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Abstract 7 

Antibiotics can kill or stop the growth of bacteria, and their effectiveness depends on many factors. It 8 

is important to understand the relation between bacterial physiology, the environment and antibiotic 9 

action. While many of the mechanistic details of antibiotic action are known, the connection between 10 

death rate and bacterial physiology is poorly understood. Death rate in antibiotics has often been 11 

shown to rise linearly with growth rate; however, it remains unclear how environmental factors, in 12 

concert with whole-cell physiological properties, affect bactericidal activity. To address this, we 13 

developed a high-throughput assay to precisely measure antibiotic-mediated bacterial death. We 14 

found that death rate is linear in growth rate, but the slope depends on environmental conditions. 15 

Specifically, stressors lower the death rate compared to a non-stressed environment with the same 16 

growth rate. To understand the role of stress, we developed a mathematical model of bacterial death 17 

based on resource allocation that takes into account a newly defined stress-response sector; we 18 

identify this sector using RNA-seq. Our model accurately predicts the death rate and minimal 19 

inhibitory concentration of antibiotics across a wide range of conditions, including a previously 20 

unknown increase in the stress response and protection from death at very low levels of cAMP. The 21 

present death-growth model suggests conditions that may improve antibiotic efficacy. 22 

Introduction 23 

The first antibiotic was discovered over 100 years ago 1. Since then, many antibiotics that 24 

either kill the bacteria (bactericidal) or primarily inhibit their growth (bacteriostatic) have been 25 

discovered 2. The direct interactions and proximal mechanisms of action have been elucidated for 26 

many antibiotics. However, the connection between the molecular mechanism of action and the 27 

physiological state of the bacterium (e.g., growth rate, proteomic profile) that ultimately leads to 28 
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death remains poorly understood 2–4. Understanding how bacteria deal with antibiotics is particularly 29 

relevant due to increasing issues of resistance mutations5–7.  30 

Another concern in antibiotic treatment is tolerance, a natural ability to survive prolonged 31 

treatment 8 . Tolerance is not accompanied by a change in the minimal inhibitory concentration (MIC) 32 

8 and is known to depend on the bacterial growth environment 8–10. Because of the clinical importance, 33 

many studies have approached antibiotic efficacy from the perspective of outcome (i.e., bacterial 34 

death) rather than the physiological state of the bacterium (see 2 for a recent review). In this paper, 35 

we focus on the connection between death rate, MIC and the physiological state of the bacteria. 36 

Previous studies found linear relationships between growth rate or metabolic state and death 37 

rate due either to bactericidal antibiotic 11–17 or to starvation 18. In contrast to these simple linear 38 

relations, combinatorial treatments show greater complexity ( see 19 for a recent review). For instance, 39 

bacteriostatic antibiotics protect against death due to bactericidal antibiotics 20 and anti-ribosomal 40 

antibiotics protect against anti-DNA antibiotic 21. In addition, starvation and other stressful conditions 41 

were found to protect bacteria from antibiotics 9,10,22–25. It is thus reasonable to expect that the 42 

connection between growth rate and death rate is more complex than a simple linear function of 43 

growth rate and may be dependent on the environment and the physiological state of the cell. 44 

Unlike the death rate, the growth rate has been extensively studied in terms of physiology, 45 

revealing simple growth laws 26–30. An early example of a growth law is the linear increase of growth 46 

rate with ribosomal content 27 (the basis of an “R sector” in later terminology 30). This simple growth 47 

law has proven impressively capable of predicting bacterial growth rates across a wide range of 48 

environmental conditions, despite the thousands of underlying molecular reactions 26,27,30. More 49 

detailed yet still coarse-grained models extended the growth laws to predict growth rate as a function 50 

of multiple internal proteomic sectors, each representing large groups of genes with similar behavior 51 

under corresponding resource limitations 31–34. For example, the “C sector” represents genes which 52 

are upregulated under carbon limitation 31,35,36. 53 

One attempt to relate resource allocation to death proposed that investment in maintenance 54 

prolongs survival during starvation 18. We hypothesized that a generalized resource-allocation model, 55 

which takes into account tradeoffs between sectors due to limited cell resources, could connect 56 

environmental conditions, internal bacterial physiology and antibiotic killing rates. To build and test 57 

such a model requires accurate measurement of death rates in many conditions.  58 
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In this paper, we developed a high-throughput method to measure bactericidal death rates 59 

in a variety of conditions. We found that the death rate does not depend on growth rate alone, but 60 

also on the details of the environment. Stressful environments protect against bactericidal killing 61 

relative to non-stressed environments with the same growth rate. We hypothesized that stressful 62 

environments activate a cellular physiological program that helps bacteria to deal with damage 63 

imposed by the antibiotic treatment 37. To test this, we developed a mathematical model that can 64 

quantitatively recapitulate death rates from given environmental conditions, based on tradeoffs in 65 

the allocation of resources to growth-related and stress-related proteomic sectors. Moreover, the 66 

model could accurately predict MIC, which we measured in an independent manner and which rose 67 

with decreased death rate only under stressful conditions – an effect we term hardiness. We 68 

confirmed the existence of such a stress sector using RNA sequencing and quantitatively validated the 69 

model predictions of C (carbon), S (stress), and R (ribosomal) sector sizes in various conditions. By 70 

directly manipulating the sector sizes via cAMP, we found a surprising decrease in death as well as an 71 

increase in MIC at low cAMP, which is quantitatively predicted by the model. Finally, we use our 72 

results to discuss the clinical relevance and suggest treatment conditions that may improve antibiotic 73 

killing of bacteria. 74 

Results 75 

High throughput assay of bacterial death rates 76 

Bacterial death rates are classically measured via the colony-forming unit (CFU) assay. This 77 

assay estimates the number of viable bacteria remaining after various times in a damaging treatment 78 

by counting colonies that grow after plating on permissive agar media. This method is labor-intensive 79 

and limited in throughput. High-throughput measurements of decreasing optical density (OD) 12 or of 80 

minimal duration of killing (MDK) 38 are either limited to specific antibiotics that disrupt cell integrity 81 

(e.g., ampicillin) or yield limited time-course information. Single-cell tracking of death via microfluidics 82 

39 is not easily scaled to measurement in many conditions. Overall, there is a lack of robust, high-83 

throughput methods to measure death curves. 84 

Here, we developed such an automated, high-throughput assay to measure death rates in 96-85 

well plates on a robotic system (details in Fig. 1 and Methods). In short, we measured the surviving 86 

fraction of cells as a function of antibiotic challenge duration. The robotic system enabled us to run a 87 

reverse time course with antibiotic introduced into exponentially growing cultures at a consistent OD 88 

(Figs. 1A, S1). Following the start-growth-time method of Hazan, et al., we estimated surviving cell 89 
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numbers by measuring the time τ for a treated culture to reach a certain OD threshold in permissive 90 

(minimal glucose) media (Fig. 1B)40. Fewer live cells growing exponentially will take longer to reach 91 

the threshold and thus represent lower percent survival, which we quantified by comparison to delays 92 

τ in untreated, diluted cultures (Fig. 1C). From percent survival in a range of antibiotic treatment 93 

durations, we obtained a survival curve and fit it to a Weibull survival function coupled to exponential 94 

growth (see Methods). Note that in some conditions we observed an initial increase in the number of 95 

viable bacteria, reflecting that bacteria at first grew faster than they died (Figs. S2,S3), as has been 96 

observed previously 12. We defined death rate as 1/t90, the inverse of time to reach 10% survival of 97 

the initial population (Figs. 1D, S3, Methods).  98 

We validated this approach by comparison to the CFU method in various conditions and found 99 

very good agreement (Fig. S4, Methods).  We also tested the sensitivity of the method to treatment 100 

duration and found that the calibration between recovery time τ and survival does not depend on 101 

time in antibiotic (Fig. S5). We conclude that the high throughput assay provides an accurate measure 102 

of killing in the present conditions. 103 

Overall, the protocol provided throughput of 4-8 survival curves in a two-day experiment (see 104 

Figs. S2 and S15 for all death curves obtained in this study). 105 

Death rate depends on both growth rate and physiological stress 106 

Using this assay, we explored the relation between growth and death rates of E. coli NCM3722 107 

under various physiological conditions (Figs. S2, S3). As a challenge, we used 10μg/ml of the 108 

bactericidal antibiotic nalidixic acid, which interferes with DNA gyrase 41. We used multiple growth 109 

conditions and evaluated the growth rate in each in the absence of the antibiotic challenge. First, we 110 

studied the effect of various carbon sources in a minimal growth medium. We found, in agreement 111 

with previous studies, that the lower the growth rate, the lower the death rate. Death rate in glucose, 112 

which supported the fastest growth, was the highest; death rate was lowest in the poorest carbon 113 

sources, galactose and mannose (blue dots, Fig. 2) 114 

We next used glucose as a carbon source and reduced the growth rate by applying stress conditions, 115 

namely conditions that limit growth not by nutrients but through other environmental parameters34.  116 

Specifically, we used NaCl at high osmolality or the DNA-damaging antibiotic trimethoprim (TMP), 117 

which is bacteriostatic in minimal media42,43. 118 
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We found that the growth-death relation was steeper in stressors than in the carbon sources. In other 119 

words, we death rate depends on the environment, with stressful conditions providing dose-120 

dependent protection (orange and green dots, Fig. 2). Further increase in stress levels (400mM and 121 

500mM NaCl) resulted in cells growing faster than they died, which we quantified as a negative death 122 

rate (Fig S6, Methods).  123 

Thus, conditions with a similar growth rate may result in significantly different death rates. For 124 

example, the death rate on mannose or galactose was ~2-fold higher than the death rate reached by 125 

300mM NaCl or 0.2μg/ml TMP, with much steeper survival curves (Fig. 2 inset). Protection from death 126 

was also found when using ethanol and tetracycline as stressors (Fig. S7).  This finding was not 127 

exclusive to Nalidixic acid. We measured death rate by phosphomycin, an antibiotic from a different 128 

class (a membrane synthesis inhibitor44) and similarly found that death rate on mannose was higher 129 

than on glucose plus 300mM NaCl or 0.2μg/ml TMP (Fig S8). We also tested thye aminoglycoside 130 

antibiotic streptomycin45 and found protection from death by 300mM NaCl, but not by 0.2μg/ml TMP 131 

(Fig. S8).   132 

We conclude that death rate is not solely a function of growth rate. Antibiotic causes a higher death 133 

rate when applied to bacteria growing on a poor carbon source than when it is applied to bacteria 134 

with the same growth rate growing on a rich carbon source supplemented with stressors.  135 

A resource allocation model can explain the observed growth-death data 136 

We hypothesized that a resource-allocation model including a stress-response sector can explain the 137 

observed growth and death rates. We begin with the dependence of death rate on growth rate in 138 

different carbon sources, which we call the ‘sugar line’ (Fig. 3A, blue line). On the sugar line, the well-139 

established resource allocation theory predicts that as more resources are dedicated to carbon 140 

catabolism (C sector), fewer resources are dedicated to building ribosomes (R sector), resulting in a 141 

correspondingly lower growth rate31,35,36. One may assume that under these conditions the death rate 142 

increases in direct correlation to growth rate due to increased production of damage in line with 143 

previous descriptions11,15 (e.g., nalidixic acid affects DNA gyrase, which introduces DNA breaks during 144 

replication46). 145 

In contrast, when growth rate is varied via stressor concentration using glucose as a carbon 146 

source, we expect the C sector to remain constant. We base this expectation on the fact that the 147 

carbon source remains unchanged and the stresses imposed are unrelated to metabolic constraints. 148 

We predict that with stressors present, resources are redirected to a newly defined stress-response 149 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 29, 2022. ; https://doi.org/10.1101/2022.03.09.483592doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483592
http://creativecommons.org/licenses/by-nc-nd/4.0/


sector (S sector) at the expense of the R sector. This increase in stress-related genes can provide 150 

protection against antibiotic damage while decreasing growth rate, resulting in a ‘stress line’ (Fig. 3A, 151 

green and orange lines). We assume that under the conditions we studied, changing resources are 152 

divided strictly into the R, C and S sectors, while other sectors remain unchanged. This hypothesis 153 

predicts that conditions in which both carbon source and stress level change will yield growth and 154 

death rates that reside between the sugar and stress lines. Indeed, we find that combinations of 155 

glycerol+TMP and glycerol+NaCl lie between these lines, as does acetate, which is a poor carbon 156 

source known to induce a stress response 47,48 (Fig S9). 157 

Based on the above hypotheses, we developed a mathematical resource-allocation model, 158 

summarized by the following equations. We use growth on glucose as an anchor point and define the 159 

change of the sectors in a given condition as ΔC, ΔS and ΔR. Since the sum of all sectors is constant 160 

(C+S+R=1), their total change must equal zero 30: 161 

Eq (1)  Δ𝐶 + Δ𝑆 + Δ𝑅 = 0 , 162 

The growth rate 𝜇 depends linearly on the R sector as described by the well-established growth law 163 

27,30 𝜇 = 𝑎𝑅 − 𝑏,  and thus the change of growth rate relative to glucose obeys: 164 

Eq (2) Δ𝜇 = 𝑎Δ𝑅 , 165 

where a is the ribosomal growth efficiency.  166 

The new aspect of the model is an equation for the death rate.  Death rate ⍴ increases with 167 

damage, which is proportional to growth rate and reduced by the S sector, leading to the proposed 168 

death law: 169 

Eq (3) Δ𝜌 = 𝛼Δ𝜇 − 𝛽Δ𝑆 . 170 

Here Δ𝜌 is death rate minus death rate on glucose,  𝛼 is the decrease in death rate per decrease in 171 

growth rate and  𝛽 is the death protection efficiency per unit increase in the S sector. We assume that 172 

on the sugar line, which lacks stressors, S remains constant so that Δ𝑆 = 0, while on the stress line C 173 

remains constant so that Δ𝐶 = 0 and thus Δ𝑆 = −
1

𝑎
Δ𝜇. Fitting Equations 1-3 to the growth-death 174 

measurements (Fig. 3A, Table S1, Methods) provides an excellent fit (adj. R2=0.986) with two non-175 

dimensionalized free parameters, �̂� = 𝛼
𝜇𝐺

𝜌𝐺
 and �̂� = 𝛽

𝜇𝐺

𝑎𝜌𝐺
  (Methods). The sugar line slope 176 

provides �̂� = 0.72 ± 0.11. The stress line shows that protection by NaCl (�̂� = 1.41 ± 0.14) is greater 177 

than for TMP (�̂� = 0.88 ± 0.13).  178 
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The resource allocation model accurately predicts MIC as a function of growth rate 179 

We next considered the three major concepts of bacterial survival in antibiotics: resistance, 180 

tolerance and persistence, as recently defined by Brauner et al 8. Two are not relevant to this study – 181 

persistence relates to a very small subpopulation that is not killed, whereas our experiments focus on 182 

the whole-population level. Resistance is due to genetic changes, which do not occur in our short-183 

term experiments. The remaining concept, tolerance, is defined as the ability of microorganisms to 184 

survive antibiotic treatment for a longer time (reduced death rate) without a change in MIC 8. We 185 

therefore set out to measure the MIC in order to test whether the reduced killing in our conditions is 186 

due to tolerance.  187 

We quantified MIC by measuring growth curves in a range of nalidixic acid concentrations, 188 

identifying the MIC as the lowest antibiotic concentration that prevents growth (Methods, Fig. S10). 189 

We found that MIC does not vary with different sugars (Fig. 3B, blue points), corresponding to 190 

tolerance. However, MIC increased with stressors in a dose-dependent manner (Fig. 3B, green and 191 

orange points) with negative correlation to death rate (Fig. S11). This requires a new concept to 192 

describe reduced killing accompanied by increased MIC, which we term hardiness. 193 

Indeed, both hardiness and tolerance are predicted quantitatively by our death model. 194 

Mathematically, we characterize MIC by 𝜌 = 0, corresponding to a flat survival curve. Thus, we expect 195 

that conditions lying on the horizontal axis in Fig. 3A to have a MIC of 10μg/ml nalidixic acid (the 196 

concentration used).  Assuming that the growth-dependent damage 𝛼 and death rate on glucose 𝜌𝐺 197 

increase linearly with antibiotic concentration, we derive a relation between MIC and growth rate for 198 

all growth conditions (Methods). Specifically, MIC remains constant for the sugar line but increases 199 

according to a Michalis-Menten-like function of growth rate. Thus, the model predicts tolerance for 200 

sugars and hardiness for stressors. Without any additional free parameters, the model prediction 201 

provides an excellent fit to the MIC data (adj. R2=0.982, Fig. 3B).  202 

Gene-expression measurements support the prediction of a sizable stress sector 203 

A basic assumption of the proposed model is a sizable S sector, whose fraction of cellular resources 204 

at high stress is significant enough to lead to a decrease in the R sector and a corresponding decrease 205 

in growth rate. 206 

To examine the size and composition of the S sector, we performed RNA-Seq analysis on E. 207 

coli NCM3722 cultures grown in various carbon sources or in glucose with increasing concentrations 208 
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of NaCl or TMP (Methods). We grouped genes into clusters using a Gaussian mixture model and then 209 

grouped the clusters by increasing, decreasing, or insignificant Spearman correlation between 210 

summed expression and growth rate (Methods). Because noise leading to insignificant correlations 211 

can hide trends in summed expression, we use the following definitions for the R, C, and S sectors. 212 

The R sector included all clusters correlated positively with growth rate in at least one of the three 213 

sets of conditions (NaCl, TMP, or sugars) and not anti-correlated with growth rate in any condition. 214 

This included the classic ribosomal R sector genes, as well as all other non-ribosomal genes that rise 215 

with growth rate 49,50. The S sector included clusters anticorrelated with growth rate in NaCl or TMP 216 

but not in poor carbon (784 genes). The remaining clusters were defined as the C sector (1053 genes), 217 

which included clusters increasing in only poor carbon or in both poor carbon and NaCl. These sectors 218 

show expected overlap with previously reported sectors measured using proteomics31 (Fig. S12). 219 

Enriched GO terms in these clusters (Fig. 3C, Methods) match the expectation that C is 220 

catabolism-related, R is ribosomal and growth-related, and S genes are stress-related. The inferred S 221 

sector also included anabolic genes, presumably related to requirements for production of protective 222 

components. For example, arginine biosynthesis is a known requirement for pH tolerance51. Because 223 

of their known role in antibiotic tolerance52, we measured the contribution of efflux pump expression 224 

to the observed protection from death. We found that the total expression of efflux pumps is very 225 

low and does not follow the expected expression trends of the model (Fig S13).  226 

In accordance with the model assumptions, we fit the RNA-Seq sector-size data for sugars, 227 

NaCl, and TMP to linear functions of growth rate, requiring zero slope where sectors are expected to 228 

remain constant (S on sugars and C on stressors). We found an excellent fit in all three cases (Figs. 3D-229 

F, Table S2; adj. R2=0.999 for sugars, R2=0.998 for NaCl, and R2=0.999 for TMP). Note that because 230 

sectors were defined using Spearman correlation, the linear dependence is not an artifact of the 231 

definitions. Notably, the R-sector slope is higher for sugars than for stressors. This difference may be 232 

due to a lower translation rate for R-sector genes under stress53, so that more ribosomal mRNA is 233 

required to provide a consistent amount of ribosomal protein. The ‘classic’ ribosomal R sector, which 234 

relates strictly to ribosomal content, can be measured by total RNA, which is predominantly ribosomal 235 

RNA. Total RNA shows the expected growth law: a linear dependence on growth rate that is similar in 236 

poor carbon sources and in stressors (Figs. 3F inset, S14, adj. R2=0.93) 237 

Experimental modulation of the C sector provides a rigorous test of the model 238 

In  Fig.2 we modulated the C sector by changing the carbon source. Another way to change the C sector 239 
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and to further test the model is by modulating the activity of the master C-sector regulator CRP 54 . 240 

This can be done by changing the concentration of the signaling molecule cAMP that activates 241 

CRP32,35,36. We thus measured growth and death rates of strain U486 (MG1655ΔcyaAΔcpdA), which 242 

cannot produce or degrade cAMP, in a range of exogenously supplied cAMP concentrations32,35,36.  243 

As was shown earlier 32,36, growth rate is non-monotonic as a function of cAMP, yielding equi-244 

growth rate conditions achieved by different cAMP levels (Fig S15). The optimum growth rate lies 245 

between 0.2-0.3mM cAMP. Death rate measurements yielded dependency on growth that did not 246 

collapse onto a single line, with low cAMP protecting more strongly from death compared to high 247 

cAMP at similar growth rates (Figs. 4A, S16, S17). Thus, as for the sugars and stressors, death rate as 248 

a function of cAMP is not determined solely by growth rate. Encouraged by the linear fits for sugars 249 

and stressors, we assumed that S remains constant for high cAMP (>~0.3mM cAMP) while C remains 250 

constant for low cAMP (<~ 0.2mM cAMP). Strikingly, despite the nonlinear growth curve as a function 251 

of cAMP, this same model provides an excellent fit (adj. R2=0.941) with just two slope parameters 252 

(Table S3).  253 

We also tested the MIC in these conditions, and again find different relationships between 254 

MIC and growth rate in the low and high regimes of cAMP levels (Fig. 4B). For cAMP>~0.3mM MIC 255 

was constant with growth rate, while for cAMP <~0.2mM, it increased with decreased growth rate. 256 

Using one additional free parameter to describe the anchor point between the two regimes fit the 257 

data very well (adj. R2=0.991, Methods). Plotting MIC versus death rate highlights the difference 258 

between tolerance and hardiness: high cAMP shows tolerance while low cAMP shows hardiness (Fig. 259 

4C). 260 

The origin of the differential behavior in low and high cAMP regimes is revealing. The present 261 

model indicates that at cAMP levels above the optimal growth rate, the C sector rises with cAMP 32,36 262 

at the expense of the R sector without a change in the S sector, similar to the sugar line. Death drops 263 

with cAMP, as does growth. At cAMP levels below the optimal growth rate, the C sector changes only 264 

mildly 32, and the S sector rises with decreasing cAMP at the expense of the R sector, with a protective 265 

effect on death. Thus, ultra-low cAMP levels, achieved physiologically only in unusual conditions55, 266 

are interpreted by the cells as a stress signal, leading to a reduced death rate and an increased MIC. 267 

 268 

Discussion 269 
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We developed a high-throughput assay for measuring bacterial death curves. Using this assay, we 270 

determined the relation between the growth rate in a given condition and the death rate in a 271 

subsequent antibiotic challenge. Death rate depended both on growth rate and growth condition. 272 

Stressful conditions protected from death when compared to no-stress conditions of equal growth 273 

rate. Stress resulted in lower death rate and increased MIC, a phenomenon that lies outside the 274 

available definitions of antibiotic response, which we termed hardiness. The quantitative relation 275 

between growth and death is captured by a resource allocation model, in which death is increased by 276 

growth-related damage and reduced by a protective stress-response sector. We identified this stress 277 

sector using RNA-Seq measurements. In line with the model, protection from death was also gained 278 

when manipulating the C-sector to low levels via exogenous cAMP. 279 

Most of the work on bacterial growth laws has focused on growth rate, not on death rate. 280 

Growth laws are explained by resource allocation models that focus on the relation between 281 

proteome distribution and growth rate. These models define sectors by an increased expression of a 282 

group of genes needed to cope with a certain limitation at the expense of ribosomes 30–32. Here, we 283 

find that resource allocation-based theory can also predict death rate when we introduce a newly 284 

defined stress-response sector. 285 

These findings emphasize the need to define what conditions are considered stressful for 286 

bacteria. Stress was recently defined as a condition that limits growth not by nutrients but through 287 

other environmental parameters34. Such conditions will upregulate a proteomic response that is not 288 

directly involved in biomass production (such as ribosomes, catabolic genes). One of the stressors we 289 

used is the bacteriostatic antibiotic TMP. Our results thus provide an explanation for the known 290 

antagonistic effect of bacteriostatic antibiotics on bactericidal action56: bacteriostatic antibiotics in 291 

general may raise a stress response and thereby reduce death by bactericidal antibiotics. An additional 292 

way to impose stress is starvation, known to provide tolerance and persistence to antibiotics while 293 

upregulating stress-gene expression9,10,23,57. It will be interesting to measure antibiotic-mediated 294 

death rates and the size of the S sector under starvation. Likewise, it will be interesting to measure 295 

the effect of nitrogen limitation on various carbon sources, given that various combinations of carbon 296 

and nitrogen sources can lead to either low or high cAMP levels 55. It may also be illuminating to 297 

explore the connection of the proposed coarse-grained model of stress to molecular regulators of 298 

stress response such as ppGpp58. 299 

 In addition to the connection between growth conditions and death rate, the present findings 300 
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highlight the importance of considering growth conditions when determining the MIC for a given 301 

antibiotic. An elevated MIC is usually considered a form of resistance, such as that caused by 302 

mutations. A raised MIC can also result from stressful growth conditions  without mutations23,59, in a 303 

manner captured quantitatively by the present resource allocation model. Our proposed 304 

differentiation between tolerance and hardiness captures the range of behaviors that describe both 305 

MIC and death rate. 306 

Clinically, our work suggests that in the variety of conditions in the body, bacteria may be 307 

tolerant and hardy to antibiotics compared to laboratory conditions. For example, some of the stress 308 

placed on bacteria by the immune system may counterintuitively inhibit the killing efficacy of 309 

antibiotics. This suggests possible targets for treatments. For instance, provision of inhibitors of 310 

alternative sigma factors together with antibiotics may inhibit stress sector expression and enhance 311 

antibiotic efficacy. We anticipate that quantitative understanding of the death-growth tradeoff in 312 

bacteria and its relation to stress may thus have clinical applications, and more generally may advance 313 

our understanding of tradeoffs in bacterial physiology. 314 

  315 
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Figures and figure legends. 472 

 473 

 474 

 475 

Fig 1. Death rate measurement protocol. For simplicity, we illustrate here the process for 3 time 476 

points (additional time points indicated in black) for one replicate of a single growth condition, with 477 

1-hr resolution. A. Scheme of the robotic process. (i) Pre-growth: in this stage bacteria are inoculated 478 

each hour in successive wells. (ii) Antibiotic challenge: after 3 hours of pre-growth, each exponentially 479 

growing culture is transferred to antibiotics. (iii) Recovery: all cultures are moved to antibiotic-free 480 

recovery medium at the same time, resulting in cultures that have been treated with antibiotics for 481 

various time durations. (i.e., wells in different colors have the same pre-growth conditions but spend 482 

different times in antibiotic) B. OD curves of cultures recovering from the antibiotic treatment. For 483 

each curve, we define the delay time τ to cross the OD=0.05 threshold indicated by the horizontal 484 

dashed line. Cultures that spent more time in antibiotics have larger τ.  C. A standard curve obtained 485 

from the τ values of non-treated cultures with a range of dilutions (𝑁0 = initial concentration, 𝑁𝑑 = 486 

diluted concentration) gives the relation between delay and relative number of bacteria. D. Surviving 487 

fraction as a function of time in the antibiotic challenge is calculated based on the measured τ and the 488 
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standard curve (𝑁0 = concentration of live cells at time 0, 𝑁𝑡 = concentration of live cells at time t). 489 

We fit this data with a Weibull survival function (plus growth for initially growing cultured, Fig. S2-S3, 490 

main text) and defined death rate as 1/t90, where t90 is the time for the function to drop to 10%.  491 

 492 

 493 

 494 

Fig 2. Antibiotic-mediated death depends on both growth rate and growth condition. The 495 

dependency of death rate on growth rate for NCM3722 strain (measured separately without nalidixic 496 

acid) under stress is steeper than under non-stressful conditions. Death rate upon treatment with 10 497 

μg/ml nalidixic acid as a function of growth rate is shown for 13 different conditions (M9 + glucose as 498 

the reference point, M9 + 4 additional carbon sources and M9 + glucose + varying concentrations of 499 

NaCl or TMP). Each rate is determined based on at least 3 biological repeats. Error bars are standard 500 

error. Inset. At similar growth rates (0.52-0.59 hr-1), lower death rates in stress conditions (NaCl and 501 

TMP) derive from wider survival curves than present in non-stressed conditions (mannose and 502 

galactose). Shown are averaged survival curves (see also Fig. S3), with shaded areas the 95% 503 
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confidence interval of the fit (Methods).  504 

 505 

Fig. 3 A resource-allocation model quantitatively matches growth, death, MIC, and sector-size 506 

measurements. A. Fitting Eqs 1-3 (Methods) to growth and death measurements from Fig. 2 produces 507 

a tight fit, with S constant for sugar data and C constant for stressors. B. The model predicts MIC data 508 

with no additional free parameters if the direct effect of growth on death is assumed to increase 509 

linearly with nalidixic acid concentration. C. Gene ontology (GO) terms for the determined C, S, and R 510 

sectors match expected behaviors of catabolism, stress, and growth, respectively. The stress sector 511 

contains anabolic processes, presumably due to indirect stress-response needs. Displayed terms are 512 

5 terms with lowest false discovery rate that are not child-terms of other significant terms. D-F. Total 513 

mRNA fraction of the measured sectors show that C is relatively constant with increasing stress while 514 

S is relatively constant regardless of sugar quality. R increases with growth rate, but at different slopes 515 

for sugars and stressors. F inset. Total RNA increases with growth rate at the same slope for both 516 

sugars and stressors. Shaded regions in all panels other than B are 90% confidence intervals on the 517 

fitted parameters (Methods). For B the error bands are propagated from the fits in A (Methods). 518 

Legend for A, B, E-F as in E. 519 
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 520 

 521 

 522 

Fig. 4. The proposed resource allocation model quantitatively captures death rate and MIC as a 523 

function of cAMP in a ∆cyaA ∆cpdA strain. (A) Death rate as a function of growth rate upon 524 

treatment with 15μg/ml nalidixic acid fit with two slope parameters. (B) MIC as a function of growth 525 

rate fit with one anchor parameter. Labels are cAMP concentration in mM. Shaded regions 526 

represent 90% confidence intervals on the fit. Dashed portions of fits are extrapolations into the 527 

unmodeled transition region between low and high cAMP regimes. Dashed fit lines represent 528 

extrapolations into the unmodeled transition region between low- and high-cAMP regimes. 529 

Horizontal dashed line in B is the concentration of nalidixic acid used in A. (C) Plotting MIC vs death 530 

rate for emphasizes the difference between tolerance and hardiness. High cAMP concentrations 531 

show tolerance (decreased death rate without a change in MIC), while low cAMP concentrations 532 

show hardiness (decreased death with a corresponding increase in MIC). For data in which only MIC 533 

or death rate was measured in A and B, the other was imputed from the fit. Note that the maximum 534 

growth rate in this strain differs from the wild type used in Figs 2-3.  535 

  536 
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Methods 537 

Strains. Experiments in this study were carried out using either NCM3722 strain (CGSC #12355) or 538 

MG1655 strain (CGSC #6300) and its derivatives MG1655ΔcyaA/ΔcpdA (U48636). All strains were 539 

transformed with a kanamycin resistant, low copy promoterless plasmid (U6660) to acquire resistance 540 

and reduce contaminations during the long death experiments. 541 

Growth rate and MIC measurements. Cells were grown overnight in M9 minimal medium (42mM 542 

Na2HPO4, 22mM KH2PO4, 8.5mM NaCl, 18.5mM NH4Cl, 2mM MgSO4, 0.1mM CaCl) containing 11mM 543 

glucose, 0.05% casamino acids and 50μg/ml kanamycin at 37°C and diluted 1:300 into the designated 544 

Media (all based on M9 with different carbon source, different concentration of NaCl etc.) 545 

For growth rate measurements cultures were distributed using a robotic liquid handler (FreedomEvo, 546 

Tecan) in 96-well plates (150μl per well in at least 6 wells). Wells were covered with 100 µl of mineral 547 

oil (Sigma) to prevent evaporation and transferred into an automated incubator. Cells were grown in 548 

an automated incubator with shaking (6 hz) at 37°C for about 20 hours. Every 6-10 minutes the plate 549 

was transferred by a robotic arm into a multi-well fluorimeter (Infinite M200Pro, Tecan) that reads 550 

the bacteria optical density (OD, 600nm). For MIC measurements the setup was very similar with the 551 

following changes: cultures were pre-grown in tubes for 3-4 hrs and then distributed to wells 552 

containing different concentrations of Nalidixic acid. 553 

Growth rate was calculated as the temporal derivative of the natural logarithm of the OD curves, 𝜇 =554 

𝑑𝑙𝑛(𝑂𝐷)/𝑑𝑡.  Exponential growth rate is the mean over a region of at least 2 generations with a nearly 555 

constant growth rate. 556 

 557 

MIC was determined as the minimal Nalidixic acid concentration which led to an OD decline (in 558 

NCM3722 strain, Fig. S6A) or a non-increasing OD curve (MG1655 strain, Fig. S6B). 559 

Death rate measurements. A scheme of the experimental setup (carried out automatically in a robotic 560 

system (FreedomEvo, Tecan)) is shown in Fig 1 for one growth condition and a short experiment 561 

duration. In reality, in each experiment we measured 6-8 growth conditions and up to 16 hrs of 562 

antibiotic challenge. 563 

This experimental setup contains 3 stages: 564 

1. Pre-growth stage: This stage was carried out in a 96 well plate containing 200μl media (3-4 565 
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different growth conditions in a plate) +50μl mineral oil. As shown in Fig.1 an overnight 566 

culture (M9+11mM glucose+0.05% casamino acids+50μg/ml kanamycin) was diluted (1:300) 567 

into the growth plate. The culture was diluted to the first well of each condition (wells A1, A4, 568 

A7, A10 for a 4-conditions plate) and incubated in an automated incubator with shaking (6 hz) 569 

at 37°C for a time period (0.5-1 hr) which defines the experiment time resolution. Plates were 570 

transferred by the robotic arm into a multi-well fluorimeter (Infinite M200Pro, Tecan) that 571 

reads OD (600nm), followed by bacteria transfer from the overnight culture to the successive 572 

wells. This stage was repeated till the first well reached exponential phase (3-8 hrs, OD 0.02-573 

0.04). 574 

2. Antibiotic-challenge stage: This stage was carried out in a 96 well plate containing 170μl 575 

media (same growth conditions as in the pre-growth plate+ Nalidixic acid) +50μl mineral oil). 576 

The first well of each condition of the pre-growth plate is diluted (1:7) into the antibiotic-577 

challenged plate, in parallel inoculation of the ON culture to the pre-growth plate continues 578 

as well. Both plates are incubated with shaking (6 hz) at 37°C for the same time used in the 579 

pre-growth stage. Plates were transferred into a multi-well fluorimeter for OD measurements, 580 

followed by bacteria transfer to successive wells. For experiments with time resolution of 1 581 

hr this stage was routinely repeated 16 times. For experiments with time resolution of 0.5 hr 582 

more repeats were carried out. 583 

3. Recovery stage: In the last stage we adopted the protocol of Hazan et. al.40 for viable cell 584 

determination based on the incubation time to cross a certain OD threshold. After the last 585 

transfer from the pre-growth plate to the challenged plate we immediately transferred the 586 

challenged plate to ice. Bacteria treated for different times as well as a non-treated culture 587 

were diluted 1:100 into 1 ml of recovery medium (M9+11mM glucose+50μg/ml kanamycin) 588 

in a deep 96-well plate. Non-treated cultures were also serially diluted in order to obtain a 589 

standard curve. Using the robotic system, we transferred each diluted culture to 6 wells of a 590 

96-well plate (150μl per well). Wells were covered with 100 µl of mineral oil and transferred 591 

into an automated incubator. Cells were grown in an automated incubator with shaking (6 hz) 592 

at 37°C for about 20 hours. Every 10 minutes the plate was transferred by a robotic arm into 593 

a multi-well fluorimeter (Infinite M200Pro, Tecan) that reads the bacteria optical density (OD, 594 

600nm). Setting the OD threshold to 0.05, (~2 ∙ 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑂𝐷), we extracted from each 595 

OD curve the time (𝜏) required to reach this threshold (Fig1. B). Using the standard curve (Fig. 596 
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1C) we obtained for each growth condition the fraction of surviving bacteria as a function of 597 

antibiotic treatment time (Fig. 1D).   598 

4. Death rate calculation: For each condition, we obtained an average survival curve based on 599 

at least 3 biological repeats (for the cAMP data we measured more cAMP levels with less 600 

repeats on each level). We fit the data with a Weibull survival function coupled to exponential 601 

growth, 𝑒𝜇𝑡−𝜂𝑡𝜃
, which allows fitting of exponential and sigmoidal survival curves as well as 602 

allowing for an initial increase in viable cells. For conditions in which the maximum occurred 603 

at 0 hr, we assumed 𝜇 = 0 to ease fitting. To further ease the nonlinear fit, we restricted 𝜇 <604 

1 (since growth rate without antibiotics are all below 1), 𝜂 > 1 (at least exponential decay), 605 

that the maximum is below 2 and the time to reach the maximum is less than 2 hrs (well 606 

consistent with all data). We define death rate as 1/time for the fit to lose 90% of the 607 

population compared to the initial value at 0 hr. For cultures that grew, we defined a negative 608 

death rate as -1/time for the fit to reach 10x the initial values at 0 hr. Values were averaged 609 

over the number of biological replicates indicated in Figs. S2 and S16, with errors given as the 610 

standard error of the mean. R2 values for all fits across all biological replicates are provided as 611 

a histogram in Fig. S18. For presentation purposes, additional average survival curves are 612 

shown in Figs. S3 and S17, with additional Weibull plus growth fits. The R2 values for these fits 613 

are provided as a histogram in Fig. S19. 614 

RNA sequencing. Cultures for RNA-seq were grown to exponential phase to OD lower than 0.1 in 615 

microplates, to match the OD at which antibiotic was added to the growing cultures in the death 616 

assay. RNA was extracted from these exponentially growing cultures using RNAeasy Protect bacteria 617 

Mini Kit (Qiagen). Total RNA was measured using Nanodrop (Thermo Scientific). For RNA sequencing 618 

rRNA was depleted using NEBNext rRNA depletion kit. RNAseq libraries were prepared at the Crown 619 

Genomics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, 620 

Weizmann Institute of Science. Libraries were prepared using the INCPM-mRNA-seq without polyA 621 

selection protocol. Briefly, 80 ng of input RNA after ribosomal depletion was used for fragmentation 622 

and generation of double-stranded cDNA. After Agencourt Ampure XP beads cleanup (Beckman 623 

Coulter), end repair, A base addition, adapter ligation and PCR amplification steps were performed. 624 

Libraries were quantified by Qubit (Thermo fisher scientific) and TapeStation (Agilent). Sequencing 625 

was done on a Nextseq instrument (Illumina) using a 75 cycles high output kit. The Reads were 626 

mapped to the MG1655 genome. Expression levels for each gene were quantified using htseq-count. 627 
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RNA-Seq analysis and clustering. We acquired data for 4229 genes across all measured conditions, 628 

accounting for ~97% of E. coli genes. Because we sum gene expression to find sector sizes, we did not 629 

filter out low-read count genes. All raw count data was normalized using DeSeq2 after filtering out 630 

residual rRNA and tRNA reads. The Mclust 61,62 library was used to perform a Gaussian mixture model. 631 

Mclust recommended between 10 and 30 clusters with similar Bayesian Information Criterion (BIC) 632 

and spherical, unequal volume model (“VII”). We used the VII model with 12 clusters. The Spearman 633 

correlation for sugars, NaCl, and TMP conditions was subsequently calculated within each cluster, 634 

categorizing each line in each cluster as correlated, anticorrelated, or unchanging with growth rate. A 635 

liberal p-value cutoff of 0.2 for the correlation was used so as to include all genes as changing 636 

significantly in at least one set of conditions in at least one cluster. Clusters with only unchanging or 637 

positive correlations with growth rate were categorized as R. Clusters not in R and not anticorrelated 638 

with growth rate of the carbon sources were categorized as S. The remaining clusters were 639 

categorized as C, which included to some extent clusters increasing both in poor carbon sources and 640 

in increasing NaCl concentration. 641 

Gene Ontology Analysis. Gene lists for each of the three sectors were checked for biological process 642 

gene ontology significance against the full list of E. coli genes using the rbioapi interface for PANTHER 643 

63 using default parameters, including a significance cutoff of false discovery rate (FDR) below 0.05. 644 

The full list of GO terms and their significance are provided in Dataset S1. The terms displayed in Fig. 645 

3D are those 5 terms with no significant encompassing terms with the lowest FDR. 646 

Nondimensionalization. The underlying equations 𝑅 + 𝐶 + 𝑆 = 1, 𝜇 = 𝑎𝑅 − 𝑏, and 𝜌 = 𝛼𝜇 − 𝛽𝑆 + 𝜖 647 

were converted to glucose-relative Eqs 1-3 in the main text by subtracting off equations 𝑅𝐺 + 𝐶𝐺 +648 

𝑆𝐺 = 1, 𝜇𝐺 = 𝑎𝑅𝐺 − 𝑏, and 𝜌𝐺 = 𝛼𝜇𝐺 − 𝛽𝑆𝐺 + 𝜖 where the G subscript indicates glucose. The deltas 649 

in the main text are defined as, e.g., Δ𝜇 = 𝜇 − 𝜇𝐺. For fitting, a further simplification was made by 650 

non-dimensionalizing. Specifically, we define 𝛿𝜇 =
Δ𝜇

𝜇𝐺
, 𝛿𝜌 =

Δ𝜌

𝜌𝐺
, 𝛿𝑐 =

a

𝜇𝐺
Δ𝐶, 𝛿𝑟 =

a

𝜇𝐺
Δ𝑅, 𝛿𝑠 =

a

𝜇𝐺
Δ𝑆. 651 

This yields non-dimensionalized equations 652 

Eq (4) 𝛿𝑟 + 𝛿𝑐 + 𝛿𝑠 = 0 653 

Eq (5) 𝛿𝜇 = 𝛿𝑟 654 

Eq (6) 𝛿𝜌 = �̂�𝛿𝜇 − �̂�𝛿𝑠 655 

where �̂� = 𝛼
𝜇𝐺

𝜌𝐺
 and  �̂� = 𝛽

𝜇𝐺

𝑎𝜌𝐺
. 656 
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Curve fitting. All fits in the paper were performed in Mathematica using LinearModelFit or 657 

NonlinearModelFit. 658 

For Fig. 3A, Eqs 4-6 were solved for death rate as a function of growth rate at either 𝛿𝑐 = 0 659 

(stressors) or 𝛿𝑠 = 0 (sugars), eliminated for 𝛿𝑟. This yielded the following prediction for death rate: 660 

Eq (7) 𝛿𝜌 = {
�̂�𝛿𝜇 sugars

 (�̂� + �̂�)𝛿𝜇 stressors
 661 

Data was organized as 3-value points (type index, growth rate, death rate), with the index specifying 662 

the data point as sugar, NaCl, or TMP. These data were non-dimensionalized using the measured 663 

values for glucose and fit to Eq. 7. Fitting weights were given as the inverse of the sum-square error 664 

of growth and death rates, with growth and death errors normalized first across all samples. Glucose 665 

was included as both a sugar, NaCl, and TMP, with 1/3-weight each. Because we assume measured 666 

values for the growth and death rates on glucose, there are two sources of error on the fit. The first 667 

derives from the fitting error when glucose values are given and the second derives from the variation 668 

in the glucose measurements themselves. We thus calculate error bands for fits as √𝐶𝐼〈𝐺〉
2 + 𝐶𝐼𝐺𝑏𝑜𝑜𝑡

2  . 669 

Here 𝐶𝐼〈𝐺〉 is defined as the 90% confidence interval of the fit with glucose specified as the average 670 

glucose measurements. 𝐶𝐼𝐺𝑏𝑜𝑜𝑡
 is defined as the 90% confidence interval across 1000 fits, where for 671 

each fit the glucose growth and death rates were sampled from a Normal distribution with mean and 672 

standard deviation given by the measured average and standard error of glucose displayed in Fig. 2. 673 

The same procedure was followed in Figs. 3D-F, 4A, and 4B (low cAMP). Error bands for Figs. 3B and 674 

4B (high cAMP) were produced using the same procedure where already fit parameters were likewise 675 

included in the bootstrapping. 676 

For Fig. 3B, we assumed that growth-derived death 𝛼 = 𝛼0(𝑚 − 𝑚𝐺) and glucose death rate 677 

𝜌𝐺 = 𝜌0(𝑚 − 𝑚𝐺) increased linearly with antibiotic concentration 𝑚, relative to a reference 𝑚𝐺. 678 

Given that 𝑚 equals the MIC when 𝜌 = 0 for any condition, we immediately see that 𝑚𝐺 is the MIC 679 

on glucose. Substituting these relations into Eq. 7 yields the following prediction for the MIC (𝑚) for 680 

all conditions when setting 𝜌 = 0: 681 

Eq (8) 𝛿𝑚 = {
0 sugars

�̂�𝛿𝑚10
𝛿𝜇

1+�̂�𝛿𝜇
stressors

 682 

with 𝛿𝑚 =
𝑚−𝑚𝐺

𝑚𝐺
 and 𝛿𝑚10 =

10−𝑚𝐺

𝑚𝐺
 comes from the fact that 𝛼0 =

10−𝑚𝐺

𝑚𝐺
, the value 10 being the 683 
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antibiotic concentration used in fitting the values of alpha and beta in Fig. 3A. Note that the 684 

constant value in sugars is not assumed upfront, but rather derives from the assumption that Δ𝑆 =685 

0 in sugars.  686 

For Fig. 3E, a separate fit was performed for sugars, NaCl, and TMP. In each case, the data 687 

were fit to the expected piecewise linear function implied by Eq. 2: 688 

  Δ𝑅 =
Δ𝜇

𝑎
  689 

Eq (9)  Δ𝑆 = 0    sugars 690 

Δ𝐶 = −
Δ𝜇

𝑎
  691 

 692 

Δ𝑅 =
Δ𝜇

𝑎
  693 

Eq (10)  Δ𝑆 = −
Δ𝜇

𝑎
   stressors 694 

Δ𝐶 = 0  695 

These equations have three free parameters, 𝐶𝐺, 𝑆𝐺, and 𝑎, where the glucose growth rate reference 696 

is taken as given from the data as described above for the fit in Fig. 3A.  697 

For the relationship between total RNA and growth rate, we fit 698 

 Eq (11)  
𝑟𝑡𝑜𝑡

𝑟𝑡𝑜𝑡,𝐺
= 𝑎𝑡𝑜𝑡𝑅𝑁𝐴

𝜇

𝜇𝐺
  , 699 

where 𝑟𝑡𝑜𝑡 is the total RNA, 𝑟𝑡𝑜𝑡,𝐺 the total RNA in glucose growth, 𝜇 the growth rate, 𝜇𝐺  the growth 700 

rate on glucose, and  𝑎𝑡𝑜𝑡𝑅𝑁𝐴 the fitted slope. We performed the fit for sugar, NaCl, and TMP 701 

conditions separately, as well as with all data combined. 702 

 For Fig. 4A, the same procedure was used as in Fig. 3A, but a separate anchor was used for 703 

low cAMP data (0.2mM cAMP) and high cAMP data (0.3mM cAMP), as described in the main text, 704 

with new parameters �̂� and �̂�: 705 

Eq (12) 𝛿𝜌 = {
�̂�𝛿𝜇 cAMP  ≥ 0.3mM

 (�̂� + �̂�)𝛿𝜇 cAMP ≤ 0.2mM
 706 

 For Fig. 4B, 𝑚𝐺 was estimated directly as the average of MIC values for measured points at cAMP > 707 

0.4mM. A separate, extrapolated anchor point (“pseudoglucose” growth rate 𝜇𝑃𝐺) was fit for to the 708 
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low cAMP data using Eq 8, with 𝛿𝑚10 replaced with 𝛿𝑚15 =
15−𝑚𝐺

𝑚𝐺
, the value 15 being the 709 

concentration of nalidixic acid used in Fig. 4A: 710 

Eq (13) 𝛿𝑚 = {
0 cAMP ≥ 0.3

�̂�𝛿𝑚15
𝛿𝜇

1+�̂�𝛿𝜇
cAMP ≤ 0.2 711 

 712 

Code availability 713 

RNA-Seq analysis was performed in R version 4.1.0. All other fitting and analytical manipulation were 714 

performed in Mathematica version 13. Source code can be found in Dataset S2. 715 
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