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Abstract11

The brain represents the world through the activity of neural populations. Correlated variability12

across simultaneously recorded neurons (noise correlations) has been observed across cortical areas and13

experimental paradigms. Many studies have shown that correlated variability improves stimulus coding14

compared to a null model with no correlations. However, such results do not shed light on whether15

neural populations’ correlated variability achieves optimal coding. Here, we assess optimality of noise16

correlations in diverse datasets by developing two novel null models each with a unique biological in-17

terpretation: a uniform correlations null model and a factor analysis null model. We show that across18

datasets, the correlated variability in neural populations leads to highly suboptimal coding performance19

according to these null models. We demonstrate that biological constraints prevent many subsets of the20

neural populations from achieving optimality according to these null models, and that subselecting based21

on biological criteria leaves coding performance suboptimal. Finally, we show that the optimal subpop-22

ulation is exponentially small as a function of neural dimensionality. Together, these results show that23

the geometry of correlated variability leads to highly suboptimal sensory coding.24

Introduction25

The brain represents the world through the coordinated firing of neural populations. For instance, neural26

populations in early sensory areas are thought to transform the features of stimuli and transmit them to27

downstream cortical areas. Indeed, many studies of sensory areas seek to analyize what sensory features28

are transmitted in the brain and with what fidelity. Understanding population neural activity necessitates29

analyzing the joint activity of many neural units, beyond single-neuron analysis. Normative theories, which30

formalize optimality criteria, are powerful tools in these analyses, as they can establish principles for ex-31

plaining features of experimentally observed neural activity at the population level. Therefore, it is important32

to develop methods for quantitatively assessing normative theories based on the features observed in neural33

data. One prominent feature of neural activity is variability: neural recordings exhibit trial-to-trial fluctua-34

tions in response to the same stimulus. From a normative perspective, the geometry of variability in neural35
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activity impacts how optimally a population of neurons can encode stimuli [1, 2]. However, the optimality36

of correlated variability has not been assessed.37

Many studies have found pairwise correlations in the trial-to-trial variability of the firing rates of simul-38

taneously recorded neurons, often called correlated variability or noise correlations [3–9]. The correlated39

variability observed in experimental studies typically depends on the tuning and stimuli [10–12]. For ex-40

ample, Figure 1a, b shows the single-trial variability in Ca2+ responses (∆F/F) for two simultaneously41

recorded mouse retinal ganglion cells (RGCs) in response to drifting bars. The RGCs’ correlated vari-42

ability for a single stimulus is shown in Figure 1e. Although correlated variability is typically considered43

in simultaneous single neuron electrophysiology measurements, it has been observed in calcium imaging44

recordings [13] and larger scale measurements such as electrocorticography recordings [9]. Correlated vari-45

ability has many possible biological sources in neural populations (see Supplementary Fig. 1) [6, 7, 14–46

18], which the nervous system may be able to modify. Understanding the impact of correlated variability on47

population coding is important for revealing the principles governing neural computation [1, 2, 4].48

Correlated variability impacts the fidelity of a neural code when discriminating stimuli. Theoretical and49

computational studies have determined how the interplay between correlated variability and tuning proper-50

ties affect population coding [2, 8, 15, 19–23]. Figure 1c shows the mean response curve (black line, defined51

by the mean firing rate of the neurons in response to various stimuli) from two hypothetical simultaneously52

recorded neurons across a range of stimulus values (3 neighboring stimuli are demarcated with black dots).53

From a geometric perspective, if the correlated variability has low variance (Fig. 1c, blue ellipse) along the54

mean stimulus response curve (Fig. 1c, black line), the impact on coding will be less detrimental than having55

high variance (Fig. 1c, orange ellipse) along the stimulus response curve. This is because the trial-by-trial56

fluctuation (blue ellipse) in response to the central stimulus (large black dot) will minimally overlap with the57

response to the nearby stimuli (small black dots). In early sensory areas, such as retina and primary visual58

cortex, studies have found that correlated variability enhances population coding [6, 16, 24–28]. Outside of59

early sensory areas, both the structure of correlated variability and its impact on coding is heterogeneous [12,60

29, 30]. Brain states can change correlated variability and therefore its effect on population coding [31–33].61

These studies leave open the possibility that the correlated variability is optimal for coding in sensory areas,62

which has not been evaluated.63

The impact of correlated variability on neural coding is typically assessed by comparing the linear Fisher64

information (LFI) of the experimentally observed correlations to the distribution of LFI under the shuffle null65

model, a null distribution with the same per-neuron variability, but no correlations across neurons. LFI quan-66

tifies how accurately neural population activity can be used to distinguish two stimuli. Many previous studies67

have shown, by using the shuffle null model, that the geometry of correlated variability can benefit neural68

coding. However, comparing the experimentally observed correlated variability with the zero correlation69

version is only one relevant comparison for determining optimality; there are potentially other geometries70

which are not captured by the shuffle null model. In principle the brain’s correlated variability could have71

produced better (or worse) coding properties. Furthermore, it is unclear whether zero-correlation population72

activity is the only reasonable null distribution given biological processes such as learning, highlighting the73

importance of developing tailored null models [34]. Testing normative theories of stimulus coding in neu-74

ral datasets requires understanding whether the geometry of experimental correlated variability is optimal,75

however methods for testing the optimality of correlated variability are currently lacking.76

In order to test the optimality of correlated variability in experimentally observed neural responses, we77

developed two null models. The uniform correlation null model and the factor analysis null model each78

define a null distribution of correlated variability and have a particular biological interpretation. Using these79

null models, we test the optimality of neural coding in newly acquired data recorded from retinal ganglion80

cells (RGCs, Retina), previously recorded neurons in primary visual cortex (V1), and newly acquired ECoG81

electrodes on primary auditory cortex (PAC) (Fig. 1d-l). These datasets span neural areas and recording82

modalities used in many previous studies. Our main finding is that the experimentally observed geometry83
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Figure 1: Correlated variability is a pervasive neural phenomenon. a, b. Mean activity as a function of
bar angle (larger open circles) and trial-to-trial variability (small dots, small angle offsets for visualization)
for angle 0 (corresponds to the blue dots for Neuron 1 and Neuron 2, respectively, in d). c. Illustra-
tion of mean stimulus response curve (black line), less detrimental correlated variability (blue ellipse), and
more detrimental correlated variability (orange ellipse) for two model neurons. The large black dot is the
mean stimulus response corresponding to the covariances. The small black dots are the mean responses
for neighboring stimuli. d-l. Each row refers to a different experimental dataset, while columns refer to
an aspect of the dataset. d-f. Calcium imaging recordings from mouse retinal ganglion cells in response
to drifting bars. g-i. Single-unit spike counts recorded from primary visual cortex of macaque monkey in
response to drifting gratings. j-l. Micro-electrocorticography recordings (z-scored Hγ response) from rat
primary auditory cortex in response to tone pips at varying frequencies. First column (d, g, j) depicts the
recording region and stimulus for each dataset. Second column (e, h, k) shows the activity of two random
RGCs/neurons/electrodes in the population to two neighboring stimuli. Individual points denote the unit
activity on individual trials, while covariance ellipses denote the noise covariance ellipse at 2 standard devi-
ations. Third column (f, i, l) plots the distribution of pairwise noise correlations, calculated for each pair of
units across stimuli.
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of correlated variability leads to highly suboptimal coding across all datasets and both null models. Fur-84

thermore, the degree of suboptimality worsens as a function of the number of neural units considered in the85

neural population. We find that for a large fraction of subsamples of the recorded units, achieving optimality86

would push the neural responses into regimes that violate biological constraints. However, even when neural87

units are subsampled to optimize for biological criteria, they remain highly suboptimal. Finally, direct selec-88

tion of optimal subsamples shows that the optimal population is exponentially small as a function of neural89

dimensionality. Our results demonstrate that the traditional null model of correlated variability cannot be90

used to assess the optimality of neural data, and that biological constraints limit the ability of neural activity91

to achieve optimal correlated variability as defined by our null models. Together, our results show that the92

geometry of correlated neural variability leads to highly suboptimal sensory coding.93

Results94

In order to assess the optimality of correlated variability in neural populations, we used three neural datasets95

which span animal models, sensory recordings areas, and recording modalities (Fig. 1). The newly recorded96

retina dataset is calcium imaging recordings in mouse retinal ganglion cells (RGCs) (Fig. 1d-f). The stimuli97

are drifting bars at 6 angles with each stimuli being presented 114 times. The previously recorded V198

dataset is spike sorted, single unit electrophysiology recordings in macaque V1 (Fig. 1g-i) [35]. The stimuli99

are drifting gratings at 12 angles with each stimuli being presented 200 times. The newly recorded primary100

auditory cortex (PAC) dataset is high gamma amplitude from µECoG recordings in rat primary auditory101

cortex (Fig. 1j-l). The stimuli are tone pips at 30 different frequecies with each stimuli being presented 60102

times. We will refer to RGCs/neurons/electrodes as neural units. The neural units have various levels of103

pairwise noise correlations, ρ, across datasets (Fig. 1f, i, l), which is a key quantity for analyzing correlated104

variability. See Methods for more details on dataset recording and preprocessing.105

Methods for assessing the optimality of neural codes106

An abundance of work has aimed to assess whether observed correlated variability is beneficial or detrimen-
tal for neural coding[6, 9–12, 16, 19, 24–33]. These studies often quantify the discriminability or fidelity of
a neural code with the linear Fisher information (LFI, see Section ) [36], which is a measure of how well the
neural activity could be used to discriminate between different stimuli. The LFI is a function of the stimulus,
s, the stimulus-derivative of the mean neural activity, df(s)

ds , and the variability of the neural activity around
the mean, Σ(s), and can be written as:

I(s) = df(s)T

ds
Σ(s)−1df(s)

ds
. (1)

Typically, the impact of correlated variability is assessed by comparing the experimentally observed LFI to a107

distribution of LFIs generated from the shuffle null model. Trial-shuffling the data will produce a distribution108

over covariance matrices (Σ(s)) where the pairwise correlations are all centered near zero (Fig. 2a, observed109

covariance is filled, corresponding shuffle covariance is dashed). However, the shuffle null model does not110

compare the observed correlations to a broad range of potential non-zero correlations. In principle, neural111

circuits can support a range of covariance structures with significant nonzero pairwise correlations, many of112

which can produce higher LFI than having zero correlations. In this case, using the shuffle null model would113

overestimate the level of optimality in neural data, and therefore cannot be used to assess the optimality of114

the experimentally observed correlations. To our knowledge, the optimality of correlated variability has not115

been evaluated on neural data before.116

In order to assess optimality, the null model should be chosen to adequately span achievable covariance117

structures. Defining achievable may depend on the experimental context, including the types of neurons118
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Figure 2: Methods for assessing the optimality of neural codes. a-c. Null models of correlated variability.
Solid, purple ellipses denote the trial-to-trial variability observed about the mean stimulus activity (solid
point). Samples from the null models are depicted by dashed ellipses. a. The shuffle null model maintains
per-neuron variance and samples correlations near zero. b. The uniform correlation null model maintains
per-neuron variance and samples uniform correlations. c. The factor analysis null model combines a fixed
private variability (estimated from the experimental data, left gray inset) with shared variability (right teal
inset) that can be rotated to form null samples (dash styles are consistent between the teal shared variabilities
in the inset and the purple null samples in the main panel). d. For a synthetic 2d dataset, the LFI for the
fixed-marginal parameterization as a function of the pairwise correlation, ρ, is shown at the top, the bottom
plots are the covariance and samples as a function of ρ. e. For a synthetic 2d dataset, the LFI for the factor
analysis parameterization as a function of the rotation angle, θ, is shown at the top, the bottom plots are the
covariance and samples as a function of θ. f. To calculate an observed LFI or percentile under a null model,
d units were randomly drawn from the population to form a “dimlet”. Then, two neighboring stimuli, s1
and s2, were chosen. The dimlet and stimulus pairing together constitute a “dim-stim”, or a pair of design
matrices

[
Xd

s1 ,X
d
s1

]
. These dim-stims are the samples inputs into a LFI calculation or null model analysis

and form the basis for distributions of calculated quantities. g. Dim-stim responses in the retinal data for the
depicted stimulus pairing (colors) from f.
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being recorded, their location in the brain, or the recording modality. Thus, it is beneficial if the parameters119

of the null model have a biological interpretation. We propose two null models that allow us to asses the120

optimality of experimental neural responses: the uniform correlation (UC) null model and the factor analysis121

(FA) null model. The uniform correlation null model maintains the per-neural unit distributions of activity,122

like the shuffle null model. In contrast to the shuffle null model which samples the correlations around123

zero (Fig. 2a), the uniform correlation null model samples the multivariate correlations uniformly (Fig. 2b,124

dashed lines are samples with different correlations) [37]. In the UC null model, neural units maintain their125

private mean and variance for a particular stimulus, but have the freedom to change their multivariate pair-126

wise correlations (ρ). Biologically, changing the pairwise correlations could be achieved through recurrent127

connectivity within the network of neural units. Depending on the correlations, the network could achieve a128

range of coding fidelities as assesed by the LFI (Fig. 2d, covariance structures shown below the plot lead the129

LFI as a function of the scalar pairwise correlation (ρ). At extreme values of correlation, the LFI can take on130

the highest values [22]. Mathematically, the UC null model constrains the per-unit variances while sampling131

the multivariate correlations (ρ) uniformly (see Methods for details). Motivated by experimental findings132

that the variability in population responses has private and shared components [7, 14], we also developed133

a factor analysis (FA) null model. The FA null model decomposes the experimentally observed covariance134

into independent private variances and shared variability [7, 15]. The private variance is fixed (Fig. 2c, gray135

ellipse in the left inset) and the shared variability’s weighting on different neural units can change through136

a rotation (Fig. 2c, dashed teal ellipses in the right inset are sampled rotations of the shared variability).137

Biologically, this models each neuron having fixed private variability and incoming shared variability which138

could be weighted in different ways. As the shared variability is rotated, the covariance structure varies, and139

the LFI takes on a smaller range of values than in the UC null model (Fig. 2e, covariance structures shown140

below the plot generate the LFI as a function of rotation angle, R(θ)). Mathematically, the FA null model141

constrains the factor analysis private variances but applies uniformly sampled rotations to the loading matrix142

for the shared variability (see Methods for details). Together, these null models define the potential space of143

covariances based on two different biological motivations and provide suitable tests of optimality.144

To use the null models, for each neural population (retinal ganglion cells, V1 neurons, electrodes in145

primary auditory cortex), we randomly sampled “dimlets”, or sub-populations of neural units, of dimension146

d. We combined dimlets with a variety of neighboring stimulus pairings to obtain a subset of the neural147

responses which we call a dim-stim (Fig. 2f, see Methods). A dim-stim would be the input to the task148

of constructing a decoder for neighboring stimuli using a neural sub-population’s responses across trials149

(Fig. 1e, h, k and Fig. 2g). For each dataset, we generated a large number of dim-stims across a set of150

dimensions d = 3 − 20 (see Methods). We calculated the LFI for each dim-stim across dimensions and151

datasets. We refer to this quantity as the observed LFI. Next, we sampled the null models 1,000 times for152

each dim-stim, and calculated the LFI for each sample (see Methods). Thus, for each dim-stim, we obtained153

a single experimental LFI and a corresponding distribution of LFIs for each null model. The 1,000 null LFIs154

constitute a null distribution to compare the experimentally observed LFI against. In particular, we define155

the percentile as the fraction of the 1,000 null LFIs which are less or equal to than the observed LFI. Higher156

percentiles indicate that the observed LFI is larger than more samples from the null model.157

The geometry of correlated variability leads to suboptimal neural coding158

With the uniform correlation (UC) and factor analysis (FA) null models, we assessed the optimality of159

the neural code. To characterize the optimality of a wide range of sub-population and stimulus settings,160

we performed a large scale analysis evaluating the LFI in both the experimentally observed data and null161

models (see Methods). We compared the experimentally observed LFI to the distribution of LFI from the162

null models. Specifically, for the experimental data, we compute the median LFI across dim-stims at each163

dimension (Fig. 3a-c, black lines). For the shuffle, uniform correlation (UC), and factor analysis (FA) null164

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2022. ; https://doi.org/10.1101/2022.03.08.483488doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483488
http://creativecommons.org/licenses/by/4.0/


models, we first calculated the median LFI from the null distribution for each dim-stim and then report the165

median across dim-stims (Fig. 3a-c, gray, blue, and orchid lines, respectively).166

As expected, the experimentally observed LFIs across dim-stims grew with dimlet dimension, indicating167

that increasing the dimension of the neural population improved the stimulus decoding (Fig. 3a-c, black168

lines). Similarly, the median null model LFIs grew with dimlet dimension. The shuffle null model exhibited169

comparable discriminability relative to the experimental LFI at lower dimensions (Fig. 3a-c, gray lines). At170

higher dimensions, however, the shuffle null model LFIs began to exceed the observed LFIs. In contrast,171

both the uniform correlation and factor analysis null models exhibited considerably larger median LFIs than172

the observed data, with the disparity increasing with dimlet dimension. Therefore, on average, the stimuli173

were more easily discriminable using the covariances sampled from the UC and FA null models than the174

experimental covariance. We further observed differences across datasets. For example, the factor analysis175

null model (Fig. 3a-c, orchid lines) exhibited similar LFIs to the uniform correlation null model for the PAC176

dataset. However, in the retina and V1 data, the factor analysis LFIs were more comparable to the observed177

and shuffle LFIs. Overall, Figure 3a-c demonstrates that the uniform correlation and factor analysis null178

models produce LFIs that generally exceed the LFIs of the observed data, suggesting the neural code is179

suboptimal.180

Although the differences between the null model LFIs and observed LFIs were large, the preceding anal-181

ysis was done at a population level rather than comparing each dim-stim LFI with its own null distribution.182

Therefore, we quantified the optimality per dim-stim, relative to a null model, with its observed percentile.183

To calculate the population optimality measure, the median percentile across dim-stims is taken. A higher184

percentile means that the observed LFIs are greater than a larger fraction of the null LFIs. To operationalize185

the notion of population optimality, we define three categories for optimality based on the median of the186

experimental distribution of percentiles. If the median is greater than 2/3, the population is optimal (Opt),187

if the median is between 1/3 and 2/3 the population is near-chance (NC), and if the median is below 1/3 the188

population is suboptimal (Sub). Alternative categorizations could be used, but we chose the even splitting189

into thirds for simplicity (see Methods for details).190

We found that each null model exhibits distinct LFI distributions, with further variation depending on191

the dataset and dim-stim. Example null model distributions for individual d = 3 dim-stims are depicted192

in Figure 3d-f (vertical black line indicates the experimental LFI, gray, blue, orchid are the shuffle, UC,193

and FA null model LFI distributions respectively, note that the uniform correlation null distributions often194

have long tails and are truncated for visualization). The examples highlight that the percentiles can vary195

across null models for a dataset (Fig. 3d-f, inset text). The heterogeneity in observed percentiles motivated196

examining their distribution across all dim-stims. Thus, for each dataset, we computed the distribution of197

observed percentiles across the dim-stims per dimlet dimension (d = 3 to d = 20). The median observed198

percentile (calculated across dim-stims) as a function of dimlet dimension is shown in Figure 3g-i. Consis-199

tent with other studies [6, 13, 16], we found that the shuffle null model (gray lines) often had large observed200

percentiles, indicating that the shuffle null model often showed the benefits of experimentally observed cor-201

relations versus having no correlations. However, it would be misleading to interpret these results as a test202

of optimality. Indeed, compared to the uniform correlation (blue lines) and factor analysis (orchid lines)203

null models, the experimental data exhibited suboptimal observed percentiles (Fig. 3g-i, blue and orchid204

lines). All percentiles decreased with dimlet dimension, implying that the neural representations became205

less optimal as the number of neurons increases. In theory, this decrease is expected as eventually differ-206

ential correlations induce information saturation in the populations, however recent work indicates that we207

should not expect to see the impact of differential correlations at this relatively small scale [38–40]. Indeed,208

saturation of the LFI was not evident in Figure 3a-c. This indicates that the suboptimality observed in209

Figure 3g-i is not due to differential correlation, but from some other biological cause.210

Figure 3g-i also highlights differences across datasets. The shuffle null model had the lowest observed211

percentiles among the three datasets for the retina data, starting near-chance for small dimlet sizes and212
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Figure 3: The geometry of correlated variability leads to suboptimal neural coding. Each column
corresponds to one of the datasets. Color legend is shared across columns. Color legend is preserved across
panels. a-c. The median LFI is plotted (solid lines, log-scale y-axis) as a function of the dimlet dimension
(x-axis) for the observed correlated variability and null model samples (colors in legend). Shaded regions
indicate the 95% CI of the median LFI (note that CIs are often comparable to the median line width). d-
f. Histograms of null LFIs are shown for the shuffle, uniform correlation, and factor analysis null models
for one dim-stims for each dataset. The observed LFI is denoted by the black vertical line in each plot.
Percentiles for each null model are reported. g-i. Median observed dim-stim percentiles are shown (solid
lines) as a function of dimlet dimensions, for each dataset and null model. Shaded regions indicate the 95%
CI of the median observed percentile (note that CIs are often comparable to the median line width). Black
dashed lines divide optimal (Opt), near-chance (NC), and suboptimal (Sub) regions.
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dropping below 1/3 around d = 7 (Fig. 3g, grey lines). For the V1 data, the shuffle null model clearly213

exhibited the highest observed percentiles, indicating the coding benefits of correlations compared to zero214

correlations for small dimlet sizes up to d = 15 (Fig. 3h, grey lines). In the primary auditory cortex data, the215

shuffle null model exhibited intermediate observed percentiles, with a larger spread in confidence intervals,216

indicating a higher heterogeneity in the observed percentiles (Fig. 3i, gray shaded region). Meanwhile, the217

observed percentiles for the uniform correlation and factor analysis null models were more similar across218

the three datasets, with slightly different magnitudes. In particular, the retinal data exhibited the largest219

observed percentiles for the factor analysis null model, while the PAC data exhibited the smallest, going to220

zero around d = 5. The uniform correlation null model had the lowest percentiles for the retina dataset and221

similar percentiles for the V1 and PAC datasets. This behavior roughly tracked the distribution of pairwise222

correlations amongst the three datasets (Fig. 1e, h, k), with the retinal data possessing the lowest average223

noise correlation, and the PAC data possessing the highest average noise correlation. Critically, across all224

datasets and dimensions, the percentiles for both the uniform correlation and factor analysis null models225

were below 1/3. This indicates that the geometry of correlated variability leads to suboptimal coding, and226

that the suboptimality becomes more pronounced with increasing neural dimension.227

Optimal correlated variability is typically biologically inaccessible228

The results of the preceding section indicate that the geometry of correlated variability is highly suboptimal,229

as opposed to near-chance or optimal. We next sought to understand why this was the case. For the uniform230

correlation model, we summarize findings about optimal correlations from Hu et al. [22]. For the factor231

analysis model, we compared the structure of the observed covariances to those of the optimal covariances.232

When the per-neural unit variability is fixed, as in the shuffle and uniform correlation null models, Hu233

et al. [22] showed that the optimal covariance structure will lie on the boundaries of the allowed values of234

ρ for several measures of coding fidelity, including the LFI (Fig. 2d). The authors discussed that points on235

the boundary may fall outside of biologically allowed regions. Consistent with this, we found that optimal236

correlation matrices for the uniform correlation null model often had absolute pairwise correlations that237

are close to 1, which was never observed in the experimental data (see Supplemental Fig. 3). Thus, the238

optimal correlated variability structure suggested by the uniform correlation null model may be biologically239

inaccessible. Meanwhile, the factor analysis model allows the distribution of highest pairwise correlations240

to be modified (and generally increased), but does not extend near 1, suggesting that the distribution of noise241

correlations achieved by the factor analysis null model is more biologically realistic.242

Both the shuffle and uniform correlation null models will necessarily reproduce the observed single-unit243

statistics, because they only change the correlations. Therefore, both of these null models will reproduce the244

Fano factors (FF, variance
mean ) and negative densities (ND, fraction of activity below the smallest responses of the245

experimental activity) of the observed data. The factor analysis null model, however, can produce covari-246

ance ellipses that have different single-unit distributions. Thus, some FA-optimal covariances may orient247

variance in the negative or low-activity regions of the neural space. For the factor analysis null model, we248

quantified the degree to which the biological inaccessability of optimal covariances related to the percentiles249

of the experimental data for each dim-stim. The Fano factor quantifies the variability of neural units relative250

to their average activity. Typically, Fano factors for single-unit firing rates have been observed to be near251

1 [41–44], in line with the approximately Poisson nature of firing rates. Thus, a large deviation from the252

Fano factors observed in the experimental data indicates the single-unit properties of the optimal covariances253

are biologically implausible (Supplementary Fig. 2). First, we examined whether the observed Fano factor254

diverged from the Fano factors achieved by the FA-optimal covariance on each dim-stim via their absolute255

log-ratio (see Methods). Large values of this quantity indicate greater difference between optimal and ex-256

perimental single-unit distributions, suggesting less biological plausibility. Relatedly, a sample-covariance257

that has negative neural activity can be interpreted as less biologically plausible, because negative activity is258
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either unachievable (for single-unit count variables) or highly unlikely (calcium imaging ∆F/F or baseline259

z-scored µECoG) (Supplementary Fig. 2). Therefore, the second quantity we examined was the absolute260

difference in negative density (ND), which captures the degree to which the FA-optimal covariance has neg-261

ative neural activity (see Methods). Larger values of the negative density imply less biological plausibility.262

We used these two measures of biological plausibility to assess when the observed neural responses can be263

optimal according to the FA null model.264

We determined whether the Fano factor (FF) and negative density (ND) distributions of the optimal co-265

variances from the FA null model related to the suboptimality of the experimentally observed neural code.266

To do this, we directly compared the optimal FA null model Fano factors to the experimental Fano factors267

in Figure 4a-c. Across dim-stims, for d = 3, Figure 4a-c shows 2d-histograms of the absolute log-ratio268

of Fano factors against the FA percentile, with darker colors corresponding to higher log-density of sam-269

ples. For each histogram, we additionally plot the median percentile as a function of the log-ratio in blue.270

We found that when the Fano factors closely matched (i.e., the log-ratio was close to zero), the percentiles271

spanned a broad range between 0 and 1 (medians percentiles: 0.51, 0.41, 0.15 for the lowest bin across272

datasets). However, FA-optimal covariances commonly deviated from the observed Fano factors, and when273

they did, the observed percentiles dropped below 0.5 and were often near 0. Thus, as the biological acces-274

sibility of the optimal covariance decreased, so did the optimality of the observed neural code. Likewise,275

for negative density (ND), we directly compared the optimal FA null model NDs to the experimentally ob-276

served NDs in Figure 4d-f. Across dim-stims, for d = 3, Figure 4d-f shows 2d-histograms of the absolute277

difference in NDs against the FA percentile with darker colors corresponding to higher log-density. For278

each histogram, we additionally plot the median percentile as a function of ND difference in red. We found279

that when the difference was close to zero, the percentiles spanned a broad range between 0 and 1 (medians280

percentiles: 0.47, 0.60, 0.31 for the lowest bin across datasets). However, the ND of FA-optimal covariances281

commonly deviated from the observed ND, and when they did, the experimentally observed percentiles were282

typically closer to 0.283

We summarized the relationship between biological plausibility and percentile for both FF and ND.284

At each dimension d, we calculated the Spearman rank correlation between the observed percentile and285

each measure of biological plausibility (Fig. 4g-i). For each dataset, we observed negative correlations286

that were significantly lower than zero across dimensions (p < 10−5, one sample t-test). These negative287

correlations imply that observed percentiles are smaller (i.e., the neural code is more suboptimal) when288

optimal correlated variability is biologically inaccessible. Together, these results indicate that the optimal289

covariances under the FA null model for d ≥ 3 are not biologically accessible.290
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Figure 4: Optimal correlated variability is typically biologically inaccessible. Each column corresponds
to a separate dataset. 2d histograms are plotted with a log-density color scale with shared colorbar. Color
legend in i is shared across panels. a-c. 2d-histogram across dim-stims of the observed percentile under
the FA null model versus the absolute log-ratio of the observed and FA-optimal covariance Fano factors for
d = 3. Blue line is the median binned percentile as a function of the absolute log-ratio of observed and
FA-optimal covariance Fano factors. d-f. 2d-histogram across dim-stims of the percentile under the FA null
model versus the absolute difference of negative densities (ND) of the observed and FA-optimal covariance
Fano factors for d = 3. Red line is the median binned percentile as a function of the absolute difference in
NDs. g-i. The Spearman correlation coefficient between the observed percentile and absolute log-FF ratio
or absolute difference of NDs, respectively is shown as a function of dimlet dimension. Dashed black line
indicates zero correlation.
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Optimal subpopulations are exponentially small291

The results in the preceding section show that a majority of experimental dim-stims could not attain optimal292

covariances according to the UC and FA null models due to biological constraints. However, it is possible293

that although a majority of experimental dim-stims are suboptimal, there is a subset that are optimal, and294

these specific subpopulations are somehow utilized by the nervous system. If this was the case, the uniform295

sampling strategy over neural units may underestimate optimality as utilized by the nervous system. For296

example, in the retina, if we are imagining a downstream region like V1 is decoding the stimuli, then a more297

retinatopic sampling strategy, where retinal ganglion cells are more likely to be considered in a dimlet if they298

are located spatially near each other in the retina would be preferable. Alternatively, synaptic learning rules299

in downstream areas may select for neural populations that are tuned for similar stimuli. The responses to300

the preferred stimuli would be high and therefore we expect less Fano factor and negative density violation.301

Thus, it is possible that dim-stims subselected by these criteria will be more optimal than dim-stims sampled302

uniformly.303

To test if biologically motivated subsampling of dim-stims improved the percentiles, we performed304

distance- and tuning-based subselection of the neural populations. For the retina and PAC datasets, we had305

access to the spatial locations of the RGCs/electrodes. We subselected 10% of dim-stims with the small-306

est average physical distance. Similarly, we subselected the 10% of dim-stims that had the most preferred307

stimuli (see Methods for details on subselection). We found that distance-based subselection did not re-308

veal an optimal or near-chance subset of dim-stims (Fig. 5a, c, dotted lines and hatched shaded regions).309

Similarly, for the retina and V1 datasets, the tuning-based subselection did not reveal an optimal subset of310

dim-stims and the percentiles only improved to near-chance for the PAC dataset at d = 3 (Fig. 5a-c, solid311

lines and shaded regions). Furthermore, subselection directly based on the FF and ND criteria also did not312

find optimal or near-chance percentiles (Supplementary Fig. 4).313

Although these subselection criteria are biologically motivated, the previous results do not address314

whether any subpopulation of the neural units across stimuli have optimal percentiles, and if so, how small315

the subpopulation is. Intuitively, given the combination of a large enough neural population, variety of316

stimuli, and enough dim-stims, one would expect at least a small fraction of the dim-stims to have optimal317

percentile statistics by chance. To estimate the size of the optimal subpopulation, we calculated the optimal318

fraction of the neural population, that is, largest fraction of dim-stims that could be retained and still achieve319

optimal percentile statistics (median ≥ 2/3) (Fig. 5d-f). If the optimal fraction is smaller, optimal subpopu-320

lations are more rare. As a reference, if the distribution of percentiles was uniform, the largest two-thirds of321

the percentiles could be retained and their median would be 2/3, which is optimal (Fig. 5d-f, black dashed322

line). At d = 3 for the FA null model (Fig. 5d-f, orchid line), across datasets between 14% and 37% of the323

entire population was optimal if subselected. The optimal fraction according to the FA null model dropped324

below 10% by d = 4− 9 and below 2% by d = 13− 15 across datasets. At higher dimensions, the optimal325

subpopulation continued to become exponentially small, although the PAC dataset had a slower decrease.326

According to the uniform correlation null model, for the retina and V1 datasets, less than approximately327

0.1% of the population was optimal since almost no subpopulation was found from the finite samples. At328

d = 3 for the PAC dataset, 20% of dim-stims would be considered optimal, but that drops below 1% by329

d = 7 and continued to decrease to the smallest possible estimated value by d = 12 since no subpopula-330

tions were found for higher dimensions. Finally, an alternative analysis of peaks in the percentiles near 1331

in excess of what would be expected from a uniform distribution confirmed that there were exponentially332

small optimal populations (Supplemental Fig. 5). Together these results show that correlated variability is333

suboptimal in the neural recordings considered here. Furthermore, biologically motivated selection criteria334

are not able to find the exponentially small optimal subpopulations.335
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Figure 5: Optimal subpopulations are exponentially small. Color legend in a is shared across panels.
a-c. For the uniform correlation and FA null model, dim-stims were subselected to maximize the units’
tuning (solid lines, highest 10% subselected). Additionally, for the retina and PAC datasets, dim-stims were
subselected to minimize the average pairwise distance between the RGC RoIs in a dim-stim (dashed lines,
lowest 10% subselected). The median percentiles are shown as a function of dimension. Black dashed lines
indicate the 1/3 and 2/3 percentile range. Shaded regions indicate the 95% CI of the median percentiles.
d-f. For each dimension, the largest possible fraction of dim-stim percentiles such that their median is ≥
2/3 is plotted. Shaded regions indicate 95% CI. For the uniform correlation null model, dimensions where
no samples exceeded the 2/3 threshold are not plotted. Black dashed line indicates the optimal fraction
if percentiles were drawn from a uniform distribution. Gray dotted line indicates the minimum non-zero
optimal fraction that can be estimated due to finite sampling.
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Discussion336

Determining the principles of the neural code is critical for a complete understanding of brain function.337

Correlated variability is prevalent in neural recordings and has been the subject of numerous studies seeking338

to understand its mechanistic sources and implication for neural coding. Many previous studies have found339

that the experimentally observed correlations can be a benefit to neural coding compared to having zero340

correlations [6, 13, 16, 24, 25, 27]. This suggests that the correlated variability could in fact be optimal.341

However, the shuffle null model used in these studies is not able to assess optimality. To the best of our342

knowledge, the optimality of correlated variability in neural data has not previously been assessed.343

Here, we developed two null models which allow the optimality of observed correlated variability to344

be directly assessed: the uniform-correlation (UC) and factor analysis (FA) null models. Using these null345

models, we found that the experimentally observed neural activity across three datasets was consistently346

suboptimal. As more neural units were included in the neural population, the neural populations became347

more suboptimal. In order to more fully understand the suboptimality, we evaluated the characteristics of the348

optimal covariance and found that a consistent picture emerges: for a majority of neural subpopulations, the349

optimal covariance is biologically inaccessible. We then used biologically motivated subselection criteria350

to assess whether there were subpopulations with optimal coding statistics. We found that subsampling351

using criteria based on the tuning of units or the spatial location of the units does not result in increased352

coding optimality. Finally, we showed that optimal subpopulations based on post-hoc selection became353

exponentially small as the dimensionality of the neural population increased. Thus, we conclude that in the354

early sensory areas studied here, the geometry of correlated variability leads to highly suboptimal neural355

coding.356

We observed suboptimal coding performance as assessed by both the uniform correlation and factor357

analysis null models. However, the magnitude of the suboptimality, as measured by the observed per-358

centiles, differed across null models and datasets. The observed percentiles for the uniform correlation null359

model had a small trend from low to high for the retinal data, the V1 data, and the PAC data, respectively.360

This trend tracks with the distribution of noise correlations in each dataset (Fig. 1f, i, l), with the the retina361

dataset exhibiting, on average, the smallest magnitude noise correlations, and the PAC datasets exhibiting the362

largest. The smaller range of noise correlations exhibited by the retina suggests that there may be stronger363

biological restrictions on its correlated variability compared to V1 and PAC. The observed percentiles for364

the factor analysis null model trend from just below near-chance to highly suboptimal from retina to PAC.365

Thus, the larger correlations and more suboptimal coding performance indicates that shared variability in366

V1 and PAC is more likely to interfere with sensory coding. The retina and V1 recording modalities (cal-367

cium imaging and single-unit electrophysiology, respectively) measure putative single-unit activity where368

correlated variability in the recordings corresponds to correlated single neuron activity. Understanding the369

optimality of the neural code with these two modalities directly addresses decoding as a normative theory in370

early sensory areas. On the other hand, the correlated variability in the µECoG recordings in PAC is likely371

due to a combination of the correlations between the neural populations under each electrode and local tissue372

conduction [45, 46]. Due to this, the optimality of the high gamma amplitude correlated variability recorded373

with µECoG is a coarse-grained signal that may not be read-out by any downstream cortical area, but is374

important for understanding whether limitations in the accuracy of clinical ECoG-based brain-computer375

interfaces in humans may be due to correlated variability in the input signals.376

Many studies of correlated variability, including ours, consider the impact of correlated variability from377

a decoding perspective. However, other normative perspectives exist. In Bayesian models of sensory pro-378

cessing [47], correlated variability could correspond to sampling from a relevant (posterior) distribution.379

In this case, correlated variability would be informative for understanding the structure of uncertainty in380

sensory processing, rather than nuisance variability as in the decoding perspective. Likewise, neural sys-381

tems likely have other important constraints or ethological goals. Making decisions or generating behavior382
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based on sensory information may be optimized by different correlation structures versus a purely decoding383

framework [48]. For example, Valente et al. [48] find that single-trial responses in posterior parietal cortex384

which have higher noise correlations also have more correct choices, contrary to expectation. They model385

this finding with a read-out network that computes an additional nonlinear “consistency” value across the386

population in addition to the linear sensory information for use in decision making. Huang & Lisberger [49]387

show that correlated variability in middle temporal visual area could plausibly be the cause of variability388

in smooth-pursuit eye movements. Even within the normative decoding framework, correlated variability389

which facilitates decoding as assessed by the LFI may not be the same as the correlated variability which390

facilitates information propagation or learning in more realistic nonlinear, noisy networks [5, 48, 50]. In391

these contexts, our formalism for creating null models could be used to test the optimality of neural codes,392

although as the assumptions on linear decoding are relaxed, it may become difficult to make theoretical393

predictions that hold generally.394

The null models we proposed both have parameterizations that are interpreted in a fully Gaussian model.395

Generalized linear models [51, 52] or correlated multivariate distributions with binary-spike or spike-count396

distributions [53–55] could potentially better model nonlinearities between the parameters of the model and397

the non-Gaussian neural responses, which can impact estimates of neural coding optimality. In order to398

assess optimality in these models when fit to data, a similar formalism for generating null models is needed,399

where certain parts of the parameterization are fixed and others are given a null distribution. However, the400

independent parameterization of the mean responses (tuning) and correlated variability is a unique feature of401

the multivariate Gaussian distribution. Therefore, new analytical results would be needed to directly study402

the impact of non-Gaussian correlated variability on neural coding. A broader set of null distributions could403

similarly be used in phenomenological models of correlated variability which combine tuning and various404

types of (correlated) noise [6, 21, 28, 56] or in mechanistic models, which attempt to simulate some aspects405

of the neural circuit which lead to correlated variability [5, 15, 16, 57].406

Correlated variability has been shown to be impacted by behavior and brain states. For example, it has407

been observed that behavior such as running, whisking, and pupil diameter are encoded in V1 and other408

brain areas [7]. In these contexts, the behavioral subspaces could be estimated directly (as in [7]) and409

their optimality could be assessed using the FA null model. In experiments with visual attention, it has410

been shown that attention can modulate both the within-area and between-area correlated variability [31,411

58, 59], which can lead to better coding fidelity or better communication of information as assessed by the412

shuffle null model. Similarly, in an associative task, learning has been shown to modulate the mean response413

manifold and correlated variability to improve coding in pairs of neurons. The null models developed here414

could be used to assess whether the modulation due to attention or learning changes the optimality of the415

correlated variability. Emerging neural recording technologies will allow neuroscientists to simultaneously416

record from a larger fraction of neurons in a region and more regions, all while the animals are performing417

naturalistic behaviors. Given these possibilities, the biological origins of correlated variability and how they418

are modulated by neural circuitry can be further traced and evaluated.419

In summary, we find that the geometry of correlated variability in sensory areas leads to highly sub-420

optimal coding for transmission of information about the stimulus. Given the consistency of the findings421

across datasets, we expect our results would hold true in other organisms, sensory areas, and experimental422

paradigms. Investigated more broadly, understanding the optimality of correlated variability could lead to423

a better understanding of the sources of variability is neural circuits and biological constraints that lead to424

suboptimality. Furthermore, quantitatively evaluating normative theories allows us to adjudicate between425

competing proposed functions of sensory systems, for example, efficient coding versus predictive informa-426

tion coding.427
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Methods564

Neural Recordings565

We examined correlated variability in a diverse set of datasets, spanning distinct brain regions, animal mod-566

els, and recording modalities. We used calcium imaging recordings from mouse retinal ganglion cells,567

single-unit recordings from macaque primary visual cortex, and micro-electrocorticography recordings from568

rat auditory cortex. We briefly describe the experimental and preprocessing steps for each dataset. See Fig-569

ure 1 and Table 1 for summaries of the datasets.570

Dataset Animal Recording Stimulus Units Stimuli Trials/Stim
Retina Mouse (Isolated) Calcium Imaging Drifting Bars 54 6 114
V1 Macaque Single-Units Drifting Gratings 106 12 200
PAC Rat µECoG Tone Pips 65 30 60

Table 1: Experimental dataset summary.

Recordings from mouse retina571

Mouse retina data was collected via ex vivo 2-photon calcium imaging in an isolated retina preparation [1].572

The retina was bulk loaded with Cal-520 AM dye using a previously described multicell bolus loading573

technique [2], and then imaged with ScanImage software [3] at 2.96 Hz in the ganglion cell layer of a 425574

x 425 µm area of ventral retina. Visual stimuli were delivered via an ultraviolet LED (375 nm) coupled575

to a digital micromirror device, and were presented on the flyback of the fast-axis scanning mirror during576

a scan to interleave the stimuli with imaging [1, 4]. Visual responses were elicited via 600 × 600 µm577

bars drifting for 2.93 s at 750 µm/s in one of 6 directions (spanning 0◦ to 300◦), with a 5 second intertrial578

interval. Each direction was presented 114 times, for a total of 684 trials per cell. Fluorescence signals from579

832 manually selected regions of interest were baseline subtracted and normalized to calculate a ∆F/F0580

time series. Of these regions of interest, 54 were used for further analysis after determination of directional581

tuning via permutation testing and manual screening. Per-trial RGC activity used in the analysis here is the582

maximum ∆F/F0 value. Retina data was collected by Summers. Further details on surgical, experimental,583

and preprocessing steps can be found at [4, 5].584

Recordings from macaque primary visual cortex (V1)585

Primary visual cortex data (V1) was comprised of spike-sorted units simultaneously recorded in anesthetized586

macaque monkey. The data was obtained from the Collaborative Research in Computational Neuroscience587

(CRCNS) data sharing website [6] and was recorded by Kohn and Smith [7]. This dataset contains record-588

ings from three monkeys, of which the main text presents results from the first one (see Appendix for results589

on additional two monkeys). Recordings were obtained with a 10×10 grid of silicon microelectrodes spaced590

400 µm apart and covering an area of 12.96 mm2. The monkey was presented with grayscale sinusoidal591

drifting gratings, each for 1.28 s. Twelve unique drifting angles (spanning 0◦ to 330◦) were each presented592

200 times, for a total of 2400 trials per monkey. Spike counts were obtained in a 400 ms bin after stimulus593

onset. A total of 106 units were isolated in the monkey presented in the main text. These units were chosen594

by the original authors such that i) their signal-to-noise ratio (the ratio of the average waveform amplitude to595

the standard deviation of the waveform noise) was at least 2.75, ii) the best grating stimulus evoked at least596

2 spikes/s, and iii) the variance-to-mean response ratio did not exceed 10. Further details on the surgical,597

experimental, and preprocessing steps can be found in [8, 9].598
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Recordings from rat primary auditory cortex (PAC)599

Auditory cortex data (PAC) was comprised of cortical surface electrical potentials (CSEPs) recorded from600

rats with a custom fabricated micro-electrocorticography (µECoG) array. The µECoG array consisted of601

an 8 × 16 grid of 40 µm diameter electrodes. Anesthetized rats were presented with 50 ms tone pips of602

varying amplitude (8 different levels of attenuation, from 0 dB to −70 db) and frequency (30 frequencies603

equally spaced on a log-scale from 500 Hz to 32 kHz). We only used samples for the lowest 3 levels of604

attenuation since these evoked the largest responses. Each frequency-amplitude combination was presented605

20 times, for a total of 3 × 30 × 20 = 1800 samples. The response for each trial was calculated as the606

z-scored to baseline, high-γ band amplitude of the CSEP, calculated using a constant-Q wavelet transform.607

The maximum of the per-trial high-γ activity was used in the analysis here. Of the 128 electrodes, we608

used 65, selecting those that recorded from primary auditory cortex. Data was recorded by Dougherty &609

Bouchard. Further details on the surgical, experimental, and preprocessing steps can be found in [10, 11].610

Linear Fisher information measures coding fidelity611

A commonly used measure of coding fidelity in the context of decoding is the Fisher information, which612

provides a limit on how accurately a readout of a neural representation can be used to determine the value of613

the stimulus [12]. Formally, the Fisher information is a lower bound on the variance of an unbiased estimator614

for the stimulus. In practice, the Fisher information is analytically intractable. An alternative measure is the615

linear Fisher information (LFI), defined in Equation 1. The LFI acts as a suitable lower bound to the Fisher616

information and is the most commonly used measure of coding fidelity in correlated variability analyses617

[13–20].618

Experimental neuroscience datasets only consider discrete sets of stimuli, which are not amenable to the
computation of LFI as posed in Equation 1. In particular, the derivative of the average neural activity must
be estimated by considering the neighboring pairs of stimuli. Thus, in practice, we calculate the coarsened
linear Fisher information [21], which is defined for two stimuli s1 and s2 as

Icoarse(f1, f2,Σ1,Σ2) =

(
f1 − f2
∆s

)T (Σ1 +Σ2

2

)−1( f1 − f2
∆s

)
(2)

where f1 = f(s1), f2 = f(s2), Σ1 = Σ(s1), Σ2 = Σ(s2), and ∆s is the stimulus difference between s1 and619

s2, whose form may depend on the stimulus structure. In addition, we use the unbiased LFI estimator [20]620

for the observed LFI values as well as for the sampled from null models. Note that since the corrections to621

the naı̈ve estimator only depend on the dimensionality of the neural population and number of samples, the622

corrections only impact the raw LFI values and not percentiles. In this work, we use the terms “coarsened623

LFI” and “LFI” interchangeably.624

Assessing the optimality of neural data with null models625

Information theoretic analyses of neural data often ask whether the observed neural data is “optimal.” In626

the case of correlated variability, the question can be posed as: are the observed covariances optimal from627

a decoding perspective? Here, we will quantify the coding fidelity with the linear Fisher Information (LFI,628

Eq. 1)? In this case, LFI can be infinitely large if Σ → 0 (or at least if the subspace of Σ−1 defined by df(s)
ds629

diverges). This answer is likely unsatisfying because neural systems have many sources of variability, and so630

expecting a neural system to become noiseless or exactly remove noise from a subspace seems implausible.631

Therefore, when assessing the optimality of correlated variability, one must decide which aspects of the632

correlated variability the neural system could modify and which aspects will remain fixed.633

In this section, we develop the formalism that will allow us to assess the optimality of observed corre-634

lated neural variability. The formalism consists of first defining a covariance parameterization for Σ, which635
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is composed of constraints (fixed parameters) and degrees-of-freedom (free parameters). These constraints636

and degrees-of-freedom define the space of allowed correlated variability. Ideally, these constraints and637

degrees-of-freedom have some biological interpretation, e.g., fixed private variability or input from other638

regions of the brain [22, 23]. Then, a null model is defined by combining a covariance parameterization639

with a null distribution over the degrees-of-freedom. The distribution of some measure, such as the LFI,640

under the null model can be used to assess the optimality of the observed neural data.641

We first review the commonly used fixed-marginal constraint for correlated variability using our formal-642

ism then define the commonly used shuffle and novel uniform correlation null models. Finally, we propose643

the factor analysis covariance parameterizations and associated null model for assessing optimality which644

has more biological interpretability. In the following sections we will use the following terminology which645

we define here:646

• Covariance Parameterization: a parameterization of Σ which can combine various constraints647

(fixed parameters) and degrees-of-freedom (free parameters).648

• Constraints: elements of the covariance parameterization which are estimated from data and fixed.649

• Degrees-of-Freedom: elements of the covariance parameterization which can potentially be modified650

or optimized to analyze a null model or optimality.651

• Optimality: values for the degrees-of-freedom in a covariance parameterization which maximize a652

specified objective. Here we assess optimality using the Linear Fisher Information (LFI), although653

this formalism can be applied to other objectives.654

• Null Distribution: distribution of a covariance parameterization’s degrees-of-freedom.655

• Null Model: combines a covariance parameterization with a baseline or uniform correlation null656

distribution over the degrees-of-freedom.657

The standard constraint considered for understanding correlated neural variability is to keep the per-658

neuron marginal distributions fixed. Since the LFI only depends on the covariance of the correlated variabil-659

ity, the fix-marginal parameterization is equivalent to constraining the per-neuron variances to be constant660

(equivalently, the diagonal of Σ is kept constant, diag(Σ) = σ2). The corresponding degrees-of-freedom661

in this parameterization are the positive-definite pairwise correlation matrix, ρ, specifically the symmetric,662

off-diagonal entries, ρij for i ̸= j, which can vary. Under this parameterization, the observed covariance663

structure can be compared to other proposed distributions of correlations.664

When considering the structure that generates Σ, it is desirable that the constraints and degrees-of-665

freedom be biologically interpretable. This can be achieved by considering the equations that define the666

mean-centered, single-trial response in terms of the degrees-of-freedom being considered. For the fixed-667

marginals parameterization, the distribution of the single-trial responses: ft(s), can be written in terms of a668

multivariate normal distribution with the mean response: f(s), and where the covariance is the element-wise669

product of the constrained marginal standard deviations: σσT , and the free correlations: ρ,670

ft(s) = f(s) + ϵ

ϵ ∼ N (0,σσT ⊙ ρ).
(3)

This equation is difficult to directly interpret as a network model, but the correlations could be seen as671

coming from recurrent activity within the observed neurons.672

Given a parameterization (fixed-marginal) and a measure of coding fidelity (LFI), it is possible to find673

optimal covariance structures as a function of the free parameters. In general, the value (or distribution of674
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values) for the degrees-of-freedom that lead to optimality can be derived analytically or optimized numeri-675

cally. For the fixed-marginal parameterization, this corresponds to finding the points, ρ̂, such that676

ρ̂ = argmax
ρ

LFI
(
df(s)

ds
, diag(Σ),ρ

)
. (4)

Hu et al. [24] characterize the optima of the fixed-marginal parameterization, although they do not provide677

a constructive way of finding the global optima. We optimize ρ numerically to find optima. We find that the678

optimization process finds many local maxima for ρ̂ in practice.679

Novel null models allow the assessment of optimality in neural data680

So far, we have have laid out a formalism to define the optimal degrees-of-freedom for a specified covari-681

ance parameterization. However, it is unlikely that observed neural data will precisely match the predicted682

optimal degrees-of-freedom, even if the biological system is behaving optimally, so the predictions from683

Eq 4 cannot be used directly to assess optimality in data. In order to asses the optimality of a observed684

population of neurons, a null model must be constructed for a corresponding parameterization. In this for-685

malism, constructing a null model corresponds to assuming a null distribution for the degrees-of-freedom686

of the covariance parameterization. The null distribution should correspond to some notion of “uniform” or687

“baseline” for the degrees-of-freedom.688

For example, the shuffle null model, based on the fixed-marginal parameterization, posits that the base-689

line distribution of correlations is zero correlations. The shuffle null model compares the LFI of the observed690

response to the distribution of LFIs where the individual neural responses are independently trial shuffled,691

that is, with fixed-marginal variability, no underlying pairwise correlations, and empirical pairwise corre-692

lations only arising from finite sampling effects. Under this choice of null model, the observed LFI can693

be beneficial if it has a high percentile under the null distribution which has no correlations. The shuffle694

null model provides a limited baseline comparison for the observed LFI. In order to assess optimality, the695

distribution of parameters should be uniform over the space of allowed covariance matrices, which is the696

motivation for the uniform correlation null model.697

Across a population, the median observed percentile across dim-stims can be used to categorize a dataset698

as optimal: median percentile greater than or equal to 2/3, near-chance: median percentile between 1/3 and699

2/3, or suboptimal: median percentile less than 1/3. This categorization is motivated by simplicity in having700

few categories. However, it is also desirable to not have the optimal and suboptimal categories share a701

boundary. If they do, small changes in percentiles can switch between optimal and suboptimal. In our case,702

since the null model defines “near-chance”, having 3 categories is natural. The near-chance boundaries could703

be set in a number of ways besides the choice for an even division into thirds. A Kolmogorov–Smirnov test704

could compare the distribution of percentiles to a uniform distribution. However, given the large number705

of dim-stims we use, empirically, no distributions of percentiles in these datasets would be near-chance for706

p-value thresholds in sensible ranges. Said another way, almost no empirical distributions of percentiles are707

statistically similar to a uniform distribution (see Supplementary Fig. 5a-i for some example distributions).708

A looser test could be to test whether a binomial distribution with p = 0.5 would lead to the observed709

distribution of percentiles categorically above and below 0.5. We find that with p-values in sensible ranges710

this gives comparable boundaries to the division into thirds, but the boundaries differ across datasets due to711

the variation in the number of dim-stims.712

In some cases, it may also be possible to define a distribution over optimal covariances and categorize713

whether the observed LFI is likely under the optimal covariance distribution. For instance, if there is a unique714

optimal covariance, the Wishart distribution could be used to create a sampling distribution of optimal LFIs715

which the observed LFIs could be compared against. This is not possible in our case since there is not716
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generally a unique optimal covariance. This also suffers from the fragility problem by having a boundary717

directly between optimal and suboptimal.718

Uniform correlation null model719

Our first contribution is the uniform correlation null model based on the fixed-marginal parameterization,720

where the correlations are chosen randomly from a uniform distribution over correlation matrices [25]. This721

tests whether the observed correlation are optimal with respect to all possible correlations, rather than only722

comparing against zero correlations. To our knowledge, this null model has not been considered before.723

Evaluating data under this null model provides a stronger assessment of the optimality of the observed724

correlated variability than the shuffle null model.725

At another extreme, we could attribute all trial-to-trial variability to external sources that the network726

can shape or filter. To prevent trivial solutions, we can restrict the network to only changing the loading of727

the variability onto the neurons (through a rotation, R). This model was previously discussed [24], but not728

analyzed due it its incompatibility with the fixed-marginal constraint.729

Factor analysis null model730

As a parsimonious combination of the fixed-marginal constraint and pure rotation degrees-of-freedom, we731

propose using a factor analysis (FA) model to parameterize the correlated variability. Factor analysis de-732

composes the observed correlated variability into two components: the first is per-neuron private variability,733

represented as a diagonal matrix diag(σ2
FA), and the second is a low-rank shared variability component,734

LT
FALFA, where LFA ∈ Rk×d, k < d. We propose that the FA model has private variability and the spectrum735

of the shared component as constraints and the rotation of the shared components as the degrees-of-freedom,736

combining aspects of the fixed-marginal and rotation null models. The single-trial response can be written737

as a function of the mean response: f(s), private variances: σ2
FA, low-rank external sources: zFA, loading738

matrix: LFA, and rotation matrix: R739

ft(s) = f(s) +RTLT
FAzFA + ϵFA

zFA ∼ N (0, 1)

ϵFA ∼ N (0, diag(σ2
FA))

(5)

To our knowledge, there is no closed-form solution for R̂ in the FA model to maximize LFI. Instead, to740

optimize the FA model, the rotation can be numerically optimized by gradient ascent. To construct the FA741

null model, a uniform distribution (Haar distribution) over special orthogonal rotations [26] is applied to the742

rotations.743

To estimate the initial σ2
FA and LFA, we fit a factor analysis model to the samples [27]. In fitting the744

model we had two requirements. The first is that we wanted the dimensionality of the shared component,745

k to be as large as possible so that the observed covariance can be modeled as accurately as possible. In746

opposition to this, we wanted the factor analysis model parameters to be identifiable, meaning the private747

variance estimate is unique, which places a limit, which depends on d, on how large k can be [28]. In748

practice, we find the largest k which is lower than the identifiability bound where different initializations749

return the same parameters. Note that factor analysis is never identifiable in 2 dimensions, so we do not750

consider d = 2.751

Population statistics across dim-stims measure optimality under a null model752

Each dataset can be described by a D × N design matrix X, where D is the total number of samples753

and N is the number of units in the population (Fig. 2f). We considered distributions of LFI across dim-754
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stims, or sub-components of the design matrix. To create dim-stims, we first selected a dimlet of size d755

by subsampling d units from the population at random, resulting in the D × d design matrix Xd (Fig. 2f).756

Next, we created the dim-stim by further subsampling the design matrix according to a specific stimulus757

pairing. Specifically, we chose two neighboring stimuli, s1 and s2 (Fig. 2f), and isolated the samples of Xd
758

corresponding to those stimuli, thereby creating a pair of design matrices [Xd
s1 ,X

d
s2 ]. The dim-stim maps to759

the task of discriminating between two neighboring stimuli using a sub-population’s responses across trials760

to those stimuli, which can be visualized in the neural space (Fig. 2g).761

For each dataset, we considered dimlet dimensions d = 3−20. As we only allowed neighboring stimulus762

pairings, the number of available stimulus pairings for a dimlet was 6 (retinal), 12 (V1) and 29 (PAC). Note763

that the retinal and V1 stimulus sets are circular, providing an additional stimulus pairing. In the retinal and764

V1 datasets, we drew 1, 000 dimlets for each dimension d, and considered all stimulus pairings per dimlet,765

resulting in 1, 000 × 6 = 6, 000 dim-stims for the retinal dataset and 1, 000 × 12 = 12000 dim-stims for766

the V1 dataset. To manage computation time, we considered 3, 000 unique dim-stims for the PAC dataset,767

selecting both the dimlet and stimulus pairing at random for each dim-stim.768

For each dim-stim, we calculate its observed LFI, defined as Icoarse(f1, f2,Σ1,Σ2). Specifically, we
computed

Iobs(Xd
s1 ,X

d
s2) = Icoarse

(
mean(Xd

s1),mean(Xd
s2), cov(Xd

s1), cov(Xd
s2)
)

(6)

=

(
fds1 − fds2

∆s

)T (
Σd

s1 +Σd
s2

2

)−1(
fds1 − fds2

∆s

)
(7)

where [fds1 , f
d
s2 ] are the dim-stim average responses, [Σd

s1 ,Σ
d
s1 ] are the dim-stim covariances, and ∆s is the769

stimulus difference, or ∆s = |s1 − s2|. When necessary, the stimulus difference was taken as a circular770

difference (retinal and V1 datasets). Since the LFI is scaled by the units of the stimulus difference, it is only771

meaningful to compare observed LFIs within a particular stimulus type. In this work, since all datasets use772

a different stimulus the LFIs may not have a meaningful relationship across datasets.773

Each null model acts on the design matrices of a dim-stim and outputs a distribution of covariance
matrices. For example, the fixed-marginal null model shuffles the data within the design matrix, producing
new design matrices [Xd

s1

′
,Xd

s2

′
] and corresponding covariances [Σd

s1

′
,Σd

s2

′
]. We then calculate the LFI

using the new covariance matrices. Each null model can be summarized as such: a sampled transformation
is applied to the observed dim-stim, producing new sampled covariance matrices and therefore a sample of
LFI from the null. The shuffle null model transformed the data directly, so we write its LFI as

IFM(Xd
s1 ,X

d
s2) = Iobs

(
shuffle(Xd

s1), shuffle(Xd
s2)
)
. (8)

Meanwhile, the uniform and factor analysis null models transform the covariance parameterization directly,
so we write their LFIs as:

IU(X
d
s1 ,X

d
s2) = Icoarse

(
fds1 , f

d
s2 , sampleU(Σ

d
s1), sampleU(Σ

d
s2)
)

(9)

IFA(X
d
s1 ,X

d
s2) = Icoarse

(
fds1 , f

d
s2 , rotateFA(Σ

d
s1), rotateFA(Σ

d
s2)
)
. (10)

Equations 8 and 10 capture a single application of a null model. Specifically, shuffle(·) shuffles the774

neural data, sampleU(·) samples a random off-diagonal correlation structure and applies it to the covariance,775

and rotateFA(·) applies a rotation to the shared component of the covariance. However, we were interested in776

characterizing the entire distribution of the null model. Thus, for each dim-stim, we applied 1, 000 samples777

of the null model to obtain a null model distribution of LFIs. We then calculated observed percentiles as the778
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fraction of samples for which the observed LFI exceeded the null model LFI. Thus, each observed dim-stim779

has its own corresponding observed percentile, per null model.780

When summary statistics are reported such as the median LFI, median percentile, or the optimal fraction,781

95% bootstrap confidence intervals from 1,000 bootstrap resamples are reported [29].782

Optimal fraction calculation783

The optimal fraction of a population was calculated in the following way. Given a set of dim-stims at a par-784

ticular dimlet dimension, the observed percentiles were calculated for each dim-stim. Then, the percentiles785

were sorted from largest to smallest. The optimal fraction of the percentiles is initialized as the largest single786

percentile. Starting from this initialization, the median percentile of the current optimal fraction is calcu-787

lated. If the median is greater than or equal to 2/3, the next smallest percentile is included in the optimal788

fraction and the process continues to iterate. If the optimal fraction is less than 2/3, the process terminates.789

This defines the largest possible fraction of the percentiles that can be retained and have their median be790

greater than or equal to 2/3. For reference, the top 2/3 of a uniform distribution (i.e., [1/3, 1]) of percentiles791

has median equal to 2/3.792

Measures of biological plausibility793

We calculated the mean Fano factors (FF) for a dim-stim, based on the per-unit variance and response means794

FF =
1

d

d∑
i=1

Σii(s)

f(s)i
, (11)

of the observed and optimal covariances matrices directly from the mean response and covariance matrix795

parameters (Supplemental Fig. 2).796

We calculated the negative density (ND) as follows. For each dim-stim, we calculated f1%
i , the neural797

activity at the 1st percentile, for each neuron i. We then computed CDFi(f
1%
i ), the cumulative density at798

f1%
i for a Gaussian obtained from either the observed covariance or the optimal covariance under the null799

model (Supplemental Fig. 2, shaded regions in marginals). The ND, then, was defined as the maximum800

CDFi among the neurons in the dimlet (Supplemental Fig. 2, dark gray shaded regions).801

Distance and tuning ranking dim-stims for subselection802

For the retina and PAC datasets, we have access to the spatial locations of the RGC/electrode. For distance-803

based subselection, we compute the average pairwise distance between neural units for each dim-stim. The804

dim-stims are ranked by this distance and the 10% of dim-stims with the smallest average distance are805

subselected.806

For tuning-based subselection, the stimuli are ranked for each neural unit based on the mean neural807

activity (tuning). The rank was used because is less sensitive to absolute firing rates compared to using808

the activity per stimuli, which would biased the subselection towards dim-stims which contain neural units809

with high firing rates. We then sort the dim-stims by their average tuning rank across dimlets and calculate810

percentile statistics for the 10% of dim-stims that have the highest tuning ranking.811
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Appendix872

Geometric contributions to neural correlated variability873

The geometry of three types of potential contributions to neural variability are shown. Private variability874

is a zero-correlation contribution (Fig. 1a) [1]. Shared variability can be a low-rank contribution whose875

orientation depends on the synaptic loading onto the observed neural units (Fig. 1b) [2, 3]. Differential876

correlations lie along the df(s)
ds direction (Fig. 1c) [4].
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Figure 1: Geometric contributions to neural correlated variability. Each plot depicts the neural space,
whose axes correspond to the activities of a specific pair of neurons to a stimulus. Black curves denote the
mean responses across different stimuli (i.e., tuning curves). Variability about a specific stimulus mean ac-
tivity (solid points) may exhibit: a. Private, uncorrelated variability in each neural dimension, b. Correlated
variability, with correlations in the neural space, and c. Differential correlations, which lie parallel to the
mean activity curve.

877

29

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 9, 2022. ; https://doi.org/10.1101/2022.03.08.483488doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483488
http://creativecommons.org/licenses/by/4.0/


Measures for assessing biological accessibility878

Consider an example V1 dim-stim for a dimlet of size d = 3, with low observed percentiles under both the879

null models (e.g., pU = 0.001 and pFA = 0.0). We plot the observed covariance structure, projected into880

two neural dimensions, in Figure 2a (black covariance denotes average covariance). Next, we compare the881

observed structure to that of the optimal structure, both within the factor analysis null model (Fig. 2b) and882

the uniform null model (Fig. 2c).883
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Figure 2: Measures for assessing biological accessibility. Data, fit and optimal covariances (at 2 standard
deviations) are from a d = 3 dimlet-stim projected into the first 2 neurons. The marginal probabilities of
the multivariate Gaussian fits are shown along the axes and the areas with values less than the empirical
1% are shaded grey with the maximum excess negative density in dark grey (annotated with “ND”). The
marginal means and standard deviations (for Fano factor calculations) are shown in the black error bars
(annotated with “σ” and neuron number). For each covariance, the corresponding correlation ellipse (ρ,
with an arbitrary uniform scaling) is shown in the top right of the plot. a: Observed single-trial neuron
responses to stimuli 1 and 2 (orange and blue dots) and the respective means (outlined circles). Their joint
meant is the black circle and the observed mean covariance is in gray. b: Covariance and marginals from an
optimal fixed-marginal correlation. c: Covariance and marginals from the optimal Factor Analysis rotation.

The observed correlated variability structure (Fig. 2a) exhibits poor discriminability, because a large884

amount of variability is oriented parallel to the stimulus manifold (Fig. 2, black lines in the empirical covari-885

ance ellipse). We consider several measures of biological plausibility for the optimal covariances. The first886

is the median absolute correlation of the optimal covariances (Fig. 2, ellipse labeled ρ in top right shows887

optimal correlation), which is most relevant for the uniform correlation null model. The second is is the888

Fano factors (FF) of the optimal covariance relative to the Fano factors of the observed covariance (Fig. 2,889

black mean and standard deviation indicators labeled with σ1 and σ2). The third is the cumulative marginal890

probability the optimal covariance has below the 1st percentile of the observed data (Fig. 2, gray regions891

in marginal distributions labeled ND, negative density). These measures only take on a limited range of892

values in measured neural activity, and may impede a neural system from obtaining an optimal correlated893

variability structure. The uniform correlation null model preserves the per-RGC/neuron/electrode mean and894

variance, and so the FF and ND measures are only relevant for the factor analysis null model.895

However, the optimal covariance orientations for the factor analysis model may possess different Fano896

factors (Fig. 2c). Thus, we aimed to assess whether biologically unachievable Fano factors shared any897

relation with the sub-optimality exhibited by the neural codes in our analyses. We summarized each dim-898

stim with an aggregate Fano factor, by averaging the Fano factors of that dim-stim’s individual units. We899

repeated this process for the optimal noise covariances under each null model, using the variances from the900

diagonal of the optimal noise covariance matrix directly when calculating Fano factors.901

To quantify this phenomenon, we calculated the absolute difference in negative density (ND), which902
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captures the degree to which an optimal covariance puts differing cumulative density in the negative response903

space (typically higher density). Thus, a larger ND implies that the covariance places an excess of density904

in the negative or low-activity regions for at least one dimension of the neural space. On the other hand, a905

lower ND is more biologically plausible, as this implies there is less negative density, although Gaussian fits906

will always put some non-zero density in the negative.907
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Optimal correlations for the fixed-marginal parameterization lie on the bound-908

ary of possible correlations909

Hu et al. [5] show analytically that optimal covariances in the fixed-marginal parameterization lie on the910

boundary of allowed correlations, which will generally have large absolute pairwise correlations. We repro-911

duce this results computationally. For each dim-stim, we compare the 90% percentile of the off-diagonal912

entries absolute correlation matrix for the observed covariance matrix, the optimal uniform correlation (UC)913

null model matrix, and the optimal factor analysis (FA) null model matrix. The histograms across dim-stims914

for 4 dimensions is shown in Figure 3. The observed 90% abs. correlations are rarely larger than 0.7. The FA915

optimal 90% abs. correlations have a larger spread towards higher correlations, but do not have density at 1.916

However, the UC optimal covariance have 90% abs. correlations that consistently have peaks in probability917

mass at 1.918
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Figure 3: Optimal correlations for the fixed-marginal parameterization lie on the boundary of possible
correlations. For each dimension, d, the 90th percentile of the absolute value of the pairwise correlations
is histogrammed across dim-stims. Color indicates whether the statistic is from the observed covariance or
optimal null model covariance. a-d. Dimensions 3, 5, 10, and 20, respectively are shown.
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Biologically motivated subselection of dim-stims remains suboptimal919

In the main text, biological subselection in Figure 5 was done based on the distance- and tuning-based920

criteria as they might correspond to biological criteria enforced during development or learning. It is also921

possible to subselect the dim-stims using the Fano factor (FF) and negative density (ND) criteria directly for922

the factor analysis null model. Here, we compute the average rank the dim-stims based on their violation of923

the FF and ND criteria and retain the 10% of dim-stims with the least average violation. This criteria leaves924

the population percentiles suboptimal (Fig. 4a-c).925
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Figure 4: Biologically motivated subselection of dim-stims remains suboptimal. The dim-stims are
subselected based on biological criteria and their median percentiles are shown as a function of dimension.
Black dashed lines indicate the 33rd-66th percentile range. Shaded regions bound the 40th to 60th per-
centiles of the subselected percentile distributions. a-c. For the FA null model, dim-stims were subselected
to minimize their average Fano factor and ND deviations (0th-10th percentile). The median and 33-66% of
the percentiles for this subpopulation is shown.
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There is an exponentially small peak of optimal dim-stims for the factor anal-926

ysis null model927

For the factor analysis null model, there is sometimes a peak of percentiles near 1 (Fig. 5a-i). For some928

dimensions, the peak has higher density than what would be expected from a uniform distribution. To calcu-929

late the peak width at each dimension, the percentiles are sorted and, starting from the largest percentiles, the930

observed percentiles are compares with the percentiles that would be expected from a uniform distribution.931

The peak width is the fraction of percentiles corresponding to the smallest percentile that has a value larger932

than what is expected from a uniform distribution. Across datasets, the peak width is exponentially small as933

a function of neural dimension (Fig. 5j-l). The uniform correlation null model does not have peaks near 1934

for any dimension or dataset.935
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Figure 5: There is an exponentially small peak of optimal dim-stims for the factor analysis null model.
a-i. The histograms of the percentiles distributions are shown across datasets and null models for dimensions
3, 5, and 10 (in rows). Black dashed lines indicate the density of a uniform distribution. Note the y-axis is
log-scaled. j-l. Across dimensions, the width of the greater-than-uniform peak is shown. Shaded regions
are the 95% CI for the peak widths. Gray dashed line indicates the minimum non-zero peak width that can
be estimated due to finite sampling.
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V1 datasets give similar results across monkeys936

The PVC11 dataset (here V1) from CRCNS has data from 3 different monkeys [6]. In the main text, we937

used monkey 1. Although there are differences in the distribution of pairwise correlations (Fig. 6a), they do938

not lead to qualitative differences in the results from the main text across animals. Figure 6b-m reproduce939

the main results for all 3 monkeys.940
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Figure 6: V1 datasets give similar results across monkeys. Main text results are repeated for monkeys 2
and 3 (V1 2 and V1 3, second and third columns) and compared with monkey 1 (V1 1, first column) which
is reproduced here. Panel a corresponds to main text Figure 1. Panels b-g correspond to main text Figure 3.
Panels h-j correspond to main text Figure 4. Panels k-m correspond to main text Figure 5. See main text for
panel details.
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