneurons in entraining gamma oscillations8. In concordance with the 

hippocampal hyperactivity hypothesis2, in the Erbb4 model of PV+ interneuron dysfunction, inhibitory 

control over pyramidal neurons is disrupted55, leading to increased neural activity captured by CBF via 

neurovascular coupling85. Importantly, our findings are localized to the ventral part of the 

hippocampus, matching the previous findings of increased CBV in psychosis patients19,21–23 and CBF in 

CHR patients26,28 in the human anatomical equivalent, the anterior hippocampus. Further, our findings 

align with previous evidence of increased CBV in the cyclin D2 knockout model that exhibits PV+ 
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interneuron loss50. Here, we used a model that manipulates an established schizophrenia 

susceptibility gene instead, and expand findings of PV+ interneuron related hippocampal hyperactivity 

in the less invasive and quantitative MR method of ASL.  

 

In terms of our 1H-MRS findings, we identified an increase in glutamine, but not glutamate or GABA, 

in the ventral hippocampal region. Disinhibition of pyramidal neuronal activity in the Erbb4 

model53,55,86, is thought to lead to increased glutamate release87,88. However, glutamine, a precursor 

of glutamate, could be considered a better indicator of glutamatergic neurotransmission89. This is 

based on the premise that any synaptically released glutamate is quickly taken up by astrocytes and 

recycled to glutamine90,91. Accordingly, increased glutamine in the medial temporal lobe / hippocampi 

has previously been detected by 1H-MRS in psychosis patients44. Other human studies also showed 

evidence of elevated Glx44,45 - a composite of glutamate and glutamine – that is preferentially 

measured at lower magnetic fields such as 1.5 or 3T in humans, where the separation between those 

two metabolites is not robust92. These findings suggest that increased glutamine may be a good 

indicator of elevated glutamatergic neurotransmission and it occurs as a consequence of PV+ 

interneuron dysfunction.  

 

Furthermore, no Erbb4 genotype effect was observed in hippocampal 1H-MRS GABA levels. Previous 

findings in conditional Erbb4 mutants had identified reduced expression of two GABA synthesizing 

GAD isomers, GAD65 and GAD67, as well as reduced frequency of miniature inhibitory postsynaptic 

GABAergic currents55. However, it is also known that, as a result of PV+ inhibitory neuron disruption, 

both PV+ interneurons and excitatory pyramidal cells eventually become hyperactive in Erbb4 mutants 

through possible compensatory mechanism in order to maintain excitation/inhibition balance55. This 

compensatory inhibitory interneuron activity may counteract any deficits in GABA synthesis, thereby 
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explaining the lack of measurable differences in GABA between the groups. Indeed, no changes in 

hippocampal GABA levels were identified in psychosis patients by a previous 1H-MRS GABA study46. 

 

Although we hypothesized changes in hippocampal GABAergic receptor densities as a result of PV+ 

interneuron disruption, we found no differences between Erbb4 mutants and control mice in either 

α1-3;5GABAAR or α5GABAAR. In humans, increases in α1-3;5GABAAR availability29 and decreases in the 

more specific α5GABAAR30 have been identified in groups of antipsychotic-naïve and medication-free 

schizophrenia patients, respectively. As Erbb4 deletion specifically affects PV+ interneurons, a lack of 

α5GABAAR changes may be due to this subunit’s putative co-expression with somatostatin-expressing 

rather than PV+ interneurons78, suggesting that perhaps PV+ interneurons are not responsible for the 

α5GABAAR changes seen in humans30.  Contrastingly, imaging transcriptomics suggest that the 

distribution of flumazenil binding and PV+ interneuron expression are correlated78 thus we expected 

to see changes in α1-3;5GABAAR. However, while preclinical evidence in the Erbb4 model has 

demonstrated small decreases in α1GABAAR clusters at PV+ interneuron terminals55, it is possible α1-

3;5GABAAR are upregulated outside of such terminals as a compensatory mechanism due to decreased 

GABAergic neurotransmission7,29. Future studies should investigate α1-3;5GABAAR density in the 

Erbb4 animal model longitudinally to understand whether compensatory increases develop as a result 

of PV+ interneuron dysfunction. 

 

Finally, post-mortem34–39 and genetic40–43 evidence suggest that synaptic dysfunction plays an 

important role in psychosis pathophysiology. Recent clinical neuroimaging studies have provided in 

vivo evidence for synaptic density decreases in psychosis patients, using PET radioligand [11C]UBC-J to 

image the synaptic glycoprotein SV2A32,33, a putative marker of synaptic density. Synaptic deficits are 

present in Erbb4 mutant mice: excitatory synapses onto fast-spiking inhibitory neurons and 

presynaptic boutons in chandelier cells55, which are highly expressed in regions such as the 
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hippocampus93, are reduced. Our study shows that such synaptic losses can be measured at a 

macroscopic scale via autoradiography in rodents and suggest that PV+ interneuron dysfunction may 

be underlying the reductions of SV2A observed in patients with psychosis. 

 

There are some limitations to our study. Despite known sex differences in psychosis such as incidence 

rate, age of illness onset, illness course and treatment response94,95, both male and female mice were 

used for our study. This was based on following best practice96,97 and the 3Rs98 to avoid sex bias in 

preclinical research99. Behavioral testing was not performed in our animals, which may have enabled 

investigating associations with the imaging data. However, the behavior of Erbb4 mutant mice has 

already been well characterized55–57,100 and the scope of our study was limited to the neuroimaging 

phenotypes arising from PV+ interneuron dysfunction. Future studies may expand on these results 

and link neuroimaging with behavioral readouts to better understand their relationships in the context 

of this model system. Finally, the mice were imaged at only one time-point (adulthood). Future studies 

should capitalize on the repeatability of in vivo neuroimaging49 and inform developmental trajectories 

of PV+ interneuron dysfunction on neuroimaging phenotypes.  

 

In summary, our study provides direct evidence linking PV+ interneuron dysfunction in the Erbb4 

mouse model to analogues of in vivo neuroimaging alterations previously identified in psychosis and 

CHR patients. These alterations include increased CBF and glutamine levels, as well as reduced 

synaptic density in the hippocampus. Overall, these findings suggest that the use of translational 

neuroimaging methods may be a viable strategy to identify new therapeutic targets and serve as non-

invasive measures of target engagement. Furthermore, our findings support the view that targeting 

inhibitory dysfunction in the hippocampus may be a promising therapeutic strategy for psychosis.  
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Figure Legends 

Figure 1. Representative hippocampal regions of interests. (A) Regions of interests sampled for 

[3H]Ro15-4513 and [3H]flumazenil. (B) Regions of interests sampled for [3H]UCB-J. dHip CA1: dorsal 

hippocampus CA1; mHip CA3: middle hippocampus CA3; mHip CA1/2: middle hippocampus CA1/CA2; 

vHip CA3: ventral hippocampus CA3; dHip DG: dorsal hippocampus dentate gyrus; mHip DG: middle 

hippocampus dentate gyrus. 

Figure 2. Regional cerebral blood flow in Lhx6-Cre;Erbb4F/F mice is increased in the ventral 

hippocampus. (A) Hippocampal regions of interest for sampling overlaid on the mouse brain template 

(approximate distance from Bregma84, top -2.8, bottom -3.2); yellow = dorsal hippocampus and blue 

= ventral hippocampus. (B) Regional cerebral blood flow is increased in the ventral hippocampus, but 

not in the dorsal hippocampus in Lhx6-Cre;Erbb4F/F mutants (n=12) compared to control mice (n=10; 

multiple comparison independent t-tests). vHip: ventral hippocampus; dHip: dorsal hippocampus. 

Figure 3. (A) Representative 1H-MRS PRESS voxel (red) and corresponding shim (green) placement in 

ventral hippocampus (left) and 1H-MRS spectrum (right). (B) Z-scores of 1H-MRS metabolites in the 

ventral hippocampus. Glutamine was significantly increased in Lhx6-Cre;Erbb4F/F mutant mice (n=12) 

compared to control mice (n=12; independent t-tests). GABA: gamma-aminobutyric acid; Glu: 

glutmate; Gln: glutamine. 

Figure 4. [3H]UCB-J, but not [3H]Ro15-4513 or [3H]flumazenil binding in Lhx6-Cre;Erbb4F/F mice is 

decreased across the hippocampus. (A) [3H]UCB-J showed a significant decrease in synaptic density in 

Lhx6-Cre;Erbb4F/F mice (n=11) compared to control animals (n=9) across all hippocampal ROIs (mixed 

effects analysis; main effect of genotype: F(1,18)=7.27, p=0.02, ηp
2=0.29). (B) [3H]Ro15-4513 (n=10-

11/group) and (C) [3H]flumazenil (n=9-10/group) binding did not differ by genotype. dHip CA1: dorsal 

hippocampus CA1; mHip CA3: middle hippocampus CA3; mHip CA1/2: middle hippocampus CA1/CA2; 

vHip CA3: ventral hippocampus CA3; dHip DG: dorsal hippocampus dentate gyrus; mHip DG: dentate 

gyrus. 
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