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Abstract 

Metabolic flux is the final output of cellular regulation and has been extensively studied for 

carbon but much less is known about nitrogen, which is another important building block for 

living organisms. For the pathogen Mycobacterium tuberculosis (Mtb), this is particularly 

important in informing the development of effective drugs targeting Mtb’s metabolism. Here 

we performed 13C15N dual isotopic labelling of mycobacterial steady state cultures and 

quantified intracellular carbon-nitrogen (CN) and nitrogen (N) fluxes in addition to carbon (C) 

fluxes and inferred their reaction bidirectionalities. The combination of 13C15N-MFA with a 

Bayesian multi-model approach allowed us to resolve C and N fluxes simultaneously which 

was not possible with classical 13C-MFA. We quantified CN fluxes for amino acid and, for the 

first time, nucleotide biosynthesis. Our analysis identified glutamate as the central CN and N 

node in mycobacteria, and improved resolution of the anaplerotic node. Our study describes a 

powerful platform to measure carbon and nitrogen metabolism in any biological system with 

statistical rigor.  

 

Introduction: 

 

In recent decades, a great deal of progress has been made in unravelling the complexity of 

intracellular metabolism in microbial, animal and plant cells by measuring metabolic fluxes 
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through the reactions that constitute central metabolism. The state-of-the-art technique is 13C-

Metabolic Flux Analysis (MFA) in which cells, at metabolic steady-state, are fed a mixture of 

12C and 13C-labelled substrates that are incorporated into the central carbon (C) metabolism to 

yield stable end products, such as the proteinogenic amino acids. The method infers in vivo 

metabolic reaction rates (fluxes) by using a system-wide biochemical reaction model that tracks 

C atom rearrangements throughout the metabolic pathways, and by fitting these fluxes to the 

emerging labelling patterns (typically isotopically 12C and 13C labelled fractional enrichments 

measured by mass spectrometry (MS) or nuclear magnetic resonance (NMR)) (1–4). 13C-MFA 

resolves the activity of biochemical reactions through computational modelling which can 

differentiate between parallel pathways and determine bidirectional fluxes (mass exchange of 

reactions that proceed forwards and backwards at the same time) (5, 6).  

 

Besides central C metabolism, nitrogen (N) metabolism plays a key role, not only in amino 

acid and nucleotide metabolism, but also in the synthesis of many cofactors (7). In many 

microbes including the pathogenic Mycobacterium tuberculosis, nitrate acts as a terminal 

oxygen acceptor in addition to molecular oxygen during hypoxic respiration (8). Although N 

fixation and assimilation play a key role in medical research, agriculture and biotechnology, 

quantitative insights into N metabolism are currently limited. Consequently, only a few drugs 

have been developed that target N metabolism (9). The progress in quantifying N metabolism 

has been challenging, mostly because there is limited information derived from the isotopic 

labelling profiles of N versus C atoms. The equivalent of 13C-MFA, namely 15N-MFA therefore 

needs to involve time-resolved labeling data and the measurement of intracellular intermediate 

metabolite concentrations (pool sizes) to deploy the isotopically non-stationary (INST) MFA 

framework (10-14). This technique was utilized to study ammonium assimilation in 

Corynebacterium glutamicum by quantifying central N fluxes in vivo (12).  

 

C and N metabolism are interdependent in all organisms (13, 14). For instance, the tricarboxylic 

acid cycle (TCA), glycolysis and pentose phosphate pathway (PPP), which are C based, 

synthesize amino acids and nucleotides. Biosynthesis of amino acids primarily involves 

addition of N to the C backbone, requiring reductants and energy, generated primarily from C 

metabolism (Fig. 1). To understand C and N co-assimilation, a systems-based analysis is 

required which includes both central C and N metabolism. The information about 13C labelling 

enrichments of the intermediates in amino acid biosynthesis alone is limited, because such 

measurements cannot resolve alternative pathways in which no C scrambling occurs, as in the 
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case of arginine biosynthesis pathway (Fig.1, inset). The key for quantification of C and N 

fluxes simultaneously is to administer 13C and 15N isotopic tracers. Using 13C6
15N4 labelled 

arginine as the tracer, this co-labelling strategy was implemented to study arginine metabolism 

in Kluyveromyces lactis (15); this study showed that 13C incorporation into the amino acids 

proceeded at a slower timescale than the 15N-label. The time-deconvolution of C and N label 

incorporation allowed approximation of C and N fluxes using a “staggered” INST 13C-MFA 

and 15N-MFA approach. However, the efficacy of this approach critically depends on the 

validity of the underlying timescale separation, which is induced by the efficacious choice of 

C- and N-sources. Here we have established an approach that simultaneously quantifies C and 

N metabolic fluxes independently of the co-labelling strategy applied. Our 13C15N-MFA 

platform specifically tracks C and N atom interconversions throughout the entire metabolic 

network, without the need to acquire the pool sizes of metabolic intermediates or the 

deconvolution of 13C and 15N isotopologues using time-deconvolution or specialized analytical 

measurement platforms. We demonstrate the versatility of this platform by quantifying 

intracellular C and N fluxes of the vaccine strain of mycobacteria Mycobacterium bovis BCG, 

as a model for one of the world’s most important pathogens, Mycobacterium tuberculosis (Mtb) 

that causes tuberculosis (TB). 

 

TB is one of the leading causes of human mortality from a single infectious agent that kills 

over a million people every year (16). Drug resistance is a major problem affecting TB therapy 

(17, 18), so new drugs are urgently needed. Measurement of N metabolic fluxes has the potential 

to identify novel anti-TB drug targets, but the current progress is hampered by the limitation 

of tools and technology to measure N along with C fluxes in vivo.  We previously developed 

13C-flux spectral analysis (FSA) and 15N-flux spectral ratio analysis (FSRA) for identifying the 

probable spectrum of C and N substrates in Mtb ex vivo (19, 20). Using FSRA, we found 

aspartate, glutamate, and glutamine to be the primary nitrogen sources for intracellular Mtb 

(20). Although 13C-FSA and 15N-FSRA provided qualitative conclusions about C and N sources, 

the available measurements did not allow for the flux quantifications. Multiple studies have 

successfully measured C fluxes in Mtb growing as batch cultures (21–23). We also applied 13C-

MFA to quantify intracellular C fluxes of Mtb and BCG during slow and fast growth in a 

chemostat (22). Here using C and N isotopic co-labeling, metabolic modeling, and Bayesian 

statistics we resolved the central C and N co-metabolism with an increased resolution. 

The measurement of N metabolic fluxes, simultaneously with the C fluxes in a principled, 

system-wide manner has not been attempted in Mtb or in any organism. The simultaneous 
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measurement of C and N fluxes requires constructing an enlarged metabolic reaction model 

that describes both central C and N metabolism along with multi-atom transitions. As a result, 

the number of unknown flux parameters to be inferred from the experimental measurements, 

increases significantly. The increase in dimensionality stems primarily from the reaction steps 

for CN co-assimilation (mainly reactions catalyzed by transaminases) as these reactions must 

be modelled bidirectional to describe the co-labeling enrichments. In this situation, employing 

the standard best-fit approach commonly used in 13C-MFA is prone to overfitting (24, 25). This 

problem is exacerbated when measurements cannot distinguish between labelling contributions 

stemming from 13C and 15N tracers, such as measurements obtained from single quadrupole 

MS instruments with insufficient mass resolution. To overcome the impediments of current 

single-model 13C-MFA approaches, we used a statistically rigorous multi-model inference 

approach (26), which we here generalize to 13C15N-MFA. This multi-model-based 13C15N-MFA 

platform for analyzing co-labeling datasets enabled us to measure intracellular metabolic fluxes 

for the central C and N metabolism in M. bovis BCG under steady-state conditions.  

 

Results 

Roadmap for Bayesian multi-model 13C15N-metabolic flux analysis 

The 13C15N-MFA co-labelling general workflow is summarized in Fig. 2. Cultivation 

experiments are performed under metabolic (pseudo) steady state conditions, in a C or N 

limited chemostat. Steady state cultures are switched to media containing 13C- and 15N-labelled 

substrates, and samples are drawn after an isotopic steady state labelling is achieved for both 

C and N. The samples are then analyzed by MS, providing mass isotopomer distributions 

(MIDs) (27). Although we focus on MS as mainstream analytics, the workflow is equally valid 

for NMR delivering heteronuclear NMR moieties (28), or a combination of MS and NMR 

measurements. In terms of mass shifts, low-resolution gas-chromatography (GC-MS) and 

liquid-chromatography mass spectrometry (LC-MS) are often not sufficiently sensitive to 

distinguish between 13C and 15N isotopomers (29), resulting in convoluted univariate (13C15N) 

MIDs (30). For example, in lysine with six C (#𝐶 = 6) and two N (#𝑁 = 2) atoms, #𝐶 + #𝑁 +

1 = 9 univariate MIDs exist. More advanced analytical platforms such as high-resolution LC-

MS (orbitrap) (27), FT-ICR-MS (31), multi-reflection time-of-flight (ToF) MS or tailored 

derivatization approaches combined with two-stage LC-MS (29) can distinguish between 13C 

and 15N isotopomers, providing multivariate MIDs. In the lysine example, there are (#𝐶 +

1) × (#𝑁 + 1) = 21 multivariate mass isotopomers. Ultra-high-resolution orbitrap and FT-
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ICR analyzers allow resolving the full spectrum. In practice, however, those analytical 

platforms operate at a trade-off between resolving power (~65,000 fwhm needed to separate 

13C and 15N mass isotopomers) and acquisition accuracy. Also, low intracellular metabolite 

concentrations often limits the precise measurements of multivariate MIDs. Therefore, we 

opted to measure univariate MIDs from the co-labelling experiment using a single-quadrupole 

GC-MS system, which is a robust analytical device for MID analysis. Our workflow is 

transferable and equally applicable to other analytical platforms. 

 

MIDs corrected for natural abundance, along with the extracellular rates and biomass 

proportions, are incorporated into a metabolic network model that precisely specifies the 

transition of C and N atoms throughout the intracellular reactions. Tracking N in addition to C 

requires not only an extension of C mappings by N mappings and the addition of the reactions 

of nitrogen metabolism, but also requires a refined formulation of biosynthesis reactions that 

are usually lumped in 13C-MFA (an example is shown in Fig. 1 inset). These extensions enable 

us to infer CN fluxes from the co-labelling data. In addition to the transition network, 

information on the mass exchange between intermediates of these biosynthetic reactions i.e., 

whether the mass flow through these reversible reactions is unidirectional or bidirectional is 

required (6). Transaminases are suspected to operate at near thermodynamic equilibrium, but 

quantitative evidence regarding their activity are largely missing (32). As such all transaminase 

catalyzed biochemical reactions carrying CN fluxes should be considered potentially 

bidirectional (33), implying that they are characterized by two flux parameters, a net and an 

exchange flux, instead of a unidirectional reaction, which is described by a net flux only. 

Consequently, this introduces additional challenges to identify flux parameters into the CN 

model, which renders the model susceptible to overfitting. A general solution for dealing with 

model under-determinacy in a statistically rigorous manner, while making as few assumptions 

as possible, has been proposed within the framework of Bayesian Model Averaging (BMA) 

(34). When applied to 13C15N-MFA, BMA determines the probability distributions of net fluxes 

(𝑣) given the data (𝐷), in the Bayesian paradigm expressed as 𝑝(𝑣|𝐷), by averaging the flux 

posterior probabilities over all possible models (𝑀𝑖 , 𝑖 = 1, … 𝑁), weighted by the model 

probability in view of the data 𝑝(𝑀𝑖|𝐷): 

𝑝(𝑣|𝐷) = ∑ 𝑝(𝑣𝑀𝑖
|𝑀𝑖 , 𝐷) ∙ 𝑝(𝑀𝑖|𝐷)𝑁

𝑖=1     (EQ 1)  

Here, models 𝑀𝑖 are structural variants that differ in their bidirectionality setting and, hence, 

number of flux parameters (𝑣𝑀𝑖
). Equation (EQ 1) is solved computationally by using a recently 
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developed tailored Markov chain Monte Carlo (MCMC) approach (26) (see Materials and 

Methods for details). This results in so-called marginal posterior probability distributions for 

the net fluxes, as well as the probabilities of reversible reactions being uni- or bidirectional. 

The marginal posterior probability distributions provide credible intervals (CrI) and expected 

values (EV) for the net fluxes. Finally, this outcome is visually summarized in a Bayesian flux 

map (Fig. 2). In addition, two-dimensional marginal posterior probability distributions give 

insights into possibly non-linear net flux correlations. It should be noted that all traditional flux 

maps, including those in our previous work (22), instead report maximum likelihood-based 

point estimates and confidence intervals while flux correlations are exclusive to the Bayesian 

framework. 

 

BMA-based 13C15N-MFA validates and refines carbon fluxes determined using 13C-MFA 

in mycobacteria 

We applied the 13C15N-MFA workflow to the mycobacterial model system M. bovis BCG. The 

experimental conditions were comparable to those described in Beste et al. 2011 (22). M. bovis 

BCG was cultivated in continuous culture with glycerol and ammonia as sole C and N sources 

respectively at a dilution rate of 0.03 h-1 (Table 1, Fig. S1A-C). Cultures were grown with 10% 

[13C3]-glycerol (GLYC) and 20% [15N1]-ammonium chloride (NH4Cl) until an isotopic steady 

state was reached, as confirmed by GC-MS of amino acids (Fig. S1C). Harvested samples were 

analyzed using GC-MS, providing univariate MID measurements (MIDs which do not 

distinguish between 13C and 15N isotopomers) of 15 proteinogenic amino acids.  

 

The resulting Bayesian flux map is shown in Fig. 3 with fluxes relative to the glycerol (GLYC) 

uptake rate, while absolute fluxes are given in Fig. 4 (see also supplementary Fig. S2 for the 

absolute net flux posterior probability distributions). As expected, the primary C metabolic 

route is directed from GLYC over lower glycolysis towards lipid and fatty acid synthesis (via 

the acetyl-CoA drain flux). While glycolytic fluxes were the highest, the TCA cycle, PPP and 

anaplerotic fluxes are significantly lower. The fluxes through the decarboxylating arm of the 

TCA cycle, oxoglutarate ferredoxin oxidoreductase (kor) and succinyl-CoA synthetase (scs) 

reactions are reduced; decarboxylation is bypassed using glyoxylate shunt, instantiating the 

GAS pathway (22). The net C flux distributions through the upper glycolysis, the TCA and 

anaplerosis for BCG growing at a growth rate (0.03h-1) measured using Bayesian 13C15N-MFA 
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are very similar to those derived by traditional 13C-MFA in our previous study (22) 

(supplementary Fig. S3).  

 

There are, however, also differences in the flux maps of central C metabolism. Our previous 

flux map showed cyclic fluxes around fructose 6-phosphate (F6P) node, involving the fluxes 

pgi, gnd, tkt2, tal and tkt1. This cycle is also confirmed by the present 13C15N-MFA study but 

with fluxes lower than previously reported. Notice, however, that the previously reported fluxes 

of the PPP represent best-fit values that were fixed in the statistical analysis due to their non-

identifiability (22), and thus should serve for a qualitative comparison only. More accentuated 

differences are found in the fluxes of lower glycolysis. This is explained by the differences in 

the experimental setup between the two studies: In this study, tyloxapol was used as dispersant 

in the medium as replacement for tween-80 or oleic acid, which was a medium component in 

our previous study, and is known to be a C source for mycobacteria (35). Our results reveal that 

the lack of oleic acid as C source is compensated by an increase in lower glycolytic flux. It is 

interesting that whether using tween or tyloxapol in the medium there is no “global” effect on 

C fluxes under the investigated conditions.  

 

As in our former 13C-MFA analysis (22), net fluxes of the anaplerotic reactions, pyruvate 

carboxylase (pca), PEP carboxykinase (pck), and malic enzyme (mez), could not be resolved 

as seen from their large CrIs in Fig. 4. This is a consequence of the cyclic network topology of 

the anaplerotic node (36). In our previous analysis pca and mez were aggregated by lumping 

oxaloacetate (OAA) and malate (MAL), but in this study the three anaplerotic reactions were 

modelled in detail without imposing any assumption on their (bi)directionalities. Despite 

limited information in the co-labelling data for identification of the directionalities of the 

anaplerotic reactions, we were able to improve the resolution of the flux map and limit the 

absolute flux values to a narrow range of ± 0.06 mmol gbiomass
-1 h-1. Furthermore, the two-

dimensional (2D) marginal posterior probability distributions provide new insights into 

anaplerotic flux correlations (Fig. 5), which effectively narrows down the joint space of 

possible values to concise ring-like areas of the flux space. From our analyses many flux 

constellations can be ruled out. For instance, it is unlikely that two of the reactions, pca and 

pck or pck and mez, both carry zero flux. The flux pairs pck/mez and pck/pca are largely 

positively correlated, meaning that a larger value of one flux implies a larger value of the other. 

In both cases, two different possible modes emerge, explaining the data equally well, one with 

larger and one with smaller values of mez and pca, respectively. In contrast, pca and mez are 
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largely negatively correlated. The results show that at least one of the three anaplerotic 

reactions is operating in gluconeogenetic direction. In a larger context, Fig. S4 shows that mdh 

and pyk are highly correlated with mez and pck, respectively. In conclusion, the C flux profile 

for BCG growing at a faster growth rate (0.03h-1) inferred here by BMA-based 13C15N-MFA 

represents an independent replication of the previous 13C-MFA-derived C fluxes. The 

comparable C flux maps derived from the two labelling approaches and the two MFA platforms 

validate the application of our Bayesian approach, which imposes fewer modeling assumptions, 

and delivers an increased flux resolution for the previously non-inferable anaplerotic cyclic 

nodes. 

 

13C15N-MFA quantifies CN-fluxes, and thereby N-fluxes 

In addition to the C fluxes discussed in the previous section, 13C15N-MFA together with the 

extended scope of the network allowed us, for the first time, to quantify CN net fluxes in M. 

bovis BCG, i.e. reaction fluxes in the amino acid and nucleotide biosynthetic pathways. These 

fluxes are shown in Fig. 3 (hexagons with thick red borders) and Fig. 4 in relative and absolute 

numbers. The largest CN flux is bsGLU (glutamate dehydrogenase), with an EV of 0.072 

mmol g biomass-1 h-1 (95% CrI: 0.071 – 0.074 mmol g biomass-1 h-1), followed by bsGLN 

(glutamine synthetase), bsASP (aspartate transaminase) and bsSER (serine deaminase). The 

CN-fluxes of the remaining amino acid and nucleotide synthesis including adenosine 

monophosphate (AMP), guanosine monophosphate (GMP), cytidine monophosphate (CMP), 

inosine monophosphate (IMP) and uridine monophosphate (UMP), are one order of magnitude 

lower, with values rendering the proportion to which they contribute to biomass formation (Fig. 

4).  

 

When comparing CN fluxes with the C fluxes in Fig. 4, or with any previously reported flux 

values, it is important to realize that fluxes must be interpreted in relation to the actual material 

flows they represent. For example, it has been previously reported (22), that alanine 

aminotransferase (bsALA) is the largest biosynthetic net carbon flux, being one order of 

magnitude larger than glutamate dehydrogenase (bsGLU). In this study, we found that bsALA 

(95% CrI: 0.006 – 0.007 mmol g biomass-1 h-1) is one order of magnitude lower than bsGLU. 

This apparent discrepancy is explained by the nitrogen demand that is not within the scope of 

13C-MFA. More precisely, conventional 13C-MFA can only give a lower bound for the nitrogen 

requirement of an amino acid by summing up the (C) fluxes of reactions that incorporate 

nitrogen from the donor. For example, adding the fluxes to alanine (ALA), asparagine (ASN), 
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glutamate, glutamine (GLN), leucine (LEU), lysine (LYS), phenylalanine (PHE), serine (SER), 

tyrosine (TYR), tryptophan (TRP), valine (VAL), ornithine (ORN), arginine (ARG), and the 

contributions to nucleotide synthesis, gives a value of 0.061 mmol g biomass-1 h-1, which 

underestimates the EV of the bsGLU net CN flux 0.071 mmol g biomass-1 h-1 derived by 

13C15N-MFA in this study. 

 

The strength of 13C15N-MFA is that it provides quantitative flux measurements for N 

metabolism, via the CN fluxes. The N flux map shown in Fig. 6 highlights the central role of 

glutamate (GLU) as a N donor. To a lesser extent, glutamine (GLN) and aspartate (ASP) are 

also N donors, which explains their significantly higher CN flux as compared to the C fluxes 

previously reported (22). Glutamate donates its N to other amino acids through various 

transamination reactions. The centrality of this node for N assimilation was experimentally 

confirmed by examining substrate utilization of a glutamate auxotroph of M. bovis BCG with 

a transposon mutation in gltBD, a gene encoding glutamine oxoglutarate aminotransferase 

(GOGAT) that catalyzes the synthesis of GLU from OXG and GLN (37). Whereas the wild 

type M. bovis BCG strain could grow with GLYC as sole C and NH3, ASP, GLU and GLN as 

sole N sources (slope m >0), the gltBD mutant was able to grow only on glutamate as the N 

source (Fig. 7). The CN-fluxes for GLU and ASP-derived amino acids including ASN, 

threonine (THR), isoleucine (ILE), LYS, methionine (MET), ARG and PRO and 

phosphoglyceric acid (PGA)/phosphoenlypuruvate (PEP) derived ALA, SER, cysteine (CYS), 

VAL and leucine (LEU) are higher than the PPP-derived amino acids (Fig. 4). Interestingly, 

ALA had the largest pool size amongst the protein-derived amino acids, but the alanine 

aminotransferase CN flux was by far not the highest. Also, for the other amino acids, no direct 

relationship between pool sizes and fluxes is visible, highlighting that pool size and CN flux 

are complementary but independent measures of metabolism (Fig. 8; Fig. S5) (38). 

 

Bayesian Multi-Model 13C15N-MFA uncovers reversibility of glycine biosynthesis and 

unidirectionality of leucine and isoleucine biosynthesis 

GLU and GLN serve as the main amino donors for the synthesis of other amino acids in BCG 

(Fig. 4 and Fig. 6). To meet the demands for protein, RNA and DNA synthesis, the N net flux 

is principally directed towards amination. However, the reversibility of the enzymes 

responsible for catalyzing transaminases provide cells with the ability to adapt rapidly to 

environmental conditions such as changes in N availability. Indeed, fine-tuning the activities 
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of transaminases to modulate C flux has been demonstrated in the CHO eukaryotic cell line 

(39). This means that while the biosynthetic net reaction flux is directed towards amination, a 

simultaneous forward and backward (bidirectional) flux is likely occurring in vivo.  

 

Due to the lack of evidence about the reversibility of mycobacterial transaminases, all 

transamination reactions were modelled as bidirectional reaction steps, resulting in a flux 

estimation problem with 86 degrees of freedom (71 fluxes and 15 measurement group scales) 

to be recovered from 144 measurements (109 univariate MIDs and 34 rate and biomass efflux 

measurements). Here, BMA was used to minimise overfitting (see Materials and Methods). 

This technique can explore the space of all possible combinations of uni- and bidirectional 

reactions (each combination codes for a model) and weights each model variant by its ability 

to explain the labelling data (see also Fig. 2). In contrast to the conventionally used single-

model approaches, the BMA-based 13C15N-MFA enables the rigorous statistical inference of 

reaction bidirectionality (26). The univariate MIDs did not allow all bidirectional reactions of 

biosynthesis to be classified as either bi- or unidirectional (Fig. S6) with distinct exceptions: 

glycine hydroxymethyltransferase (bsGLY) that catalyzes glycine (GLY) biosynthesis was 

determined to be bidirectional with 100 ± 0% probability. In contrast serine deaminase, 

isoleucine, and leucine transaminase (bsSER, bsILE and bsLEU) were found to be 

unidirectional with high probability (98.6 ± 0.3% probability, 99.8 ± 0.05%, and 100 ± 0% 

probability, respectively). 

 

Discussion 

The interplay between C and N assimilation and dissimilation is required to sustain cell 

metabolism and function. To date, the knowledge about C and N co-assimilation and these 

fluxes within a cell remains limited. For measuring metabolic fluxes, isotope tracing studies in 

combination with computational modelling is a gold standard. Recently, multiple stable 

isotopic tracers have been used to measure C and N enrichments and to derive insights into N 

assimilation in eukaryotic systems including yeast, plant, and human cancer cells (27, 31). Two 

pioneering studies determined metabolic fluxes of the GS-GOGAT pathway in C. glutamicum 

by INST 15N-MFA (12) and the CN fluxes for arginine metabolism in K. lactis (15). Both these 

studies had limitations; the former was limited to measuring CN fluxes in a small sub-network, 

and the latter 13C15N-flux analysis relied on a tailored labelling strategy that exploited the fact 

that the 13C tracer was incorporated faster into metabolites than the 15N tracer. 
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Here we generalized the well-established methodology of 13C-MFA towards 13C15N-MFA for 

deriving a system-wide CN, and thereby N fluxes from a combination of isotopic co-labelling 

experiments and comprehensive C and N atom transition modelling. The generalization is 

paired with the use of Bayesian model averaging, which provided rigorous quantification of 

CN metabolic fluxes with low- and medium-resolution MS data by measuring intracellular 

metabolic fluxes through the central C and N network of M. bovis BCG. Key advantages of 

BMA-based 13C15N-MFA are the extension of scope and refinement in terms of the metabolic 

network, while, simultaneously, tackling the consequent introduced uncertainties in the 

network formulation. This enabled the rigorous statistical assessment of all reactions, even 

those with unknown bidirectionality and cyclic network structures that were previously 

unresolvable. 

 

We and others have demonstrated that the TB pathogen co-metabolizes multiple host nutrients 

during infection (19–21, 40, 41). Co-catabolism of C sources by mycobacteria and the associated 

metabolic regulations have been previously demonstrated by multiple studies using 

transcriptional, metabolomics and genetic approaches (21, 42–47). Although multiple studies 

have explored the C and N metabolism of Mtb in vitro and within ex vivo and in vivo animal 

models, the information about CN and N fluxes and the key metabolic steps that could be 

targeted for drug development remain limited. Here we used [13C3]-glycerol and [15N1]-

ammonium chloride dual isotopic labelling of steady state BCG cultures to measure 

intracellular CN and N fluxes. We provide the first comprehensive intracellular CN and N flux 

distributions in a biological system. A comparison with our previously published 13C-MFA in 

Mtb and M. bovis BCG (22) showed a broad agreement for the net fluxes of central C 

metabolism. C fluxes through glycolysis and PPP including phosphoglucose isomerase (pgi), 

fructose bisphosphatase (fbp), aldolase (fba), glucose-6-phosphate 

dehydrogenase/glucolactonase (gnd), transketolase (tkt1, tkt2) and transaldolase (tal) were not 

quantified accurately with our previous 13C-MFA and recent 13C15N-MFA study because PPP 

reactions lack of sufficient labelling information from proteinogenic amino acids. 

Incorporating labelling information from glycogen, ribose moiety of DNA, glucosamine 

moiety from peptidoglycan and lipopolysaccharides, such as suggested by (48) is a promising 

approach to improve flux precision in this area of metabolism. The fluxes of the three 

anaplerotic enzymes pyruvate carboxylase (pca), PEP carboxy kinase (pck), and malic enzyme 

(mez), which play an important role in metabolism connecting catabolism and anabolism with 
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energy generation (49), are notoriously difficult to determine. We demonstrate that BMA-based 

13C15N-MFA provides an effective tool to constrain the anaplerotic net fluxes. The Bayesian 

flux map is consistent with our previous results showing non-identifiability of individual 

anaplerotic fluxes (22), however, the co-labeling data in this study informs about distinct likely 

flux couplings of pca, pck and mez which could not be measured in our previous work. From 

our analysis we conclude that at least one of the three reactions is operating in the 

gluconeogenetic direction, and it is unlikely that two of the associated fluxes are zero at the 

same time.  

Beyond C fluxes, we measured CN and N fluxes to amino acid and nucleotide (purine and 

pyrimidine) biosynthesis, providing novel information which cannot be deduced from our 

former 13C-MFA. We previously identified ASP, GLU and GLN as primary C and N sources 

for Mtb in human host macrophages (19, 20). Here we quantified the CN and N flux for the 

biosynthesis of these amino acids. We identified glutamate biosynthesis bsGLU as the primary 

node for CN flux. This is consistent with the finding that ASP, GLN and NH4
+ as sole N sources 

in Roisin’s minimal medium failed to rescue the growth of a M. bovis BCG mutant lacking 

functional gltBD gene and thereby lacking de novo glutamate synthesis (37, 50). GLU is a well-

established N source for in vitro and intracellular growth of mycobacteria. GLU metabolism is 

also crucial in mycobacteria to resist acidic and nitric oxide stress inside macrophages (37, 50) 

and is therefore a prime metabolic and regulatory node. Furthermore, we were able to quantify 

bidirectionality probabilities for glycine hydroxymethyltransferase (bsGLY), serine deaminase 

(bsSER) and isoleucine and leucine transaminase (bsILE and bsLEU). C and N metabolic 

profiling has been attempted using isotopic labelling by other studies. Blank et al. investigated 

simultaneous C and N incorporation in Saccharomyces cerevisiae administering two different 

isotopic substrates 13C-glucose and 15N-alanine and measured dual label incorporation in amino 

acids using FT-ICR-MS (31). Our study demonstrates that conventional GC-MS, which is the 

traditional workhorse for isotopomer analysis, can also be used to derive dual labelled data sets 

and univariate MIDs of amino acids for robust and reproducible flux quantification by 13C15N-

MFA. Our CN metabolic network is currently limited to amino acid and nucleotide 

biosynthesis, but there are further scopes for extension of this model through addition of 

biocomponents such as co-factors NADH and NADPH, and lipids that requires CN 

assimilation and dissimilation. 

 

In summary, we have developed Bayesian 13C15N-MFA, a powerful tool for simultaneous 

quantification of intracellular C, CN and N metabolic fluxes in a living system. We applied it 
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to M. bovis BCG. 13C15N-MFA identified glutamate as the central CN node, revealed the most 

likely operational modes of the anaplerotic fluxes, and resolved the uni/bidirectionalities of 

glycine, serine, isoleucine, and leucine biosynthesis. Our 13C15N-MFA workflow described 

here is applicable to any C and N isotopic co-labelling experiment, and the computational 

platform developed in this work allows analyses of low- and medium-resolution MS data to 

provide rigorous quantification of CN metabolic fluxes in any biological system.  
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Materials and Methods 

Bacterial strains  

Mycobacterium bovis BCG Pasteur, which was originally purchased from the American Type 

Culture Collection (ATCC 35748), was used for this study. M. bovis BCG gltBD transposon 
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mutant (BCG_3922c TnInsertion-8654) was procured from VIB - Vlaams Instituut voor 

Biotechnologie.  

Media composition 

Middlebrook 7H11 agar and Middlebrook 7H9 broth containing 5% (vol/vol) oleic acid-

albumin-dextrose-catalase enrichment medium supplement (Becton Dickenson) and 0.5% 

(vol/vol) glycerol were used to grow cultures from frozen stocks and for counting the numbers 

of culturable bacteria in chemostat samples. Brain heart infusion agar was used to assess culture 

purity (Sigma Aldrich). For cultivation of M. bovis BCG in the bioreactor, roisins minimal 

medium with composition- KH2PO4, 1 g litre-1; Na2HPO4, 2.5 g litre-1; NH4Cl, 5.9 g litre-1; 

K2SO4, 2 g litre-1; ZnCl2, 0.08 mg litre−1; FeCl3, 0.4 mg litre−1; CuCl2, 0.02 mg litre−1; MnCl2, 

0.02 mg litre−1; Na2B4O7, 0.02 mg litre−1; NH4MoO4, 0.02 mg litre−1; MgCl2, 0.0476 g litre-1; 

CaCl2, 0.055 g litre-1;  Tyloxapol, 01% (v/v); Glycerol, 0.5% (v/v). 

Growth of M. bovis in the bioreactor and chemostat 

M. bovis BCG strain was cultured in a 2 litre bioreactor (Electrolab Fermac 310/60) under 

growth conditions (Table S1). Cultures were grown as batch for 7 days. Continuous cultures 

were grown under chemostat conditions at a growth rate of 0.03 h-1 maintained by the media 

flow rate (22). Media was pumped into the chemostat using a peristaltic pump (Rainin Rabbit 

Plus). Cultures were grown for 3-4 volume changes in the unlabelled media to assure a 

metabolic steady-state before introducing isotopically labelled media. [13C3] glycerol (12.5%) 

(Purchased from CK Isotopes, 99% purity) and [15N1] NH4Cl (20%) (Purchased from Merck, 

98% atom purity) were the carbon and nitrogen isotopically labelled substrates in the media. 

Isotopic stationary state was assessed by measuring % label in the proteinogenic amino acids 

of cultures drawn at different times during label feed (Fig. S1C). 

Chemostat measurements and culture analyses 

Cultures were monitored every day to check for contamination by plating on BHI agar media 

and ziehl neelsen stain. Cultures from chemostat were regularly sampled for measuring OD 

(spectrophotomter from Thermo scientific) and colony forming units (22). Carbon-di-oxide 

production from the cultures was monitored using Gas analyser (Electrolab Fermac 368). The 

supernatant was collected, filtered using 0.22 µ unit filters and used for substrate consumption 

and product excretion analyses. To measure the glycerol uptake, the amounts of glycerol in the 

supernatant and fresh medium was measured using glycerol assay kit (Sigma Aldrich) by a 

coupled enzyme assay involving glycerol kinase and glycerol phosphate oxidase, resulting in 

a colorimetric (570 nm) product, proportional to the glycerol present. To measure NH4Cl 
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uptake, the amounts of NH4Cl was measured using ammonia assay kit (Sigma Aldrich) by 

reaction of ammonia present in the samples involving L-glutamate dehydrogenase activity. Dry 

weight of the cells was measured by centrifuging cultures, drying the cell pellet using freeze 

dryer and weighing the cells. The dried pellet was used for protein analysis using Bicinchoninic 

Acid Kit for Protein Determination (Sigma Aldrich). 

Metabolite extraction 

Labelled chemostat cultures were quenched using methanol:chloroform:water (2:1:2) 

extraction. Briefly, cultures were filtered using membrane Filter, 0.22 µm pore size, filter 

apparatus (Merck) and the filter was immersed into methanol:chloroform, mixed, incubated on 

ice for 30 minutes and water was added, followed by centrifuging at room temperature for 

triphasic metabolite separation. The upper phase was collected separately and dried and used 

for mass spectrometry analysis. The lower and intermediate phase were mixed into one phase 

by addition of one more volume of methanol and chloroform and centrifuged for 30 minutes at 

room temperature. Supernatant was discarded, the pellet was hydrolysed in 6 M hydrochloric 

acid for 24 hours at 100°C and the hydrolysate was dried for mass spectrometry analysis. 

Mass spectrometry analysis of amino acids 

Dried upper phase was derivatised using N-Methyl-N-(trimethylsilyl)trifluoroacetamide, 

MSTFA (sigma Aldrich) and dried hydrolysate were derivatised using tert-Butyldimethylsilyl 

chloride (TBDMSCl) were analysed using GC-MS (7890-5795 system) (20) Mass spectra were 

baseline corrected using MetAlign and mas isotopomer distribution (MID) data were extracted 

using the chemstation software. Identification of metabolites was done using NIST databases, 

literatures, and qualifier masses. Average 13C15N fractional abundances were calculated from 

two independent chemostat cultivations (three- or four technical replicates each) and 

quantitation of metabolite pool sizes was done using calibration curves (20). Further 

confirmation of 13C and 15N labelling in the amino acids were done using LC-MS orbitrap (Fig. 

S7). Briefly, hydrophilic interaction liquid chromatography (HILIC) was carried out on a 

Dionex UltiMate 3000 RSLC system (Thermo Fisher Scientific, Hemel Hempstead, UK) using 

a C18 and ZIC-pHILIC column (150 mm × 4.6 mm, 5 μm column, Merck Sequant). The 

column was maintained at 30°C and samples were eluted with a linear gradient (20 mM 

ammonium carbonate in water, A and acetonitrile, B) over 26 min at a flow rate of 0.3 ml/min. 

The injection volume was 10 μl and samples were maintained at 4°C prior to injection. For the 

MS analysis, a Thermo Orbitrap Q Exactive Plus (Thermo Fisher Scientific) was operated in 

polarity switching mode and the MS settings were used with resolution 70,000, AGC 106, m/z 
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range 70–1400, sheath gas 40, Auxiliary gas 5, sweep gas 1, probe temperature 150°C and 

capillary temperature 275°C. For positive mode ionisation: source voltage +4.5 kV, capillary 

voltage +50 V, tube voltage +70 kV, skimmer voltage +20 V. For negative mode ionisation: 

source voltage-3.5 kV, capillary voltage-50 V, tube voltage-70 V, skimmer voltage-20 V. The 

data shown in supplementary Fig. S7 is a mass spectrum showing the multivariate 13C and 15N 

species identification for alanine.  

13C15N-Metabolic flux analysis 

Metabolic network model: The metabolic model M. bovis BCG used for the analysis was 

constructed using the network editor Omix v.2.0.7 (Omix Visualization GmbH & Co. KG, 

Lennestadt/Germany) (51), according to the protocol described in (52), based on the GSMN-TB 

genome-scale model of M. tuberculosis (53). The constructed model includes reactions of 

glycolysis, the PPP, the TCA cycle, anaplerosis, nucleotide and amino acid biosynthesis. 

Uptake reactions were considered for GLYC and ammonium chloride (NH4Cl). All 

biosynthesis pathway fluxes relevant for growth of M. bovis are modelled as effluxes, whose 

values represent their share in the biomass composition (54). Reactions were considered 

bidirectional including all transaminases, unless evidence was found that the reactions operate 

far from thermodynamic equilibrium under in vivo conditions (supplementary Table S2). Only 

in the latter case were those reactions modelled unidirectional. Each metabolic reaction was 

supplemented with carbon and nitrogen atom transitions, following the InChI atom 

enumeration scheme (55). Carbon symmetries of succinate (SUCC), fumarate (FUM), and 

diaminopimelic acid (DAP) were accounted for by the formulation appropriate label 

scrambling reactions. In total, the M. bovis BCG model consists of 248 metabolites (121 

balanced intracellular and 127 unbalanced extracellular pools) and 184 metabolic reactions 

(149 unidirectional, 35 bidirectional). The most comprehensive model in the model set has 71 

independent flux parameters (36 net and 35 exchange fluxes). The corresponding CN atom 

transition network model is formulated in the standardized document format for isotope-based 

MFA, FluxML v3 (56), and is found in supplementary Data S1. 

 

Measurement models: In total 30 biomass effluxes were considered as measurements that were 

either obtained from biomass hydrolysates or calculated from intermediates (22) and supplied 

with Gaussian error of 5%. Uptake rates for glycerol and NH4Cl were fixed for the analysis. 

Labelling measurements of 15 amino acids, were corrected for the effect of natural abundant 

isotopes (57), adding up to 109 univariate MIDs (supplementary Table S3). The associated 
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measurement errors were derived from up to 8 replicates (two independent chemostats, each 

with two-four replicate measurements). The complete measurement specification is given in 

the FluxML model file in supplementary Data S1. 

 

Labelling system & simulation: The 13C-MFA high-performance simulator 13CFLUX2 v2.2 

(58) was extended to simulate 13C15N isotopologues. Briefly, the essential cumomer framework 

(59) was generalized from single-atom to multi-atom species labelling systems. The resulting 

balance equations consist of a set of sparse linear equation systems that were solved 

sequentially with on-the-fly algebraic simplification guaranteeing numerical stability, 

accuracy, and efficiency. The resulting reduced co-labelling system has a state-space 

dimension of 471 (a reduction of a factor of 2,563 compared to the full co-labelling system). 

 

Flux inference with Bayesian Model Averaging: Instead of conventional optimization-based 

single-model flux inference, in this work metabolic fluxes were estimated using a Bayesian 

multi-model approach. More precisely, net fluxes and reaction bidirectionalities were inferred 

simultaneously by employing BMA, implemented using a tailored MCMC approach (26). 

Herein, 13CFLUX2 was used for likelihood computation. For speed, sampling algorithms 

implemented in the C++ library HOPS v2.0.0 (60) were employed after suitable preprocessing 

using Polyround v0.1.8 (61). Parallel tempering with dynamic temperature selection was 

applied to sample from potentially multi-modal distributions. In total, 10 parallel chains were 

run from independent starting points, where per chain 15×106 forward simulations were 

performed. For each chain, the first 5×106 samples were discarded (burn-in). Proper 

convergence of the MCMC runs was diagnosed by measuring the Potential Scale Reduction 

Factor (PSRF) (62) on a subset of samples, where all but every 2,000th sample was disregarded 

(thinning). Computations were run on a workstation with dual Intel(R) Xeon(R) Gold CPU 

(61300 @ 2.8 GHz). PSRF, mixing plots in parameter as well as model spaces are provided in 

supplementary Table S4, Fig. S8 and Fig S9. 

 

Statistical evaluation: From the MCMC results posterior probability distributions 𝑝(𝑣|𝐷) for 

the net fluxes 𝑣 were derived, according to (EQ 1). Formally, the posterior probability of a 

model 𝑀𝑖 out of the model set {𝑀𝑖| 𝑖 = 1, … , 𝑁} is given by 

𝑝(𝑀𝑖|𝐷) =  
𝑝(𝐷|𝑀𝑖)∙𝑝(𝑀𝑖)

∑ 𝑝(𝐷|𝑀𝑘)∙𝑝(𝑀𝑘)𝑁
𝑘=1

         (EQ 2) 
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where 𝑝(𝑀𝑖), the prior knowledge about model 𝑀𝑖, is considered equal for all models. 𝑝(𝐷|𝑀𝑖) 

represents the high dimensional marginalization integral over all possible fluxes the model 𝑀𝑖 

can take. The 95% CrIs were determined for each net flux (i.e. the range that contains the flux 

with a probability of 95% in view of the data), discarding the upper and lower 2.5% of the 

values. In addition, as point estimator, the expected value (EV) for the net flux is reported. The 

marginal distributions for the net fluxes are provided in supplementary Fig. S2. For each 

reversible reaction, the posterior probability of the reaction being bidirectional was determined, 

according to (EQ 2), as ratio of models sampled with the reaction set bidirectional divided by 

the total number of sampled models (supplementary Fig. S6). 

 

Statistical Analysis 

Students-t-test, analysis of variance (ANOVA) and linear regression analyses was performed 

in Graphpad Prism 8.0. 
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Fig. 1. Metabolic network showing carbon and nitrogen metabolism. Pathways of carbon 

and nitrogen metabolism include glycolysis (EMP), pentose phosphate pathway (PPP), 

tricarboxylic acid (TCA) cycle, and anaplerotic reactions (ANA). Nitrogen source ammonium; 

carbon source glycerol. Reactions and metabolites involving nitrogen are shown in red. The 

inset shows the last bifurcated step of the arginine biosynthesis, according to the genome-scale 

metabolic model sMTB2.0 (63). Citrulline is aminated either by free nitrogen to form arginine 

(arginine deiminase, ARCA), or aspartate is acting as nitrogen donor and arginine is formed via 

a two-step reaction with the intermediate argininosuccinate (argininosuccinate synthase 

(ARGG) and argininosuccinate lyase (ARGH)). Because the carbon backbone is the same for 

both branches, 13C labelling alone is not able to resolve the fluxes of either of these pathways. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.08.483448doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483448


Fig. 2 

 

Fig. 2. General workflow of 13C15N-MFA. Labelling data are collected from a 13C and 15N 

isotope co-labelling experiment, performed for a continuous culture in a chemostat setting to 

achieve metabolic (pseudo) steady state conditions. Cells are harvested at isotopic steady state 

for the analysis of intracellular metabolites using mass spectrometry along with natural 

abundance correction. A CN metabolic model is constructed and together with extracellular 

(uptake, secretion) rates and the labelling data, CN fluxes are inferred. To this end, a multi-

model inference strategy using Bayesian Model Averaging (BMA) is executed. Here, any 

specific combination of uni- and bidirectional reactions constitutes a model, giving rise to 

combinatorically many possible model variants. BMA is a statistical procedure to draw 

inferences from the set of model variants by weighting individual model inferences based on 

their likelihood to explain the labelling data. The result is the Bayesian flux map that shows 

the resulting expected values of net fluxes, resulting from marginal posterior probability 

distributions, along with the probabilities of the reversible reactions to operate bidirectionally. 
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Fig. 3 

  
Fig. 3. Bayesian flux map for BCG growing at 0.03 h-1 inferred with 13C15N-MFA. The line 

strengths code for the expected values (EV) of the net flux marginal posterior probability 

distributions (supplementary Fig. S2). Their associated 95% credible intervals (CrIs) are given 

in hexagons, where thin black and thick dark red borders indicate reactions that involve carbon- 

or nitrogen-only and mixed carbon-nitrogen transfer, respectively. Values are given relative to 

the glycerol uptake flux (set to 100). The associated absolute net flux CrIs are provided in 

Fig. 4. The nominal reaction direction, indicated by the arrowhead, is given according to a 

positive EV. Colour indicates pathway association of the reactions. Associated probabilities of 

reversible reactions being bidirectional are found in supplementary Fig. S6. 
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Fig. 4 

 

Fig. 4. Credible intervals and expected values of absolute fluxes for BCG growing at 0.03 

h-1 inferred with 13C15N-MFA. Colours indicate pathways and coloured bars specify 95% 

credible intervals (CrI) for net fluxes, with inscribed white line indicating the expected value 

(EV, in case of very narrow CrIs the EV is not displayed). The flux values are bi-symmetrically 

log transformed (64). 
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Fig. 5 

 
Fig. 5. Joint marginal posterior probability plots of the fluxes of the three anaplerotic 

reactions pyruvate carboxylase (pca), PEP carboxykinase (pck), and malic enzyme (mez). 

The metabolic network of the anaplerotic node is shown in the lower left. Darker (lighter) 

colours indicate regions of higher (lower) probability according to the labelling data. For mez 

vs pca, mez vs pck, and pca vs pck flux correlations have ring-like shapes, giving raise to two 

modes of negative or positive correlation. See supplementary Fig. S4 for an extended version.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 8, 2022. ; https://doi.org/10.1101/2022.03.08.483448doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483448


Fig. 6 

  
Fig. 6. Bayesian N-flux map for BCG growing at 0.03 h-1 inferred with 13C15N-MFA. GLU-

centric view with focus on amino acids. The line strengths code for the expected values (EV) 

of the net flux posterior probability distributions. Lower and upper limits of their associated 

95% credible intervals (CrIs) are given in hexagons. To maintain compatibility with Fig. 3, 

values are given relative to the glycerol uptake flux (set to 100). Glutamate (GLU) is the 

primary nitrogen donor for most amino acids, but also glutamine (GLN), aspartate (ASP), and 

serine (SER) are important nitrogen hubs. 
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Fig. 7 

 

 

Fig. 7. Growth of wild type and gltBD mutant BCG strain on minimal medium containing 

glycerol, GLU, ASP, GLN and NH4Cl. A positive slope m>0 indicates exponential growth. 

A negative slope (m<0) indicates no exponential growth. Values are mean ± SEM (n=3 

independent replicates). * indicates statistically significant deviation of the slope from 0; ****, 

P<0.00001.  

 

 

Fig. 8 

 

Fig. 8. Pool sizes vs. biosynthetic CN fluxes of protein-derived amino acids. Values are 

mean ± 2 SD (n=3 independent measurements) for pool size measurements and 95% CrIs for 

flux values. 
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Main Tables: 

 

Table 1 

 

 Specific consumption/production rate 

Glycerol 0.81 ± 0.28 mmol g biomass-1 h-1 

NH4Cl 0.84 ± 0.11 mmol g biomass-1 h-1 

Dry weight 1.41 ± 0.12 g L-1 

Dilution rate (fixed) 0.03 h-1 

The measurements were done for chemostat cultures at metabolic and isotopic steady state. 

Measurements are mean ± SD from two independent chemostat cultures each with three to four 

technical replicates. 
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