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Abstract1

Flux balance analysis (FBA) is a powerful tool to study genome-scale models of the cellular metabolism,2

based on finding the optimal flux distributions over the network. While the objective function is crucial for3

the outcome, its choice, even though motivated by evolutionary arguments, has not been directly connected4

to related measures. Here, we used an available multi-scale mathematical model of yeast replicative ageing,5

integrating cellular metabolism, nutrient sensing and damage accumulation, to systematically test the effect6

of commonly used objective functions on features of replicative ageing in budding yeast, such as the number7

of cell divisions and the corresponding time between divisions. The simulations confirmed that assuming8

maximal growth is essential for reaching realistic lifespans. The usage of the parsimonious solution or the9

additional maximisation of a growth-independent energy cost can improve lifespan predictions, explained by10

either increased respiratory activity using resources otherwise allocated to cellular growth or by enhancing11

antioxidative activity, specifically in early life. Our work provides a new perspective on choosing the objective12

function in FBA by connecting it to replicative ageing.13

1 Introduction14

The topology of metabolic networks are well established for many types of prokaryotic and eukaryotic cells,15

particularly in comparison to other biochemical networks. The reconstruction of the networks is feasible16

due to availability of experimental data and standardised methods [1–3]. However, analysing them is more17

challenging, mainly because of their large size and interconnectivity [4–7]. Constraint-based mathematical18

modelling, such as flux balance analysis (FBA), has helped to unravel features of the metabolic reconstruction19

[8, 9]. The FBA approach represents chemical reactions through mass-balance and steady-state assumptions20

on the network components. The optimisation problem is formulated by a set of linear constraints and is21

classically solved for a set of target objectives. Despite generally large solution spaces, FBA models were able22

to accurately predict exchange fluxes, growth rates and metabolic switches in chemostat and batch cultures in23

various conditions and organisms [3, 10–13]. Still, predicting individual fluxes or enzymes remains a challenge24

[14]. An extensive amount of work has been dedicated to making resulting optimal flux distributions more25

realistic, by adding biologically motivated constraints, such as resource [15], enzyme [16], proteome [17] or26

thermodynamic constraints [18, 19].27
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While the choice of the objective function also has a vast impact on the possible solutions, and ultimately28

determines how the fluxes can be distributed across the network, it has received less attention. Schuetz29

et al. investigated a set of objective functions in an E.Coli stoichiometric network model and fitted the30

simulated fluxes to C-based flux data in different conditions, concluding that maximal energy (ATP) or31

biomass production are most accurate to describe the data [20]. Moreover, it was concluded that the objective32

functions that fit the data best can be condition-dependent. More recent studies showed similar results in the33

budding yeast S. cerevisiae [21]. The minimisation of the redox potential in the cell was further mentioned34

as a potential objective [22]. Algorithms to infer an objective function to a FBA model using experimental35

flux data also suggested maximal growth as the best choice [23, 24]. Furthermore, combinations of different36

objectives have been investigated using multi-objective optimisation [25, 26] or yield optimisation [27, 28].37

Altogether, the consensus objective doesn’t exist. Further, even though motivated by evolutionary argu-38

ments, the selection criteria for objective functions in FBA in previous studies arose from flux data from the39

metabolism, and have not been directly coupled to evolutionary properties such as reproduction or ageing. In40

this work, we therefore aimed to systematically investigate the effect of the objective function in flux balance41

analysis on the replicative ageing in cells, using budding yeast as a model organism. While rationalising42

experimental data in order to decide which objective function fits the best under certain conditions is feasi-43

ble, it is more challenging to experimentally measure the objective function and study its consequences on44

long-term dynamic effects like ageing. For that reason, we exploit our recently published multi-scale mathe-45

matical model of yeast metabolism and ageing [29]. The central carbon metabolism including the creation of46

reactive oxygen species (ROS) is represented by an enzyme-constrained flux balance model, that is further47

constrained by the regulation upon oxidative stress and nutrient availability, and connected to a dynamical48

model of damage accumulation and growth, including discrete cell division event. We can therefore simulate49

the effect of molecular changes in the metabolism on observables on the cellular level, such as the number of50

daughter cells produced, i.e. the replicative lifespan, and the time between cell divisions, i.e. the generation51

time.52

In this work, we analysed the effect of commonly used objectives in FBA on evolutionary important features53

in yeast wildtype cells, shedding light on the old question of the choice of the objective function in FBA from54

a new theoretical perspective.55

2 Results56

Maximal growth is the most realistic objective for reaching wildtype yeast lifes-57

pans58

The objective of the FBA model is naturally changing the distribution of optimal fluxes in the metabolic59

network, which in turn influence damage accumulation and lifespan in our model. To quantify the changes in60

the replicative lifespan and the generation times, we simulated the lifespan of cells using different objective61

functions in the FBA model of the metabolism. In particular, we tested objectives comparable to previ-62

ous studies [20, 21, 30]: maximal growth, minimal glucose uptake, maximal and minimal ATP production,63

minimal NADH production, and maximal non-growth associated maintenance (NGAM). We chose a lexico-64

graphic approach with up to two successive optimisations, denoted with 1 and 2 in the subscripts. After65

each optimisation we allowed a violation of the respective optimal value z1,2 by ε1,2 · z1,2, with 0 ≤ ε1,2 ≤ 1,66

in the following optimisations to ensure flexibility and feasibility. We investigated a range of ε1,2 to better67

understand the consequence of this parameter. We did not constrain the usage of glucose, neither from above68

nor from below, such that its uptake rates is purely determined by the objective and the existing reaction,69

enzymatic and regulatory constraints. For that reason, a minimisation step as fist objective causes simulated70

cells to either not or only grow by slowly taking in nutrients and not dividing. In this work we focus on71

replicative ageing, thus we allow nutrient-rich environment and disregard effects of nutrient limitations.72

The simulations showed that the choice of the objective functions has a vast impact on the replicative lifespan73
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and the generation times (Fig 1A-B, left panels). Without having maximal growth as either the first or second74

optimisation the cells do not reach high enough growth rates, and in many cases do not divide at all or only75

1-2 times with long generation times. We therefore conclude that maximal growth is crucial for replicative76

ageing.77

Further, there is no consistent effect on the replicative lifespans for increased flexibility in the objective values78

(ε1,2). However, the average generation times are increased for increased ε1 if maximal growth is the first79

objective, while it is decreased when the same objective is used as second. The flexibility ε2 generally seems80

to be less influential on the two ageing characteristics.81

We defined wildtype cells as cells that divide between 20 and 30 times with average generation time of 1.582

to 2.3 hours [31–33]. We observed that only few combinations of objective functions and ε1,2 generated what83

we denote as wildtype cells (Fig 1C, left panel). In those cases, maximal growth as an objective is always84

included. Additionally, maximal NGAM, as both first or second objective, seems to make flux distributions85

more realistic in the sense that more wildtype cells can be generated.86

Using the parsimonious solution can cause a rearrangement of fluxes leading to87

increased lifespans88

A common approach to decrease the possible solution space of FBA models is to take the parsimonious89

solution, i.e. the solution with the minimal sum of fluxes through the network [34]. In enzyme-constrained90

FBA the minimal enzyme usage is an optional addition. Biologically, it is justified by the assumption that91

cells would always choose the most efficient nutrient consumption and enzyme usage to create energy. To92

test the effect of this assumption on ageing characteristics, we repeated the simulation described previously,93

but used the parsimonious solution for each parameter set (Fig 1A-B, right panels). This means that after94

the maximally two optimisations, we performed another optimisation and minimised the sum of all fluxes95

and enzymes usages, given the optimal values of the previous optimisations.96

The simulation showed that the average generation times remained unchanged when introducing the flux-97

and enzyme-efficient solution. However, the replicative lifespans could be increased when maximal growth98

was the first objective or when optimising for maximal ATP production and maximal growth, while all other99

cases were not affected. The use of the parsimonious solution had a particularly strong effect if at the same100

time the flexibility ε1 was larger than 30%. As a consequence, the number of observed wildtype cells increased101

substantially when primarily maximising for growth (Fig 1C, right panel, and S1). It is also worth noting that102

applying an additional parsimonious optimisation has a negligible effect if maximal NGAM was included.103

To study how and why an efficient usage of the resources can increase the replicative lifespan, we analysed the104

respective changes of the mean fluxes over time, focusing on parameters in the regime where we observed the105

biggest deviations between the solutions: ε1 ≥ 30% for maximal growth as a first objective and not NGAM106

as a second, as well as maximal ATP production followed by maximal growth. Since the metabolism changes107

significantly during ageing, we separated the lifespan of each cell in two phases according to [13, 29]. Phase108

I is considered the maximal growth phase dominated by a fermenting metabolism. Phase II starts when the109

initial growth rate drops and the metabolism makes more and more use of cellular respiration. We averaged110

the fluxes over the respective phases, and investigated the absolute difference between the non-parsimonious111

and the parsimonious solution, as well as the relative differences. In the latter case, we used fluxes that112

were normalised by the glucose uptake rate in each time step in the model, allowing us to better compare113

changes across the pathways. Hence, positive values generally correspond to an increase, and negative ones114

to a decrease. A flux that is switched off has a relative change of -1.115

Naturally, many fluxes were reduced or remained constant by using the parsimonious solution, but inter-116

estingly, there is also a substantial percentage of fluxes in most of the included pathways that is increased,117

indicating a rearrangement of fluxes (Fig 2A). The metabolic phases show only minor differences. In phase118

II, there are more pathways with a higher fraction of fluxes that are decreased compared to phase I.119

To better understand the effect of using the parsimonious solution on the system, we ordered the fluxes by120
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the pathway they belong to. We observed that the objective function has an impact on the rearrangement121

of the fluxes, and pathways are affected differently dependent on its choice (Fig 2B and S2). Including a122

second optimisation on top of maximal growth forces adaptions in more pathways compared to only maximal123

growth. Prioritising maximal ATP production before maximal growth, exhibits the largest deviations. In124

phase I, all objectives have in common that there are noticeable relative (Fig 2B) and absolute (Fig S2,125

not normalised) changes of fluxes in the exchange reactions, the oxidative phosphorylation and oxidative126

stress pathway, anaplerotic reations, the TCA cycle, in mitochondrial transport and other. In particular, the127

oxidative phosphorylation and oxidative stress pathways, anaplerotic reactions and other have at least 10%128

of the fluxes that are changed by more than 100%, indicating the largest rearrangements (Fig S3). In phase129

II, all pathways except the galactose metabolism are affected by using the parsimonious solution. Still, fluxes130

connected to oxidative stress showed the largest relative changes (Fig S3).131

To elucidate how the changes of the fluxes in the oxidative stress pathway correlate to an increased replicative132

lifespan in the model, we investigated the fluxes in that particular pathway in more detail (Fig S4). While133

reactive oxidative species (ROS), such as superoxide and hydrogen peroxide (superoxide oxidoreductase),134

can be produced more compared to the non-parsimonious solution, antioxidants, such as hydrogen peroxide135

catalse (in both metabolic phases) and glutathione reductase and peroxidase (predominantly in phase II),136

are able to redirect the fluxes and prevent protein damage formation by neutralising ROS. Thus, using the137

parsimonious solution leads to lower damage production rates, presumably responsible for slower ageing and138

longer lifespans.139

Maximising for a non-growth associated ATP cost has similar but stronger effects140

than using the parsimonious solution141

The maximal non-growth associated maintenance (NGAM) is an additional reaction in the metabolic model142

that removes ATP from the systems, under the assumption that it is needed for non-growth related mainte-143

nance tasks. In the model, it is further assumed to increase over the replicative life of a cell. Even though it144

is an extra cost for the cell, we previously saw that maximising the NGAM is not affected by parsimony and145

can lead to realistic features of replicative ageing without using a flux-efficient solution. To understand how146

this specific objective affects the fluxes through the metabolic network, we studied the relative alterations of147

the fluxes, normalised by the glucose uptake rate and averaged over the respective metabolic phase, through148

all included pathways in two cases: (1) solely maximal growth compared to maximal growth using the par-149

simonious solution, and (2) solely maximal growth compared to maximal growth and maximal NGAM as a150

second objective. Similar to before, we focused on parameter sets with ε1 ≥ 30%.151

Even though the effect of additionally maximising NGAM on characteristics of replicative ageing is similar to152

using the parsimonious solution, we found that the respective flux distributions differ significantly from each153

other (Fig 3A). Maximising NGAM comes with a larger rewiring of the fluxes across the network, that in154

most pathways corresponds to a positive relative change compared to only maximal growth as an objective.155

Phase I is furthermore more affected than phase II. Interestingly, in phase I glycolysis is decreased but the156

biomass production per glucose increased. At the same time, absolute biomass production (not normalised157

by glucose uptake) is inhibited since the generation times are increased for many parameter combinations158

(Fig 3B). This indicated that cells in phase I, which is typically dominated by fermentation, also make more159

use of respiration to gain energy, since it yields more ATP given the same nutrient uptake than fermentation,160

as well as related pathways, such as oxidative phosphorylation, TCA cycle and oxidative stress, are enhanced.161

Generally, using NGAM as a second objective leads to a more flux-efficient solution in most cases (Fig 3C),162

however not a more enzyme-efficient (Fig 3D) solution. Again the differences are more prominent in phase I.163
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Denoted wildtype cells mainly differ in the times they spend in the respective164

metabolic phases165

We investigated in which way cells with distinct objectives differ from each other, by selecting the parameter166

combinations that led to realistic wildtype cells. We compared measures, such as the time the cells spend167

in each of the two metabolic phases, how many times they divided within this time and how much protein168

damage they produced.169

While all wildtype cells by definition have similar replicative lifespans and generation times, we demonstrated170

that the choice of the objective function affects how long cells can remain in the maximal growth phase I,171

before entering phase II, as much as the number of divisions in the respective phases (Fig 4). Generally, the172

longer the cells spend in a phase, the more often they divided and the more damage they accumulated during173

that phase. Cells optimised with maximal growth in combination with maximal NGAM are an exception174

and have comparable damage levels at the end of phase I, even though they divided more often in that phase175

than cells with other objectives.176

Thus, there are several strategies to reach wildtype characteristics, which are mainly coupled to how the177

metabolic network is exploited.178

3 Discussion179

In FBA modelling, the objective function is closely related to and thus often motivated by arguments from180

evolutionary biology. In evolutionary biology, fitness is generally composed of viability, mating success and181

fertility [35], hence, the replicative lifespan. However, the generation time is also an important feature during182

competitive growth. Here, we presented a systematic analysis of objective functions in the context of replica-183

tive ageing, utilising an enzyme-constrained FBA model of the central carbon metabolism of budding yeast184

cells, embedded in a published integrated model of nutrient signalling, metabolism and protein damage accu-185

mulation [29]. We found that maximal growth is the most important objective with regard to the replicative186

lifespan, in line with previous studies [20, 21, 23]. We further showed that an additional optimisation can187

improve the predictions of features of replicative ageing. We focused particularly on maximal growth as a188

first objective, followed by either the usage of the parsimonious solution or an additional maximisation of the189

non-growth associated maintenance (NGAM).190

In the simulations, we applied a lexicographic procedure [26], consisting of typically two successive optimisa-191

tions, with the first having a higher priority than the second. On top of that, we distinguished between the192

usage of the direct outcome of the optimisation algorithm and the parsimonious solution [34]. This approach193

is similar but not identical to traditional multi-objective optimisation, that can, for example, be solved by194

optimising a weighted sum of the individual objectives [25, 26], or to yield optimisation [27, 28], where instead195

a fraction of objectives is optimised, often used in industrial applications. In the context of ageing, we chose196

to apply several successive optimisations, which allowed us a simple analysis and biological interpretation197

of the parameters and results. Solely the parsimonious assumption alone reflects a classical multi-objective198

optimisation using a sum as an objective. Regardless of the set or sole objective function used, they are199

based on strong assumptions. In addition, constraint-based models generally suffer from uncertainties in the200

underlying experimental data, which can lead to over-constraining the model. To address this limitation,201

we introduced the flexibilities ε1,2 to the model, that can conceptually be compared to attributing weights202

to the objectives. Without the flexibility, no objective achieved a wildtype behaviour, reflecting the strong203

assumptions made.204

Utilising the model, we could test hypothesis on the objectives and their effects on the metabolism and205

ageing. We found that a major difference between cells without and with parsimony is the increased usage206

of antixoidants to prevent protein damage production, specifically important in the first metabolic phase.207

Besides the toxic effect of ROS as precursors to protein damage, low levels of ROS have been shown to be208
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beneficial for the robustness of cells independent of the metabolic phase, for instance by acting as signalling209

molecules [36–39]. The second metabolic phase is accompanied by small changes in both directions in almost210

all pathways, likely a consequence of different preconditions when cells exit the first and enter the second211

phase. In addition, in the latter phase, cells generally have a decreased functional enzyme pool due to the212

advanced progression of ageing, which automatically forces the cell to be more efficient in their usage, thus213

more parsimonious. Parsimony can also be based on evolutionary arguments, however it is hard to interpret214

the results. The corresponding objective comprises the sum of all individual fluxes and enzymes, that are215

generally not equally important across the network but have equal weight in the optimisation.216

Using the more interpretable second objective of maximal non-growth associated maintenance (NGAM) has217

similar effects as parsimony on the replicative lifespans, even without imposing efficiency on the system.218

NGAM increases the ATP demand, which results in enhanced respiratory activity, inhibited cellular growth219

and prolonged generation times. Respiration has a higher ATP yield per glucose which can generally explain220

increased fluxes through respiratory pathways. Since the enzyme pool is limited, and respiration is less221

enzyme efficient, the cell likely has to simultaneously decrease the growth rate. This gives the cell more time222

to repair damage. Thus, ageing is not accelerated by the rearrangement of fluxes, being crucial for reaching223

high replicative lifespans.224

Taken together, both extensions to maximal growth discussed above can have a beneficial affect on the225

lifespan, by rearranging fluxes across the network. Simultaneously, we can interpret those objectives as a226

trade-off between growth or reproduction and maintenance, in line with the disposable soma theory of ageing227

that states that ageing is the consequence of this trade-off [40, 41]. Here, we could confirm that there is228

a balance between the two objectives, and pushing growth to the absolute limit can be disadvantageous229

for individual cells. Giving more priority to maintenance could actually improve average growth over the230

lifespan. Increased respiration and prolonged generation times also prevented protein damage production,231

and therefore only had minor effects on the lifespans, emphasising the importance of this balance.232

In summary, there are innumerable different flux distributions that result in a specific cellular growth rate233

or other experimentally testable output, both in FBA and likely also in reality. Here, we showed that when234

working with cells under evolutionary pressure, maximal growth as an objective is inevitable. Adding more235

objectives, such as parsimony or a maximal non-growth related maintenance cost can be helpful to pick more236

biologically reasonable flux distributions. We demonstrated that robustness in lifespans can be achieved by237

a combination of balance and flexibility in allocating the resources. Hence, we provided a new perspective238

on the choice of the objective function from a theoretical point of view, putting the objective in FBA in the239

context of evolutionary variables such as reproduction and replicative ageing.240

4 Materials and Methods241

Enzyme-constrained flux balance analysis242

The metabolism is modelled by a flux balance analysis (FBA) model with enzymatic constraints [16]. We de-243

note the fluxes by v
[
mmol(gDW h)−1], the stoichiometry by S and the enzyme usages by e

[
mmol(gDW )−1]

244

and solve the linear program (LP) in (1)-(7). The total enzyme usage is restricted by the total enzyme pool245

σfPtot, a factor consisting of the average saturation σ, the fraction of enzymes covered in the model f and246

the total protein content of the cell Ptot

[
g(gDW )−1]. The optimisation problem is formulated as:247
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max./min. z1 = cT v (1)
s.t. S v = 0 (2)

vmin ≤ v ≤ vmax (3)

−
∑

j

nij

kij
cat

vj + ei = 0, ∀i (4)

−
∑

i

MWi ei + epool = 0 (5)

emin ≤ e ≤ emax (6)
0 ≤ epool ≤ σfPtot (7)

Each included enzyme i mediates a reaction j with a rate kij
cat and a stochiometry nij (mainly relevant of248

enzyme complexes), and has a molecular weight MWi[kDa = g(mmol)−1].249

Integrated Model of yeast metabolism and replicative ageing250

We exploited our integrated model, incorporating modules for the metabolism, regulation and damage ac-251

cumulation in S. cerevisiae yeast cells [29]. In the model, the metabolism is represented by an enzyme-252

constrained FBA model of the central carbon metabolism. The regulatory network consists of a vector-based253

Boolean representation of the Snf1, PKA, TOR, Yap1 and the Sln1 pathways. A transcriptional layer254

constitutes the connection between regulation and the metabolism, and effectively constrains the usage of255

enzymes, depending on the activity of transcription factors in the Boolean model and subsequent up- or256

down-regulation of enzymatic genes. The input layer of the Boolean model, in turn, is determined by the257

optimal fluxes through the FBA model that is optimised with a particular objective function. The optimal258

fluxes of the regulated FBA model are then used to feed a dynamic (ODE) model of damage accumulation259

and cell growth, which is solved for one time step. Over time, the fraction of functional proteins decreases260

due to damage accumulation processes (metabolic damage formation at rate fm, non-metabolic damage for-261

mation at rate f0 and damage repair r0), that are partly caused by the creation of reactive oxygen and262

nitrogen species in the metabolism. The asymmetric distribution of protein damage at cell division displays263

another major cause of the damage accumulation in the model. As a consequence, the cell has a decreasing264

amount of functional enzymes available to maintain cellular growth and maintenance. At the same time,265

it is assumed that the non-growth associated maintenance cost, such as damage repair, increases the more266

damage the cell has. If the cell has managed to produce enough biomass, cell division occurs. The FBA267

model becomes infeasible when damage levels are too high, and in that case the cell is considered dead. In268

that way, the model allows to simulate replicative ageing as the accumulation of damage, which is steered by269

the metabolism and the regulatory network. All mathematical and computational details of the model as well270

as model parameters were published in a previous article, where all details can be found [29]. In particular,271

we used parameters of a reference cell with a non-metabolic damage formation (f0 = 0.0001) and damage272

repair (r0 = 0.0005) that leads to a wildtype yeast cell with 23 divisions and an average generation time of273

around 1.5h, that was generated using the parsimonious maximal growth objective in the FBA model.274

Two-stage approach for the optimisation275

Each optimisation strategy in our model is described by two successive optimisations (lexicographic method)276

[26]. We optimise the first objective, constrain the corresponding flux (or sum of fluxes) to the optimal value277

allowing to violate it by some factor ε1 ≤ 1, and then optimise the second objective.278

The first optimisation corresponds to solving the LP defined in (1)-(7). The following second optimisation279

then becomes:280
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max./min. z2 = dT v (8)
s.t. constraints (2)− (7) (9)

cT v
{
≥ z1(1− ε1) if z1 was maximised
≤ z1(1 + ε1) if z1 was minimised

(10)

In exactly the same way as the constraint introduced in (10), we allow to violate the second optimal value z2281

by a factor ε2 ≤ 1 for the following regulation step in the integrated model that imposes stricter constraints282

on enzymes (emin,max) depending on their regulation. In our framework, it is necessary to give a bit of283

flexibility to the system to reallocate the enzyme usages as a result of the gene regulation to avoid that the284

systems becomes infeasible.285

By doing two successive optimisations, we automatically force a certain priority to the first objective, and286

within the resulting solution space we choose the solution that also optimises the second objective up to the287

defined flexibilities.288

In this work, we tested several different individual objective functions as well combinations of them to289

investigate their effect on the replicative life of the cell: maximal growth (biomass reaction), minimal glucose290

uptake (glucose uptake reaction), maximal and minimal ATP production (sum of all reactions that produce291

ATP), minimal NADH production (sum of all reactions that produce NADH), and maximal non-growth292

associated maintenance (NGAM reaction). In addition, we check both the direct solution of the optimisation293

procedure and the parsimonious solution, i.e. the solution that also minimises the sum of all fluxes and the294

total enzyme usage implemented as an additional optimisation. For the latter objective, we only allowed a295

flexibility according to the solver precision, to find the most flux- and enzyme-efficient solution given the296

previous objectives.297

When comparing fluxes, we calculated the average of each flux (absolute, or normalised by the glucose298

uptake rate) within a metabolic phase. We investigated the relative change ∆ between the respective non-299

parsimonious v and the parsimonious vp solutions (Fig 2, S2 and S4), calculated by300

∆i = |v
p
i − vi|
|vi|

, ∀ i. (11)

Note, that before calculating the change, we transformed the metabolic network back to a network with301

reversible reactions and removed isoenzymes, to avoid double-counting of fluxes. As a consequence, fluxes302

can have negative values depending on the direction. Here we are only interested in the change, and not the303

direction, explaining the use of absolute values.304

With the same logic, we compared the fluxes between only maximal growth as an objective and additional305

parsimony or NGAM maximisation (Fig 3).306

4.1 Simulation details307

All simulations were performed in the programming language Julia version 1.6 [42] and were run on a normal308

computer with 2.3 GHz Dual-Core Intel Core i5 and 8GB RAM, using the JuMP optimisation package and309

Gurobi as a solver for the linear programs. Relevant simulation code and the underlying data of all figures310

can be downloaded from https://github.com/cvijoviclab/AgeingObjectiveFunction and details about311

the model itself from https://github.com/cvijoviclab/IntegratedModelMetabolismAgeing.312
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Figure 1: Effect of objective functions on replicative lifespans and generation times. Replicative lifes-
pans (A) and generation times (B) for cells simulated with different objectives and flexibilities ε1,2 using the non-
parsimonious (left) and the parsimonious (right) solutions. (C) Counts of how many parameter combinations lead
to replicative lifespans between 20 and 30 divisions, and generation times between 1.5 and 2.3h, denoted as wildtype
cells
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Figure 2: Relative changes of normalised fluxes between the non-parsimonious and the parsimonious
solution. We limited the analysis to objectives that show a large increase in the replicative lifespans as a consequence
of imposing parsimony. Included are 20 parameter combination with ε1 ≥ 0.3 and ε2 ≤ 0.2 per investigated objective
(Fig 1). All fluxes are normalised by the glucose uptake rate and averaged over a metabolic phase (left: I, right: II). (A)
Percentage of fluxes that are increased (white), unchanged (grey) or decreased (black) in all included pathways in the
FBA model, when going from the non-parsimonious to the parsimonious solution. All objective functions are merged
in this plot. (B) Relative changes of all fluxes in the respective pathways, when going from the non-parsimonious to
the parsimonious solution. The grey bars indicate the interquartile ranges of the distributions.
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Figure 3: Comparison between using the parsimonious solution or an additional optimisation of
NGAM. We compared only maximal growth, parsimonious maximal growth, and maximal growth plus maximal
NGAM. Included are 20 parameter combination with ε1 ≥ 0.3 and ε2 ≤ 0.2 per investigated objective (Fig 1). All
fluxes are normalised by the glucose uptake rate and averaged over a metabolic phase (left: I, right: II). (A) Relative
changes of all fluxes in the respective pathways for parsimonious maximal growth and maximal growth plus maximal
NGAM, both in relation to maximal growth only. (B) Average generation times for each included parameter set,
sorted and coloured by the respective objective function. (C) Sum of all fluxes for each included parameter set,
coloured by the respective objective function. (D) Sum of all enzyme usages, that were averaged over the respective
metabolic phase, for each included parameter set, coloured by the respective objective function.
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Figure 4: Comparison of overall properties of wildtype cells in the metabolic phases. Number of divisions
and time spent in each metabolic phase, and the damage at the end of each phase for all parameter combinations that
lead to wildtype cells (replicative lifespans between 20 and 30 divisions, and generation times between 1.5 and 2.3h,
see Fig S1). The damage at the end of phase II corresponds to the fraction of damaged proteins when the cell dies.
The cells are grouped by the respective combination of objective functions. Here, we only present the parsimonious
cases.
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The choice of the objective function in flux balance analysis is crucial for
predicting replicative lifespans in yeast
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Figure S1: Parameter combinations that are considered yeast wildtype cells. All parameters ε1,2 marked
in black generate wildtype cells with a replicative lifespans between 20 and 30 divisions, and generation times between
1.5 and 2.3h, in our model. Based on Fig 1.
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Figure S2: Absolute changes of fluxes between the non-parsimonious and the parsimonious solution.
We limited the analysis to objectives that show a large increase in the replicative lifespans as a consequence of imposing
parsimony. Included are 20 parameter combination with ε1 ≥ 0.3 and ε2 ≤ 0.2 per investigated objective (Fig 1).
We averaged the fluxes over the two metabolic phases (left: I, right: II). The results are similar to Fig 2, but here
each average flux is neither scaled by the glucose uptake rate, nor by the respective non-parsimonious flux, but is a
absolute difference.
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Figure S3: Fluxes with a large relative change between the non-parsimonious and the parsimonious
solution. Percentage of fluxes in the respective pathways with relative change of at least 100% when imposing
parsimony, being a subset of the fluxes shown in Fig 2B. All objective functions are merged in this plot.
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Figure S4: Effects of parsimony on the oxidative stress pathway. Relative changes of fluxes between the
non-parsimonious and the parsimonious solution. Included are 20 parameter combination with ε1 ≥ 0.3 and ε2 ≤ 0.2
per investigated objective (Fig 1). We limited the analysis to objectives that show a large increase in the replicative
lifespans as a consequence of imposing parsimony. Each flux is normalised by the glucose uptake rate and averaged
over the metabolic phase (left: I, right: II).
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