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Abstract

Single cell sequencing provides detailed insights into biological processes includ-
ing cell differentiation and identity. While providing deep cell-specific infor-
mation, the method suffers from technical constraints, most notably a limited
number of expressed genes per cell, which leads to suboptimal clustering and cell
type identification. Here we present DISCERN, a novel deep generative network
that reconstructs missing single cell gene expression using a reference dataset.
DISCERN outperforms competing algorithms in expression inference resulting
in greatly improved cell clustering, cell type and activity detection, and insights
into the cellular regulation of disease. We used DISCERN to detect two novel
COVID-19-associated T cell types, cytotoxic CD4+ and CD8+ Tc2 T helper
cells, with a potential role in adverse disease outcome. We utilized T cell frac-
tion information of patient blood to classify mild or severe COVID-19 with an
AUROC of 81% that can serve as a biomarker of disease stage. DISCERN can
be easily integrated into existing single cell sequencing workflows and readily
adapted to enhance various other biomedical data types.
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1. Introduction1

Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection2

of gene expression at single-cell resolution, which improves the detection of3

known and novel cell types and the understanding of cell-specific molecular4

processes [1, 2]. The extension of the basic scRNA-seq technology with epitope5

sequencing of cell-surface protein levels (CITE-seq), allows for the simultaneous6

surveillance of the gene and protein surface expression of a cell [3]. Another7

recent technological innovation was TCR-seq, which enables the simultaneous8

sequencing of essential immune cell features and the variable segments of T cell9

antigen receptors (TCRs) that confer antigen specificity ([4, 5]).10

While several commercial platforms have enabled researchers to use single11

cell sequencing methods with relative ease and at reasonable cost, the analysis12

of the high-dimensional scRNA-seq data still remains challenging [6, 7]. The13

main technical downside of single cell sequencing that impedes downstream14

analysis is the sparsity of gene expression information and high technical noise.15

Depending on the platform used, single cell sequencing detects around three16

thousand genes per cell, giving almost an order of magnitude less genes detected17

than bulk RNA-sequencing [8]. The term ‘dropout’ refers to genes that are18

expressed by a cell but cannot be observed in the corresponding scRNA-seq19

data, a technical artifact that afflicts predominantly lowly to medium expressed20

genes, as their transcript number is insufficient to reliably capture and amplify21

them. This missing expression information limits the resolution of downstream22

analyses, such as cell clustering, differential expression, marker gene and cell23

type identification [9].24

To improve the lack and stochasticity of gene expression information in single25

cell experiments, several in silico gene imputation methods have been designed26

based on different principles. Gene imputation infers gene expression in a given27

cell type or state, based on the information from other biologically similar cells28

of the same dataset. Several methods utilizing this principle have been devel-29

oped [10], amongst them DCA, MAGIC, and scImpute [11, 12, 13]. DCA is30

an autoencoder-based method for denoising and imputation of scRNA-seq data31

using a zero-inflated negative binomial model of the gene expression. MAGIC32

uses a nearest neighbor diffusion graph to impute gene expression and scImpute33

estimates gene expression and drop-out probabilities using linear regression. All34

of these algorithms use information from similar cells with measured expression35

of the same dataset for imputation. Another class of imputation algorithms use36

bulk RNA-seq data to constrain scRNA-seq expression imputation. Bfimpute37

[14] uses Bayesian factorization, SCRABBLE [15] matrix regularization, and38
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SIMPLEs [16] a prior distribution on the bulk data to impute scRNA-seq ex-39

pression. Unfortunately, SCRABBLE and Bfimpute do not scale beyond small40

single cell datasets and few genes (3000 cells and genes in our hands), and41

SIMPLEs requires matching single cell and bulk RNA-seq samples, severely42

constraining their usability.43

Similarly, multigrate[17], BABEL [18], and Cross Modal Autoencoders[19]44

use scRNA-seq in combination with complementary, matching data (e.g. CITE-45

seq, ATAC-seq) to improve imputation. While complementary CITE-seq infor-46

mation is available for many scRNA-seq datasets, other information such as47

ATAC-seq data of the same sample is usually missing, which severely constrains48

the usability of BABEL and Cross Modal Autoencoder.49

While current imputation methods provide improved gene expression infor-50

mation, they still rely on the comparison of similar cells with largely absent gene51

expression information, for example by using clustering approaches. Genes that52

are not expressed in neighboring cells cannot be imputed, limiting the value of53

classical imputation. In an ideal case, it would be possible to obtain information54

of the expected true gene expression per cell, or at least expression information55

with less technical noise, to reconstruct the true expression at single cell level.56

Recent work has shown the effectiveness of deep generative models (e.g. Au-57

toencoders and Generative Adversarial Networks) to infer realistic scRNA-seq58

data and augment scarce cell populations using Generative Adversarial Net-59

works [20] or the prediction of perturbation response using Autoencoders [21].60

We hypothesized that a deep generative model could allow for the reconstruc-61

tion of missing single cell gene expression information (low quality - lq) by using62

related data with more genes expressed (high-quality - hq) as a reference, a com-63

pletely novel approach to gene expression inference (Figure 1A). In other words,64

lq data with many missing gene expression values and bad clustering could be65

transformed into data with few missing genes and improved clustering if the66

“style” of a related hq dataset could be transferred to it. In the best case,67

it would be possible to infer gene expression information for single cell data68

(lq) by using purified bulk RNA-seq data (hq), obtaining over ten thousand69

genes expressed per cell. We envision that this novel approach, when properly70

calibrated, is transformative for the analysis of single cell data, gaining deep71

mechanistic insights into data beyond what is currently measurable. It is im-72

portant to note that the concept of using hq data to reconstruct gene expression73

in lq data is fundamentally different from classical imputation algorithms that74

infer gene expression based on nearby cells from the same dataset, as outlined75

above.76

Based on the above considerations, we developed DISCERN, a novel deep77

generative neural network for directed single cell expression reconstruction. DIS-78

CERN allows for the realistic reconstruction of gene expression information by79

transferring the style of hq data onto lq data, in latent and gene space. Our ex-80

periments on real and simulated data show that DISCERN outperforms several81

existing algorithms in gene expression inference across a wide array of single82

cell datasets and technologies, improving cell clustering, cell type and activity83

detection, and pathway and gene regulation identification. To obtain deep in-84

3

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 15, 2022. ; https://doi.org/10.1101/2022.03.09.483600doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483600


sights into the cellular changes underlying COVID-19, we reconstructed single85

cell expression data of patient blood and lung immune data. While in our ini-86

tial analysis [22] of blood data we detected few immune cell types, expression87

reconstruction with DISCERN resulted in the detection of 28 cell types and88

states in blood, including two novel disease-associated T cell types, cytotoxic89

CD4+ and CD8+ Tc2 T helper cells. Reconstructing a second COVID-19 blood90

dataset with disease severity information, we were able to classify mild and se-91

vere COVID-19 with an AUROC of 81%, obtaining a potential biomarker of92

disease stage. DISCERN can be easily integrated into existing workflows, as an93

additional step after count mapping. Given that DISCERN is not limited by94

a predefined distribution of data, we believe that it can be readily adapted to95

enhance various other biomedical data types, especially other omics data such96

as proteomics and spatial transcriptomics.97

2. Results98

2.1. The DISCERN algorithm for directed expression reconstruction99

We aim to realistically reconstruct gene expression in scRNA-seq data by100

using a related hq dataset. Ideally, this expression reconstruction algorithm101

should meet several requirements [7]. First, it needs to be precise and model102

gene expression values realistically. It shouldn’t remove information of cellular103

identity to form ‘average cells’ or collapse different cell types or states into one.104

Second, the network should be robust to the presence of different cell types105

in hq and lq data, or an imbalance in their relative ratios. It shouldn’t, for106

instance, ‘hallucinate’ hq-specific cells into the lq data. Lastly, the network107

should be directional, as the user should be able to choose the target (reference)108

dataset.109

With these prerequisites in mind, we designed a deep neural network for110

directed single cell expression reconstruction (DISCERN) (Figure S1B) that is111

based on a modified Wasserstein Autoencoder [23]. A unique feature of DIS-112

CERN is that it transfers the “style” of hq onto lq data to reconstruct missing113

gene expression, which sets it apart from other batch correction methods such114

as [24], which operate in a lower dimensional representation of the data (e.g.115

PCA, CCA). To allow DISCERN to accurately reconstruct single cell RNA-116

seq expression based on reference data, the structure of the network had to be117

adapted in several ways. First, we implemented Conditional Layer Normaliza-118

tion (CLN) [25, 26, 20] to allow for directed expression reconstruction of lq data119

based on reference hq data (Figure S1B & S2). Second, we added two decoder120

heads to the network to enable it to model dataset-specific dropout rates and121

gene expression separately. Lastly, we extended DISCERN’s loss function with122

a binary cross-entropy term for learning the probability of dropouts to increase123

general inference fidelity. Further algorithmic details of DISCERN can be found124

in the methods and Figures S1 and S2.125

We first demonstrate DISCERN’s capabilities to faithfully reconstruct gene126

expression using five pancreas single cell expression datasets of varying quality127
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(Tables S1 and S2). The pancreas data is widely used for benchmarking and it128

is ideal to evaluate expression reconstruction for many cell types and sequencing129

technologies. We consider a dataset as hq when the average number of genes130

detected per cell (GDC) (e.g. smartseq2, GDC 6214) is much higher than in a131

comparable lq dataset (Table S2). Conversely, a dataset is lq when the average132

cell has lower counts and fewer genes expressed than a comparable hq dataset133

(e.g. indrop, GDC 1887). Throughout this text, we will name sequencing tech-134

nologies with capital (e.g. Smart-Seq2, InDrop) and datasets with lower case135

first letters (smartseq2, indrop). We trained DISCERN on these five pancreatic136

single cell datasets and assessed the integration of data in gene space and the137

average expression reconstruction per cell type. While uncorrected data clus-138

ter by batch and not by cell type, DISCERN-integrated data show good batch139

mixing and clustering of cells by cell type across all five datasets (Figure 1B &140

Figure S2). To get a clearer picture of DISCERN’s expression reconstruction141

capabilities we next calculated correlation coefficients of measured expression142

between the lowest quality inDrop and highest quality Smart-Seq2 data, before143

and after expression reconstruction using DISCERN. The mean expression re-144

construction of indrop-lq to smartseq2-hq and smartseq2-hq to indrop-lq data145

is very accurate, showing a Pearson correlation of r = 0.95 (p < 0.001), while146

mean expression correlation between uncorrected indrop-lq and smartseq2-hq147

data is only r = 0.77 due to strong batch effects (Figure 1C & D, Figures S3148

and S4). The improved quality of indrop-lq data reconstructed to smartseq2-hq149

level is validated by the strong increase of genes expressed per cell, ranging from150

≈2000 genes per cell in the uncorrected indrop-lq data to ≈6000 genes in the151

indrop-lq data after reconstruction (Figure S5).152

We next investigated the effect of reconstruction of three cell type-specific153

genes, before and after correction across the five pancreas datasets (Figure S6).154

Insulin expression in the pancreas should be largely restricted to beta cells [27],155

which can be observed in the uncorrected smartseq2-hq and celseq2 datasets,156

while the indrop-lq batch shows a diffuse pattern of insulin expression across157

cell types (Figure S6A left panel). This diffuse insulin expression is corrected158

by reconstructing the smartseq2-hq expression pattern from the indrop-lq data159

(Figure S6A middle panel). In general, the expected specificity of insulin ex-160

pression in beta cells can be recovered for all datasets when using DISCERN’s161

reconstruction using the smartseq2-hq reference. Conversely, the reconstruction162

from hq to the indrop-lq reference results in diffuse insulin expression across all163

reconstructed datasets (Figure S6A right panel). We obtained similar results for164

the pancreatic acinar cell-specific gene REG1A and the delta cell-specific gene165

SST, both of which show diffuse expression across cell types in the uncorrected166

inDrop data and cell-specific expression after reconstruction using smartseq2-hq167

reference (Figure S6B & C). Interestingly, DISCERN can not only recover bio-168

logical expression information, but it is also able to apply sequencing method-169

specific effects after reconstruction. The smartseq2-hq dataset, for instance,170

displays nearly no ribosomal protein coding gene expression after sequencing as171

previously reported by [8], while data sequenced using InDrop, Cel-Seq, or Cel-172

Seq shows prominent ribosomal protein coding gene expression (Figure S6D, left173
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panel). When reconstructing smartseq2-hq data to indrop-lq data, ribosomal174

protein coding gene expression is re-instantiated (Figure S6D, right panel).175

We further corroborated DISCERN’s capability to integrate and reconstruct176

gene expression in the more complex difftec dataset (Tables S1 and S2), consist-177

ing of 14 single cell peripheral blood mononuclear cell (PBMC) datasets across a178

wide range of technologies. Similar to pancreas, the difftec dataset is widely used179

for benchmarking and it is ideal to evaluate expression reconstruction for even180

more cell types and sequencing technologies. The different single cell technolo-181

gies show large variation in quality, with an GDC ranging from 422 in Seq-Well182

to 2795 in Smart-seq2. We trained DISCERN on these 14 PBMC single cell183

datasets and observed very good integration in gene space (Figure S7). We184

then reconstructed chromium-v2-lq (GDC 795) using a chromium-v3-hq refer-185

ence (GDC 1514) and observed high mean gene expression correlation between186

the reconstructed and reference datasets (Figures S8 and S9). These results187

across 19 single cell datasets provide first evidence for the high-quality data in-188

tegration and expression reconstruction that can be obtained with DISCERN.189

2.2. Specific and robust gene expression inference190

We next investigated the precision and robustness of DISCERN’s expression191

reconstruction in more detail and compared DISCERN’s performance to several192

state-of-the-art algorithms for expression imputation and data integration.193

Since expression reconstruction can be seen as a generalization of expression194

imputation, we compared DISCERN to DCA, MAGIC, and scImpute, three195

state-of-the-art imputation algorithms [11, 12, 13]. Expression reconstruction196

can also be viewed as a batch correction task in gene space, which is why we ad-197

ditionally compared DISCERN to scGEN and Seurat [21, 24]. It is important to198

note, however, that neither Seurat nor scGEN were designed for the expression199

reconstruction task. Seurat and scGEN use a lower dimensional representation200

in which a linear transformation aligns different batches. Seurat uses canonical201

correlation analysis and scGEN uses the bottleneck layer representation of an202

autoencoder to calculate and apply linear transformations.203

To investigate the precision of gene expression reconstruction, we created an204

artificial dataset by dividing the smartseq2-hq pancreas data into two batches,205

smartseq-lq and smartseq2-hq. In the smartseq-lq batch, the top one KEGG206

pathways per cell type were removed by setting the expression of genes con-207

tained in these pathways to zero, while the smartseq2-hq remained unaltered.208

Therefore, a reconstruction of smartseq-lq data using smartseq2-hq reference209

(reconstructed-hq) should ideally recover the smartseq-lq expression to its orig-210

inal state, prior to the removal of the genes. DISCERN is able to reconstruct211

the mean expression for all cell types, achieving a correlation r = 0.99 (Fig-212

ure 2A). DCA (r = 0.66), MAGIC (r = 0.34), scImpute (r = 0.80), and Seurat213

(r = 0.76) have significantly lower correlation between the smartseq2-hq and214

reconstructed-hq gene expression (Figure 2A). scGen shows only slightly reduced215

performance (r = 0.98) compared to DISCERN, especially in the reconstruction216

of highly expressed genes (Figure 2A) and low abundant cell types (Figure S10,217
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Megakaryocytes). We obtained similar results on the difftec dataset, with DIS-218

CERN (r = 0.98) outperforming DCA (r = 0.47), Magic (r = 0.21), scImpute219

(r = 0.04), Seurat (r = 0.92), and scGEN (r = 0.94) (Figure S10). To further220

investigate gene expression reconstruction specificity, we compared the correla-221

tion of reconstructed-hq to smartseq2-hq data after performing differential gene222

expression (DEG) for each cell type against all other cell types (Figure 2B, up-223

per panel). DISCERN is able to recover the correct DEG t-statistics with a224

median correlation of 0.92, improving over state-of-the-art tools by more than225

15 percentage points. In the corresponding experiment using the difftec dataset,226

DISCERN achieves a median correlation of 0.85, which is a 25 percentage point227

improvement over competing methods (Figure S11).228

Since the genes were initially selected using KEGG gene set enrichment229

analysis, the reconstruction of the corresponding pathways was investigated by230

performing KEGG gene set enrichment analysis on the DEG results. DISCERN231

is able to recover the pathway expression enrichment scores with a median cor-232

relation of 0.93, exceeding the performance of Seurat and scGEN by more than233

11 percentage points on median (Figure 2B, lower panel). In the corresponding234

experiment using the difftec dataset, DISCERN achieves a median correlation235

of 0.77, outperforming Seurat and scGen by more than 16 percentage points236

(Figure S12).237

While DISCERN outperforms competing algorithms in expression and path-238

way reconstruction correlation, it achieves the second-best correlation for the239

DEG fold-change (FC) of reconstructed-hq to smartseq2-hq data for the pan-240

creas (Figure S13) and reconstructed-hq to chromium-v3-hq difftec datasets241

(Figure S14). In both cases Seurat achieves slightly better correlation, which is242

due to the fact that DISCERN slightly underestimates FC in favor of superior243

DEG variance estimation.244

Next, we show DISCERN’s expression reconstruction robustness with re-245

spect to varying sizes of lq to hq data. It is conceivable to assume that a large246

amount of hq data would benefit the expression reconstruction of the lq data,247

which makes it important to understand at what ratio good results can be ex-248

pected. Interestingly, DISCERN seems to be very robust across a wide range249

of smartseq2-lq to smartseq2-hq ratios, with correlations of 0.98 (ratio of lq/hq250

0.14) to 0.93 (ratio of lq/hq 18.4), while the second-best performing algorithm251

scGen showed a 11 percentage point decrease in performance (0.82 for ratio of252

lq/hq 18.4) (Figure 2C, Figure S15). We observed similar results for the correla-253

tion of t-statistics, showing a slight dependence of DISCERN’s performance on254

the lq/hq ratio (Figure S16). In general, all methods show better performance255

with a small ratio of lq/hq data, while DISCERN shows least dependence and256

outperforms other algorithms in the correlation of expression and t-statistics,257

especially in the case of high lq/hq ratio.258

Another aspect of expression reconstruction robustness is the dependence of259

the algorithm on the cell type or cell state similarity of the lq and hq datasets.260

In the optimal case, DISCERN would not require that the lq and hq datasets261

have overlapping cell types to perform an accurate expression reconstruction,262

which is theoretically possible if the network learns the general gene-regulatory263
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expression logic of the hq data (see discussion). To understand the dependence264

on dataset similarity, we removed a complete cell type, pancreas alpha cells, from265

the smartseq2-hq data and left the alpha cells in the smartseq2-lq data. We then266

additionally varied the number of common cells in the lq and hq data, starting267

with no overlapping cells (only alpha cells in the lq and all cells except alpha in268

the hq data) and ending with almost complete overlap (all cells overlap between269

the smartseq2-hq and -lq data, except for the alpha cells only present in lq data)270

(Figure 2D). When evaluating DEG correlation, DISCERN was the only method271

consistently achieving better performance than uncorrected data, outperforming272

Seurat and scGen by more than 15 percentage points (Figure 2D). Similarly,273

DISCERN was the only method consistently achieving better performance than274

uncorrected data in the FC correlation task (Figure S17).275

We next took a closer look at the integration and expression reconstruction276

performance when no cell types overlap between the lq (alpha cells only) and hq277

(all other cells) data. Notably, Seurat seems to over-integrate cell types, mix-278

ing smartseq2-hq beta and gamma cells with reconstructed-hq alpha cells from279

other batches (Figure S18), while scGEN and DISCERN keep the smartseq2-hq280

and reconstructed-hq exclusive cell types separate (Figure 2E & Figure S18).281

This over-integration seems to be causal for Seurat’s poor DEG correlation per-282

formance (r = 0.28), while DISCERN (r = 0.55) is the only method achieving283

better performance than uncorrected cells (r = 0.47) (Figure 2F). Thus, DIS-284

CERN is able to keep existing expression correlations and improves the detec-285

tion of cell type specific genes by reconstruction using an hq batch as reference.286

In conclusion, DISCERN is both a precise and robust method for expression287

reconstruction that outperforms existing methods by a significant margin.288

2.3. Improving cell cluster, type, and trajectory identification289

The comparison to competing methods provided evidence for DISCERN’s290

superior expression reconstruction. Now, we will delineate how DISCERN’s291

expression reconstruction improves downstream cell clustering, cell type and292

activity state identification, marker gene determination, and gene regulatory293

network and cell trajectory analysis.294

To understand if cell-determining gene expression and pathways could be295

recovered with expression reconstruction, we used a single nuclear sequencing296

(sn-lq) and scRNA-seq (sc-hq) data pair that was prepared from the same liver297

metastasis biopsy [28]. We reconstructed sn-lq data using the sc-hq reference,298

obtaining reconstructed-hq data. While single nuclear sequencing provides re-299

duced expression information in the average counts per cell as compared to300

scRNA-seq (Table S2) [28], it is still the method of choice to obtain cell-specific301

expression information when intact single cells cannot be recovered from a tis-302

sue (e.g. after tissue fixation or freezing). It is important to note that nuclear303

transcripts reflect current gene activity, which in part might not correlate with304

transcripts that have lifetimes of up to days. Before integration, the sn-lq and305

sc-hq datasets cluster by batch and not by cell type, while after expression re-306

construction with DISCERN cells cluster by type and not by batch (Figure S19).307

This is reflected in an expression correlation of 0.49 (sc-hq vs. sn-lq) before and308
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0.93 after reconstruction (sc-hq vs. reconstructed-hq) (Figure S20). Seurat re-309

constructed expression, on the other hand, is barely different from uncorrected310

sn-lq data. This is reflected in a similar UMAP representation (Figure S19)311

and an identical expression correlation of 0.49 with uncorrected sn-lq data (Fig-312

ure S20). DISCERN reconstruction resulted in the expression of T cell receptor313

signaling genes in reconstructed T cells (Figure S21) and antigen presentation314

genes in macrophages (Figure S22), providing evidence that DISCERN faithfully315

recreates cell-determining genes and pathways based on the hq data. Seurat is316

not able to reconstruct the expression information and shows a similar expres-317

sion pattern as the uncorrected sn-lq dataset. In both datasets (seurat-hq and318

sn-lq) the expression of important T cell marker genes such as CD3E, CD3D319

and CD8A is largely absent, while in sc-hq and reconstructed-hq the expres-320

sion is easily detectable (Figure S21). To further corroborate the advantage of321

single nuclear expression reconstruction, we next aimed to increase the T cell322

subtype resolution of human single nucleus acute kidney injury data (kidney-lq)323

by using matching single cell data (kidney-hq). Only 1% of kidney-lq nuclei324

show CD3D, CD3E or CD3G expression, compared to 7% of the cells in the325

kidney-hq dataset. Seurat and DISCERN were able to detect T cells in the re-326

constructed kidney-lq (reconstructed-hq) and the kidney-hq data with notable327

CD3D expression in this cluster (Figure S23). The reconstructed-hq and the328

kidney-hq T cells were further classified into T cell subtypes and activation329

states (Figure S23C). While a large proportion of T cells detected in Seurat re-330

constructed data could not be annotated due to missing CD3D, CD4, and CD8A331

expression, DISCERN reconstructed data does not present these limitations.332

It is intriguing to observe that many marker genes are still hard to detect in333

kidney single cell RNA-seq data but also in the antigen presentation pathway334

in macrophages (Figure S22). This is most probably due to dropout. Thus, we335

rationalized that bulk RNA sequencing (RNA-seq) data of purified cell types336

(e.g. FACS sorted immune cells) is a suitable hq proxy for the expected gene337

expression per cell. RNA-seq data of purified cells is readily available from338

public repositories, making it possible to obtain thousands of purified immune339

cell RNA-seq samples (see methods). We therefore set out to increase cluster,340

cell type, gene regulatory network, and trajectory identification of scRNA-seq341

data by reconstructing gene expression using a related RNA-seq reference (Fig-342

ure S24). For the scRNA-seq data we chose a cord blood mononuclear citeseq343

dataset (cite-lq) that was labeled with 15 antibodies (Table S3) to allow for344

surface protein-based cell type discovery [29]. The CITE-seq information al-345

lowed us to confirm expression reconstruction by DISCERN in cases where gene346

expression is absent but protein expression and cell identity are validated via347

antibody labeling. For the RNA-seq data, we selected 9.852 purified immune348

samples (bulk-hq) and proceeded to reconstruct cite-lq (GDC 798) using a bulk-349

hq (GDC 13.104) reference to obtain reconstructed-hq data with DISCERN. We350

first investigated the correspondence of gene expression prior (cite-lq) and post351

reconstruction (bulk-hq) with antibody-based surface protein labeling of CD3D,352

CD4, CD8A, CD2, B3GAT1, FCGR3A, CD14, ITGAX and CD19 (Figure 3A,353

Figure S25). For several proteins (CD8A, B3GAT1, CD4), the corresponding354
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cite-lq gene expression was absent and cell type-specifically re-instantiated in355

the reconstructed-hq expression data with DISCERN (Figure 3A, Figure S25).356

In cases where cell type-specific gene and protein expression matched cite-lq357

data (CD3D, CD14 ) the expression in reconstructed-hq data was left unaltered358

(Figure S25). In some instances, we observed low cell type-specific expression359

in the cite-lq data (CD8A, CD2, FCGR3A, CD19 ) that matched protein ex-360

pression (Figure S25). In these cases, gene expression was increased in the cor-361

rect cell types in the reconstructed-hq data. In general, we observed increased362

agreement between cell type-specific surface protein and gene expression af-363

ter reconstruction, showing that DISCERN doesn’t invent or ‘hallucinate’ cell364

types but reconstructs the expected expression specific for each cell type. We365

further corroborated these results by selecting eight known cell type-specific366

cytosolic proteins and investigated their expression before and after expression367

reconstruction. MS4A1 (B cells), IL7R (CD4+ T cells), MS4A7 (Monocytes),368

GNLY and NKG7 (NK cells) showed consistent expression before and after369

reconstruction (Figure S26). The chemokine receptors CCR2 (Monocytes, ac-370

tivated T cells), CXCR1 (NK cells), and CXCR6 (CD8+ T cells) showed the371

correct cell type-specific expression only after expression reconstruction (Fig-372

ure S26) [30]. It is notoriously hard to obtain cell subtype-specific information373

from blood mononuclear scRNA-seq data, especially for CD4+ T helper cells due374

to their limited activation status in healthy individuals. This doesn’t mean that375

polarized CD4+ T helper cells do not exist in healthy blood, as they are com-376

monly detected after stimulation using FACS (Table S3) [31]. This lack of reso-377

lution in scRNA-seq impedes clustering, marker gene, and trajectory analyses, a378

drawback that could be overcome using DISCERN’s expression reconstruction.379

We therefore compared CD4+ T cell (gene expression of CD4 > 1 and CD3E380

> 2.5) clustering and subtype identification using cite-lq and reconstructed-381

hq data. While clustering with the leiden algorithm [32] using highly variable382

genes of cite-lq data resulted in an unstructured distribution of CD4+ T cell383

subtypes (Figure 3B), clustering of reconstructed-hq data yields detailed in-384

sights into T helper cell subtypes of blood mononuclear data (Figure 3C). Af-385

ter reconstruction, we were able to characterize TH17, TH2, TH1, HLA-DR386

expressing TREG (Active TREG), naive CD4+ T cells (CD4 naive), effector-387

memory CD4+ T cells (CD4 EM), central-memory CD4+ T cells (CD4 CM),388

and effector cells expressing IFN-regulated genes (IFN regulated) (Figure 3C).389

We selected published cell-determining marker genes and observed that many of390

them were dropped out in the uncorrected data but present after reconstruction391

(Figure S27). The absence of marker genes in uncorrected data results in poor392

clustering and cell type identification, while single positive cells are detectable393

in the respective neighborhood identified by reconstructed counts (Figure S27).394

Importantly, we observed that in all cases the DISCERN-estimated proportions395

of T helper subsets fall within the range of expected proportions as assessed by396

previous FACS studies (Table S3, Figure S28). These findings are important,397

as they prove once more that DISCERN discovers the correct cell subtypes and398

cell proportions, in this case substantially outperforming the available CITE-seq399

information in cell subtype resolution.400
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To further verify the cell type annotations, we extracted the top cluster-401

determining genes from the reconstructed-hq data. Members of the TNF-402

receptor superfamily are known to be expressed in T helper cell subtypes [33],403

which can be observed after reconstruction in TH17 cells and partially in TH1,404

TH2, Active TREG and IFN regulated cells (Figure S29). Similarly, recon-405

structed TH1 cells show the expected high expression of granzymes GZMK and406

GZMA [34], while MIAT and HLA expression are found in activated TREG407

cells after reconstruction (Active TREG cluster, Figure S29) [35, 36]. NOG ex-408

pression is detected in reconstructed CD4 naive cells, as previously described409

[37]. In addition, reconstructed CD4 naive, CD4 EM and CD4 CM show low410

expression of the genes important for the T helper subtypes TH1, TH2, TH17,411

Active TREG and IFN regulated. We further corroborated our cell type anno-412

tation of reconstructed-hq data by observing the expected expression of several413

established T cell subtype markers (Figure S30). We compared these newly414

found clusters to representations found with Seurat, multigrate, and in uncor-415

rected cite-lq data. The uncorrected cite-lq data manifests cluster separation416

for some cell types, most notably IFN regulated and Active TREG cells (Fig-417

ure S31A). Seurat reconstruction and multigrate imputation with CITE-seq418

information results in the mixing of cell types and clusters (Figure S31B & C).419

A further comparison to Bfimpute and SCRABBLE was impossible due to the420

dataset size, as outlined in the introduction.421

Similar to improved clustering and cell subtype detection, DISCERN reconstructed-422

hq data resulted in improved gene regulatory network inference with SCENIC423

[38]. SCENIC infers transcription factor-regulated gene expression modules424

of single cell data. While cite-lq data resulted in a scattered distribution of425

transcription factor networks across several T helper cell subtypes, SCENIC426

with reconstructed-hq data showed transcription factor regulation in the cor-427

rect subtypes (Figure 3D). After expression reconstruction the IKZF2 regulon428

is detected in activated TREG cells [39] and the MAF regulon is found in differ-429

entiated CD4+ T cells but not in naive CD4+ T cells [40]. A weak signal of the430

MAF regulon is already detectable in the cite-lq data, yet strongly increased in431

reconstructed-lq, while maintaining differentiated T helper cell specificity (Fig-432

ure 3D). Furthermore, after reconstruction with DISCERN we could identify433

the TH17 associated master transcriptional regulators RORC(+) and RORA(+)434

[41], which were scattered over all TH17 cells before reconstruction (Figure S32).435

Seurat is able to partially reconstruct the expression of the RORC(+) regulon436

but fails to detect the more specific RORA(+) expression (Figure S32).437

Finally, we wanted to investigate if DISCERN could also enhance cell trajec-438

tory analyses with Slingshot of the citeseq data [42]. We focused on the differen-439

tiation of effector and other T helper cell subtypes and found five lineages that440

either pass through or terminate in the effector cell cluster in reconstructed-hq441

data (Figure 3C). Two trajectories were of special interest to us: Lineage1 from442

CD4 naive to TH1 cells (Figure S33) and Lineage2 from CD4 naive to TH17443

cells (Figure S34). While the expression change along the trajectory in uncor-444

rected data (Figure S33A, Figure S34A) is hardly visible, cell type-specific clus-445

ters can be easily observed after DISCERN reconstruction (for lineage details446
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see Figure S33B, Figure S34B). The detailed insights into cell differentiation447

that we obtained with reconstructed data are in stark contrast to the Slingshot448

results obtained with cite-lq data. While terminal effector molecules can be de-449

tected with cite-lq data and seurat-hq data, intermediate stages remain hidden,450

which prohibits the detection of trajectories and results in a shuffling of marker451

gene expression (Figures S33 and S34). Taken together these results highlight452

how expression reconstruction using DISCERN improves downstream analyses453

and yields deeper biological insights into cell type and state identification, gene454

regulation, and developmental trajectories of cells.455

2.4. Discovering COVID-19 disease-relevant cells in lung and blood456

The previous sections have demonstrated DISCERN’s utility to reconstruct457

single cell expression data based on an hq reference, vastly improving the detec-458

tion of cell (sub-) types and their signaling. Given these advantages, we won-459

dered if DISCERN’s expression reconstruction could deepen our understanding460

of cell type-composition and signaling changes of immune cells in COVID-19461

disease (Figure S35), using two published datasets [43, 22]. To obtain best re-462

construction results, we again resorted to using bulk-hq immune reference data463

(Table S1) [44], as outlined in the previous section.464

First, we used a COVID-19 blood dataset (covid-blood-lq) with limited cell465

type resolution, which was originally analyzed by our group using Seurat (Ta-466

ble S1) [22]. While CD4+, CD8+, and NK cells formed separate clusters we467

were unable to visibly distinguish subpopulations of these cells in covid-blood-468

lq data [22]. Reconstruction of gene expression using bulk-hq data led to the469

identification of 24 subtypes of CD4+ and CD8+ T cells in covid-blood-hq data470

(Figure S36). Several cell clusters identified in covid-blood-hq data showed the471

correct cell type-specific marker gene expression in covid-blood-lq data, albeit472

in fewer cells, reduced in magnitude, and in some cases less specific (Figures S37473

and S38). Reconstruction also led to the identification of CD4+ TH17 helper474

cells that express RORC Figure 4A & B, Figure S39). Based on the molecular475

footprint of these TH17 cells they were further subdivided into TH17 cluster1476

that exhibits a memory T cell phenotype with elevated IL7R expression and477

TH17 cluster2 that exhibits an activated T cell phenotype with elevated MHC-478

II, CCR4 and RBPJ expression (Figure 4B, Figure S39). The expression of479

RBPJ is of particular interest, as it is linked to TH17 cell pathogenicity, sug-480

gesting a role of pathogenic TH17 cells in COVID-19 [45]. It is common practice481

to stimulate memory T cells in vitro to trigger IL-17A production and a shift482

towards a TH17 phenotype was previously described in COVID-19 [46]. With483

DISCERN we are able to distinguish these cells in COVID-19 patient blood484

without stimulation, identifying cytokine producing memory cells with a TH17-485

like phenotype (Figure S39).486

To further validate the existence of activated TH17 cells in COVID-19 pa-487

tient blood, we next analyzed the corresponding lung data (covid-lung) of the488

patients for shared T cell receptor clones (Figure S40). The underlying assump-489

tion is that cells with the same T cell receptor in lung and blood originate490

from the same progenitor and therefore have a high probability of belonging491
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to the same cell type. For this comparison we used the cell type annotation492

and representation of our original analysis of the covid-lung data, in which493

memory T and TH17 cells were readily observed without reconstruction [22].494

TH17 cluster1 cells showed strong clonal overlap with covid-lung CD4+ memory495

T cells (Figure S40) and expressed comparable levels of RORC to covid-lung496

effector memory TH17 cells (Figure S41), indicating that these CD4+ central497

memory T cells could be TH17 (-like) cells. TH17 cluster2 in blood exhibited498

strong clonal overlap with effector memory and resident memory TH17 cells499

in covid-lung data (Figure S40) that express RORC and IL-17A (Figure S41).500

Using the clonotype information of resident memory cells producing IL-17A in501

inflamed lung (TRM17), we further corroborated the existence of the newly502

identified population of IL-17A-producing TH17 cells in reconstructed COVID-503

19 blood data (Figure S40). In general, the T cell receptor clonal information in504

blood and lung therefore corroborated our cell type annotation in covid-blood-505

hq data.506

To understand the role of T cell subtypes in COVID-19 disease progression507

we analyzed a second blood single cell dataset (covid-blood-severity-lq) contain-508

ing disease-severity information for 130 COVID-19 patients [43]. To obtain opti-509

mal cell type resolution, we combined the covid-blood-severity-lq T cell data[43]510

with CD3+ covid-blood-lq cells [22] and reconstructed gene expression for the511

combined dataset using bulk T cell sequencing reference data[44], resulting in512

covid-blood-severity-hq data. Many of the 15 CD4+ T cell clusters identified in513

covid-blood-severity-hq data (Figure S42) were also present in the covid-blood-514

hq data, further validating the consistency of our cell type identification. This is515

also corroborated by the available surface protein data for covid-blood-severity516

data, substantiating that naive cells are CD45RA, memory cells are CD45RO,517

and effector cell types are CD45RO positive (further details in Figure S43). We518

compared the clusters that we identified in the covid-blood-hq with clusters iden-519

tified in the covid-blood-severity-hq data and found confined and overlapping520

regions of TFH, TH17 cluster1, and TH17 cluster2 cells (Figure S44). We also521

compared the identified clusters to clusters defined in the original publication522

(Figure S45). Cells identified as TFH in the original publication show signif-523

icant overlap with naive CD4+ T cells (defined on transcriptome and protein524

level) and CD4+ IL22+ cells (CD4.IL22) show marked overlap with TREG cells.525

These results confirm once more the precise and robust cell type identification526

that can be achieved with DISCERN.527

Interestingly, we also identified two rather unexpected cell types after re-528

construction. One cluster is positive for CD4 and negative for CD8A while529

otherwise expressing a signature of CD8+ effector memory cells with high ex-530

pression of GZMB, GZMH and PRF1 (Figure 4D & 4E). This signature points531

to a CD4+ cytotoxic phenotype and indeed virus-reactive CD4+ cytotoxic cells532

were described to be increased in blood during COVID-19 [47]. The other cell533

type expresses CD8, IL6R, and GATA3, while being negative for SLAMF7 (Fig-534

ure 4D & 4E). These cells were described in the literature to be CD8+ T helper535

cells [48], exert T helper function, and have been shown to lack cytotoxicity.536

They lack expression of a significant number of cytokines and key transcription537
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factors pointing to a TH17 or TH22 phenotype. On a protein level these cells538

express CCR4, while being negative for CCR6, making them cytolytic CD8+ T539

helper type 2 cells (Tc2) cells. Part of this cluster overlaps with CD4 single-540

positive cells and might explain why T helper type 2 cells are missing in the541

CD4 cell clustering.542

Overall, the highly specific and sensitive cell type identification in covid-543

blood-severity-hq data enabled us to correlate the five COVID-19 disease sever-544

ity categories to shifts in cell type and activity information. We first validated545

the decrease in TFH cells with increasing disease severity, as described in the546

original work (Figure S46) [43]. TH17 cells have been extensively studied using547

flow cytometry and in accordance with our results MHC-II positive as well as548

CCR4 positive cells were described in COVID-19 patients (Figure 4B) [46]. We549

observed a strong decrease in naive T helper cells in severe disease, most pro-550

nounced for naive TREGs, while the fraction of TH17 cells showed little correla-551

tion with disease severity (Figure S46). Of the two mixed cell types we detected552

in COVID-19 data, cytotoxic CD4+ cells were increased in moderate and severe553

disease (Figure S47). A similar increase is visible in patients with severe respi-554

ratory disease without COVID-19 (Figure S48) and these cells might therefore555

be a general marker of severe respiratory illness. Cytolytic CD8+ Tc2 cells are556

increased in patients with severe symptoms and in those who died from COVID-557

19 (Figure S47) and are described to be reduced after recovery from COVID-19558

[49]. This positive correlation and the known role of Tc2 cells in fibroblast559

proliferation induction and tissue remodeling could pinpoint a mechanistic role560

of these cells in lung fibrosis as witnessed in severe COVID-19 patients. The561

possibility to observe these cells in reconstructed single cell data may pave the562

way to study the functional role of these cells in adverse COVID-19 outcome.563

The relatively strong correlation of some cell types with COVID-19 out-564

come suggests that blood cell fraction information might be used for patient565

severity prediction. We trained a Gradient Boosting Machine (GBM) using566

leave-one-out-cross-validation (LOOCV) on the fractions of all T cell types and567

performed a forward feature elimination, to obtain a sparse, optimal model for568

patient blood-based severity prediction. We first classified patients into three569

groups, mild (union of asymptomatic and mild, n = 26), moderate (n = 26),570

and severe (union of severe and critical, n = 19), reaching an AUROC of 0.63571

(Table S4). We noticed that the mild and moderate groups were indistinguish-572

able for the classifier (Figure S49). Training a GBM classifier on mild and severe573

cases substantially increased classification performance, reaching an AUROC of574

0.81 and accuracy, and F1 score of 0.82 (Table S4, Figure 4F &G). Compared575

to the original T cell types and fractions reported (accuracy 0.61) [43], DIS-576

CERN reconstructed T cell fractions are 33% more accurate in the prediction577

of COVID-19 disease severity (Figure 4G, Table S4). This classification improve-578

ment is remarkable, given that DISCERN has no notion of disease severity when579

it reconstructs gene expression. These results further demonstrate DISCERN’s580

precise and robust expression reconstruction that enabled the discovery of a581

potential new blood-based biomarker for COVID-19 severity prediction.582
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3. Discussion583

The sparsity of gene expression information and high technical noise in sin-584

gle cell sequencing technologies limits the resolution of cell clustering, cell type585

identification, and many other analyses. Several algorithms such as scImpute,586

MAGIC, and DCA have addressed this problem by imputing missing gene ex-587

pression in single cell data by borrowing expression information from similar588

cells within the same dataset. While gene imputation clearly improves gene589

expression by inferring values for dropped out genes, this imputation relies on590

the comparison of similar cells with largely absent gene expression information591

in the same dataset. With DISCERN we take a completely novel approach592

to gene expression inference of single cell data, by realistic reconstruction of593

missing gene expression in scRNA-seq data using a related dataset with more594

complete gene expression information. We thus propose to call this procedure595

‘expression reconstruction’ to highlight the fundamental difference to classical596

imputation and refer to the dataset with missing gene expression information597

as low quality (lq) and the reference dataset as high-quality (hq).598

We provide compelling evidence that our reference-based reconstruction out-599

performs classical expression imputation algorithms as well as batch correction600

algorithms such as Seurat and scGen, when they are repurposed for expression601

reconstruction. To obtain an objective and thorough performance evaluation602

for expression inference, we used seven performance metrics on 19 datasets,603

including 12 single cell sequencing technologies. We focused our performance604

evaluation on three scenarios with available ground-truth information, i) the605

in silico creation of defined gene and pathway drop out events in scRNA-seq606

data, ii) published hq and lq data pairs from the same tissue (pancreas, difftec,607

sn/scRNA-seq datasets), and iii) CITE-seq protein expression as ground-truth608

for cell types (citeseq dataset). In total, DISCERN achieved best performance609

in 13 out of 15 experiments and obtained second rank in the remaining 2 com-610

parisons. While DISCERN yields first place to Seurat in two FC expression611

correlation comparisons, it always obtains best results across all datasets in612

gene expression, gene regulatory network analysis, pathway reconstruction, and613

cell type and activity identification and is the most stable algorithm for different614

lq to hq size ratios and cell type overlaps.615

It is important to note that DISCERN is a precise network that models616

gene expression values realistically while retaining prior and vital biological in-617

formation of the lq dataset after reconstruction. The network is also robust618

to the presence of different cell types in hq and lq data, or an imbalance in619

their relative ratios, and is robust to ‘hallucinating’ hq-specific cells into the lq620

data. Several algorithmic choices are the foundation of DISCERN’s precision621

and robustness. The network was designed to model the sequencing-technology-622

specific and the underlying biological signals in separate components of its ar-623

chitecture. Disentanglement of those two components is necessary to accurately624

reconstruct expression information in the case where lq and hq datasets have625

different content, i.e. cell type compositions. If the component designed to626

model the effect of sequencing technology also captures the difference in the627
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biological signal, the reconstruction will lead to a lack of integration across the628

two datasets where some cell types are still clustered by dataset (similar to629

scGen in Figure S18). On the contrary, if the component modeling the biolog-630

ical signal captures sequencing-technology-specific features, the reconstruction631

will lead to an over-integration of the datasets where cells of different types are632

mixed together (similar to Seurat in Figure S18). The demonstrated ability of633

DISCERN to avoid those shortcomings, even in scenarios where there is very634

little to no overlap between cell types across datasets, lies in the carefully crafted635

balance between the expressivity of its components. The representational capa-636

bilities of DISCERN, achieved via batch normalization, five loss terms, and a637

dual head decoder, would reduce DISCERN’s usability, if they would require fre-638

quent dataset-specific tuning. The stability and usability was therefore a central639

concern in the design and evaluation phase of DISCERN, which resulted in an640

algorithm that gave very good results with a single set of default (hyper-) param-641

eters. All comparisons to other algorithms, for instance, were performed with642

default settings. Only the expression reconstruction of the exceptionally large643

COVID-19 datasets required the fine-tuning of the learning rate, cross entropy644

term, sigma, and the MMD penalty term. Another important technical feature645

of DISCERN is that it can easily be integrated into existing workflows. It takes646

a normalized count matrix, as created by nearly all existing single cell analysis647

workflows, as input and produces a reconstructed expression matrix. This can648

be used for most downstream applications (i.e. cell clustering, cell type identifi-649

cation, cell trajectory analysis, and differential gene expression). DISCERN can650

be trained on standard processors (CPU) for small and medium-sized datasets651

and requires graphical processing units (GPU) for the expression reconstruction652

of large datasets. Altogether, the usability and robustness of DISCERN should653

enable even non-expert users to perform gene expression reconstruction.654

A unique feature of DISCERN is the use of an hq reference to infer bio-655

logically meaningful gene expression. While we consider this a main strength656

of DISCERN, the dependence on a suitable reference dataset might also limit657

its application. We took great care in this manuscript to mitigate this con-658

cern by showing how DISCERN is able to reconstruct gene expression for many659

different types of lq and hq pairs, ranging from indrop - smartseq2 to single660

nucleus - single cell data pairs. Remarkable in this context is DISCERN’s ro-661

bustness to differences between the cell type compositions of lq and hq data662

pairs, with DISCERN being the only algorithm obtaining robust expression re-663

construction when few cell types overlap. We have also shown that purified664

bulk RNA-seq samples can be used as hq reference, as successfully applied to665

PBMC and COVID-19 datasets in this study. We used 9852 FACS purified666

immune cell bulk sequencing samples [44], comprising 27 cell types, to success-667

fully reconstruct single cell expression data. This implies that most single cell668

studies involving immune cells (with or without other cell types present) can be669

reconstructed with DISCERN using a single published bulk RNA-seq dataset.670

Furthermore, public RNA-seq repositories such as NCBI GEO contain tens of671

thousands of samples of immune and non-immune cells that could serve as refer-672

ence for most expression reconstruction experiments. Conversely, pure cell type673
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or subtype bulk RNA-seq data could be hard to obtain as the sorting of cells674

might have limited resolution or might be partially impure. In consequence,675

the usage of bulk RNA-seq data as reference for expression reconstruction could676

lead to a grouping or averaging of cell subtypes. While these potential caveats677

might adversely affect expression reconstruction, we have not observed merging678

or averaging effects of single cell subtypes when corresponding bulk RNA-seq679

cell type information was not present or present at different proportions (Fig-680

ure 3B & 3C, Figure S28). Importantly, cells do not necessarily cluster into681

distinct classes but can build cell continua, as shown in the trajectory analy-682

sis in Figure 3B & 3C, where T cells seem to differentiate into each other and683

do not form clearly separable clusters. In general, handling continua of cell684

types is challenging for imputation and batch correction algorithms, as many of685

them, including for instance scGEN, Bfimpute, SIMPLEs, and cscGAN, require686

or recommend cluster or cell type annotation. This might lead to under- or687

over-integration of cell continua. DISCERN does not rely on cluster (or cell688

type) information and seamlessly integrates and reconstructs cell clusters and689

continua (Figure 3C, Figure S36).In conclusion, we provide strong evidence that690

DISCERN is widely and easily applicable to many single cell experiments.691

While DISCERN gave good reconstruction results using default parameters692

for most datasets we analyzed, we would like to highlight that the immense693

representational power of generative neural networks can remove or hallucinate694

biological information if not properly handled [6]. This is true for data inte-695

gration [50] as well as for expression reconstruction algorithms and we would696

highlight two guiding principles for optimal results. For non-expert users, we697

would recommend the use of default settings and a careful selection of a re-698

lated hq dataset. When datasets are large and complex, with many cell types699

in the lq and several non-overlapping cell types in the hq data, one should al-700

ways ensure that training does not merge or mix non-overlapping cell types with701

other cells, by investigating that these cells keep their cell type-specific marker702

gene expression. Keeping these ‘checks and balances’ will usually result in good703

reconstruction results even for complex datasets such as covid-blood-severity.704

To obtain novel insights into COVD-19 disease mechanisms and a new blood-705

based biomarker for disease severity we reconstructed two published datasets706

with DISCERN, Hamburg COVID-19 patients (covid-lung, -blood) and the707

COVID-19 cell atlas (covid-blood-severity). The application of DISCERN to708

the covid-blood dataset (COVID-19 patient blood) enabled us to detect 24 dif-709

ferent immune cell types and activity states, which is quite remarkable given710

that we find these cells in blood. Two TH17 subtypes caught our attention, as711

they share the TCR clonality with the lung data from the same patients (covid-712

lung), suggesting bloodstream re-entry of lung TH17 cells. We linked these two713

subclusters to their functional role by separating them into a memory-like and714

activated-like phenotype. The clonal overlap of activated TH17 cells in blood715

with previously discovered lung-resident cells suggests that activated TH17 cells716

in blood are resident T cells from the lung reentering circulation. These cells717

might in part explain the multi-organ pathology observed in COVID-19, as718

activated T cells might travel via the blood to secondary organs and cause in-719
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flammation and tissue damage. Future work might demonstrate the effect of720

these activated T cells on tissue inflammation.721

Given the detailed cell type and activity information we reached with gene722

expression reconstruction, we wondered if changes in blood immune cell popu-723

lations might be useful as a biomarker for disease severity prediction. We used724

DISCERN to reconstruct the covid-blood and the covid-blood-severity datasets725

and again identified a plethora of different T cell subtypes in the blood of pa-726

tients with COVID-19. Using these cell proportions, we were able to classify727

mild and severe disease using a GBM machine learning algorithm with 82%728

accuracy, outperforming classification with the originally published T cell types729

by 21 percent points. This improvement is absolutely striking, as DISCERN730

has no notion of the classification groups. It simply reconstructs gene expres-731

sion and thereby improves cell type detection. These results are a convincing732

implicit proof not only of the usefulness of DISCERN but more importantly of733

its precision and robustness. While the use of this scRNA-seq-based biomarker734

would be too expensive and time-consuming for clinical care, it strongly suggests735

that FACS-based T cell fraction or count information from blood could be used736

to trace and predict the severity state and potentially the disease trajectory of737

COVID-19 patients.738

Interestingly, we also discovered two atypical T cell types in reconstructed739

COVID-19 patient blood single cell data. While cytotoxic CD4+ T cells have740

been observed in COVID-19, we can show that this increase is not COVID-19741

specific and is also observed in other types of pneumonia. Interestingly, we also742

detected cytolytic CD8+ Tc2 cells that express CD8A, GATA3, IL6R and are743

negative for SLAMF6. This cell type is linked to tissue fibrosis and steroid744

refractory disease in asthma [51]. The increase in CD8+ Tc2 cells that we ob-745

serve specifically in COVID-related death could be associated with COVID-19746

patients that do not respond to steroids. Demonstration of increase of this cell747

type in patients dying of COVID-19 points to a potential therapeutic inter-748

vention with the drug Fevipiprant, which blocks CD8+ Tc2 cell activation and749

its pro-fibrotic effects by inhibiting prostaglandin D2 signaling [52]. Functional750

analysis of these cells has to demonstrate whether these cells are an early marker751

of later death or whether it is a marker of already escalated treatment.752

The basic concept of utilizing a high-quality reference to improve lower qual-753

ity data might be applied to many other research areas where technological754

limitations restrict biological insights. The usage of deep generative networks755

and other artificial intelligence methodology to infer information beyond what756

is technically measurable could be transformative in future biomedical research.757
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Main figures780

Figure 1: Integration and expression reconstruction of single cell sequencing data. A: DIS-
CERN transfers the style of a high-quality (hq) dataset to a related low quality (lq) dataset,
enabling gene expression reconstruction that results in improved clustering, cell type identi-
fication, marker gene detection, and mechanistic insights into cell function. The hq and lq
datasets have to be related but not identical, containing for example several overlapping cell
types but also exclusive cell types of cell activity states for one or the other dataset. B: t-SNE
visualization of the pancreas dataset before reconstruction (original) and after transferring
the style of the smartseq2 dataset using DISCERN (p-smartseq2). The upper row shows the
dataset of origin before and after projection colored by batch and the lower row colored by cell
type annotation (details of 13 cell types in supplements). C and D: Average gene expression
(over all the cells of a given type) of the pancreas indrop and smartseq2 datasets before (first
column and panel) and after smartseq2 to indrop (second column and panel), and after indrop
to smartseq2 projection (third column and panel). C: Gene correlation by cell type shown
in colored heatmap. D: Each colored point represents a single gene colored by the cell type,
‘o’ refers to original data. The mean Pearson correlation with one standard deviation over all
cell types is shown in the figure title.
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Figure 2: Expression reconstruction benchmark of DISCERN and five state-of-the-art batch
correction and imputation algorithms. A: Comparison of the expression reconstruction per-
formance of Seurat, scGEN, Magic, scImpute, DCA, and DISCERN using smartseq2 data.
The smartseq2 data was split into a smartseq2-lq and a smartseq2-hq batch. The smartseq2-lq
batch was modified such that the expression of all genes of a cell type determining pathway
(top ranked by GSEA) was set to zero. The expression of the in silico altered pathway genes
was then compared between reconstructed-hq data and the unaltered smartseq2-hq data. B:
Differential gene expression and pathway enrichment correlation of the reconstructed-hq to
the expected values before removal. The smartseq2-lq data was the same as in A. The DEG
analysis was restricted to genes which were removed in the smartseq2-lq batch. Correlation of
the DEG analysis was based on the t-statistic and for the pathway enrichment analysis on the
normalized enrichment scores. C: Mean expression correlation of reconstructed-hq with the
expected expression in smartseq-hq data for different ratios of lq to hq data. The standard
deviation indicates the deviation in correlation of the cell types. The datasets were created
as described in A. D: Alpha cells were removed from the smartseq-hq batch and left in the
smartseq-lq batch. The number of other overlapping cell types between the hq and lq data was
then altered by removing cell types from the lq data before expression reconstruction (x-axis).
The y-axis shows the correlation of the t-statistics of alpha cells from lq-batches vs other cells
from the smartseq2 batch with ground truth alpha cells from the smartseq2 batch vs other
cells from the uncorrected smartseq2 batch. E: t-SNE visualization of the cell type removal
experiment where alpha cells are removed from the smartseq2 batch and all non-alpha cells
are removed from the lq-batches, such that there is no overlap between lq and hq. F: Pearson
correlation of the t-statistics of alpha cells from lq-batches vs other cells from the smartseq2
batch with ground truth alpha cells from the smartseq2 batch vs other cells from the uncor-
rected smartseq2 batch. The dataset was the same as in E (no cell type overlap between hq
and lq data). The dotted line indicates the correlation achieved without reconstruction.
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Figure 3: Expression reconstruction improves downstream analyses including cell identifica-
tion, gene regulation, and trajectory inference. The cite-lq dataset was reconstructed using
bulk-hq data and compared to ground truth CITE-seq (surface protein) information. The
CITE-seq information was not used during training of DISCERN. A: t-SNE visualization of
CD2 (first row) and CD8A (second row) gene (first two columns) and protein (last column)
)expression. The first column depicts gene expression for uncorrected cite-lq, the second for
reconstructed-hq, and the third protein surface expression ground truth information. Cell
types commonly known to express these genes are highlighted with colored circles in the last
column. B: t-SNE visualization of CD4+ T cells in the cite-lq dataset. Cell types were
assigned using louvain clustering on the reconstructed-hq data (see C) and show no clear
clustering. C: t-SNE and trajectory information of CD4+ T cell subtypes found by Slingshot
analysis on reconstructed-hq data. While uncorrected data shows no clear cell type clustering
(see B), reconstructed data shows a clear grouping of cell types. Trajectories were calculated
using CD4 naive as starting point and TH2, TH17, TH1, Active TREG, CD4 CM as end-
points. Lineage1 indicates TH1, Lineage2 TH17, Lineage3 Active TREG, Lineage4 TH2, and
Lineage5 Effector cell differentiation. D: Detection of regulons that are specific for CD4+

T cell subtypes using pySCENIC. The first column shows regulons found in the uncorrected
cite-lq and the second column in reconstructed-hq data.
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Figure 4: Expression reconstruction improves COVID-19 cell type identification and allows
for efficient disease severity prediction. Two COVID-19 blood datasets were reconstructed
and analyzed. Hamburg covid-blood-lq and covid-lung-lq data was reconstructed using bulk-
hq data, resulting in the respective -hq datasets. Similarly, Cambridge covid-blood-severity-lq
data, which contains disease severity information, was reconstructed using bulk-hq data. A:
t-SNE representation of TH17 subclusters using reconstructed covid-blood-hq data. Clusters
were defined using the leiden clustering algorithm on CD4+ T cells. B: t-SNE representation
colored by expression of reconstructed genes distinguishing TH17 cluster1 and TH17 cluster2
cells. TH17 cluster1 displays a central memory and TH17 cluster2 a more activated pheno-
type. C: Violin plots of expression levels for genes distinguishing TH17 cluster1 (C1) and
TH17 cluster2 (C2) cells before (covid-blood-lq) and after (covid-blood-hq) reconstruction
with DISCERN. D: Rare and unexpected cell types found in the reconstructed covid-blood-
hq data with covid-blood-severity and bulk data. Cytotoxic CD4+ T cells (CD4 cytotoxic) are
displayed in green, CD8+ Tc2 helper cells (CD8 Tc2) in blue, and all other cells in gray color.
E: t-SNE representation of key marker genes in covid-blood-hq data for CD4 cytotoxic and
CD8 Tc2 cells displayed in D. F: Best and worst confusion matrix for disease severity predic-
tion using GBM classifiers trained on fractions of five T cell types (CD4 CM, CD4 cytotoxic,
CD4 naive, CD8 EM, CD8 effector) using reconstructed covid-blood-severity-hq data. Cat-
egory “critical” was combined with “severe” and “asymptomatic” with “mild”. G: ROC
curve of the GBM predictions outlined in F using reconstructed (blue color) covid-blood-
severity-hq (CD4 CM, CD4 cytotoxic, CD4 naive, CD8 EM, CD8 effector) and published T
cell information from uncorrected (yellow color) data (CD4.CM, CD4.Tfh, CD8.EM, NKT,
Treg). Confidence intervals (color shades) indicate one standard deviation.
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781

782

4. Methods783

4.1. Data availability784

In this manuscript many different scRNA-seq and RNA-seq datasets were785

used. A comprehensive overview of dataset, method, cell type, origin, size, and786

naming convention can be found in Tables S1 to S3. All datasets are publicly787

available as listed in Table S1.788

4.2. Dataset description789

Pancreas. The pancreas dataset is a collection of different scRNA-seq datasets,790

profiling pancreas cells in the context of diabetes [53]. The pancreas dataset is791

a widely used dataset for batch correction benchmark experiments and due to792

its high number of cell types and sequencing technologies it allows to evaluate793

differences between cells and sequencing technologies at the same time. The ex-794

pression table, including the annotation, is available from SeuratData (https://795

github.com/satijalab/seurat-data) as panc8.SeuratData (v3.0.2) [53]. The796

dataset was sequenced using five sequencing technologies (Smart-Seq2, Flu-797

idigm C1, CelSeq, CEL-Seq2, inDrop) and consists of 13 cell types (alpha, beta798

,ductal, acinar, delta, gamma, activated stellate, endothelial, quiescent stellate,799

macrophage, mast, epsilon, schwann). In total, before preprocessing, the dataset800

contains 14 890 cells.801

difftec. The difftec dataset was created for a systematic comparative analysis802

of scRNA-seq methods [54]. Similar to pancreas, the difftec dataset is ideal803

for the evaluation of expression reconstruction across many cell types and se-804

quencing technologies. Seven sequencing technologies (10x Chromium v2, 10x805

Chromium v3, Smart-Seq2, Seq-Well, inDrop, Drop-seq, CEL-Seq2) were used806

with at least two replicates each. In this dataset 10 different cell types (Cy-807

totoxic T cell, CD4+ T cell, CD14+ monocyte, B cell, Natural killer cell,808

Megakaryocyte, CD16+ monocyte, Dendritic cell, Plasmacytoid dendritic cell,809

Unassigned) were annotated, and make up for 31 021 cells in total before filter-810

ing. The expression table including the annotation is available from SeuratData811

as pbmcsca.SeuratData (v3.0.0).812

snRNA & scRNA. The dataset was created for the validation of a single cell813

and single nuclei analysis toolbox [28]. Since snRNA-seq and scRNA-seq data814

varies in the amount of counts per cell and the genes detected, we tested if815

DISCERN could reconstruct snRNA-seq expression so that it would closely816

resemble scRNA-seq expression, providing a biological ground-truth. While we817

label snRNA-seq data as lq and scRNA-seq as hq, this distinction is incorrect818

from a biological perspective, as gene expression should be in part different819

between the nucleus and the cytosol. The dataset consists of a liver biopsy820
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sample (HTAPP-963) of metastatic breast cancer with single cell sequencing821

and single nuclei sequencing. Eight cell types (Epithelial cells, Macrophages,822

Hepatocytes, T cells, Endothelial cells, Fibroblasts, B cells, NK cells) were found823

in the original publication in a total of 12 423 cells. The data was sequenced824

using the Chromium V3 technology on a Illumina HiSeq X sequencer.825

covid-lung & covid-blood. The COVID-19 dataset we have previously published826

consists of blood and bronchoalveolar lavage (BAL) samples from four patients827

with bacterial pneumonia and eight patients with SARS-CoV-2 infection[22].828

In total 155 706 cells were sequenced using TCR-seq technology, which allows829

for the comparison of clonal expansion in both tissues. While we investigated830

the lung data in detail in the original publication, the analysis of the blood was831

largely limited to cell type identification. Using DISCERN, we use the blood832

data to find previously unobserved cell types, link them to cell clones found in833

the lung, and derive a biomarker based on cell fractions (see also covid-blood-834

severity data). Cell type annotations for the BAL samples were used as in the835

original publication.836

citeseq. This dataset contains CITE-seq information of healthy human PBMCs837

for 6 cell types (B cells, CD4 T cells, NK cells, CD14+ Monocytes, FCGR3A+
838

Monocytes, CD8 T cells) [29]. In our analyses we used the cell type information839

provided in the original publication [55]. The CITE-seq data is ideal to bench-840

mark DISCERN, as the information of 13 surface proteins offers ground-truth841

information on the cell types and a good proxy for the expression of the 13842

corresponding genes.843

bulk. We used this large dataset of 28 FACS sorted and bulk sequenced immune844

cell types as ‘ultimate’ hq reference data for lq immune single cell sequencing845

data. Each of the 9852 samples provides an average expression information for846

13 104 genes for a specific immune cell type, providing a hq reference for e.g. lq847

single cell PBMC CITE-seq data with only 798 expressed genes per cell. We848

further assume that this dataset is large enough to provide enough per cell type849

variability for our deep neural network to faithfully learn and represent its gene850

expression. In more detail, the dataset consists of 28 sorted immune cell types851

(Naive CD4, Memory CD4, TH1, TH2, TH17, Tfh, Fr. I nTreg, Fr. II eTreg,852

Fr. III T, Naive CD8, Memory CD8, CM CD8, EM CD8, TEMRA CD8, NK,853

Naive B, USM B, SM B, Plasmablast, DN B, CL Monocytes, Int Monocytes,854

NC Monocytes, mDC, pDC, Neutrophils, LDG) with ¿ 99% purity [44]. Total855

RNA was extracted using RNeasy Micro Kits (QIAGEN). Libraries for RNA-seq856

were prepared using SMART-seq v4 Ultra Low Input RNA Kit (Takara Bio).857

In total, the dataset contains 9852 samples collected in two phases from 416858

donors, out of which 79 are healthy. For training DISCERN, bulk TPM counts859

and all cell types were used if not stated otherwise.860

covid-blood-severity. This dataset is an aggregation of three COVID-19 sequenc-861

ing studies using the 10X Genomics Chromium Single Cell 5’ v1.1 technology.862
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It contains a large number of cell types with fine-grained cell type annotations863

that are complemented with information on COVID-19 disease severity for each864

patient sequenced. We used this dataset to obtain a blood-based biomarker of865

COVID-19 disease severity, based on T cell fractions observed with DISCERN.866

The data consists of PBMCs from 29 healthy, 89 COVID-19 and 12 LPS-treated867

patients. The authors detected 51 cell types in their original work (see Ta-868

ble S1) [43] and COVID-19 patients were classified by their disease severity869

(worst clinical outcome) into ‘asymptomatic’, ‘mild’, ‘moderate’, ‘severe’, ‘crit-870

ical’, and ‘death’. Count data together with CITE-seq information was used871

as provided in the original publication (https://covid19.cog.sanger.ac.uk/872

submissions/release1/haniffa21.processed.h5ad).873

kidney-lq (snRNA-seq) & kidney-hq (scRNA-seq). The kidney dataset consists874

of single cell RNA-seq and single nuclei RNA-seq data of 9 patients with acute875

kidney injury sequenced using 10X Genomics Chromium technology. It contains876

in total 82 701 cells with 52 934 cells sequenced using snRNA-seq and 29 767 cells877

sequenced using scRNA-seq. The dataset does not contain cell type annotation,878

but in initial analysis using a different subset [56] suggested that identification879

of T cells in the snRNA-seq data is challenging. For this reason, the analysis880

was focused on the detection of T cells and their subtypes.881

4.3. Code availability882

All original code has been deposited at github.com (https://github.com/883

imsb-uke/discern) and is publicly available as of the date of publication. Any884

additional information required to reanalyze the data reported in this paper is885

available from the lead contact upon request.886

4.4. Preprocessing887

Raw expression data (Counts) preprocessing was performed as previously888

described [57] using the scanpy (v1.6.1, [58]) implementation. In particular,889

the intersection of genes between batches was used. The cells were filtered890

to a minimum of 10 genes per cell and a minimum of 3 cells per gene. Li-891

brary size normalization was performed to a value of 20 000 with subsequent892

log-transformation. As model input for DISCERN the genes were scaled to893

zero mean and unit variance. However, for all further evaluation the genes894

were scaled to their uncorrected mean and variance not considering the batch895

information.896

4.5. Description of DISCERN897

DISCERN is based on a Wasserstein Autoencoder with several added and898

modified features. We will describe the details of DISCERN’s architecture in899

the next paragraphs and a compact representation can be found in Figure S1B.900
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Wasserstein Autoencoder. While neural network-based autoencoders have been901

widely used for decades for dimensionality reduction [59, 60], recent advances902

have also allowed their use to build a generative model of the distribution of903

the data at hand[61]. More recently, leveraging results from optimal transport904

[62], Wasserstein Generative Adversarial Networks (WGAN) [63] and Wasser-905

stein Autoencoders (WAE) [23] have been designed to explicitly minimize the906

(Wasserstein, or earth-mover) distance between the distribution of the input907

data and their reconstruction. WGANs only implicitly encode their input into908

a latent representation (called latent code), while WAE has the useful property909

of using an explicit encoder, which makes it possible for the model to directly910

manipulate the different representations of single-cell data. Finally, the WAE911

framework, established in [23], allows the use of a wide range of architecture and912

losses, which we are going to detail now. First of all, in order to effectively use a913

number of latent dimensions that adaptively matches the intrinsic dimension of914

the scRNA-seq data at hand, DISCERN uses a random encoder as prescribed915

in [64].916

Architecture. Autoencoders widely used for transcriptomics applications are917

shown to perform well on several tasks, like drug perturbation prediction [21]918

or dropout imputation [12]. Since the ordering of the genes in scRNA-seq count919

matrices is mostly arbitrary, fully-connected layers are usually used in this task.920

In our case, DISCERN consists of three fully connected layers in the encoder921

and the decoder. The bottleneck of the autoencoder (or latent space) contains922

48 neurons, which is sufficient to accurately model all the datasets we used in923

our experiments. Additionally, we exploit a finding from [64] to let the net-924

work learn the appropriate amount of latent dimensions. While the encoder925

will be tasked to transform the distribution of the input data into a fixed,926

low-dimensional prior distribution (i.e. a standard Gaussian), the decoder will927

perform the opposite, i.e. transforming the fixed, low-dimensional prior distri-928

bution into gene space. scRNA-seq data is known to display a high level of zero929

measurements, called dropout, which is essential to accurately model the count930

distribution. To describe scRNA-seq data in a parametric way, it is common to931

model the expression level of a gene with zero-inflated negative binomial dis-932

tribution [65]. Despite the several non-linearities in the decoder architecture,933

it is, however, difficult to learn an encoding function that maps a simple prior934

to the distribution leading to low quality modeling of low expressed genes. To935

address this issue, we scale the gene expression and attach a second head to the936

decoder (i.e. a second decoder sharing all weights with the first, except for the937

last layer). The task of the second decoder head is to predict, for each gene938

of a cell, the probability of its expression to be dropped out, giving rise to a939

random decoder. Thus, this second decoder head predicts dropout probabili-940

ties and models the dropout probabilities for different batches. This additional941

head allows modeling the dropout and the expression independently, to capture942

the specific distribution of single cell data without the need for further explicit943

assumption about the distribution.944
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Loss function. The loss optimized during the training of DISCERN is com-945

posed of four terms: a data-fitting (or reconstruction) loss, a dropout fitting946

(cross entropy) loss, a prior-fitting term (ensuring that DISCERN approxi-947

mately minimizes the Wasserstein distance) and a variance penalty term (that948

controls the randomness of the encoder). Thus, DISCERN can be considered as949

a Wasserstein Autoencoder as introduced in [23]. For the reconstruction term,950

the framework introduced in [23] allows the use of any positive cost function.951

We elected to use the Huber loss [66] as it is well suited for modeling scaled952

scRNA-seq expression data, because it allows to select a threshold value to give953

lower weight to high differences in highly expressed genes and thus allows the954

model to learn a more robust expression estimate without focusing too much955

on outlier values. For the prior-fitting term, following [23], DISCERN uses the956

Maximum Mean Discrepancy (MMD) [67] between the aggregate posterior (i.e.957

the distribution of the input single-cells after encoding) and a standard Gaus-958

sian. We use the sum over an inverse multiquadratic kernel with different sizes959

for this task. Then, to prevent the random encoder (with diagonal covariance)960

from collapsing to a deterministic one, a penalty term that enforces that some961

components of the variance are close to 1. Intuitively, that means that the su-962

perfluous latent dimensions will only contain random noise (see [64] for more963

details). Another loss term, namely the binary cross-entropy loss, on the second964

decoder head is used to enable the model to learn a dropout probability for each965

gene and sample. The loss on the dropout layer enables the model to capture966

the bimodal distribution of single cell data. Additionally, activity regularization967

is applied on the Conditional Layer Normalization (CLN), such that the weights968

of the conditional layers are only regularized in a batch-specific manner and the969

regularization is not applied for batches, which are not present in the current970

mini-batch. This has the advantage that the batch dependent weights are not971

influenced too much by different batch sizes. The four loss terms are added (and972

weighed) together to form the loss that DISCERN minimizes during training973

(see also Figure S1 for loss terms).974

Conditional Layer Normalization. The weights of those fully-connected layers975

are shared for all the batches that DISCERN is trained on. However, to model976

the batch-specific differences, we use a Conditional Layer Normalization (CLN)977

that applies the idea proposed in [25] to Layer Normalization [26]. In essence,978

for each batch, different sets of shifting factors are learned. Note that in DIS-979

CERN, no scaling factors are used to limit the expressivity of the conditioning980

and therefore reduce the chance of over integration. This allows not only to accu-981

rately model the batch-specific differences between batches, but also to transfer982

the batch effect from one dataset onto another, in the spirit of the style-transfer983

approach developed in [25]. To make things clear, DISCERN does not explic-984

itly train to integrate datasets. Instead, it trains to accurately model the input985

data, capturing the batch-specific differences with the weights of the CLN layers986

(i.e. conditioning), and the biological signal (which is mostly shared across the987

batches to integrate) with the weights of the fully-connected layers. After train-988

ing, we encode all the cells we want to reconstruct, conditioning the process on989
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their batch of origin. Then, we take the batch chosen by the user and proceed to990

decode all the cells conditioning on that specific batch, effectively transferring991

the batch effect of one specific batch onto all of the batches we want to integrate992

and reconstruct.993

Activations & dropout. With the exception of the output layer, every other994

fully-connected layer of the encoder and the decoder was followed by a CLN,995

a Mish ([68] activation function, and dropout during model training to reduce996

overfitting.997

Optimization. To optimize the weights of our model, DISCERN uses Rectified998

Adam ([69], which addresses some of the shortcomings of the widely used Adam999

[70] and generally yields more stable training. To prevent overfitting, the op-1000

timization is stopped early. It is implemented as a modification of the Keras1001

EarlyStopping (with parameter minDelta set to 0.01 and the patience to 30)1002

where the callback is delayed by a fixed number of 5 epochs. The delay was1003

implemented to prevent too early stopping due to the optimization procedure.1004

4.6. Hyperparameters1005

As outlined in the architecture section of the methods and depicted in Fig-1006

ure S1, DISCERN features several learnable hyperparameters. The complexity1007

of the hyperparameter search space is a potential downside of DISCERN, if1008

these hyperparameters would be unstable across different datasets or in other1009

words, would require constant tuning. Fortunately, DISCERN’s hyperparame-1010

ters are very stable across the multitude of datasets tested in this manuscript,1011

which we will outline in this paragraph. Naturally, there is no rule without an1012

exception, which in this manuscript are the COVID-19 datasets that required1013

optimization for several hyperparameters.1014

Constant hyperparameters. DISCERN features a number of hyper-parameters1015

that can be tuned through hyperparameter optimization (see below for details).1016

Most of them have default values that yield reasonable performance across the1017

different datasets we used and are being kept constant across experiments, in-1018

cluding the COVID-19 dataset. Those constant hyperparameters are: the choice1019

of the reconstruction loss (Huber loss), activation functions (Mish), CLN for the1020

conditioning, number of fully-connected layers (3) and their size (1024, 512, 2561021

and 256, 512, 1024 neurons for the encoder and the decoder respectively), num-1022

ber of latent dimensions (48), learning rate (1× 10−3), decay rates β1 and β2 of1023

Rectified Adam (0.85 and 0.95 respectively), batch size (192), label smoothing1024

for our custom cross entropy loss (0.1), dropout rates (0.4 in the encoder and 01025

in the decoder), delta parameter of the Huber loss (9.0), weight on the penalty1026

on the randomness of the encoder λsigma (1×10−8), weight on the cross entropy1027

loss term λdropout (1× 105), weight on the MMD penalty term λprior (1500).1028
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Dataset-specific hyperparameters. The optimal value of the L2 regularization1029

applied on the weights of our custom CLN highly depends on the dataset at hand1030

and thus requires dataset-specific tuning. For datasets with a very small vari-1031

ance in cell compositions the L2 CLN regularization can be turned off (weight1032

set to 0). When datasets have different compositions the L2 CLN regularization1033

requires higher values (typically between 1× 10−3 and 0.2).1034

COVID-19 hyperparameters. For the experiments with COVID-19 datasets slightly1035

adjusted hyperparameters were used: learning rate of 6e-3, label smoothing for1036

our custom crossentropy loss of 0.05, weight on the penalty on the randomness1037

of the encoder λsigma (1e-4), weight on the cross entropy loss term λdropout1038

(2e3), weight on the MMD penalty term λprior (2000).1039

Hyperparameter optimization. DISCERN implements different techniques for1040

hyperparameter optimization by using the ray[tune] library [71]. For most use1041

cases the model does not require hyperparameter tuning and the default pa-1042

rameter should be sufficient. However, DISCERN has a generic interface and1043

supports nearly all techniques implemented in ray[tune]. The initial hyperpa-1044

rameters were found using grid search. The loss used for the hyperparameter1045

selection is the classification performance of a Random Forest classifier trying1046

to classify real vs. auto-encoded cells. Classification performance was mea-1047

sured using the area under the receiver operating characteristic curve (AUC /1048

AUROC).1049

4.7. Competing algorithms and methods1050

We briefly discuss competing methods and have compared their performance1051

to DISCERN in the results section. These algorithms can be grouped into two1052

categories, i) imputation algorithms that were developed to estimate drop-out1053

gene expression based on dataset inherent information (MAGIC, DCA, scIm-1054

pute) and ii) algorithms designed for batch correction that we have modified1055

or extended to reconstruct gene expression, although this is not their intended1056

use (Seurat, scGen). Given the latter, it is clear that DISCERN could be used1057

purely for batch correction in latent space, a subject beyond the scope of this1058

manuscript.1059

MAGIC. [13] Markov affinity-based graph imputation of cells (MAGIC) de-1060

noises and imputes the single-cell count matrix using data diffusion-based in-1061

formation sharing. The construction of a good similarity metric is challenging1062

for finding biologically similar cells due to high sparsity. MAGIC finds a good1063

similarity metric using a sophisticated graph-based approach that builds less-1064

noisy cell-cell affinities and information sharing across cells. A particular focus1065

of MAGIC was to understand gene-gene relationships and to characterize other1066

dynamics in biological systems. MAGIC is provided as a Python package.1067
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DCA. [11] Deep count autoencoder (DCA) is a deep learning-based method for1068

denoising single-cell count matrices. DCA is implemented in Python and uses1069

an autoencoder with a Zero-Inflated Negative Binomial (ZINB) loss function.1070

For each gene, DCA computes gene-specific parameters of ZINB distribution,1071

namely dropout, dispersion and mean. By modeling gene distributions as a noise1072

model and also computing dropout probabilities of each gene, DCA is able to1073

denoise and impute the missing counts by identifying and correcting dropout1074

events.1075

scImpute. [12] Similarly to MAGIC, scImpute focuses on identifying cells that1076

are similar, which is challenging due to the high sparsity of single-cell count1077

matrices. scImpute is a statistical model using a three step process to impute1078

scRNA-seq data. In the first step spectral clustering is applied on principal com-1079

ponents to find neighbors, which later can be used to detect and impute dropout1080

values. In the second step scImpute fits a mixture model of a Gamma distribu-1081

tion and a Normal distribution to distinguish technical and biological dropouts.1082

In the last step, the model uses a regression model for each cell to impute the1083

expression of genes with high probability of dropout. With this approach, scIm-1084

pute avoids hallucinations and keeps the gene expression distribution. scImpute1085

is provided as an R package.1086

Seurat. [24] Seurat is an open-source toolkit for the analysis of single cell1087

RNA-sequencing data. In addition to general analysis functions, Seurat of-1088

fers batch-correction functionality. Seurat uses canonical correlation analysis1089

to construct this lower dimensional representation and tries to find neighbors1090

between batches in this shared space. These anchors are filtered considering1091

the local neighborhood of the cell pairs and remaining anchors are finally used1092

to construct correction vectors for all cells in this low dimensional representa-1093

tion. While Seurats is intended to work in a lower dimensional representation,1094

it can also be used to reconstruct the expression information from this lower1095

dimensional representation. Seurat is provided as an R package.1096

scGen. [21] scGen is a variational autoencoder based deep learning method with1097

a focus on learning features that help distinguish responding and non-responding1098

genes and cells. scGen constructs a latent space in which it estimates perturba-1099

tion vectors associated with a change between different conditions. Since scGen1100

models the perturbation and infection responses in single cells, it is focused on1101

in-silico screening with the use of cells coming from healthy samples.It can also1102

be used for batch correction. For batch correction, and unlike DISCERN or1103

Seurat, scGen uses both batch and cell type labels.1104

Multigrate. [17] multigrate is an autoencoder based deep learning method de-1105

veloped for the integration of different modalities to improve single cell RNA-seq1106

downstream analysis, mainly clustering. The main focus is the integration of1107

CITE-seq protein abundance since it is often available together with scRNA-1108

seq. They use individual encoders for each modality and build a shared latent1109
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representation by partially sharing the decoder. Multigrate is built using the1110

scvi-tools toolbox and implemented in python and pytorch.1111

4.8. Evaluation metrics1112

t-SNE & UMAP. For visualization of the datasets and to qualitatively assess1113

the integration performance tSNE and UMAP were used. Both methods are1114

based on PCA representation and use non-linear representations to create a 2D1115

representation of the data. We used the scanpy [58] implementation. Default1116

settings were used in nearly all cases except: In the combined COVID-19 dataset1117

analogue to Kobak et al.[72] the dataset was subset to 25 000 cells and tSNE1118

was computed using a perplexity of 250, and a learning rate of 25 000/12. These1119

positions were taken and used as input to tSNE of all cells using a perplexity1120

of 30 a learning rate of (number of observations)/12 and a late exaggeration of1121

4.0 using FIt-SNE [73]. Clustering was performed using PARC [74] with de-1122

fault parameters except dist std local=1.5 and small pop=300. Methods were1123

changed here due to computation time issues for 350 000 cells. covid-blood data1124

was analyzed using a learning rate of (number of observations)/6 a perplexity1125

of (number of observations)/120 and early exaggeration=4. Clustering was per-1126

formed using default parameters except knn=100 and small pop=100 to reduce1127

the number of clusters with limited cell number. Clustering of the T helper cells1128

in healthy blood was performed using coarse clustering with 30 nearest neigh-1129

bors and leiden clustering (https://github.com/vtraag/leidenalg) with a1130

resolution of 0.6. Afterwards a combined cluster of IFN-regulated and TREG1131

was reclustered using a resolution of 0.4 and effector T cells were reclustered us-1132

ing a resolution of 0.8. Resolution was chosen to dissect the raw gene expression1133

changes of known cell types.1134

Mean gene expression. Mean gene expression was calculated as average over1135

log-normalized expression over all cells, usually stratified by celltype. This eval-1136

uation of expression data consists of many data points where several have values1137

close to zero, but could have a high weight on rank-based correlation methods.1138

Thus Pearson correlation was used to evaluate the performance.1139

Differential gene expression. Differential gene expression was performed using1140

the scanpy [58] rank gene groups function using the t-test method for calculat-1141

ing statistical significance on log-normalized expression data. Differential gene1142

expression analysis was always performed under consideration of the cell type1143

information. For comparison of differential gene expression analysis between1144

conditions, the Pearson correlation was used. It is calculated either on the log21145

fold-change or in most cases on the t-statistics, computed during significance1146

estimation. The data was compared using the t-statistics, because it aggregates1147

information on both the variance and the change in mean expression. Thus it1148

allows, roughly speaking, for simultaneously evaluating the significance and the1149

log2 fold change.1150
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Pathway analysis. Pathway analysis or gene set enrichment analysis was done1151

using the prerank function from gseapy [75] on the t-statistics, computed as1152

described in the ‘Differential gene expression’ section of the methods. To this1153

end, the gene set library “KEGG 2019 Human” provided by enrichr [76] was1154

used. Top pathways were selected using the normalized enrichment score as1155

previously described [75].1156

Gene regulation. [38] The python implementation of the SCENIC (pySENIC)1157

was used to infer regulons specific for CD4+ T helper cells. SCENIC infers a1158

gene regulatory network using GRNBoost2 and creates co-expression modules.1159

The co-expression modules get associated with transcription factors using the1160

transcription factor motif discovery tool RcisTarget. A pair of transcription1161

factor and associated gene set is called a regulon. For each cell, the regulons1162

get scored using the AUCell algorithm to examine if a cell is affected by the1163

regulon. We used default parameters of the pySENIC implementation.1164

COVID-19 classification1165

To evaluate the importance of the cell types found in the covid-blood-1166

severity-hq dataset after reconstruction with DISCERN, the fraction for all1167

T cell subtypes was used to predict the disease severity, as provided in [43].1168

The data was classified using a Gradient boosting classifier ([77], implemented1169

in scikit-learn v1.0.2, default settings) using 25 rounds of leave-one-out cross-1170

validation (LOOCV). Each round consists of n training-prediction iterations1171

with n − 1 samples for training and 1 sample for testing, such that after one1172

round prediction results for all n samples could be evaluated. We chose LOOCV1173

over k-fold cross-validation and testing due to the limited size of the dataset,1174

consisting of only 71 patients. We used pycm ([78], v3.3) for the performance1175

evaluation. The final evaluation was done using the accuracy and F1 score1176

as provided by pycm. The area under the receiver operating characteristic1177

(AUROC) curve is computed with scikit-learn. Before training the classifiers1178

a forward feature selection was performed using the SequentialFeatureSelector1179

implemented in scikit-learn with default parameters. In total four experiments1180

were performed. In the first experiment, classification with three disease cat-1181

egories (mild, moderate, severe) was used. Patients who died were excluded.1182

For the other two experiments only patients with asymptomatic, mild, severe1183

and critical symptoms were included. In all experiments the asymptomatic and1184

mild category was merged to mild and severe and critical to severe.1185
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