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Abstract 

A  fundamental goal across the neurosciences is the characterization of relationships 

linking brain anatomy, functioning, and behavior. Although various MRI modalities 

have been developed to probe these relationships, direct comparisons of their ability 

to predict behavior have been lacking. Here, we compared the ability of anatomical 

T1, diffusion and functional MRI (fMRI) to predict behavior at an individual level. 

Cortical thickness, area and volume were extracted from anatomical T1 images. 

Diffusion Tensor Imaging (DTI) and approximate Neurite Orientation Dispersion and 

Density Imaging (NODDI) models were fitted to the diffusion images. The resulting 

metrics were projected to the Tract-Based Spatial Statistics (TBSS) skeleton. We also 

ran probabilistic tractography for the diffusion images, from which we extracted the 

stream count, average stream length, and the average of each DTI and NODDI metric 

across tracts connecting each pair of brain regions. Functional connectivity (FC) was 

extracted from both task and resting-state fMRI. Individualized prediction of a wide 

range of behavioral measures were performed using kernel ridge regression, linear 

ridge regression and elastic net regression. Consistency of the results were 

investigated with the Human Connectome Project (HCP) and Adolescent Brain 

Cognitive Development (ABCD) datasets. In both datasets, FC-based models gave 

the best prediction performance, regardless of regression model or behavioral 

measure. This was especially true for the cognitive domain. Furthermore, all modalities 

were able to predict cognition better than other behavioral domains. Combining all 

modalities improved prediction of cognition, but not other behavioral domains. Finally, 

across all behaviors, combining resting and task FC yielded prediction performance 

similar to combining all modalities. Overall, our study suggests that in the case of 

healthy children and young adults, behaviorally-relevant information in T1 and 

diffusion features might reflect a subset of the variance captured by FC. 

 

Keywords: Anatomical T1, diffusion MRI, functional MRI, multimodal MRI, 
individualized behavior prediction 

 
Highlights (85 characters) 

• FC  predicts behavior better than anatomical and diffusion features 

• Cognition is predicted better than other behavioral domains regardless of 

modality 

• Combining resting & task FC improves prediction as much as combining all 

modalities 

• Findings were replicated over 3 regression models and 2 datasets 
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1. Introduction 

A fundamental aim of neuroscience is to answer how brain characteristics are linked 

to behavior (Zatorre et al., 2012; Rosenberg et al., 2018). Previous studies have 

established that inter-individual variation in functional and structural patterns covary 

with behavioral and demographical traits (Finn et al., 2015; Smith et al., 2015; Llera et 

al., 2019; Alnæs et al., 2020). In recent years, there is an increasing interest in utilizing 

machine learning algorithms to predict behavioral traits at an individual level (Bzdok & 

Meyer-Lindenberg, 2018; Calhoun, 2018). Here, we compare the ability of anatomical, 

diffusion and functional characteristics of the brain in making individualized predictions 

of behavioral traits. 

 

Diffusion and anatomical MRI have been used to make individualized predictions in a 

large variety of neurological and psychiatric disorders (Sabuncu & Konukoglu, 2015; 

Arbabshirani et al., 2017; Bajaj et al., 2017; Cohen et al., 2021; Elad et al., 2021). 

However, their utility for behavioral predictions in healthy participants has been less 

explored. Given that psychiatric symptoms and associated shifts in brain function likely 

exist on a spectrum from healthy participants to patient populations (Xia et al., 2018; 

Kebets et al., 2019; Peter et al., 2021), predicting behavioral traits in the former group 

is an important endeavour (Lui et al., 2016). Functional connectivity has already been 

widely used to predict individual behavioral traits in healthy participants (Kong et al., 

2019; Li et al., 2019; Cai et al., 2020; Chen et al., 2020; He et al., 2020; Sripada et al., 

2020). However, similar work utilizing anatomical (Lu et al., 2014; Avinun et al., 2020; 

Liu et al., 2021) and diffusion MRI (Lewis et al., 2016; Mansour et al., 2021) has been 

a lot more sparse. Furthermore, most of these studies have performed predictions 

using a single modality, so the comparative value of each modality in making 

individualized predictions is unclear.  

 

Several recent studies have tackled the topic of comparing MRI modalities for 

behavioral prediction (Dhamala et al., 2021; Mansour et al., 2021; Rasero et al., 2021). 

However, their analyses were performed in the Human Connectome Project (HCP), 

which is perhaps the most widely used dataset for studies investigating individualized 

predictions in healthy participants (Finn et al., 2015; Greene et al., 2018; Gao et al., 

2019). Repeated use of the HCP for investigating behavior prediction leads to the 

issue of dataset decay (Thompson et al., 2020). The over-reliance on the dataset 

results in increased possibility of type I errors  as the number of sequential tests on 

the dataset increases (Thompson et al., 2020). Furthermore, repeated use of the 

training and test sets from the same dataset leads to overly optimistic prediction results 

with models less able to generalize to new datasets (Recht et al., 2019; Beyer et al., 

2020).  These considerations highlight the need for additional analyses of independent 

data and/or less utilized datasets to replicate the conclusions. Therefore, in the current 

study, in addition to the widely used HCP dataset, we utilized the adolescent brain 

cognitive development (ABCD) dataset.  
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Given that different MRI modalities measure different aspects of the brain biology, one 

question is whether combining multiple MRI modalities might improve behavioral 

prediction. Rasero and colleagues found that integrating diffusion MRI and resting FC 

led to improvement in predicting cognition (Rasero et al., 2021). However, two other 

studies did not find any benefit from integrating diffusion MRI, resting-state fMRI and/or 

anatomical features to predict cognition (Dhamala et al., 2021; Xiao et al., 2021). 

Overall, the literature is inconsistent about the value of integrating multiple modalities. 

Furthermore, despite the wide range of possible diffusion features, most studies only 

focused on one particular type of diffusion feature. Most studies have also focused on 

predicting a small number of behavioral measures (e.g. cognition), which reduces their 

generalizability to other behavior. 

 

In this study, we compared the utility of different MRI modalities for behavioral 

prediction across a wide range of behavioral measures in two large datasets (HCP 

and ABCD) using three different regression models. Unlike previous studies, we 

considered a wide range of diffusion features,  including fractional anisotropy (FA), 

mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). An approximate 

Neurite Orientation Dispersion and Density Imaging (AMICO-NODDI) model was also 

used to derive orientation dispersion (OD), intracellular volume fraction (ICVF), and 

isotropic volume fraction (ISOVF) features. Probabilistic tractography was performed 

to extract structural connectivity (SC) features. Furthermore, unlike most previous 

studies on multi-modal prediction, we considered both resting and task FC. In the case 

of anatomical T1, we considered cortical thickness, volume and surface area. We also 

combined features within and across modalities to investigate whether integrating 

modalities resulted in improved prediction.   
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2. Methods and materials 

2.1. Datasets and participants 

We considered participants from the HCP WU-Minn S1200 release. After strict pre-

processing quality control of imaging data, we filtered participants from Li’s set of 953 

participants (Li et al., 2019) based on the availability of a complete set of structural, 

diffusion and functional (resting and task) scans, as well as all behavioral scores of 

interest (Table S1). Our main analysis comprised 753 participants, who fulfilled all 

selection criteria. 

 

We also considered participants from the ABCD 2.0.1 release. After strict pre-

processing quality control of imaging data, participants from Chen’s set of 2262 

subjects who underwent motion-filtering to remove pseudo-respiratory motion (Chen 

et al., 2020) were filtered based on the availability of a complete set of structural, 

diffusion and functional (resting and task) scans, and all behavioral scores of interest 

(Table S2). We also excluded participants from sites which used Phillips scanners due 

to incorrect processing, as recommended by the ABCD consortium. Our main analysis 

comprised 1823 participants, who fulfilled all selection criteria. 

 

2.2. Imaging acquisition and processing 

Minimally processed T1 and multi-shell diffusion from each dataset were utilized. 

Details about the acquisition protocol and minimal processing for the HCP data can 

be found elsewhere (Glasser et al., 2013; Van Essen et al., 2013). Likewise, 

acquisition protocol and minimal processing pipelines for the ABCD can be found 

elsewhere (Casey et al., 2018; Hagler et al., 2019). 

 

FMRI data in the HCP included working memory, gambling, motor, language and 

social cognition tasks, as well as the resting-state scans. We excluded the relational 

processing and emotional processing tasks in the HCP as the run duration for these 

tasks were below 3 minutes. The MSMAll ICA-FIX data was used for the resting state 

scans, and the MSMAll data was used for task fMRI (Glasser et al., 2013). Global 

signal regression has been shown to improve behavioral prediction (Li et al., 2019), 

so we further applied global signal regression (GSR) and censoring, consistent with 

our previous studies (Li et al., 2019; He et al., 2020; Kong et al., 2021). More details 

of the processing can be found elsewhere (Li et al., 2019). 

 

For the ABCD study, fMRI data included the N-back, monetary incentive delay (MID), 

stop signal task (SST), as well as resting-state scans. The minimally processed 

functional data were utilized (Hagler et al., 2019). We additionally aligned the 

functional images to the T1 images using boundary-based registration, and performed 

motion filtering, nuisance regression, GSR, censoring and bandpass filtering. The data 

was then projected onto FreeSurfer fsaverage6 surface space and smoothed using a 

6 mm full-width half maximum kernel. More details of the processing can be found 

elsewhere (Chen et al., 2020). 
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2.3. Imaging features for behavioral prediction 

 

2.3.1. Anatomical feature processing 

The 400-region Schaefer parcellation was projected to each participant’s native 

surface space (Schaefer et al., 2018). Using each participant’s T1 image, cortical 

volume, cortical thickness and cortical area were extracted from each of the 400 

regions of interest (ROIs) using Freesurfer 5.3.0 (Dale et al., 1999). Cortical volumes 

were divided by intra-cranial volume (ICV), while cortical area was divided by ICV2/3. 

This resulted in three 400 x participants feature matrices for each dataset.  

 

2.3.2. Diffusion feature processing 

A diffusion tensor model (DTI) was fitted to each participant’s diffusion images using 

FSL’s DTIFIT (Basser et al., 1994). The fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (AD) and radial diffusivity (RD) images were generated for each 

participant. Additionally, a relaxed Neurite Orientation Dispersion and Density Imaging 

(AMICO-NODDI) model was also fitted to the diffusion images (Daducci et al., 2015). 

Orientation dispersion (OD), intracellular volume fraction (ICVF), and isotropic volume 

fraction (ISOVF) images were generated for each participant.   

 

The diffusion features were further processed in two ways. First, a TBSS skeleton was 

generated for each set of participants (one for HCP and one for ABCD), and the seven 

diffusion metric images (FA, MD, AD, RD, OD, ICVF, ISOVF) were projected to the 

skeleton (Smith et al., 2006). The voxels of each diffusion metric skeleton were 

vectorized for each participant, yielding seven feature matrices for each dataset. Each 

matrix is of size number of TBSS voxels x number of participants. 

 

Secondly, probabilistic tractography was run for each participant using MRtrix 

(Tournier et al., 2019). The 400-region Schaefer parcellation was projected to each 

participant’s native surface space (Schaefer et al., 2018). Nine 400 x 400 structural 

connectivity (SC) matrices were generated. The first matrix was a symmetric matrix 

containing the log transformation of stream count connecting each ROI pair. The 

second matrix comprised the average length of streams. The final seven matrices 

corresponded to the seven diffusion metrics averaged along and across streams 

connecting each ROI pair. The lower triangle of each matrix was vectorized for each 

participant, yielding nine 79,800 x number of participants feature matrices for each 

dataset.  

 

2.3.3. Functional feature processing 

A functional connectivity (FC) matrix was generated for each task fMRI and resting-

state fMRI scan using the 400-region Schaefer parcellation. The FC matrix was 

constructed by computing the Pearson’s correlation between the fMRI signals of each 

ROI pair. The lower triangle of each matrix was vectorized for each participant, yielding 

six feature matrices for the HCP and four feature matrices for the ABCD study. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.08.483564doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/


 

2.4. Behavioral data 

We analyzed 58 behavioral scores from the HCP, consistent with our previous studies 

(Kong et al., 2019; Li et al., 2019). In the case of ABCD, we considered 36 behavioral 

scores, consistent with our previous study (Chen et al., 2020). A complete list of scores 

used for the HCP and ABCD can be found in Tables S1 and S2 respectively.  

 

Because many behavioral scores were correlated, we performed a factor analysis 

within each dataset to derive components explaining differing aspects of behavior. The 

scores from all participants with a full set of scores (even if they were missing imaging 

data) from each dataset underwent a principal component analysis. The top three 

components explaining the most variance were retained and entered into varimax 

rotation (Kaiser, 1958). In the HCP, based on the behavioral loadings (Table S3), we 

interpreted the three components to be related to (1) cognition, (2) life dissatisfaction 

and (3) emotional recognition. In the ABCD, based on the behavioral loadings (Table 

S4), we interpreted the three components to the 3 components to be related to (1) 

cognition, (2) personality and (3) mental health.  

 

Some studies have suggested that in the context of phenotypic prediction, the 

behavioral component scores should be estimated from the training data and then 

applied to the test data. However, such a procedure would result in a significantly more 

complex workflow. To ensure our conclusions were not biased by the estimation of 

behavioral components from the full dataset, we also considered prediction results 

from individual behavioral scores (58 measures in HCP and 36 measures in ABCD). 

 

2.5. Single-feature-type prediction models 

We utilized different regression models to predict the 3 behavioral components and 

each behavioral measure in each dataset. Our main analysis utilized kernel ridge 

regression (KRR), which has shown strong behavioral prediction performance (Kong 

et al., 2019; Chen et al., 2020; He et al., 2020). Briefly, KRR performs predictions 

based on the similarity between imaging features. A L2-regularization term was used 

in the model to reduce overfitting.  

 

A separate predictive model was built for each feature type within each MRI modality. 

In the case of anatomical features, three KRR models were evaluated for each 

behavioral measure, corresponding to cortical volume, thickness and area. In the case 

of TBSS, seven KRR models were evaluated for each behavioral measure, 

corresponding to FA, MD, AD, RD, OD, ISOVF and ICVF. In the case of structural 

connectivity, nine KRR models were evaluated for each behavioral measure, 

corresponding to the log transformation of stream counts, stream length, FA, MD, AD, 

RD, OD, ISOVF and ICVF. In the case of FC in HCP, six KRR models were evaluated 

for each behavioral measure, corresponding to resting FC and five different tasks. In 

the case of FC in ABCD, four KRR models were evaluated for each behavioral 

measure, corresponding to resting FC and three different tasks.  
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Each regression model was trained using a nested cross-validation procedure. In the 

HCP, we performed 60 random replications of 10-fold nested cross-validation. The 

family structure was taken into account when performing the cross-validation – 

participants  from the same family were placed into either the test fold or training folds, 

but not split across training and test folds.  

 

In the case of ABCD, similar to our previous study (Chen et al., 2020), we combined 

participants across the 22 imaging sites, yielding 10 “site-clusters”. Each site-cluster 

comprised at least 140 individuals (see Table S5). We then performed a leave-3-site-

clusters out nested cross-validation – 7 random site-clusters were used for training 

while the remaining 3 site-clusters were used for testing. The prediction was performed 

for every possible split of the site clusters, resulting in 120 replications. 

 

Age and sex were regressed from the behavioral measures. Regression was 

performed on the training folds and the regression coefficients were applied to the test 

fold. Accuracy of each model was defined as the correlation between the predicted 

scores of the test participants and their actual scores within each test fold, and then 

averaged across test folds and replications. We additionally computed accuracy using 

the coefficient of determination (COD).  

 

To ensure our conclusions are across different regression approaches, we also 

considered linear ridge regression (LRR) and elastic net regression (Friedman et al., 

2010). 

 

2.6. Multiple-feature-type prediction models 

To combine across features, we applied a stacking procedure. For each participant, 

predictions from the single-feature-type KRR models (first-level predictions) were 

concatenated into a vector and used as prediction features in a 2nd level linear 

regression with no regularization. We also considered the use of multi-kernel ridge 

regression (multi-KRR), which we have previously utilized to predict behavioral 

measures using task and resting FC.  

 

Overall, we trained three models: a multi-KRR model combining all FC features, a 

stacking model combining all FC-based models, and a stacking model combining all 

single-feature-type models from all modalities. We note that we did not consider a 

multi-KRR model combining all features from all modalities because that was too 

computationally expensive.  

 

In the case of the stacking, to prevent data leakage between the training and test folds, 

cross-validation splits were fixed from the single-feature-type models. The training 

data consisted of first-level predictions made by the “inner-loops” of the first level 

models so that none of the first-level predictions would have been made from 
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participants of the test folds. Similar to the single-modality models, prediction 

performance was again evaluated using Pearson’s correlation and COD. 

 

2.7. Statistical tests 

To test whether a model performed better than chance, we performed a permutation 

test by shuffling behavioral measures across participants and repeating the prediction 

procedure. Care was taken to avoid shuffling between families or sites.  

 

To compare models, we used the corrected resampled t-test (Nadeau & Benigo, 2003; 

Bouckaert & Frank, 2004) because a permutation test would not be valid. To control 

for multiple comparisons, we performed a false discovery rate (FDR) correction with q 

< 0.05.    

 

2.8. Data and code availability 

The lists of participants, features, and behavior scores utilized are released for both 

datasets. Data for the HCP are available in this Github repository 

(https://github.com/ThomasYeoLab/Ooi2022_MMP_HCP). Data for the ABCD are 

available on the NIMH Data Archive (NDA) website1 

(https://dx.doi.org/10.15154/1523482). The folder structure for ABCD is similar to that 

of the HCP. Any additional data can be accessed directly from the HCP 

(https://www.humanconnectome.org/) and ABCD (https://abcdstudy.org/) websites, as 

they are both publicly available. 

 

Code for this study is publicly available in the Github repository maintained by the 

Computational Brain Imaging Group (https://github.com/ThomasYeoLab/CBIG). Code 

specific to the regression models and analyses in this study can be found here 

(https://github.com/ThomasYeoLab/Standalone_Ooi2022_MMP).  

 

a. To replicate the results in this study, first download the features and training-

test splits provided for each dataset, and train the regression algorithms with 

the regression code from the CBIG repository.  

b. To compare a new set of features against the benchmarks in this study. 

Download the participant list and training-test split for each dataset. Using the 

participant list provided in each dataset repository, extract a #features x 

#participants matrix for each participant in the list and perform the predictions 

using the regression codes from the CBIG repository using the same training-

test splits.   

c. To compare a new predictive model against the benchmarks in this study, 

download the features and training-test splits for each dataset. Using the same 

                                                      
1 Note to reviewers: The NDA link will only be public after the manuscript is 
published, since we will not be able to change the relevant information (e.g. 
reference to this study) after the link becomes public. However, we have structured 
the HCP and ABCD data to be as similar as possible. 
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features and training-test splits, predictive performance of the new model can 

be compared to the results in this study. 

 

Processing pipelines for diffusion data 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/

CBIG2022_DiffProc), and functional data 

(https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/preprocessing/

CBIG_fMRI_Preproc2016) are provided in their respective links.  
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3. Results 

3.1. Functional connectivity (FC) outperforms other features for predicting 

behavior 

Across both HCP and ABCD, for each feature-type, a separate KRR model was 

trained to predict each of three behavioral components and each behavioral measure. 

Figure 1 shows the KRR predictive performance (Pearson’s correlation) averaged 

across single-feature-type predictive models for each of the three behavioral 

components. Figure 1 also shows the predictive performance averaged across single-

feature-type predictive models for all behavioral measures, which we refer to as “grand 

average”. The grand average corresponded to averaging the prediction performance 

across 58 behavioral measures in the case of HCP and 36 behavioral measures in the 

case of ABCD.  

 

In both datasets, FC-based models performed the best, especially in the case of the 

cognition component (p < 1e-9) and the grand average (p < 1e-17). Predictions of 

cognition were also significantly better for FC-based models compared to models 

trained on anatomical features, TBSS, and SC in both the HCP (p=1.5e-20, p=2.4e-

17, p=4.2e-9 respectively) and ABCD (p=1.1e-28, p=2.6e-15, p=1.4e-13 respectively) 

datasets.  

 

Similar results were obtained with COD (Figure S1). Prediction performance 

(Pearson’s correlation) for each individual behavioral measure can be found in Figures 

S2 to S6. LRR and elastic net yielded slightly lower prediction performance, but similar 

conclusions (Figures 2 and 3).  

 

Figure 4 shows the best single-feature-type (based on KRR) from each modality for 

each behavior component and grand average. In both datasets, FC was better than 

anatomical features, TBSS and SC. Similar results were obtained with LRR and elastic 

net (Figures S7 to S8). 
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Figure 1. Functional connectivity (FC) outperforms other modalities for kernel ridge 

regression (KRR). (A) Prediction performance (Pearson’s correlation) of KRR 

averaged across single-feature-type predictive models within each modality 

(anatomical, TBSS, structural connectivity, functional connectivity) in the HCP dataset. 

Results are shown for the three behavioral components and “grand average” obtained 

by averaging prediction performance across 58 behavioral measures. Each boxplot 

shows the distribution of performance over 60 repetitions of the nested cross-

validation procedure. (B) Prediction performance (Pearson’s correlation) of KRR 

averaged across single-feature-type predictive models within each modality 

(anatomical, TBSS, structural connectivity, functional connectivity) in the ABCD 

dataset. Results are shown for the three behavioral components and “grand average” 

obtained by averaging prediction performance across 36 behavioral measures. Each 

boxplot shows the distribution of performance over 120 repetitions of the nested cross-
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validation procedure. Connecting lines between boxes denote significantly different 

model performances after correction for multiple comparisons (FDR q < 0.05). 

 

 
Figure 2. Functional connectivity (FC) outperforms other modalities for linear ridge 

regression (LRR). Figure is the same as Figure 1 except that LRR was utilized instead 

of kernel ridge regression. (A) Prediction performance (Pearson’s correlation) of LRR 

averaged across single-feature-type predictive models within each modality 

(anatomical, TBSS, structural connectivity, functional connectivity) in the HCP dataset. 

Results are shown for the three behavioral components and “grand average” obtained 

by averaging prediction performance across 58 behavioral measures. Each boxplot 

shows the distribution of performance over 60 repetitions of the nested cross-

validation procedure. (B) Prediction performance (Pearson’s correlation) of LRR 

averaged across single-feature-type predictive models within each modality 
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(anatomical, TBSS, structural connectivity, functional connectivity) in the ABCD 

dataset. Results are shown for the three behavioral components and “grand average” 

obtained by averaging prediction performance across 36 behavioral measures. Each 

boxplot shows the distribution of performance over 120 repetitions of the nested cross-

validation procedure. Connecting lines between boxes denote significantly different 

model performances after correction for multiple comparisons (FDR q < 0.05). 

 

 
Figure 3. Functional connectivity (FC) outperforms other modalities for elastic net. 

Figure is the same as Figure 1 except that elastic net was utilized instead of kernel 

ridge regression. (A) Prediction performance (Pearson’s correlation) of elastic net 

averaged across single-feature-type predictive models within each modality 

(anatomical, TBSS, structural connectivity, functional connectivity) in the HCP dataset. 

Results are shown for the three behavioral components and “grand average” obtained 
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by averaging prediction performance across 58 behavioral measures. Each boxplot 

shows the distribution of performance over 60 repetitions of the nested cross-

validation procedure. (B) Prediction performance (Pearson’s correlation) of elastic net 

averaged across single-feature-type predictive models within each modality 

(anatomical, TBSS, structural connectivity, functional connectivity) in the ABCD 

dataset. Results are shown for the three behavioral components and “grand average” 

obtained by averaging prediction performance across 36 behavioral measures. Each 

boxplot shows the distribution of performance over 120 repetitions of the nested cross-

validation procedure. Connecting lines between boxes denote significantly different 

model performances after correction for multiple comparisons (FDR q < 0.05). 

 

 
Fig 4. Functional connectivity (FC) outperforms other modalities for kernel ridge 

regression (KRR). Figure is the same as Figure 1 except that the best-feature-type for 
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each behavioral measure was selected instead of averaging across feature-types.  (A) 

Prediction performance (Pearson’s correlation) of KRR for the best performing feature-

type within each modality in the HCP dataset. For the cognition component, the best 

features were cortical volume, TBSS AD, SC stream length and language FC. For the 

dissatisfaction component, the best features were cortical thickness, TBSS OD, SC 

stream count and working memory FC. For the emotion component, the best features 

were cortical volume, TBSS OD, SC stream length and social cognition FC. For the 

grand average, the best features were cortical volume, TBSS AD, SC stream count 

and language FC. (B) Prediction performance (Pearson’s correlation) of KRR for the 

best performing feature-type within each modality in the ABCD dataset. For the 

cognition component, the best features were cortical thickness, TBSS ICVF, SC FA 

and N-back FC. For the personality component, the best features were cortical 

volume, TBSS AD, SC stream length and N-back FC. For the mental health 

component, the best features were cortical thickness, TBSS ISOVF, SC RD and SST 

FC. For the grand average, the best features were cortical thickness, TBSS OD, SC 

RD and N-back FC. We note that no statistical test was performed here since 

maximum statistic is prone to outliers.  
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3.2.  All modalities predict cognition better than chance 

Figures 5 and 6 show the KRR prediction performance (Pearson’s correlation) for each 

single-feature-type predictive model in the HCP and ABCD datasets respectively. 

Across all feature types and both datasets, the cognitive component was predicted 

better than chance. This was not the case for the other two behavioral components in 

HCP and ABCD.  Similar results were obtained with COD (Figures S9 and S10), as 

well as LRR and elastic net (Figures S11 to S14).  

 

Overall, this suggests that in the case of healthy children and young adults, brain 

characteristics captured by MRI most strongly reflect individual differences in cognition 

and might reflect the difficulty in capturing subjective aspects of behavior through 

imaging.  

 

 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.08.483564doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.08.483564
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 5. Prediction performance (Pearson’s correlation) of kernel ridge regression 

(KRR) for each single-feature-type in the HCP dataset. Results are shown separately 

for (A) anatomical features, (B) FC, (C) TBSS and (D) structural connectivity. * denotes 

that the model performed better than chance after correction for multiple comparisons 

(FDR q < 0.05). Across all feature types, the cognitive component was predicted better 
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than chance. This was not the case for the other two behavioral components. We note 

that no statistical test was performed to compare models; see Figures 1 to 4 for model 

comparisons.  

 

 

Figure 6. Prediction performance (Pearson’s correlation) of kernel ridge regression 

(KRR) for each single-feature-type in the ABCD dataset. Figure is the same as Figure 
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5 except that the results here corresponded to the ABCD dataset (instead of HCP). 

Results are shown separately for (A) anatomical features, (B) FC, (C) TBSS and (D) 

structural connectivity. * denotes that the model performed better than chance after 

correction for multiple comparisons (FDR q < 0.05). Across all feature types, the 

cognitive component was predicted better than chance. This was not the case for the 

other two behavioral components. We note that no statistical test was performed to 

compare models; see Figures 1 to 4 for model comparisons. 
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3.3. Combining resting and task FC was as good as combining across all 

modalities 

Figure 7 shows the prediction performance (Pearson’s correlation) from combining 

various MRI features based on stacking or multi-KRR. For comparison, the best single-

feature-type from KRR is shown. We note that the best single-feature-type always 

corresponded to FC (Figure 4).  

 

In the case of the cognitive component, multi-KRR of all FC features, stacking of all 

FC-based models and stacking of all single-feature-type models of all modalities 

yielded better prediction performance than the best single-feature-type model in both 

the HCP (p=7.7e-4, p=1.3e-7, p=8.7e-6 respectively) and ABCD (p=1.1e-4, p=5.5e-8, 

p=0.0057 respectively). 

 

Furthermore, stacking all modalities did not provide any significant improvement over 

stacking FC-based models. In addition, stacking the best single-feature-type models 

from each modality was not better than stacking FC-based models (Figure S15). 

Similar results were obtained with COD (Figure S16). Overall, this suggests that the 

gain from stacking all modalities was largely due to the variance account for in FC.  

 

Finally, combining multiple features did not improve the prediction of the remaining 

two behavioral components in both datasets. In fact, in the case of life dissatisfaction 

in the HCP dataset, the best performing single-feature model was statistically better 

than stacking all FC-based models or stacking all single-feature-type models of all 

modalities.  
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Figure 7. Combining resting and task FC was as good as combining across all 

modalities. (A) Prediction performance (Pearson’s correlation) from combining various 

MRI features and modalities in the HCP dataset. We considered multi-KRR of all FC 

features, stacking of all FC models and stacking of all single-feature-type models 

across all modalities. For comparison, the best single-feature-type from KRR is shown. 

Each boxplot shows the distribution over 60 repetitions of the nested cross-validation 

procedure. (B) Prediction performance (Pearson’s correlation) from combining various 

MRI features and modalities in the ABCD dataset. We considered multi-KRR of all FC 

features, stacking of all FC models and stacking of all single-feature-type models 

across all modalities. For comparison, the best single-feature-type from KRR is shown. 

Each boxplot shows the distribution over 120 repetitions of the nested cross-validation 

procedure. * denotes that the model performed better than chance after correction for 

multiple comparisons (FDR q < 0.05). Connecting lines between boxes denote 
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significantly different model performances after correction for multiple comparisons 

(FDR q < 0.05). Combining features led to improvements in prediction of the cognition 

component. Combining all modalities was not better than simply combining resting and 

task FC.  
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4. Discussion  

In this study, we demonstrated that functional connectivity features led to better 

predictive performance than features derived from anatomical or diffusion MRI. This 

finding was replicated across two datasets, and three regression models. We also 

found that integrating features across modalities through stacking mainly improved 

predictions for cognition, but not for other behaviors. Finally, we showed that 

combining all features from all modalities was not better than combining functional 

connectivity features.  

 

4.1.  Behavioral prediction using FC versus other modalities 
There are relatively few studies comparing FC prediction with other modalities in 

young healthy participants, all of whom focused on the young adult HCP dataset. 

Dhamala showed that resting FC outperformed SC in predicting cognitive performance 

in the young adult HCP dataset (Dhamala et al., 2021). Similarly, Mansour also 

showed that high resolution resting FC achieved higher accuracy than high resolution 

SC and anatomical features for cognition in the young adult HCP dataset (Mansour et 

al., 2021). In this study, we replicated Dhamala and Mansour’s results not just in the 

young adult HCP dataset, but also in the lesser utilized young children (ABCD) 

dataset. Similar to Dhamala and Mansour, we observed that FC outperformed the 

other modalities when predicting cognition using KRR. In the HCP, FC achieved a 

correlation coefficient of between 0.44 – 0.62 using KRR when predicting cognition, 

whereas diffusion features were between 0.19 – 0.32, and anatomical features were 

between 0.22 – 0.24. In the ABCD dataset, we found a similar trend that FC 

outperformed other modalities in prediction of cognition. Moreover, we extended 

Dhamala and Mansour’s work in two other ways. First, Dhamala and Mansour only 

considered stream counts in the SC matrix. Here, we considered additional diffusion 

features from DTI and NODDI models averaged across tracts connecting each pair of 

brain regions. We also considered DTI and NODDI features extracted from the TBSS 

skeleton (Smith et al., 2006), which is a widely used approach. Second, we also 

considered task FC in addition to resting FC. Second, we additionally show that the 

better behaviour prediction extends over other behavioural domains, and the “grand 

average” across behavioral measures. 

 

However, we note discrepancy with Rasero and colleagues (Rasero et al., 2021), who 

showed that the “local connectome” derived from diffusion features was able to 

outperform resting FC in the HCP when predicting cognition. Rasero found that the 

local connectome was able to predict “global cognition” with a COD of 0.049, while FC 

could only achieve an accuracy of 0.016. Conversely, in our study, we found that 

resting FC could achieve a COD of 0.25 in the cognition component, and diffusion 

features from SC ranged between a COD of 0.042-0.074. Therefore, our diffusion 

prediction performance was comparable to Rasero, but our FC prediction performance 

was significantly better.  
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One possible reason for this discrepancy might be due to differences between 

Rasero’s tabulation of “global cognition” and our cognition component, although this 

cannot explain that our diffusion prediction performance is similar. Another possible 

reason might be related to fMRI preprocessing, e.g., Rasero opted not to perform GSR 

on fMRI data, which might have improved prediction performance (Li et al., 2019). 

Other reasons might be parcellation choice or the application of PCA on the FC 

features prior to prediction.  

 

Our results are also inconsistent with Xiao and colleagues (Xiao et al., 2021), who 

found that anatomical features were able to outperform both functional and diffusion 

features in predicting visual working memory. One potential discrepancy is the use of 

the CAM-CAN dataset, which focused on elderly participants. It is possible, that our 

results hold for young healthy participants, but not older participants, perhaps due to 

late-life age related changes in brain anatomy. 

 

4.2. Prediction of cognition is better than other behavioural domains 

Previous studies from our group have shown that it’s easier to predict cognition than 

other measures when using FC (Kong et al., 2019; Li et al., 2019; Liégeois et al., 2019; 

Chen et al., 2020; Kong et al., 2021). Mansour and colleagues extended this result by 

showing that this is also true for anatomical and diffusion MRI in the HCP. Our current 

study confirmed Mansour’s results and replicated them in a new independent ABCD 

dataset.  

 

Attaining better prediction for cognitive behaviour might be due to the subjective nature 

of personality and emotion, which might result in additional difficulty in predicting them. 

For example, Uher has described a lack of explicit formulation when investigating 

personality traits (Uher, 2015). This could result in greater difficulty in predicting such 

scores with a more subjective nature using brain imaging (Dubois et al., 2018). As 

such, we might expect to see increases in prediction performances of personality and 

emotion as reliability of behavioural measures increase. 

 

4.3. Multimodal integration  

Recent studies have suggested that task FC achieves better prediction of cognition 

over resting FC (Rosenberg et al., 2016; Greene et al., 2018; Jiang et al., 2020). 

Furthermore, combining task and resting FC in the young adult HCP dataset further 

boosts the prediction of cognition (Elliott et al., 2019; Gao et al., 2019). Chen and 

colleagues further expanded on this by showing that combining resting and task FC 

improved prediction of cognition in ABCD with little or no improvement for other 

behavioral domains (Chen et al., 2020).  

 

We replicated these previous results in the HCP and ABCD datasets. We also 

extended these results further by showing that combining resting and task FC was as 

good as combining all features from all modalities. A possible explanation for the lack 
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of improvement when combining all modalities is that interindividual differences in 

functional and structural brain characteristics lead to similar behavior changes. This 

has been observed by Llera and colleagues, who showed that modes of variation 

linking behaviour to structural variation and behaviour to functional variation 

significantly overlap (Llera et al., 2019). Together with the superior performance of FC 

in predicting behavior, this suggests that diffusion and anatomical features might not 

contain behaviour-related variation outside what FC already contains. 

 

We note that our results were consistent with Dhamala and colleagues (Dhamala et 

al., 2021), who found that combining resting FC and SC did not increase prediction 

accuracy of cognition. In our study, stacking models that combined anatomical, 

diffusion and FC features were not significantly better than stacking models that 

combined only task and resting FC features. We expanded Dhamala’s work by 

showing the consistency of this finding in the ABCD dataset and by considering a wider 

range of features. More specifically, we show that neither the inclusion of anatomical 

data, nor the wider range of diffusion features could boost prediction performance 

above what could be achieved from integrating the various FC features. 

 

However, we note that our results were inconsistent with that of Rasero and 

colleagues (Rasero et al., 2021), who found improvements in prediction of global 

cognition when stacking anatomical, diffusion and FC features. The discrepancy could 

be due to the much better prediction performance of FC in our current study, compared 

with Rasero and colleagues. Given that prediction performance of FC features was 

much better than diffusion and anatomical features in our current study, there might 

be limited gain in combining functional with anatomical or diffusion features.  

 

4.3. Limitations, methodological considerations and future work 

The feature dimensionalities varied greatly across modalities. For example, in the case 

of cortical thickness, there were 400 features per participant, corresponding to the 400-

region Schaefer parcellation. Both the SC and FC matrices comprised 79,800 features 

(corresponding to the lower portion of the 400 x 400 matrix) per participant. Finally, in 

the case of TBSS, there were 133k and 109k for HCP and ABCD respectively. Despite 

the great variation in the number of features, we note that the cross-validation 

framework obviates the need to control for the number of features. The reason is that 

more features could lead to overly complex models and poor performance in the out-

of-sample data. Indeed, FC outperformed TBSS despite having less features.  

 

In this study, we have mainly focused on prediction using the 400 cortical ROIs from 

the Schaefer parcellation. In the case of anatomical features, we did not include 

contributions from subcortical regions to allow for fair comparisons among surface, 

thickness and volumetric features – there’s no concept of surface and thickness for 

subcortical structures. Given that we excluded subcortical structures for anatomical 

features, we also decided to exclude subcortical structures from the functional and 

structural connectivity analyses in order to be consistent.  
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Here, we have shown that FC outperforms diffusion and anatomical features in young 

healthy participants. However, several studies have begun to explore the value of 

multimodal individualized prediction performance in disease populations (Meng et al., 

2017; Sui et al., 2020) and in aging (Engemann et al., 2020; Xiao et al., 2021), showing 

improved prediction of clinical markers with multimodal imaging (Mill et al., 2021). The 

benefits of multimodal imaging could be further explored in future work, focusing on 

the identification of disease and aging markers that can benefit from multimodal 

imaging, and comparing the utility of each modality in predicting these markers.  
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5. Conclusion 
Through applying KRR, LRR, and elastic net regression to anatomical, diffusion and 

functional connectivity features in the HCP and ABCD datasets, we showed that 

functional connectivity was able to achieve better prediction of behavioral traits. 

Combining resting and task FC improved prediction of cognition, but not other 

behavioral traits. On the other hand, there was no additional benefit from combining 

all features from all modalities compared with combining resting and task FC, 

suggesting that FC features might encompass behaviorally relevant information from 

anatomical and diffusion features. 
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Supplemental material 

Table S1. Behavioral measures for HCP 

 Description HCP field 

1 Visual Episodic Memory PicSeq_Unadj 

2 Cognitive Flexibility (DCCS) CardSort_Unadj 

3 Inhibition (Flanker Task) Flanker_Unadj 

4 Fluid Intelligence (PMAT) PMAT24_A_CR 

5 Vocabulary (Pronunciation) ReadEng_Unadj 

6 Vocabulary (Picture Matching) PicVocab_Unadj 

7 Processing Speed ProcSpeed_Unadj 

8 Delay Discounting DDic_AUC_40K 

9 Spatial Orientation VSPLOT_TC 

10 Sustained Attention – Sens. SCPT_SEN 

11 Sustained Attention – Spec. SCPT_SPEC 

12 Verbal Episodic Memory IWRD_TOT 

13 Working Memory (List Sorting) ListSort_Unadj 

14 Cognitive Status (MMSE) MMSE_Score 

15 Sleep Quality (PSQI) PSQI_Score 

16 Walking Endurance Endurance_Unadj 

17 Walking Speed GaitSpeed_Unadj 

18 Manual Dexterity Dexterity_Unadj 

19 Grip Strength Strength_Unadj 

20 Odor Identification Odor_Unadj 

21 Pain Interference Survey PainInterf_Tscore 

22 Taste Intensity Taste_Unadj 

23 Contrast Sensitivity Mars_Final 

24 Emotional Face Matching Emotion_Task_Face_Acc 

25 Arithmetic Language_Task_Math_Avg_Difficulty_Level 

26 Story Comprehension Language_Task_Story_Avg_Difficulty_Level 

27 Relational Processing Relational_Task_Acc 

28 Social Cognition – Random Social_Task_Perc_Random 

29 Social Cognition – Interaction Social_Task_Perc_TOM 

30 Working Memory (N-back) WM_Task_Acc 
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31 Agreeableness (NEO) NEOFAC_A 

32 Openness (NEO) NEOFAC_O 

33 Conscientiousness (NEO) NEOFAC_C 

34 Neuroticism (NEO) NEOFAC_N 

35 Extraversion (NEO) NEOFAC_E 

36 Emot. Recog. – Total ER40_CR 

37 Emot. Recog. – Angry ER40ANG 

38 Emot. Recog. – Fear ER40FEAR 

39 Emot. Recog. – Happy ER40HAP 

40 Emot. Recog. - Neutral ER40NOE 

41 Emot. Recog. – Sad ER40SAD 

42 Anger – Affect AngAffect_Unadj 

43 Anger – Hostility AngHostil_Unadj 

44 Anger – Aggression AngAggr_Unadj 

45 Fear – Affect FearAffect_Unadj 

46 Fear – Somatic Arousal FearSomat_Unadj 

47 Sadness Sadness_Unadj 

48 Life Satisfaction LifeSatisf_Unadj 

49 Meaning & Purpose MeanPurp_Unadj 

50 Positive Affect PosAffect_Unadj 

51 Friendship Friendship_Unadj 

52 Loneliness Loneliness_Unadj 

53 Perceived Hostility PercHostil_Unadj 

54 Perceived Rejection PercReject_Unadj 

55 Emotional Support EmotSupp_Unadj 

56 Instrument Support InstruSupp_Unadj 

57 Perceived Stress PercStress_Unadj 

58 Self-Efficacy SelfEff_Unadj 
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Table S2. Behavioral measures for ABCD 

 Description ABCD field ABCD file 

1 Anxious Depressed cbcl_scr_syn_anxdep_r abcd_cbcls01.txt 

2 Withdrawn Depressed cbcl_scr_syn_withdep_r abcd_cbcls01.txt 

3 Somatic Complaints cbcl_scr_syn_somatic_r abcd_cbcls01.txt 

4 Social Problems cbcl_scr_syn_social_r abcd_cbcls01.txt 

5 Thought Problems cbcl_scr_syn_thought_r abcd_cbcls01.txt 

6 Attention Problems cbcl_scr_syn_attention_r abcd_cbcls01.txt 

7 Rule-breaking Behavior cbcl_scr_syn_rulebreak_r abcd_cbcls01.txt 

8 Aggressive Behavior cbcl_scr_syn_aggressive_r abcd_cbcls01.txt 

9 Vocabulary nihtbx_picvocab_uncorrected abcd_tbss01.txt 

10 Attention nihtbx_flanker_uncorrected abcd_tbss01.txt 

11 Working Memory nihtbx_list_uncorrected abcd_tbss01.txt 

12 Executive Function nihtbx_cardsort_uncorrected abcd_tbss01.txt 

13 Processing Speed nihtbx_pattern_uncorrected abcd_tbss01.txt 

14 Episodic Memory nihtbx_picture_uncorrected abcd_tbss01.txt 

15 Reading nihtbx_reading_uncorrected abcd_tbss01.txt 

16 Fluid Cognition nihtbx_fluidcomp_uncorrected abcd_tbss01.txt 

17 Crystallized Cognition nihtbx_cryst_uncorrected abcd_tbss01.txt 

18 Overall Cognition nihtbx_totalcomp_uncorrected abcd_tbss01.txt 

19 Negative Urgency upps_y_ss_negative_urgency abcd_mhy02.txt 

20 Lack of Planning upps_y_ss_lack_of_planning abcd_mhy02.txt 

21 Sensation Seeking upps_y_ss_sensation_seeking abcd_mhy02.txt 

22 Positive Urgency upps_y_ss_positive_urgency abcd_mhy02.txt 

23 Lack Perseverance upps_y_lack_of_perseverance abcd_mhy02.txt 

24 Behavioral Inhibition bis_y_ss_bis_sum abcd_mhy02.txt 

25 Reward Responsiveness bis_y_ss_bas_rr abcd_mhy02.txt 
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26 Drive bis_y_ss_bas_drive abcd_mhy02.txt 

27 Fun Seeking bis_y_ss_bas_fs abcd_mhy02.txt 

28 
Total Psychosis 

Symptoms 

pps_y_ss_number abcd_mhy02.txt 

29 Psychosis Severity pps_y_ss_severity_score abcd_mhy02.txt 

30 Mania pgbi_p_ss_score abcd_mhp02.txt 

31 Short Delay Recall pea_ravlt_sd_trial_vi_tc abcd_ps01.txt 

32 Long Delay Recall pea_ravlt_ld_trial_vii_tc abcd_ps01.txt 

33 Fluid Intelligence pea_wiscv_trs abcd_ps01.txt 

34 Visuospatial Accuracy lmt_scr_perc_correct lmtp201.txt 

35 
Visuospatial Reaction 

Time 

lmt_scr_rt_correct lmtp201.txt 

36 Visuospatial Efficiency lmt_scr_efficiency lmtp201.txt 
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Table S3. Top 10 loadings (absolute) for HCP behavioral factors 

 Cognition Dissatisfaction Emotion 

1 Working 

Memory (N-

back) 

0.3024 Sadness 0.2740 Emot. Recog. - 

Total 

 

0.4951 

2 Vocabulary 

(Pronunciation) 

0.2964 Perceived 

Stress 

0.2738 Emot Recog - 

Fear 

0.3384 

3 Story 

Comprehension 

0.2900 Loneliness 0.2691 Emot. Recog - 

Sad 

0.3293 

4 Vocabulary 

(Picture 

Matching) 

0.2803 Neuroticism 

(NEO) 

0.2599 Grip Strength 0.3067 

5 Fluid 

Intelligence 

(PMAT) 

0.2730 Fear - Affect 0.2423 Emot. Recog. - 

Anger 

0.2720 

6 Relational 

Processing 

0.2627 Anger - 

Affect 

0.2363 Agreeableness 

(NEO) 

0.2485 

7 Spatial 

Orientation 

0.2459 Perceived 

Rejection 

0.2353 Anger - 

Aggression 

-0.2348 

8 Working 

Memory (List 

Sorting) 

0.2325 Positive 

Affect 

-0.2315 Manual Dexterity 0.1636 

9 Walking 

Endurance 

0.2258 Life 

Satisfaction 

-0.2255 Perceived 

Hostility 

-0.1629 

10 Cognitive 

Flexibility 

(DCCS) 

0.2201 Emotional 

Support 

-0.2226 Verbal Episodic 

Memory 

0.1596 
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Table S4. Top 10 loadings (absolute) for ABCD behavioral factors 

 Cognition Personality Mental health 

1 Overall Cognition 

 

0.3760 Fun seeking 

 

0.3883 Aggressive 

Behavior 

0.3652 

2 Fluid Cognition 

 

0.3442 Total Psychosis 

Symptoms  

0.3455 Thought 

Problems 

 

0.3584 

3 Crystalized 

Cognition 

0.2975 Reward 

Responsiveness 

0.3450 Social Problems 0.3568 

4 Reading 0.2619 Drive 

 

0.3415 Anxious 

Depressed 

 

0.3408 

5 Vocabulary 0.2603 Psychosis 

Severity 

0.3365 Attention 

Problems 

0.3347 

6 Working Memory 0.2585 Positive Urgency 0.3246 Withdrawn 

Depressed 

0.3219 

7 Executive Function 0.2468 Negative Urgency 0.3178 Mania 0.3079 

8 Attention 0.2282 Behavioral 

inhibition 

0.2798 Rule-breaking 

behavior 

0.3072 

9 Long Delay Recall 0.2243 Sensation 

Seeking 

0.2299 Somatic 

Complaints 

0.2611 

10 Short Delay Recall 0.2229 Visuospatial 

Reaction Time 

-0.0947 Lack 

perseverance 

0.0923 
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Table S5. Site clusters for ABCD 

ABCD Site Make Model N Site-cluster  

4 GE Discovery MR750 89 A 

10 GE Discovery MR750 102 A 

8 GE Discovery MR750 49 B 

13 GE Discovery MR750 70 B 

18 GE Discovery MR750 63 B 

22 GE Discovery MR750 1 B 

3 Siemens Prisma 141 C 

11 Siemens Prisma 67 C 

16 Siemens Prisma 320 D 

14 Siemens Prisma/Prisma fit 163 E 

7 Siemens Prisma fit 62 F 

20 Siemens Prisma/Prisma fit 95 F 

5 Siemens Prisma fit 67 G 

21 Siemens Prisma fit/Prisma 81 G 

2 Siemens Prisma fit 123 H 

15 Siemens Prisma fit 29 H 

6 Siemens Prisma fit 141 I 

9 Siemens Prisma fit 62 J 

12 Siemens Prisma fit 98 J 
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Figure S1. Functional connectivity (FC) outperforms other modalities for kernel ridge 
regression (KRR). Figure is the same as Figure 1 except that COD is shown instead 
of Pearson’s correlation. (A) Prediction performance (COD) of KRR averaged across 
single-feature-type predictive models within each modality (anatomical, TBSS, 
structural connectivity, functional connectivity) in the HCP dataset. Results are shown 
for the three behavioral components and “grand average” obtained by averaging 
prediction performance across 58 behavioral measures. Each boxplot shows the 
distribution of performance over 60 repetitions of the nested cross-validation 
procedure. (B) Prediction performance (COD) of KRR averaged across single-feature-
type predictive models within each modality (anatomical, TBSS, structural 
connectivity, functional connectivity) in the ABCD dataset. Results are shown for the 
three behavioral components and “grand average” obtained by averaging prediction 
performance across 36 behavioral measures. Each boxplot shows the distribution of 
performance over 120 repetitions of the nested cross-validation procedure. 
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Figure S2. Prediction performance (Pearson’s correlation) of kernel ridge regression 
(KRR) for individual behavioural measures in the HCP dataset. (A) Prediction 
performance (Pearson’s correlation) of KRR averaged across single-feature-type 
predictive models within each modality (anatomical, TBSS, structural connectivity, 
functional connectivity) in the HCP dataset. Results are shown for behaviors 1-10 of 
Table S1. Each boxplot shows the distribution of performance over 60 repetitions of 
the nested cross-validation procedure. (B) Prediction performance (Pearson’s 
correlation) of KRR averaged across single-feature-type predictive models within each 
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the 
HCP dataset. Results are shown for behaviors 11-21 of Table S1. Each boxplot shows 
the distribution of performance over 60 repetitions of the nested cross-validation 
procedure. 
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Figure S3. Prediction performance (Pearson’s correlation) of kernel ridge regression 
(KRR) for individual behavioural measures in the HCP dataset. (A) Prediction 
performance (Pearson’s correlation) of KRR averaged across single-feature-type 
predictive models within each modality (anatomical, TBSS, structural connectivity, 
functional connectivity) in the HCP dataset. Results are shown for behaviors 21-30 of 
Table S1. Each boxplot shows the distribution of performance over 60 repetitions of 
the nested cross-validation procedure. (B) Prediction performance (Pearson’s 
correlation) of KRR averaged across single-feature-type predictive models within each 
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the 
HCP dataset. Results are shown for behaviors 31-40 of Table S1. Each boxplot shows 
the distribution of performance over 60 repetitions of the nested cross-validation 
procedure. 
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Figure S4. (Prediction performance (Pearson’s correlation) of kernel ridge regression 
(KRR) for individual behavioural measures in the HCP dataset. (A) Prediction 
performance (Pearson’s correlation) of KRR averaged across single-feature-type 
predictive models within each modality (anatomical, TBSS, structural connectivity, 
functional connectivity) in the HCP dataset. Results are shown for behaviors 41-50 of 
Table S1. Each boxplot shows the distribution of performance over 60 repetitions of 
the nested cross-validation procedure. (B) Prediction performance (Pearson’s 
correlation) of KRR averaged across single-feature-type predictive models within each 
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the 
HCP dataset. Results are shown for behaviors 51-58 of Table S1. Each boxplot shows 
the distribution of performance over 60 repetitions of the nested cross-validation 
procedure. 
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Figure S5. Prediction performance (Pearson’s correlation) of kernel ridge regression 
(KRR) for individual behavioural measures in the ABCD dataset. (A) Prediction 
performance (Pearson’s correlation) of KRR averaged across single-feature-type 
predictive models within each modality (anatomical, TBSS, structural connectivity, 
functional connectivity) in the ABCD dataset. Results are shown for behaviors 1-10 of 
Table S2. Each boxplot shows the distribution of performance over 120 repetitions of 
the nested cross-validation procedure. (B) Prediction performance (Pearson’s 
correlation) of KRR averaged across single-feature-type predictive models within each 
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the 
ABCD dataset. Results are shown for behaviors 11-20 of Table S2. Each boxplot 
shows the distribution of performance over 120 repetitions of the nested cross-
validation procedure.  
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Figure S6. Prediction performance (Pearson’s correlation) of kernel ridge regression 
(KRR) for individual behavioural measures in the ABCD dataset. (A) Prediction 
performance (Pearson’s correlation) of KRR averaged across single-feature-type 
predictive models within each modality (anatomical, TBSS, structural connectivity, 
functional connectivity) in the ABCD dataset. Results are shown for behaviors 21-30 
of Table S2. Each boxplot shows the distribution of performance over 120 repetitions 
of the nested cross-validation procedure. (B) Prediction performance (Pearson’s 
correlation) of KRR averaged across single-feature-type predictive models within each 
modality (anatomical, TBSS, structural connectivity, functional connectivity) in the 
ABCD dataset. Results are shown for behaviors 31-36 of Table S2. Each boxplot 
shows the distribution of performance over 120 repetitions of the nested cross-
validation procedure.  
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Figure S7. Functional connectivity (FC) outperforms other modalities for linear ridge 
regression (LRR). Figure is the same as Figure 4 except that LRR was utilized instead 
of kernel ridge regression. (A) Prediction performance (Pearson’s correlation) of LRR 
for the best performing feature-type within each modality in the HCP dataset. For the 
cognition component, the best features were cortical area, TBSS OD, SC FA and 
language FC. For the dissatisfaction component, the best features were cortical 
thickness, TBSS FA, SC stream count and working memory FC. For the emotion 
component, the best features were cortical volume, TBSS AD, SC FA and social 
cognition FC. For the grand average, the best features were cortical volume, TBSS 
AD, SC AD and language FC. (B) Prediction performance (Pearson’s correlation) of 
LRR for the best performing feature-type within each modality in the ABCD dataset. 
For the cognition component, the best features were cortical area, TBSS OD, SC ICVF 
and N-back FC. For the personality component, the best features were cortical 
volume, TBSS OD, SC MD and MID FC. For the mental health component, the best 
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features were cortical area, TBSS OD, SC MD and resting FC. For the grand average, 
the best features were cortical area, TBSS OD, SC ICVF and N-back FC. 
 

 
Fig S8. Functional connectivity (FC) outperforms other modalities for elastic net. 
Figure is the same as Figure 4 except that elastic net was utilized instead of kernel 
ridge regression. (A) Prediction performance (Pearson’s correlation) of elastic net for 
the best performing feature-type within each modality in the HCP dataset. For the 
cognition component, the best features were cortical area, TBSS FA, SC FA and 
language FC. For the dissatisfaction component, the best features were cortical 
thickness, TBSS AD, SC stream length and working memory FC. For the emotion 
component, the best features were cortical volume, TBSS OD, SC FA and language 
FC. For the grand average, the best features were cortical thickness, TBSS FA, SC 
AD and language FC. (B) Prediction performance (Pearson’s correlation) of elastic net 
for the best performing feature-type within each modality in the ABCD dataset. For the 
cognition component, the best features were cortical thickness, TBSS OD, SC ICVF 
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and N-back FC. For the personality component, the best features were cortical 
thickness, TBSS OD, SC OD and MID FC. For the mental health component, the best 
features were cortical area, TBSS OD, SC OD and SST FC. For the grand average, 
the best features were cortical area, TBSS OD, SC ICVF and N-back FC.  
 

 
Figure S9. Prediction performance (COD) of kernel ridge regression (KRR) for each 

single-feature-type in the HCP dataset. Figure is the same as Figure 5, except that 
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COD was shown instead of Pearson’s correlation.  Results are shown separately for 

(A) anatomical features, (B) FC, (C) TBSS and (D) structural connectivity.  

 

 
Figure S10. Prediction performance (COD) of kernel ridge regression (KRR) for each 
single-feature-type in the ABCD dataset. Figure is the same as Figure 6, except that 
COD was shown instead of Pearson’s correlation.  Results are shown separately for 
(A) anatomical features, (B) FC, (C) TBSS and (D) structural connectivity. 
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Figure S11. Prediction performance (Pearson’s correlation) of linear ridge regression 
(LRR) for each single-feature-type in the HCP dataset. Figure is the same as Figure 5 
except that LRR was utilized instead of kernel ridge regression.  Results are shown 
separately for (A) anatomical features, (B) FC, (C) TBSS and (D) structural 
connectivity.   
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Figure S12. Prediction performance (Pearson’s correlation) of elastic net for each 
single-feature-type in the HCP dataset. Figure is the same as Figure 5 except that 
elastic net was utilized instead of kernel ridge regression.  Results are shown 
separately for (A) anatomical features, (B) FC, (C) TBSS and (D) structural 
connectivity.    
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Figure S13. Prediction performance (Pearson’s correlation) of linear ridge regression 
(LRR) for each single-feature-type in the ABCD dataset. Figure is the same as Figure 
6 except that LRR was utilized instead of kernel ridge regression. Results are shown 
separately for (A) anatomical features, (B) FC, (C) TBSS and (D) structural 
connectivity. 
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Figure S14. Prediction performance (Pearson’s correlation) of elastic net for each 
single-feature-type in the ABCD dataset. Figure is the same as Figure 6 except that 
elastic net was utilized instead of kernel ridge regression. Results are shown 
separately for (A) anatomical features, (B) FC, (C) TBSS and (D) structural 
connectivity. 
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Figure S15. Combining resting and task FC was as good as combining across all 

modalities, or combining the best single-feature-type models of each modality. Figure 

is the same as Figure 7, except that the results of multi-KRR are replaced with the 

results of stacking the best single-feature-type models (which can be found in Figure 

4). (A) Prediction performance (Pearson’s correlation) from combining various MRI 

features and modalities in the HCP dataset. We considered stacking the best single-

feature-type model of each modality, all FC models, and all single-feature-type models 

across all modalities. For comparison, the best single-feature-type from KRR is shown. 

Each boxplot shows the distribution over 60 repetitions of the nested cross-validation 

procedure. (B) Prediction performance (Pearson’s correlation) from combining various 

MRI features and modalities in the ABCD dataset. We considered stacking the best 

single-feature-type model of each modality, all FC models, and all single-feature-type 

models across all modalities. For comparison, the best single-feature-type from KRR 
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is shown. Each boxplot shows the distribution over 120 repetitions of the nested cross-

validation procedure. 

 
Figure S16. Combining resting and task FC was as good as combining across all 
modalities. Figure is the same as Figure 7, except that COD was shown instead of 
Pearson’s correlation. (A) Prediction performance (COD) from combining various MRI 
features and modalities in the HCP dataset. We considered multi-KRR of all FC 
features, stacking of all FC models and stacking of all single-feature-type models 
across all modalities. For comparison, the best single-feature-type from KRR is shown. 
Each boxplot shows the distribution over 60 repetitions of the nested cross-validation 
procedure. (B) Prediction performance (COD) from combining various MRI features 
and modalities in the ABCD dataset. We considered multi-KRR of all FC features, 
stacking of all FC models and stacking of all single-feature-type models across all 
modalities. For comparison, the best single-feature-type from KRR is shown. Each 
boxplot shows the distribution over 120 repetitions of the nested cross-validation 
procedure.  
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