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Abstract

Single cell sequencing provides detailed insights into biological processes includ-
ing cell differentiation and identity. While providing deep cell-specific infor-
mation, the method suffers from technical constraints, most notably a limited
number of expressed genes per cell, which leads to suboptimal clustering and cell
type identification. Here we present DISCERN, a novel deep generative network
that reconstructs missing single cell gene expression using a reference dataset.
DISCERN outperforms competing algorithms in expression inference resulting
in greatly improved cell clustering, cell type and activity detection, and insights
into the cellular regulation of disease. We used DISCERN to detect two unseen
COVID-19-associated T cell types, cytotoxic CD4+ and CD8+ Tc2 T helper
cells, with a potential role in adverse disease outcome. We utilized T cell frac-
tion information of patient blood to classify mild or severe COVID-19 with an
AUROC of 81% that can serve as a biomarker of disease stage. DISCERN can
be easily integrated into existing single cell sequencing workflows and readily
adapted to enhance various other biomedical data types.
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1. Introduction1

Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection2

of gene expression at single-cell resolution, which improves the detection of3

known and novel cell types and the understanding of cell-specific molecular4

processes [1, 2]. The extension of the basic scRNA-seq technology with epitope5

sequencing of cell-surface protein levels (CITE-seq), allows for the simultaneous6

surveillance of the gene and protein surface expression of a cell [3]. Another7

recent technological innovation was TCR-seq, which enables the simultaneous8

sequencing of essential immune cell features and the variable segments of T cell9

antigen receptors (TCRs) that confer antigen specificity [4, 5].10

While several commercial platforms have enabled researchers to use single11

cell sequencing methods with relative ease and at reasonable cost, the analysis12

of the high-dimensional scRNA-seq data still remains challenging [6, 7]. The13

main technical downside of single cell sequencing that impedes downstream14

analysis is the sparsity of gene expression information and high technical noise.15

Depending on the platform used, single cell sequencing detects around three16

thousand genes per cell, giving almost an order of magnitude less genes detected17

than bulk RNA-sequencing [8]. The term ‘dropout’ refers to genes that are18

expressed by a cell but cannot be observed in the corresponding scRNA-seq19

data, a technical artifact that afflicts predominantly lowly to medium expressed20

genes, as their transcript number is insufficient to reliably capture and amplify21

them. This missing expression information limits the resolution of downstream22

analyses, such as cell clustering, differential expression, marker gene and cell23

type identification [9].24

To improve the lack and stochasticity of gene expression information in single25

cell experiments, several in silico gene imputation methods have been designed26

based on different principles. Gene imputation infers gene expression in a given27

cell type or state, based on the information from other biologically similar cells28

of the same dataset. Several methods utilizing this principle have been devel-29

oped [10], amongst them DCA, MAGIC, scImpute, DeepImpute and CarDEC30

[11, 12, 13, 14, 15]. DCA is an autoencoder-based method for denoising and31

imputation of scRNA-seq data using a zero-inflated negative binomial model of32

the gene expression. MAGIC uses a nearest neighbor diffusion graph to impute33

gene expression and scImpute estimates gene expression and drop-out probabil-34

ities using linear regression. DeepImpute is an ensemble method, splitting the35

expression data into multiple pieces and trying to learn imputation of highly36

correlated genes using deep learning. CarDEC uses a two step procedure of im-37

putation and batch correction using a neural network. All of these algorithms38

use information from similar cells with measured expression of the same dataset39
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for imputation. Another class of imputation algorithms use bulk RNA-seq data40

to constrain scRNA-seq expression imputation. Bfimpute [16] uses Bayesian fac-41

torization, SCRABBLE [17] matrix regularization, and SIMPLEs [18] a prior42

distribution on the bulk data to impute scRNA-seq expression. Unfortunately,43

SCRABBLE and Bfimpute do not scale beyond small single cell datasets and44

few genes (3000 cells and genes in our hands), and SIMPLEs requires matching45

single cell and bulk RNA-seq samples, severely constraining their usability.46

Similarly, methods (e.g. multigrate[19]) were developed, which use scRNA-47

seq in combination with complementary, matching data (e.g. CITE-seq, ATAC-48

seq) to improve imputation. While complementary CITE-seq information is49

available for many scRNA-seq datasets, other information such as ATAC-seq50

data of the same sample is usually missing.51

While current imputation methods provide improved gene expression infor-52

mation, they still rely on the comparison of similar cells with largely absent gene53

expression information, for example by using clustering approaches. Genes that54

are not expressed in neighboring cells cannot be imputed, limiting the value of55

classical imputation. In an ideal case, it would be possible to obtain information56

of the expected true gene expression per cell, or at least expression information57

with less technical noise, to reconstruct the true expression at single cell level.58

Additionally, recent studies question the number of technical dropouts in UMI-59

based sequencing technologies [20, 21] and thus challenge classical imputation60

based methods. However, there are still batch specific changes, e.g. capture61

rate of specific genes and differences in sample processing, which affect the sin-62

gle cell data, beyond dropout. These changes can be wanted (enforced by the63

experimental setup) or unwanted (stochastic changes in the experimental setup,64

material).65

Recent work has shown the effectiveness of deep generative models (e.g. Au-66

toencoders and Generative Adversarial Networks) to infer realistic scRNA-seq67

data and augment scarce cell populations using Generative Adversarial Net-68

works [22] or the prediction of perturbation response using Autoencoders [23].69

We hypothesized that a deep generative model could allow for the reconstruc-70

tion of missing single cell gene expression information (low quality - lq) by71

using related data with more genes expressed (high-quality - hq) as a reference,72

a reference-based approach to gene expression inference (Figure 1A). In other73

words, lq data with many missing gene expression values and bad clustering74

could be transformed into data with few missing genes and improved clustering75

if the “style” of a related hq dataset could be transferred to it. In the best case,76

it would be possible to infer gene expression information for single cell data (lq)77

by using purified bulk RNA-seq data (hq), obtaining over ten thousand genes78

expressed per cell. We envision that this approach, when properly calibrated,79

gains deep mechanistic insights into data beyond what is currently measurable.80

It is important to note that the concept of using hq data to reconstruct gene81

expression in lq data is different from classical imputation algorithms that infer82

gene expression based on nearby cells from the same dataset, as outlined above.83

Based on the above considerations, we developed DISCERN, a novel deep84

generative neural network for directed single cell expression reconstruction. DIS-85
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CERN allows for the realistic reconstruction of gene expression information by86

transferring the style of hq data onto lq data, in latent and gene space. Our ex-87

periments on real and simulated data show that DISCERN outperforms several88

existing algorithms in gene expression inference across a wide array of single89

cell datasets and technologies, improving cell clustering, cell type and activity90

detection, and pathway and gene regulation identification. To obtain deep in-91

sights into the cellular changes underlying COVID-19, we reconstructed single92

cell expression data of patient blood and lung immune data. While in our ini-93

tial analysis [24] of blood data we detected few immune cell types, expression94

reconstruction with DISCERN resulted in the detection of 28 cell types and95

states in blood, including two unseen disease-associated T cell types, cytotoxic96

CD4+ and CD8+ Tc2 T helper cells. Reconstructing a second COVID-19 blood97

dataset with disease severity information, we were able to classify mild and se-98

vere COVID-19 with an AUROC of 81%, obtaining a potential biomarker of99

disease stage. DISCERN can be easily integrated into existing workflows, as an100

additional step after count mapping. Given that DISCERN is not limited by101

a predefined distribution of data, we believe that it can be readily adapted to102

enhance various other biomedical data types, especially other omics data such103

as proteomics and spatial transcriptomics.104

2. Results105

2.1. The DISCERN algorithm for directed expression reconstruction106

We aim to realistically reconstruct gene expression in scRNA-seq data by107

using a related hq dataset. Ideally, this expression reconstruction algorithm108

should meet several requirements [7]. First, it needs to be precise and model109

gene expression values realistically. It shouldn’t remove information of cellular110

identity to form ‘average cells’ or collapse different cell types or states into one.111

Second, the network should be robust to the presence of different cell types112

in hq and lq data, or an imbalance in their relative ratios. It shouldn’t, for113

instance, ‘hallucinate’ hq-specific cells into the lq data. Lastly, the network114

should be directional, as the user should be able to choose the target (reference)115

dataset.116

With these prerequisites in mind, we designed a deep neural network for117

directed single cell expression reconstruction (DISCERN) (Figure S1B) that is118

based on a modified Wasserstein Autoencoder [25]. A unique feature of DIS-119

CERN is that it transfers the “style” of hq onto lq data to reconstruct missing120

gene expression, which sets it apart from other batch correction methods such121

as [26], which operate in a lower dimensional representation of the data (e.g.122

PCA, CCA). To allow DISCERN to accurately reconstruct single cell RNA-123

seq expression based on reference data, the structure of the network had to be124

adapted in several ways. First, we implemented Conditional Layer Normaliza-125

tion (CLN) [27, 28, 22] to allow for directed expression reconstruction of lq data126

based on reference hq data (Figure S1B & S2). Second, we added two decoder127

heads to the network to enable it to model dataset-specific dropout rates and128
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gene expression separately. Lastly, we extended DISCERN’s loss function with129

a binary cross-entropy term for learning the probability of dropouts to increase130

general inference fidelity. Further algorithmic details of DISCERN can be found131

in the methods and Figure S1.132

We first demonstrate DISCERN’s capabilities to faithfully reconstruct gene133

expression using five pancreas single cell expression datasets from 5 different134

studies [29, 30, 31, 32, 33], with varying quality (Tables S1 and S2). The pan-135

creas data is widely used for benchmarking and it is ideal to evaluate expression136

reconstruction for many cell types and sequencing technologies. We consider a137

dataset as hq when the average number of genes detected per cell (GDC) (e.g.138

smartseq2, GDC 6214) is much higher than in a comparable lq dataset (Ta-139

ble S2). Conversely, a dataset is lq when the average cell has lower counts and140

fewer genes expressed than a comparable hq dataset (e.g. indrop, GDC 1887).141

Throughout this text, we will name sequencing technologies with capital (e.g.142

Smart-Seq2, InDrop) and datasets with lower case first letters (smartseq2, in-143

drop). We trained DISCERN on these five pancreatic single cell datasets and144

assessed the integration of data in gene space and the expression reconstruction145

per cell type. While uncorrected data cluster by batch and not by cell type,146

DISCERN-integrated data show good batch mixing and clustering of cells by147

cell type across all five datasets (Figure 1B & Figure S2). To get a clearer148

picture of DISCERN’s expression reconstruction capabilities we next calculated149

correlation coefficients of measured expression between the lowest quality in-150

Drop and highest quality Smart-Seq2 data, before and after expression recon-151

struction using DISCERN. The mean expression reconstruction of indrop-lq to152

smartseq2-hq and smartseq2-hq to indrop-lq data is very accurate, showing a153

Pearson correlation of r = 0.95, while mean expression correlation between un-154

corrected indrop-lq and smartseq2-hq data is only r = 0.77 due to strong batch155

effects (Figure 1C & D, Figures S3 and S4). The improved quality of indrop-156

lq data reconstructed to smartseq2-hq level is validated by the strong increase157

of genes expressed per cell, ranging from ≈2000 genes per cell in the uncor-158

rected indrop-lq data to ≈6000 genes in the indrop-lq data after reconstruction159

(Figure S5).160

We next investigated the effect of reconstruction of three cell type-specific161

genes, before and after correction across the five pancreas datasets (Figure S6).162

Insulin expression in the pancreas should be largely restricted to beta cells [34],163

which can be observed in the uncorrected smartseq2-hq and celseq2 datasets,164

while the indrop-lq batch shows a diffuse pattern of insulin expression across165

cell types (Figure S6A left panel). This diffuse insulin expression is corrected166

by reconstructing the smartseq2-hq expression pattern from the indrop-lq data167

(Figure S6A middle panel). In general, the expected specificity of insulin ex-168

pression in beta cells can be recovered for all datasets when using DISCERN’s169

reconstruction using the smartseq2-hq reference. Conversely, the reconstruction170

from hq to the indrop-lq reference results in diffuse insulin expression across all171

reconstructed datasets (Figure S6A right panel). We obtained similar results for172

the pancreatic acinar cell-specific gene REG1A and the delta cell-specific gene173

SST, both of which show diffuse expression across cell types in the uncorrected174
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inDrop data and cell-specific expression after reconstruction using smartseq2-hq175

reference (Figure S6B & C). Interestingly, DISCERN can not only recover bio-176

logical expression information, but it is also able to apply sequencing method-177

specific effects after reconstruction. The smartseq2-hq dataset, for instance,178

displays nearly no ribosomal protein coding gene expression after sequencing as179

previously reported by [8], while data sequenced using InDrop, Cel-Seq, or Cel-180

Seq2 shows prominent ribosomal protein coding gene expression (Figure S6D,181

left panel). When reconstructing smartseq2-hq data to indrop-lq data, riboso-182

mal protein coding gene expression is re-instantiated (Figure S6D, right panel).183

We further corroborated DISCERN’s capability to integrate and reconstruct184

gene expression in the more complex difftec dataset (Tables S1 and S2), consist-185

ing of 14 single cell peripheral blood mononuclear cell (PBMC) datasets across a186

wide range of technologies. Similar to pancreas, the difftec dataset is widely used187

for benchmarking and it is ideal to evaluate expression reconstruction for even188

more cell types and sequencing technologies. The different single cell technolo-189

gies show large variation in quality, with an GDC ranging from 422 in Seq-Well190

to 2795 in Smart-seq2. We trained DISCERN on these 14 PBMC single cell191

datasets and observed very good integration in gene space (Figure S7). We192

then reconstructed chromium-v2-lq (GDC 795) using a chromium-v3-hq refer-193

ence (GDC 1514) and observed high mean gene expression correlation between194

the reconstructed and reference datasets (Figures S8 and S9). These results195

across 19 single cell datasets provide first evidence for the high-quality data in-196

tegration and expression reconstruction that can be obtained with DISCERN.197

2.2. Specific and robust gene expression inference198

We next investigated the precision and robustness of DISCERN’s expression199

reconstruction in more detail and compared DISCERN’s performance to several200

state-of-the-art algorithms for expression imputation and data integration.201

We explored the robustness of DISCERN to the choice of its hyperparameter202

by testing various non-default combinations of the four hyperparameters influ-203

encing the model training. In all combinations DISCERN was able to achieve a204

pearson correlation of > 0.94 and a correlation of 0.95 with the default param-205

eter when reconstructing the indrop-lq batch to the smartseq-hq batch of the206

pancreas dataset (Figure S10). This provides strong evidence that DISCERN’s207

performance is robust to the choice of hyperparameters.208

Since expression reconstruction can be seen as a generalization of expression209

imputation, we compared DISCERN to DCA, MAGIC, and scImpute, CarDEC,210

and DeepImpute, five state-of-the-art imputation algorithms [11, 12, 13, 14, 15].211

Expression reconstruction can also be viewed as a batch correction task in gene212

space, which is why we additionally compared DISCERN to scGEN, Seurat, tr-213

VAE and scVI [23, 26, 35, 36]. It is important to note, however, that these batch214

correction methods were not designed for the expression reconstruction task and215

use a lower dimensional representation to align different batches. Seurat uses216

canonical correlation analysis and scGEN uses the bottleneck layer representa-217

tion of an autoencoder to calculate and apply linear transformations. trVAE218
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and scVI explicitly encode the conditional information in the autoencoder ar-219

chitecture.220

We compared the ability of these models to adjust expression information221

on the pancreas dataset by reconstructing the indrop-lq expression based on222

the smartseq2-hq expression. Generally deep learning methods, which allow for223

projection (scGEN, scVI, trVAE, DISCERN), show the best performance, with224

DISCERN showing the lowest deviation between cell types (Figure S11). We225

also investigated the gene expression standard deviation on the same data, show-226

ing that DISCERN reconstructs the variation in the indrop-lq best, with scVI227

showing only slightly worse performance (Figure S12). A factor which has a high228

impact on the variation is the number of dropouts found in each gene. While229

most imputation methods try to remove them, we think they contain useful in-230

formation as well [37]. DISCERN is able to capture the batch-specific dropout231

rate much better compared to other batch correction or imputation methods232

(Figure S13). Interestingly deep learning methods, scVI, scGEN, DeepImpute233

and DCA for example, achieve a similar correlation of the dropout rate than234

classical methods, for example Seurat and MAGIC, even if deep learning meth-235

ods seem to be better in reconstruction of mean expression (Figure S11). It is236

important to highlight that the proper estimation of expression variation and the237

dropout rate is pivotal for the reliable computation of differentially expressed238

genes. Since DISCERN displays the best variance estimation, it also achieves239

the best median correlation of the differentially expressed genes (Figure S14).240

To investigate the precision of gene expression reconstruction, we created an241

artificial dataset by dividing the smartseq2-hq pancreas data into two batches,242

smartseq-lq and smartseq2-hq. In the smartseq-lq batch, the top one KEGG243

pathways per cell type were removed by setting the expression of genes con-244

tained in these pathways to zero, while the smartseq2-hq remained unaltered.245

Therefore, a reconstruction of smartseq-lq data using smartseq2-hq reference246

(reconstructed-hq) should ideally recover the smartseq-lq expression to its orig-247

inal state, prior to the removal of the genes. DISCERN is able to reconstruct248

the mean expression for all cell types, achieving a correlation r = 0.99 (Fig-249

ure 2A). DCA (r = 0.66), MAGIC (r = 0.34), scImpute (r = 0.80), Deep-250

Impute r = 0.89 and Seurat (r = 0.76) have significantly lower correlation251

between the smartseq2-hq and reconstructed-hq gene expression (Figure 2A).252

scGen (r = 0.98), scVI (r = 0.99) and trVAE (r = 0.99) show similar perfor-253

mance compared to DISCERN. Moreover, scGEN and trVAE however perform254

worse in reconstruction of highly expressed genes, while scVI slightly overes-255

timates the expression in general (Figure 2A). We obtained similar results on256

the difftec dataset, with DISCERN (r = 0.98) outperforming DCA (r = 0.47),257

MAGIC (r = 0.21), scImpute (r = 0.04), Seurat (r = 0.92), scVI (r = 0.96),258

trVAE (r = 0.95), DeepImpute (r = 0.58), and scGEN (r = 0.94) (Figure S15).259

To further investigate gene expression reconstruction specificity, we compared260

the correlation of reconstructed-hq to smartseq2-hq data after performing dif-261

ferential gene expression (DEG) for each cell type against all other cell types262

(Figure 2B, upper panel). DISCERN is able to recover the correct DEG t-263

statistics with a median correlation of 0.92, improving over state-of-the-art tools264
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by more than 6 percentage points. In the corresponding experiment using the265

difftec dataset, DISCERN achieves a median correlation of 0.86, which is a 21266

percentage point improvement over competing methods (Figure S16).267

Since the genes were initially selected using KEGG gene set enrichment268

analysis, the reconstruction of the corresponding pathways was investigated by269

performing KEGG gene set enrichment analysis on the DEG results. DISCERN270

is able to recover the pathway expression enrichment scores with a median cor-271

relation of 0.88, exceeding the performance of scVI by more than3 percentage272

points on median (Figure 2B, lower panel). In the corresponding experiment273

using the difftec dataset, DISCERN achieves a median correlation of 0.77, out-274

performing Seurat and scGen by more than 16 percentage points (Figure S17).275

While DISCERN outperforms competing algorithms in expression and path-276

way reconstruction correlation, it achieves the fourth-best correlation for the277

DEG fold-change (FC) of reconstructed-hq to smartseq2-hq data for the pan-278

creas (Figure S18) and reconstructed-hq to chromium-v3-hq difftec datasets279

(Figure S19). In both cases Seurat, scVI and CarDEC achieve better corre-280

lation, which is due to the fact that DISCERN slightly underestimates FC in281

favor of superior DEG variance estimation.282

Next, we show DISCERN’s expression reconstruction robustness with re-283

spect to varying sizes of lq to hq data. It is conceivable to assume that a large284

amount of hq data would benefit the expression reconstruction of the lq data,285

which makes it important to understand at what ratio good results can be ex-286

pected. Interestingly, DISCERN seems to be very robust across a wide range287

of smartseq2-lq to smartseq2-hq ratios, with correlations of 0.98 (ratio of lq/hq288

0.14) to 0.93 (ratio of lq/hq 18.4), while the second-best performing algorithm289

scGen showed a 11 percentage point decrease in performance (0.82 for ratio of290

lq/hq 18.4) (Figure 2C, Figure S20). We observed similar results for the corre-291

lation of t-statistics, showing a slight dependence of DISCERN’s performance292

on the lq/hq ratio (Figure S21). In general, all methods show better perfor-293

mance with a small ratio of lq/hq data, while DISCERN and scVI shows least294

dependence and outperform other algorithms in the correlation of expression295

and t-statistics, especially in the case of high lq/hq ratio.296

Another aspect of expression reconstruction robustness is the dependence of297

the algorithm on the cell type or cell state similarity of the lq and hq datasets.298

In the optimal case, DISCERN would not require that the lq and hq datasets299

have overlapping cell types to perform an accurate expression reconstruction,300

which is theoretically possible if the network learns the general gene-regulatory301

expression logic of the hq data (see discussion). To understand the dependence302

on dataset similarity, we removed a complete cell type, pancreas alpha cells,303

from the smartseq2-hq data and left the alpha cells in the smartseq2-lq data.304

We then additionally varied the number of common cells in the lq and hq data,305

starting with no overlapping cells (only alpha cells in the lq and all cells except306

alpha in the hq data) and ending with almost complete overlap (all cells overlap307

between the smartseq2-hq and -lq data, except for the alpha cells only present308

in lq data) (Figure 2D). When evaluating DEG correlation, DISCERN was309

the only method consistently achieving better performance than uncorrected310
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data, outperforming scVI by 2 to 17 percentage points (Figure 2D). Similarly,311

DISCERN was consistently achieving better performance than uncorrected data312

in the FC correlation task (Figure S22).313

We next took a closer look at the integration and expression reconstruction314

performance when no cell types overlap between the lq (alpha cells only) and315

hq (all other cells) data. Notably, Seurat seems to over-integrate cell types,316

mixing smartseq2-hq beta and gamma cells with reconstructed-hq alpha cells317

from other batches (Figure S23), while all other methods keep the smartseq2-hq318

and reconstructed-hq exclusive cell types separate (Figure 2E & Figure S23).319

This over-integration seems to be causal for Seurat’s poor DEG correlation per-320

formance (r = 0.19), while DISCERN (r = 0.55) is the only method achieving321

better performance than uncorrected cells (r = 0.52) (Figure 2F). Thus, DIS-322

CERN is able to keep existing expression correlations and improves the detec-323

tion of cell type specific genes by reconstruction using an hq batch as reference.324

In conclusion, DISCERN is both a precise and robust method for expression325

reconstruction that outperforms existing methods by a significant margin.326

2.3. Improving cell cluster, type, and trajectory identification327

The comparison to competing methods provided evidence for DISCERN’s328

superior expression reconstruction. Now, we will delineate how DISCERN’s329

expression reconstruction improves downstream cell clustering, cell type and330

activity state identification, marker gene determination, and gene regulatory331

network and cell trajectory analysis.332

Batch correction algorithms are usually evaluated by comparing their ability333

to integrate cells coming from the same cell type but different batches, using334

the silhouette score, the adjusted rand index (ARI), and adjusted mutual infor-335

mation (AMI). DISCERN often outperforms all competing methods across all336

metrics, achieving state-of-the-art performance in batch mixing and cell type337

clustering (Figures S24 to S26).338

To understand if cell-determining gene expression and pathways could be339

recovered with expression reconstruction, we used a single nuclear sequencing340

(sn-lq) and scRNA-seq (sc-hq) data pair that was prepared from the same liver341

metastasis biopsy [38]. We reconstructed sn-lq data using the sc-hq reference,342

obtaining reconstructed-hq data. While single nuclear sequencing provides re-343

duced expression information in the average counts per cell as compared to344

scRNA-seq (Table S2) [38], it is still the method of choice to obtain cell-specific345

expression information when intact single cells cannot be recovered from a tis-346

sue (e.g. after tissue fixation or freezing). It is important to note that nuclear347

transcripts reflect current gene activity, which in part might not correlate with348

transcripts that have lifetimes of up to days. Before integration, the sn-lq and349

sc-hq datasets cluster by batch and not by cell type, while after expression350

reconstruction with DISCERN cells cluster by type and not by batch (Fig-351

ure S27). This is reflected in an expression correlation of 0.49 (sc-hq vs. sn-lq)352

before and 0.97 after reconstruction (sc-hq vs. reconstructed-hq) (Figure S28).353

DISCERN reconstruction resulted in the expression of T cell receptor signaling354

genes in reconstructed T cells (Figure S29) and antigen presentation genes in355
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macrophages (Figure S30), providing evidence that DISCERN faithfully recre-356

ates cell-determining genes and pathways based on the hq data. Seurat, CarDEC357

and scImpute are not able to reconstruct the expression information and show358

a similar expression pattern as the uncorrected sn-lq dataset. In their recon-359

structions (seurat-hq, CarDEC–hq, scImpute-hq and sn-lq) the expression of360

important T cell marker genes such as CD3E, CD3D and CD8A is largely ab-361

sent, while in sc-hq and DISCERN-hq the expression is easily detectable (Fig-362

ure S29). DCA, scVI,scGEN, MAGIC and trVAE show a strongly disturbed363

expression pattern, where many genes show a much larger expression than in364

the sc-hq or the sn-lq datasets (Figures S29 and S30).365

To further corroborate the advantage of single nuclear expression recon-366

struction, we next aimed to increase the T cell subtype resolution of human367

single nucleus acute kidney injury data (kidney-lq) by using matching single368

cell data (kidney-hq). Only 1% of kidney-lq nuclei show CD3D, CD3E or369

CD3G expression, compared to 7% of the cells in the kidney-hq dataset. Seu-370

rat and DISCERN were able to detect T cells in the reconstructed kidney-lq371

(reconstructed-hq) and the kidney-hq data with notable CD3D expression in372

this cluster (Figure S31). The reconstructed-hq and the kidney-hq T cells were373

further classified into T cell subtypes and activation states (Figure S31C). While374

a large proportion of T cells detected in Seurat reconstructed data could not375

be annotated due to missing CD3D, CD4, and CD8A expression, DISCERN376

reconstructed data does not present these limitations.377

It is intriguing to observe that many marker genes are still hard to detect in378

kidney single cell RNA-seq data but also in the antigen presentation pathway379

in macrophages (Figure S30). This is most probably due to dropout. Thus, we380

rationalized that bulk RNA sequencing (RNA-seq) data of purified cell types381

(e.g. FACS sorted immune cells) is a suitable hq proxy for the expected gene382

expression per cell. RNA-seq data of purified cells is readily available from383

public repositories, making it possible to obtain thousands of purified immune384

cell RNA-seq samples (see methods). We therefore set out to increase cluster,385

cell type, gene regulatory network, and trajectory identification of scRNA-seq386

data by reconstructing gene expression using a related RNA-seq reference (Fig-387

ure S32). For the scRNA-seq data we chose a cord blood mononuclear cite-388

seq dataset (cite-lq) that was labeled with 15 antibodies (Table S3) to allow389

for surface protein-based cell type discovery [39]. The CITE-seq information390

allowed us to confirm expression reconstruction by DISCERN in cases where391

gene expression is absent but protein expression and cell identity are validated392

via antibody labeling. For the RNA-seq data, we selected 9852 purified immune393

samples (bulk-hq) and proceeded to reconstruct cite-lq (GDC 798) using a bulk-394

hq (GDC 13 104) reference to obtain reconstructed-hq data with DISCERN. We395

first investigated the correspondence of gene expression prior (cite-lq) and post396

reconstruction (bulk-hq) with antibody-based surface protein labeling of CD3D,397

CD4, CD8A, CD2, B3GAT1, FCGR3A, CD14, ITGAX and CD19 (Figure 3A,398

Figure S33). For several proteins (CD8A, B3GAT1, CD4), the corresponding399

cite-lq gene expression was absent and cell type-specifically re-instantiated in400

the reconstructed-hq expression data with DISCERN (Figure 3A, Figure S33).401
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In cases where cell type-specific gene and protein expression matched cite-lq402

data (CD3D, CD14 ) the expression in reconstructed-hq data was left unaltered403

(Figure S33). In some instances, we observed low cell type-specific expression404

in the cite-lq data (CD8A, CD2, FCGR3A, CD19 ) that matched protein ex-405

pression (Figure S33). In these cases, gene expression was increased in the cor-406

rect cell types in the reconstructed-hq data. In general, we observed increased407

agreement between cell type-specific surface protein and gene expression af-408

ter reconstruction, showing that DISCERN doesn’t invent or ‘hallucinate’ cell409

types but reconstructs the expected expression specific for each cell type. We410

further corroborated these results by selecting eight known cell type-specific411

cytosolic proteins and investigated their expression before and after expression412

reconstruction. MS4A1 (B cells), IL7R (CD4+ T cells), MS4A7 (Monocytes),413

GNLY and NKG7 (NK cells) showed consistent expression before and after414

reconstruction (Figure S34). The chemokine receptors CCR2 (Monocytes, ac-415

tivated T cells), CXCR1 (NK cells), and CXCR6 (CD8+ T cells) showed the416

correct cell type-specific expression only after expression reconstruction (Fig-417

ure S34) [40]. It is notoriously hard to obtain cell subtype-specific information418

from blood mononuclear scRNA-seq data, especially for CD4+ T helper cells due419

to their limited activation status in healthy individuals. This doesn’t mean that420

polarized CD4+ T helper cells do not exist in healthy blood, as they are com-421

monly detected after stimulation using FACS (Table S3) [41]. This lack of reso-422

lution in scRNA-seq impedes clustering, marker gene, and trajectory analyses, a423

drawback that could be overcome using DISCERN’s expression reconstruction.424

We therefore compared CD4+ T cell (gene expression of CD4 > 1 and CD3E425

> 2.5) clustering and subtype identification using cite-lq and reconstructed-hq426

data. While clustering with the leiden algorithm [42] using highly variable genes427

of cite-lq data resulted in an unstructured distribution of CD4+ T cell subtypes428

(Figure 3B), clustering of reconstructed-hq data yields detailed insights into429

T helper cell subtypes of blood mononuclear data (Figure 3C). After recon-430

struction, we were able to characterize TH17, TH2, TH1, HLA-DR express-431

ing TREG (Active TREG), naive CD4+ T cells (CD4 naive), effector-memory432

CD4+ T cells (CD4 EM), central-memory CD4+ T cells (CD4 CM), and effector433

cells expressing IFN-regulated genes (IFN regulated) (Figure 3C). We selected434

published cell-determining marker genes and observed that many of them were435

dropped out in the uncorrected data but were present after reconstruction (Fig-436

ure S35). The absence of marker genes in uncorrected data results in poor437

clustering and cell type identification, while single positive cells are detectable438

in the respective neighborhood identified by reconstructed counts (Figure S35).439

Importantly, we observed that in all cases the DISCERN-estimated proportions440

of T helper subsets fall within the range of expected proportions as assessed by441

previous FACS studies (Table S3, Figure S36). These findings are important,442

as they prove once more that DISCERN discovers the correct cell subtypes and443

cell proportions, in this case substantially outperforming the available CITE-seq444

information in cell subtype resolution.445

To further verify the cell type annotations, we extracted the top cluster-446

determining genes from the reconstructed-hq data. Members of the TNF-447
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receptor superfamily are known to be expressed in T helper cell subtypes [43],448

which can be observed after reconstruction in TH17 cells and partially in TH1,449

TH2, Active TREG and IFN regulated cells (Figure S37). Similarly, recon-450

structed TH1 cells show the expected high expression of granzymes GZMK and451

GZMA [44], while MIAT and HLA expression are found in activated TREG452

cells after reconstruction (Active TREG cluster, Figure S37) [45, 46]. NOG ex-453

pression is detected in reconstructed CD4 naive cells, as previously described454

[47]. In addition, reconstructed CD4 naive, CD4 EM and CD4 CM show low455

expression of the genes important for the T helper subtypes TH1, TH2, TH17,456

Active TREG and IFN regulated. We further corroborated our cell type anno-457

tation of reconstructed-hq data by observing the expected expression of several458

established T cell subtype markers (Figure S38). We compared these newly459

found clusters to representations found with Seurat, multigrate, and in uncor-460

rected cite-lq data. The uncorrected cite-lq data manifests cluster separation461

for some cell types, most notably IFN regulated and Active TREG cells (Fig-462

ure S39A). Seurat reconstruction and multigrate imputation with CITE-seq463

information results in the mixing of cell types and clusters (Figure S39B & C).464

A further comparison to Bfimpute and SCRABBLE was impossible due to the465

dataset size, as outlined in the introduction.466

Similar to improved clustering and cell subtype detection, DISCERN reconstructed-467

hq data resulted in improved gene regulatory network inference with SCENIC468

[48]. SCENIC infers transcription factor-regulated gene expression modules469

of single cell data. While cite-lq data resulted in a scattered distribution of470

transcription factor networks across several T helper cell subtypes, SCENIC471

with reconstructed-hq data showed transcription factor regulation in the cor-472

rect subtypes (Figure 3D). After expression reconstruction the IKZF2 regulon473

is detected in activated TREG cells [49] and the MAF regulon is found in differ-474

entiated CD4+ T cells but not in naive CD4+ T cells [50]. A weak signal of the475

MAF regulon is already detectable in the cite-lq data, yet strongly increased in476

reconstructed-lq, while maintaining differentiated T helper cell specificity (Fig-477

ure 3D). Furthermore, after reconstruction with DISCERN we could identify478

the TH17 associated master transcriptional regulators RORC(+) and RORA(+)479

[51], which were scattered over all TH17 cells before reconstruction (Figure S40).480

Seurat is able to partially reconstruct the expression of the RORC(+) regulon481

but fails to detect the more specific RORA(+) expression (Figure S40).482

Finally, we wanted to investigate if DISCERN could also enhance cell trajec-483

tory analyses with Slingshot of the citeseq data [52]. We focused on the differen-484

tiation of effector and other T helper cell subtypes and found five lineages that485

either pass through or terminate in the effector cell cluster in reconstructed-hq486

data (Figure 3C). Two trajectories were of special interest to us: Lineage1 from487

CD4 naive to TH1 cells (Figure S41) and Lineage2 from CD4 naive to TH17488

cells (Figure S42). While the expression change along the trajectory in uncor-489

rected data (Figure S41A, Figure S42A) is hardly visible, cell type-specific clus-490

ters can be easily observed after DISCERN reconstruction (for lineage details491

see Figure S41B, Figure S42B). The detailed insights into cell differentiation492

that we obtained with reconstructed data are in stark contrast to the Slingshot493
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results obtained with cite-lq data. While terminal effector molecules can be de-494

tected with cite-lq data and seurat-hq data, intermediate stages remain hidden,495

which prohibits the detection of trajectories and results in a shuffling of marker496

gene expression (Figures S41 and S42). Taken together these results highlight497

how expression reconstruction using DISCERN improves downstream analyses498

and yields deeper biological insights into cell type and state identification, gene499

regulation, and developmental trajectories of cells.500

2.4. Discovering COVID-19 disease-relevant cells in lung and blood501

The previous sections have demonstrated DISCERN’s utility to reconstruct502

single cell expression data based on an hq reference, vastly improving the detec-503

tion of cell (sub-) types and their signaling. Given these advantages, we won-504

dered if DISCERN’s expression reconstruction could deepen our understanding505

of cell type-composition and signaling changes of immune cells in COVID-19506

disease (Figure S43), using two published datasets [53, 24]. To obtain best re-507

construction results, we again resorted to using bulk-hq immune reference data508

(Table S1) [54], as outlined in the previous section.509

First, we used a COVID-19 blood dataset (covid-blood-lq) with limited cell510

type resolution, which was originally analyzed by our group using Seurat (Ta-511

ble S1) [24]. While CD4+, CD8+, and NK cells formed separate clusters we512

were unable to visibly distinguish subpopulations of these cells in covid-blood-513

lq data [24]. Reconstruction of gene expression using bulk-hq data led to the514

identification of 24 subtypes of CD4+ and CD8+ T cells in covid-blood-hq data515

(Figure S44). Several cell clusters identified in covid-blood-hq data showed the516

correct cell type-specific marker gene expression in covid-blood-lq data, albeit517

in fewer cells, reduced in magnitude, and in some cases less specific (Figures S45518

and S46). Reconstruction also led to the identification of CD4+ TH17 helper519

cells that express RORC Figure 4A & B, Figure S47). Based on the molecular520

footprint of these TH17 cells they were further subdivided into TH17 cluster1521

that exhibits a memory T cell phenotype with elevated IL7R expression and522

TH17 cluster2 that exhibits an activated T cell phenotype with elevated MHC-523

II, CCR4 and RBPJ expression (Figure 4B, Figure S47). The expression of524

RBPJ is of particular interest, as it is linked to TH17 cell pathogenicity, sug-525

gesting a role of pathogenic TH17 cells in COVID-19 [55]. It is common practice526

to stimulate memory T cells in vitro to trigger IL-17A production and a shift527

towards a TH17 phenotype was previously described in COVID-19 [56]. With528

DISCERN we are able to distinguish these cells in COVID-19 patient blood529

without stimulation, identifying cytokine producing memory cells with a TH17-530

like phenotype (Figure S47).531

To further validate the existence of activated TH17 cells in COVID-19 pa-532

tient blood, we next analyzed the corresponding lung data (covid-lung) of the533

patients for shared T cell receptor clones (Figure S48). The underlying assump-534

tion is that cells with the same T cell receptor in lung and blood originate535

from the same progenitor and therefore have a high probability of belonging536

to the same cell type. For this comparison we used the cell type annotation537

and representation of our original analysis of the covid-lung data, in which538

13

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.03.09.483600doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483600


memory T and TH17 cells were readily observed without reconstruction [24].539

TH17 cluster1 cells showed strong clonal overlap with covid-lung CD4+ memory540

T cells (Figure S48) and expressed comparable levels of RORC to covid-lung541

effector memory TH17 cells (Figure S49), indicating that these CD4+ central542

memory T cells could be TH17 (-like) cells. TH17 cluster2 in blood exhibited543

strong clonal overlap with effector memory and resident memory TH17 cells544

in covid-lung data (Figure S48) that express RORC and IL-17A (Figure S49).545

Using the clonotype information of resident memory cells producing IL-17A in546

inflamed lung (TRM17), we further corroborated the existence of the newly547

identified population of IL-17A-producing TH17 cells in reconstructed COVID-548

19 blood data (Figure S48). In general, the T cell receptor clonal information in549

blood and lung therefore corroborated our cell type annotation in covid-blood-550

hq data.551

To understand the role of T cell subtypes in COVID-19 disease progression552

we analyzed a second blood single cell dataset (covid-blood-severity-lq) contain-553

ing disease-severity information for 130 COVID-19 patients [53]. To obtain opti-554

mal cell type resolution, we combined the covid-blood-severity-lq T cell data[53]555

with CD3+ covid-blood-lq cells [24] and reconstructed gene expression for the556

combined dataset using bulk T cell sequencing reference data[54], resulting in557

covid-blood-severity-hq data. Many of the 15 CD4+ T cell clusters identified in558

covid-blood-severity-hq data (Figure S50) were also present in the covid-blood-559

hq data, further validating the consistency of our cell type identification. This is560

also corroborated by the available surface protein data for covid-blood-severity561

data, substantiating that naive cells are CD45RA, memory cells are CD45RO,562

and effector cell types are CD45RO positive (further details in Figure S51). We563

compared the clusters that we identified in the covid-blood-hq with clusters iden-564

tified in the covid-blood-severity-hq data and found confined and overlapping565

regions of TFH, TH17 cluster1, and TH17 cluster2 cells (Figure S52). We also566

compared the identified clusters to clusters defined in the original publication567

(Figure S53). Cells identified as TFH in the original publication show signif-568

icant overlap with naive CD4+ T cells (defined on transcriptome and protein569

level) and CD4+ IL22+ cells (CD4.IL22) show marked overlap with TREG cells.570

These results confirm once more the precise and robust cell type identification571

that can be achieved with DISCERN.572

Interestingly, we also identified two rather unexpected cell types after re-573

construction. One cluster is positive for CD4 and negative for CD8A while574

otherwise expressing a signature of CD8+ effector memory cells with high ex-575

pression of GZMB, GZMH and PRF1 (Figure 4D & 4E). This signature points576

to a CD4+ cytotoxic phenotype and indeed virus-reactive CD4+ cytotoxic cells577

were described to be increased in blood during COVID-19 [57]. The other cell578

type expresses CD8, IL6R, and GATA3, while being negative for SLAMF7 (Fig-579

ure 4D & 4E). These cells were described in the literature to be CD8+ T helper580

cells [58], exert T helper function, and have been shown to lack cytotoxicity.581

They lack expression of a significant number of cytokines and key transcription582

factors pointing to a TH17 or TH22 phenotype. On a protein level these cells583

express CCR4, while being negative for CCR6, making them cytolytic CD8+ T584
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helper type 2 cells (Tc2) cells. Part of this cluster overlaps with CD4 single-585

positive cells and might explain why T helper type 2 cells are missing in the586

CD4 cell clustering.587

Overall, the highly specific and sensitive cell type identification in covid-588

blood-severity-hq data enabled us to correlate the five COVID-19 disease sever-589

ity categories to shifts in cell type and activity information. We first validated590

the decrease in TFH cells with increasing disease severity, as described in the591

original work (Figure S54) [53]. TH17 cells have been extensively studied using592

flow cytometry and in accordance with our results MHC-II positive as well as593

CCR4 positive cells were described in COVID-19 patients (Figure 4B) [56]. We594

observed a strong decrease in naive T helper cells in severe disease, most pro-595

nounced for naive TREGs, while the fraction of TH17 cells showed little correla-596

tion with disease severity (Figure S54). Of the two mixed cell types we detected597

in COVID-19 data, cytotoxic CD4+ cells were increased in moderate and severe598

disease (Figure S55). A similar increase is visible in patients with severe respi-599

ratory disease without COVID-19 (Figure S56) and these cells might therefore600

be a general marker of severe respiratory illness. Cytolytic CD8+ Tc2 cells are601

increased in patients with severe symptoms and in those who died from COVID-602

19 (Figure S55) and are described to be reduced after recovery from COVID-19603

[59]. This positive correlation and the known role of Tc2 cells in fibroblast604

proliferation induction and tissue remodeling could pinpoint a mechanistic role605

of these cells in lung fibrosis as witnessed in severe COVID-19 patients. The606

possibility to observe these cells in reconstructed single cell data may pave the607

way to study the functional role of these cells in adverse COVID-19 outcome.608

The relatively strong correlation of some cell types with COVID-19 out-609

come suggests that blood cell fraction information might be used for patient610

severity prediction. We trained a Gradient Boosting Machine (GBM) using611

leave-one-out-cross-validation (LOOCV) on the fractions of all T cell types and612

performed a forward feature elimination, to obtain a sparse, optimal model for613

patient blood-based severity prediction. We first classified patients into three614

groups, mild (union of asymptomatic and mild, n = 26), moderate (n = 26),615

and severe (union of severe and critical, n = 19), reaching an AUROC of 0.63616

(Table S4). We noticed that the mild and moderate groups were indistinguish-617

able for the classifier (Figure S57). Training a GBM classifier on mild and severe618

cases substantially increased classification performance, reaching an AUROC of619

0.81 and accuracy, and F1 score of 0.82 (Table S4, Figure 4F &G). Compared620

to the original T cell types and fractions reported (accuracy 0.61) [53], DIS-621

CERN reconstructed T cell fractions are 33% more accurate in the prediction622

of COVID-19 disease severity (Figure 4G, Table S4). This classification improve-623

ment is remarkable, given that DISCERN has no notion of disease severity when624

it reconstructs gene expression. These results further demonstrate DISCERN’s625

precise and robust expression reconstruction that enabled the discovery of a626

potential new blood-based biomarker for COVID-19 severity prediction.627
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3. Discussion628

The sparsity of gene expression information and high technical noise in sin-629

gle cell sequencing technologies limits the resolution of cell clustering, cell type630

identification, and many other analyses. Several algorithms such as scImpute,631

MAGIC, DeepImpute, and DCA have addressed this problem by imputing miss-632

ing gene expression in single cell data by borrowing expression information from633

similar cells within the same dataset. While gene imputation clearly improves634

gene expression by inferring values for dropped out genes, it comes with several635

shortcomings. Andrews and Hemberg (2018) showed that several state-of-the-636

art imputation tools increase the number of false positives [60] by imputing637

biological absent genes. Additionally the data generated by imputation meth-638

ods often violate the statistical assumptions made by downstream algorithms,639

e.g. negative binomial distribution. Furthermore, imputation relies on the com-640

parison of similar cells with largely absent gene expression information in the641

same dataset. With DISCERN we approach to gene expression inference of sin-642

gle cell data, by realistic reconstruction of missing gene expression in scRNA-seq643

data using a related dataset (single cell or bulk RNAseq) with more complete644

gene expression information. We thus propose to call this procedure ‘expression645

reconstruction’ to highlight the fundamental difference to classical imputation646

and refer to the dataset with missing gene expression information as low qual-647

ity (lq) and the reference dataset as high-quality (hq). We considered a dataset648

high quality, if it showed a good tradeoff between the mean number of expressed649

genes and the cell number. For example in the pancreas dataset the smartseq2650

(6214.0 genes) and the fluidigmc1 (8127.4 genes) show a the highest number of651

expressed genes, but the fluidigmc1 batch only consists of 638 cells compared652

to the smartseq2 batch with 2394 cells, thus we selected the smartseq2 batch as653

the high-quality batch. However, DISCERN does not require the definition of654

a high quality batch a priori and it can depend on the scientific question, e.g. a655

specific batch shows enriched expression of specific genes. In this case the eval-656

uation of multiple reconstructions with different “high quality” batches can be657

useful. Furthermore, the use of the dropout estimation procedure in the decoder658

allows to achieve a single-cell data-like distribution of the reconstructed data659

and thus is not as strongly violating statistical assumption of downstream anal-660

ysis. Thus, we consider DISCERN as an approach for expression reconstruction661

including batch correction, where the reference does not need to be defined a662

priori and can come from single cell as well as bulk RNAseq experiments, which663

enables DISCERN to improve over current state-of-the-art batch correction and664

imputation methods.665

We provide compelling evidence that our reference-based reconstruction out-666

performs contemporary expression imputation algorithms as well as batch cor-667

rection algorithms such as Seurat, scGen, scVI, and CarDEC when they are668

repurposed for expression reconstruction. To obtain an objective and thorough669

performance evaluation for expression inference, we used seven performance670

metrics on 19 datasets, including 12 single cell sequencing technologies. These671

datasets cover a range of differences, both technical and biological. While we do672
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not distinguish them in this work, DISCERN could be conditioned on technical673

as well as biological differences to, for instance, generate ‘diseased’ expression674

programs from healthy data. We focused our performance evaluation on three675

scenarios with available ground-truth information, i) the in silico creation of676

defined gene and pathway drop out events in scRNA-seq data, ii) published677

hq and lq data pairs from the same tissue (pancreas, difftec, sn/scRNA-seq678

datasets), and iii) CITE-seq protein expression as ground-truth for cell types679

(citeseq dataset). In total, DISCERN achieved best performance in 21 out of 27680

experiments. While DISCERN yields first place to other methods in FC expres-681

sion correlation comparisons, it always obtains best results across all datasets682

in gene expression, gene regulatory network analysis, pathway reconstruction,683

and cell type and activity identification and is the most stable algorithm for684

different lq to hq size ratios and cell type overlaps. Furthermore it reaches best685

performance in several batch correction evaluation metrics.686

It is important to note that DISCERN is a precise network that models687

gene expression values realistically while retaining prior and vital biological in-688

formation of the lq dataset after reconstruction. The network is also robust689

to the presence of different cell types in hq and lq data, or an imbalance in690

their relative ratios, and is robust to ‘hallucinating’ hq-specific cells into the lq691

data. Thus, DISCERN evidently shows less increase in the number of false pos-692

itives compared to other data smoothing and imputation algorithms. Several693

algorithmic choices are the foundation of DISCERN’s precision and robustness.694

The network was designed to model the sequencing-technology-specific and the695

underlying biological signals in separate components of its architecture. Dis-696

entanglement of those two components is necessary to accurately reconstruct697

expression information in the case where lq and hq datasets have different con-698

tent, i.e. cell type compositions. If the component designed to model the effect699

of sequencing technology also captures the difference in the biological signal,700

the reconstruction will lead to a lack of integration across the two datasets701

where some cell types are still clustered by dataset (similar to scGen in Fig-702

ure S27). On the contrary, if the component modeling the biological signal703

captures sequencing-technology-specific features, the reconstruction will lead704

to an over-integration of the datasets where cells of different types are mixed705

together (similar to Seurat in Figure S23). The demonstrated ability of DIS-706

CERN to avoid those shortcomings, even in scenarios where there is very little707

to no overlap between cell types across datasets, lies in the carefully crafted708

balance between the expressivity of its components. The representational capa-709

bilities of DISCERN, achieved via batch normalization, five loss terms, and a710

dual head decoder, would reduce DISCERN’s usability, if they would require fre-711

quent dataset-specific tuning. The stability and usability was therefore a central712

concern in the design and evaluation phase of DISCERN, which resulted in an713

algorithm that gave very good results with a single set of default (hyper-) param-714

eters. All comparisons to other algorithms, for instance, were performed with715

default settings. Only the expression reconstruction of the exceptionally large716

COVID-19 datasets required the fine-tuning of the learning rate, cross entropy717

term, sigma, and the MMD penalty term. Another important technical feature718
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of DISCERN is that it can easily be integrated into existing workflows. It takes719

a normalized count matrix, as created by nearly all existing single cell analysis720

workflows, as input and produces a reconstructed expression matrix. This can721

be used for most downstream applications (i.e. cell clustering, cell type identifi-722

cation, cell trajectory analysis, and differential gene expression). DISCERN can723

be trained on standard processors (CPU) for small and medium-sized datasets724

and requires graphical processing units (GPU) for the expression reconstruction725

of large datasets. Altogether, the usability and robustness of DISCERN should726

enable even non-expert users to perform gene expression reconstruction.727

A unique feature of DISCERN is the use of an hq reference to infer biolog-728

ically meaningful gene expression. While we consider this a main strength of729

DISCERN, the dependence on a suitable reference dataset might also limit its730

application. We took great care in this manuscript to mitigate this concern by731

showing how DISCERN is able to reconstruct gene expression for many differ-732

ent types of lq and hq pairs, ranging from indrop - smartseq2 to single nucleus733

- single cell data pairs. Remarkable in this context is DISCERN’s robustness734

to differences between the cell type compositions of lq and hq data pairs, with735

DISCERN being the only algorithm obtaining robust expression reconstruction736

when few or no cell types overlap. We have also shown that purified bulk RNA-737

seq samples can be used as hq reference, as successfully applied to PBMC and738

COVID-19 datasets in this study. We used 9852 FACS purified immune cell739

bulk sequencing samples [54], comprising 27 cell types, to successfully recon-740

struct single cell expression data. This implies that most single cell studies741

involving immune cells (with or without other cell types present) can be re-742

constructed with DISCERN using a single published bulk RNA-seq dataset.743

Furthermore, public RNA-seq repositories such as NCBI GEO contain tens of744

thousands of samples of immune and non-immune cells that could serve as refer-745

ence for most expression reconstruction experiments. Conversely, pure cell type746

or subtype bulk RNA-seq data could be hard to obtain as the sorting of cells747

might have limited resolution or might be partially impure. In consequence,748

the usage of bulk RNA-seq data as reference for expression reconstruction could749

lead to a grouping or averaging of cell subtypes. While these potential caveats750

might adversely affect expression reconstruction, we have not observed merging751

or averaging effects of single cell subtypes when corresponding bulk RNA-seq752

cell type information was not present or present at different proportions (Fig-753

ure 3B & 3C, Figure S36). Importantly, cells do not necessarily cluster into754

distinct classes but can build cell continua, as shown in the trajectory analy-755

sis in Figure 3B & 3C, where T cells seem to differentiate into each other and756

do not form clearly separable clusters. In general, handling continua of cell757

types is challenging for imputation and batch correction algorithms, as many of758

them, including for instance scGEN, Bfimpute, SIMPLEs, and cscGAN, require759

or recommend cluster or cell type annotation. This might lead to under- or760

over-integration of cell continua. DISCERN does not rely on cluster (or cell761

type) information and seamlessly integrates and reconstructs cell clusters and762

continua (Figure 3C, Figure S44). In conclusion, we provide strong evidence763

that DISCERN is widely and easily applicable to many single cell experiments.764
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While DISCERN gave good reconstruction results using default parameters765

for most datasets we analyzed, we would like to highlight that the immense766

representational power of generative neural networks can remove or hallucinate767

biological information if not properly handled [6]. This is true for data integra-768

tion [61, 62] as well as for expression reconstruction algorithms and we would769

highlight two guiding principles for optimal results. For non-expert users, we770

would recommend the use of default settings and a careful selection of a re-771

lated hq dataset. When datasets are large and complex, with many cell types772

in the lq and several non-overlapping cell types in the hq data, one should al-773

ways ensure that training does not merge or mix non-overlapping cell types with774

other cells, by investigating that these cells keep their cell type-specific marker775

gene expression. Keeping these ‘checks and balances’ will usually result in good776

reconstruction results even for complex datasets such as covid-blood-severity.777

To obtain novel insights into COVD-19 disease mechanisms and a new blood-778

based biomarker for disease severity we reconstructed two published datasets779

with DISCERN, Hamburg COVID-19 patients (covid-lung, -blood) and the780

COVID-19 cell atlas (covid-blood-severity). The application of DISCERN to781

the covid-blood dataset (COVID-19 patient blood) enabled us to detect 24 dif-782

ferent immune cell types and activity states, which is quite remarkable given783

that we find these cells in blood. Two TH17 subtypes caught our attention, as784

they share the TCR clonality with the lung data from the same patients (covid-785

lung), suggesting bloodstream re-entry of lung TH17 cells. We linked these two786

subclusters to their functional role by separating them into a memory-like and787

activated-like phenotype. The clonal overlap of activated TH17 cells in blood788

with previously discovered lung-resident cells suggests that activated TH17 cells789

in blood are resident T cells from the lung reentering circulation. These cells790

might in part explain the multi-organ pathology observed in COVID-19, as791

activated T cells might travel via the blood to secondary organs and cause in-792

flammation and tissue damage. Future work might demonstrate the effect of793

these activated T cells on tissue inflammation.794

Given the detailed cell type and activity information we reached with gene795

expression reconstruction, we wondered if changes in blood immune cell popu-796

lations might be useful as a biomarker for disease severity prediction. We used797

DISCERN to reconstruct the covid-blood and the covid-blood-severity datasets798

and again identified a plethora of different T cell subtypes in the blood of pa-799

tients with COVID-19. Using these cell proportions, we were able to classify800

mild and severe disease using a GBM machine learning algorithm with 82%801

accuracy, outperforming classification with the originally published T cell types802

by 21 percent points. This improvement is absolutely striking, as DISCERN803

has no notion of the classification groups. It simply reconstructs gene expres-804

sion and thereby improves cell type detection. These results are a convincing805

implicit proof not only of the usefulness of DISCERN but more importantly of806

its precision and robustness. While the use of this scRNA-seq-based biomarker807

would be too expensive and time-consuming for clinical care, it strongly suggests808

that FACS-based T cell fraction or count information from blood could be used809

to trace and predict the severity state and potentially the disease trajectory of810
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COVID-19 patients.811

Interestingly, we also discovered two atypical T cell types in reconstructed812

COVID-19 patient blood single cell data. While cytotoxic CD4+ T cells have813

been observed in COVID-19, we can show that this increase is not COVID-19814

specific and is also observed in other types of pneumonia. Interestingly, we also815

detected cytolytic CD8+ Tc2 cells that express CD8A, GATA3, IL6R and are816

negative for SLAMF6. This cell type is linked to tissue fibrosis and steroid817

refractory disease in asthma [63]. The increase in CD8+ Tc2 cells that we ob-818

serve specifically in COVID-related death could be associated with COVID-19819

patients that do not respond to steroids. Demonstration of increase of this cell820

type in patients dying of COVID-19 points to a potential therapeutic inter-821

vention with the drug Fevipiprant, which blocks CD8+ Tc2 cell activation and822

its pro-fibrotic effects by inhibiting prostaglandin D2 signaling [64]. Functional823

analysis of these cells has to demonstrate whether these cells are an early marker824

of later death or whether it is a marker of already escalated treatment.825

The basic concept of utilizing a high-quality reference to improve lower qual-826

ity data might be applied to many other research areas where technological827

limitations restrict biological insights. The usage of deep generative networks828

and other artificial intelligence methodology to infer information beyond what829

is technically measurable could be transformative in future biomedical research.830
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Main figures854

Figure 1: Integration and expression reconstruction of single cell sequencing data. A: DIS-
CERN transfers the style of a high-quality (hq) dataset to a related low quality (lq) dataset,
enabling gene expression reconstruction that results in improved clustering, cell type identi-
fication, marker gene detection, and mechanistic insights into cell function. The hq and lq
datasets have to be related but not identical, containing for example several overlapping cell
types but also exclusive cell types of cell activity states for one or the other dataset. B: t-SNE
visualization of the pancreas dataset before reconstruction (original) and after transferring
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the style of the smartseq2 dataset using DISCERN (p-smartseq2). The upper row shows the
dataset of origin before and after projection colored by batch and the lower row colored by cell
type annotation (details of 13 cell types in supplements). C and D: Average gene expression
(over all the cells of a given type) of the pancreas indrop and smartseq2 datasets before (first
column and panel) and after smartseq2 to indrop (second column and panel), and after indrop
to smartseq2 projection (third column and panel). C: Gene correlation by cell type shown
in colored heatmap. D: Each colored point represents a single gene colored by the cell type.
The mean Pearson correlation with one standard deviation over all cell types is shown in the
figure title.

Figure 2: Expression reconstruction benchmark of DISCERN and five state-of-the-art batch
correction and imputation algorithms. A: Comparison of the expression reconstruction perfor-
mance of Seurat, scGEN, MAGIC, scImpute, DCA, scVI, trVAE, DeepImpute, and DISCERN
using smartseq2 data. The smartseq2 data was split into a smartseq2-lq and a smartseq2-hq
batch. The smartseq2-lq batch was modified such that the expression of all genes of a cell type
determining pathway (top ranked by GSEA) was set to zero. The expression of the in silico
altered pathway genes was then compared between reconstructed-hq data and the unaltered
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smartseq2-hq data. B: Differential gene expression and pathway enrichment correlation of the
reconstructed-hq to the expected values before removal. The smartseq2-lq data was the same
as in A. The DEG analysis was restricted to genes which were removed in the smartseq2-lq
batch. Correlation of the DEG analysis was based on the t-statistic and for the pathway
enrichment analysis on the normalized enrichment scores. C: Mean expression correlation of
reconstructed-hq with the expected expression in smartseq-hq data for different ratios of lq to
hq data. The standard deviation indicates the deviation in correlation of the cell types. The
datasets were created as described in A. D: Alpha cells were removed from the smartseq-hq
batch and left in the low quality batches. The number of overlapping cell types between
the hq and lq data was then altered by removing cell types, which overlap between lq and
hq data, from the lq data before preprocessing and expression reconstruction. The ratio of
the intersection size to to the total number of cell types is shown on the x-axis. The y-axis
shows the correlation of the t-statistics of alpha cells from lq-batches vs other cells from the
smartseq2 batch with ground truth alpha cells from the smartseq2 batch vs other cells from
the uncorrected smartseq2 batch. We used Spearman rank correlation for the comparison,
since no gene subset was used. E: t-SNE visualization of the cell type removal experiment
where alpha cells are removed from the smartseq2 batch and all non-alpha cells are removed
from the lq-batches, such that there is no overlap between lq and hq. F: Spearman correla-
tion of the t-statistics of alpha cells from lq-batches vs other cells from the smartseq2 batch
with ground truth alpha cells from the smartseq2 batch vs other cells from the uncorrected
smartseq2 batch. The dataset was the same as in E (no cell type overlap between hq and lq
data). The dotted line indicates the correlation achieved without reconstruction.
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Figure 3: Expression reconstruction improves downstream analyses including cell identifica-
tion, gene regulation, and trajectory inference. The cite-lq dataset was reconstructed using
bulk-hq data and compared to ground truth CITE-seq (surface protein) information. The
CITE-seq information was not used during training of DISCERN. A: t-SNE visualization of
CD2 (first row) and CD8A (second row) gene (first two columns) and protein (last column)
)expression. The first column depicts gene expression for uncorrected cite-lq, the second for
reconstructed-hq, and the third protein surface expression ground truth information. Cell
types commonly known to express these genes are highlighted with colored circles in the last
column. B: t-SNE visualization of CD4+ T cells in the cite-lq dataset. Cell types were
assigned using louvain clustering on the reconstructed-hq data (see C) and show no clear
clustering. C: t-SNE and trajectory information of CD4+ T cell subtypes found by Slingshot
analysis on reconstructed-hq data. While uncorrected data shows no clear cell type clustering
(see B), reconstructed data shows a clear grouping of cell types. Trajectories were calculated
using CD4 naive as starting point and TH2, TH17, TH1, Active TREG, CD4 CM as end-
points. Lineage1 indicates TH1, Lineage2 TH17, Lineage3 Active TREG, Lineage4 TH2, and
Lineage5 Effector cell differentiation. D: Detection of regulons that are specific for CD4+

T cell subtypes using pySCENIC. The first column shows regulons found in the uncorrected
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cite-lq and the second column in reconstructed-hq data.

Figure 4: Expression reconstruction improves COVID-19 cell type identification and allows
for efficient disease severity prediction. Two COVID-19 blood datasets were reconstructed
and analyzed. Hamburg covid-blood-lq and covid-lung-lq data was reconstructed using bulk-
hq data, resulting in the respective -hq datasets. Similarly, Cambridge covid-blood-severity-lq
data, which contains disease severity information, was reconstructed using bulk-hq data. A:
t-SNE representation of TH17 subclusters using reconstructed covid-blood-hq data. Clusters
were defined using the leiden clustering algorithm on CD4+ T cells. B: t-SNE representation
colored by expression of reconstructed genes distinguishing TH17 cluster1 and TH17 cluster2
cells. TH17 cluster1 displays a central memory and TH17 cluster2 a more activated pheno-
type. C: Violin plots of expression levels for genes distinguishing TH17 cluster1 (C1) and
TH17 cluster2 (C2) cells before (covid-blood-lq) and after (covid-blood-hq) reconstruction
with DISCERN. D: Rare and unexpected cell types found in the reconstructed covid-blood-
hq data with covid-blood-severity and bulk data. Cytotoxic CD4+ T cells (CD4 cytotoxic) are
displayed in green, CD8+ Tc2 helper cells (CD8 Tc2) in blue, and all other cells in gray color.
E: t-SNE representation of key marker genes in covid-blood-hq data for CD4 cytotoxic and
CD8 Tc2 cells displayed in D. F: Best and worst confusion matrix for disease severity predic-
tion using GBM classifiers trained on fractions of five T cell types (CD4 CM, CD4 cytotoxic,
CD4 naive, CD8 EM, CD8 effector) using reconstructed covid-blood-severity-hq data. Cat-
egory “critical” was combined with “severe” and “asymptomatic” with “mild”. G: ROC
curve of the GBM predictions outlined in F using reconstructed (blue color) covid-blood-
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severity-hq (CD4 CM, CD4 cytotoxic, CD4 naive, CD8 EM, CD8 effector) and published T
cell information from uncorrected (yellow color) data (CD4.CM, CD4.Tfh, CD8.EM, NKT,
Treg). Confidence intervals (color shades) indicate one standard deviation.

855

856

4. Methods857

4.1. Data availability858

In this manuscript many different scRNA-seq and RNA-seq datasets were859

used. A comprehensive overview of dataset, method, cell type, origin, size, and860

naming convention can be found in Tables S1 to S3. All datasets are publicly861

available as listed in Table S1.862

4.2. Dataset description863

Pancreas. The pancreas dataset is a collection of different scRNA-seq datasets,864

profiling pancreas cells in the context of diabetes [65]. The pancreas dataset is865

a widely used dataset for batch correction benchmark experiments and due to866

its high number of cell types and sequencing technologies it allows to evaluate867

differences between cells and sequencing technologies at the same time. The ex-868

pression table, including the annotation, is available from SeuratData (https://869

github.com/satijalab/seurat-data) as panc8.SeuratData (v3.0.2) [65]. The870

dataset was sequenced using five sequencing technologies (Smart-Seq2, Flu-871

idigm C1, CelSeq, CEL-Seq2, inDrop) and consists of 13 cell types (alpha, beta872

,ductal, acinar, delta, gamma, activated stellate, endothelial, quiescent stellate,873

macrophage, mast, epsilon, schwann). In total, before preprocessing, the dataset874

contains 14 890 cells.875

difftec. The difftec dataset was created for a systematic comparative analysis876

of scRNA-seq methods [66]. Similar to pancreas, the difftec dataset is ideal877

for the evaluation of expression reconstruction across many cell types and se-878

quencing technologies. Seven sequencing technologies (10x Chromium v2, 10x879

Chromium v3, Smart-Seq2, Seq-Well, inDrop, Drop-seq, CEL-Seq2) were used880

with at least two replicates each. In this dataset 10 different cell types (Cy-881

totoxic T cell, CD4+ T cell, CD14+ monocyte, B cell, Natural killer cell,882

Megakaryocyte, CD16+ monocyte, Dendritic cell, Plasmacytoid dendritic cell,883

Unassigned) were annotated, and make up for 31 021 cells in total before filter-884

ing. The expression table including the annotation is available from SeuratData885

as pbmcsca.SeuratData (v3.0.0).886

snRNA & scRNA. The dataset was created for the validation of a single cell887

and single nuclei analysis toolbox [38]. Since snRNA-seq and scRNA-seq data888

varies in the amount of counts per cell and the genes detected, we tested if889

DISCERN could reconstruct snRNA-seq expression so that it would closely890

resemble scRNA-seq expression, providing a biological ground-truth. While we891

label snRNA-seq data as lq and scRNA-seq as hq, this distinction is incorrect892
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from a biological perspective, as gene expression should be in part different893

between the nucleus and the cytosol. The dataset consists of a liver biopsy894

sample (HTAPP-963) of metastatic breast cancer with single cell sequencing895

and single nuclei sequencing. Eight cell types (Epithelial cells, Macrophages,896

Hepatocytes, T cells, Endothelial cells, Fibroblasts, B cells, NK cells) were found897

in the original publication in a total of 12 423 cells. The data was sequenced898

using the Chromium V3 technology on a Illumina HiSeq X sequencer.899

covid-lung & covid-blood. The COVID-19 dataset we have previously published900

consists of blood and bronchoalveolar lavage (BAL) samples from four patients901

with bacterial pneumonia and eight patients with SARS-CoV-2 infection[24].902

In total 155 706 cells were sequenced using TCR-seq technology, which allows903

for the comparison of clonal expansion in both tissues. While we investigated904

the lung data in detail in the original publication, the analysis of the blood was905

largely limited to cell type identification. Using DISCERN, we use the blood906

data to find previously unobserved cell types, link them to cell clones found in907

the lung, and derive a biomarker based on cell fractions (see also covid-blood-908

severity data). Cell type annotations for the BAL samples were used as in the909

original publication.910

citeseq. This dataset contains CITE-seq information of healthy human PBMCs911

for 6 cell types (B cells, CD4 T cells, NK cells, CD14+ Monocytes, FCGR3A+
912

Monocytes, CD8 T cells) [39]. In our analyses we used the cell type information913

provided in the original publication [67]. The CITE-seq data is ideal to bench-914

mark DISCERN, as the information of 13 surface proteins offers ground-truth915

information on the cell types and a good proxy for the expression of the 13916

corresponding genes.917

bulk. We used this large dataset of 28 FACS sorted and bulk sequenced immune918

cell types as ‘ultimate’ hq reference data for lq immune single cell sequencing919

data. Each of the 9852 samples provides an average expression information for920

13 104 genes for a specific immune cell type, providing a hq reference for e.g. lq921

single cell PBMC CITE-seq data with only 798 expressed genes per cell. We922

further assume that this dataset is large enough to provide enough per cell type923

variability for our deep neural network to faithfully learn and represent its gene924

expression. In more detail, the dataset consists of 28 sorted immune cell types925

(Naive CD4, Memory CD4, TH1, TH2, TH17, Tfh, Fr. I nTreg, Fr. II eTreg,926

Fr. III T, Naive CD8, Memory CD8, CM CD8, EM CD8, TEMRA CD8, NK,927

Naive B, USM B, SM B, Plasmablast, DN B, CL Monocytes, Int Monocytes,928

NC Monocytes, mDC, pDC, Neutrophils, LDG) with ¿ 99% purity [54]. Total929

RNA was extracted using RNeasy Micro Kits (QIAGEN). Libraries for RNA-seq930

were prepared using SMART-seq v4 Ultra Low Input RNA Kit (Takara Bio).931

In total, the dataset contains 9852 samples collected in two phases from 416932

donors, out of which 79 are healthy. For training DISCERN, bulk TPM counts933

and all cell types were used if not stated otherwise.934
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covid-blood-severity. This dataset is an aggregation of three COVID-19 sequenc-935

ing studies using the 10X Genomics Chromium Single Cell 5’ v1.1 technology.936

It contains a large number of cell types with fine-grained cell type annotations937

that are complemented with information on COVID-19 disease severity for each938

patient sequenced. We used this dataset to obtain a blood-based biomarker of939

COVID-19 disease severity, based on T cell fractions observed with DISCERN.940

The data consists of PBMCs from 29 healthy, 89 COVID-19 and 12 LPS-treated941

patients. The authors detected 51 cell types in their original work (see Ta-942

ble S1) [53] and COVID-19 patients were classified by their disease severity943

(worst clinical outcome) into ‘asymptomatic’, ‘mild’, ‘moderate’, ‘severe’, ‘crit-944

ical’, and ‘death’. Count data together with CITE-seq information was used945

as provided in the original publication (https://covid19.cog.sanger.ac.uk/946

submissions/release1/haniffa21.processed.h5ad).947

kidney-lq (snRNA-seq) & kidney-hq (scRNA-seq). The kidney dataset consists948

of single cell RNA-seq and single nuclei RNA-seq data of 9 patients with acute949

kidney injury sequenced using 10X Genomics Chromium technology. It contains950

in total 82 701 cells with 52 934 cells sequenced using snRNA-seq and 29 767 cells951

sequenced using scRNA-seq. The dataset does not contain cell type annotation,952

but in initial analysis using a different subset [68] suggested that identification953

of T cells in the snRNA-seq data is challenging. For this reason, the analysis954

was focused on the detection of T cells and their subtypes.955

4.3. Code availability956

All original code has been deposited at github.com (https://github.com/957

imsb-uke/discern) and is publicly available as of the date of publication. Any958

additional information required to reanalyze the data reported in this paper is959

available from the lead contact upon request.960

4.4. Preprocessing961

Raw expression data (Counts) preprocessing was performed as previously962

described [69] using the scanpy (v1.6.1, [70]) implementation. In particular,963

the intersection of genes between batches was used. The cells were filtered964

to a minimum of 10 genes per cell and a minimum of 3 cells per gene. Li-965

brary size normalization was performed to a value of 20 000 with subsequent966

log-transformation. As model input for DISCERN the genes were scaled to967

zero mean and unit variance. However, for all further evaluation the genes968

were scaled to their uncorrected mean and variance not considering the batch969

information.970

4.5. Description of DISCERN971

DISCERN is based on a Wasserstein Autoencoder with several added and972

modified features. We will describe the details of DISCERN’s architecture in973

the next paragraphs and a compact representation can be found in Figure S1B.974

28

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 1, 2022. ; https://doi.org/10.1101/2022.03.09.483600doi: bioRxiv preprint 

https://covid19.cog.sanger.ac.uk/submissions/release1/haniffa21.processed.h5ad
https://covid19.cog.sanger.ac.uk/submissions/release1/haniffa21.processed.h5ad
https://covid19.cog.sanger.ac.uk/submissions/release1/haniffa21.processed.h5ad
https://github.com/imsb-uke/discern
https://github.com/imsb-uke/discern
https://github.com/imsb-uke/discern
https://doi.org/10.1101/2022.03.09.483600


Wasserstein Autoencoder. While neural network-based autoencoders have been975

widely used for decades for dimensionality reduction [71, 72], recent advances976

have also allowed their use to build a generative model of the distribution of977

the data at hand[73]. More recently, leveraging results from optimal transport978

[74], Wasserstein Generative Adversarial Networks (WGAN) [75] and Wasser-979

stein Autoencoders (WAE) [25] have been designed to explicitly minimize the980

(Wasserstein, or earth-mover) distance between the distribution of the input981

data and their reconstruction. WGANs only implicitly encode their input into982

a latent representation (called latent code), while WAE has the useful property983

of using an explicit encoder, which makes it possible for the model to directly984

manipulate the different representations of single-cell data. Finally, the WAE985

framework, established in [25], allows the use of a wide range of architecture and986

losses, which we are going to detail now. First of all, in order to effectively use a987

number of latent dimensions that adaptively matches the intrinsic dimension of988

the scRNA-seq data at hand, DISCERN uses a random encoder as prescribed989

in [76].990

Architecture. Autoencoders widely used for transcriptomics applications are991

shown to perform well on several tasks, like drug perturbation prediction [23]992

or dropout imputation [12]. Since the ordering of the genes in scRNA-seq count993

matrices is mostly arbitrary, fully-connected layers are usually used in this task.994

In our case, DISCERN consists of three fully connected layers in the encoder995

and the decoder. The bottleneck of the autoencoder (or latent space) contains996

48 neurons, which is sufficient to accurately model all the datasets we used in997

our experiments. Additionally, we exploit a finding from [76] to let the net-998

work learn the appropriate amount of latent dimensions. While the encoder999

will be tasked to transform the distribution of the input data into a fixed,1000

low-dimensional prior distribution (i.e. a standard Gaussian), the decoder will1001

perform the opposite, i.e. transforming the fixed, low-dimensional prior distri-1002

bution into gene space. scRNA-seq data is known to display a high level of zero1003

measurements, called dropout, which is essential to accurately model the count1004

distribution. To describe scRNA-seq data in a parametric way, it is common to1005

model the expression level of a gene with zero-inflated negative binomial dis-1006

tribution [77]. Despite the several non-linearities in the decoder architecture,1007

it is, however, difficult to learn an encoding function that maps a simple prior1008

to the distribution leading to low quality modeling of low expressed genes. To1009

address this issue, we scale the gene expression and attach a second head to the1010

decoder (i.e. a second decoder sharing all weights with the first, except for the1011

last layer). The task of the second decoder head is to predict, for each gene1012

of a cell, the probability of its expression to be dropped out, giving rise to a1013

random decoder. Thus, this second decoder head predicts dropout probabili-1014

ties and models the dropout probabilities for different batches. This additional1015

head allows modeling the dropout and the expression independently, to capture1016

the specific distribution of single cell data without the need for further explicit1017

assumption about the distribution. During inference the predicted expressions1018

are randomly set to zero based on these predicted dropout probabilities. This1019
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sampling procedure does not have any trainable parameter, is therefore not part1020

of the model training and only performed during inference.1021

Loss function. The loss optimized during the training of DISCERN is composed
of four terms: a data-fitting (or reconstruction) loss, a dropout fitting (cross
entropy) loss, a prior-fitting term (ensuring that DISCERN approximately min-
imizes the Wasserstein distance) and a variance penalty term (that controls the
randomness of the encoder). Thus, DISCERN can be considered as a Wasser-
stein Autoencoder as introduced in [25]. For the reconstruction term, the frame-
work introduced in [25] allows the use of any positive cost function. We elected
to use the Huber loss [78] as it is well suited for modeling scaled scRNA-seq ex-
pression data, because it allows to select a threshold value to give lower weight
to high differences in highly expressed genes and thus allows the model to learn
a more robust expression estimate without focusing too much on outlier values.
This reconstruction term is defined as

Lδ(x, x̂
count) =

1

dx

dx∑
i=1

{
1
2 (xi − x̂count

i )2 for ∥xi − x̂count
i ∥ ≤ δ,

δ (∥xi − x̂count
i ∥ − 1

2δ), otherwise.

where x is the input expression matrix, x̂count the predicted expression matrix1022

from one decoder head, dx the number of genes, and δ a threshold deciding1023

between the two conditions of the Huber loss.1024

For the prior-fitting term, following [25], DISCERN uses the MaximumMean1025

Discrepancy (MMD) [79] between the aggregate posterior (i.e. the distribution1026

of the input single-cells after encoding) and a standard Gaussian. We use the1027

sum over an inverse multiquadratic kernel with different sizes for this task.1028

Similar to [79], we define the MMD as

DZ(PZ , QZ) =
∥∥∫

Z
k(z, ·)dPZ(z)−

∫
Z
k(z, ·)dQZ(z)

∥∥
Hk

where PZ is the gaussian prior distribution and QZ the aggregated posterior1029

in the latent space for a positive-definite reproducing kernel k : Z × Z → R1030

and a corresponding real valued reproducing kernel hilbert space Hk. For the1031

implementation details please refer to [25] or the provided implementation.1032

Then, to prevent the random encoder (with diagonal covariance) from col-
lapsing to a deterministic one, a penalty term that enforces that some compo-
nents of the variance are close to 1. Intuitively, that means that the superfluous
latent dimensions will only contain random noise (see [76] for more details). We
define this penalty term as

Sσ(x) =

dZ∑
i=1

∥∥log (σ2
i (x)

)∥∥
where dz is the number of latent dimensions and σ the function generating the1033

components of the variance in the latent space, in our case, the encoder network.1034
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Another loss term, namely the binary cross-entropy loss, on the second de-
coder head is used to enable the model to learn a dropout probability for each
gene and sample. The loss on the dropout layer enables the model to capture
the bimodal distribution of single cell data. We define the binary cross-entropy
loss as

H(xdropout, x̂dropout) = − 1

dx

dx∑
i=1

xdropout
i log(x̂dropout

i )+(1−xdropout
i ) log(1− x̂dropout

i )

where xdropout is the binarized expression information, x̂dropout is the predicted
binarized expression (probability of dropout) and dx the number of genes. Addi-
tionally, activity regularization is applied on the Conditional Layer Normaliza-
tion (CLN), such that the weights of the conditional layers are only regularized
in a batch-specific manner and the regularization is not applied for batches,
which are not present in the current mini-batch. This has the advantage that
the batch dependent weights are not influenced too much by different batch
sizes. The four loss terms are added (and weighed using λs) together to form
the loss that DISCERN minimizes during training:

L = Lδ(x, x̂
count(z))+λprior ·DZ(qz, pz)+λsigma ·Sσ(x)+λdropout ·H

(
I>0(x), x̂

dropout(z)
)

See also Figure S1B for a graphical depiction of the loss terms.1035

Conditional Layer Normalization. The weights of those fully-connected layers are1036

shared for all the batches that DISCERN is trained on. However, to model the batch-1037

specific differences, we use a Conditional Layer Normalization (CLN) that applies the1038

idea proposed in [27] to Layer Normalization [28] after each fully connected layer (see1039

Figure S1B). In essence, for each batch, different sets of shifting factors are learned.1040

Note that in DISCERN, no scaling factors are used to limit the expressivity of the1041

conditioning and therefore reduce the chance of over integration. This allows not only1042

to accurately model the batch-specific differences between batches, but also to trans-1043

fer the batch effect from one dataset onto another, in the spirit of the style-transfer1044

approach developed in [27]. To make things clear, DISCERN does not explicitly train1045

to integrate datasets. Instead, it trains to accurately model the input data, capturing1046

the batch-specific differences with the weights of the CLN layers (i.e. conditioning),1047

and the biological signal (which is mostly shared across the batches to integrate) with1048

the weights of the fully-connected layers. After training, we encode all the cells we1049

want to reconstruct, conditioning the process on their batch of origin. Then, we take1050

the batch chosen by the user and proceed to decode all the cells conditioning on that1051

specific batch, effectively transferring the batch effect of one specific batch onto all1052

of the batches we want to integrate and reconstruct. The training loss is computed1053

over the complete minibatch, thus it is not different per batch (dataset). The weights1054

of the conditional layer normalization are learned together with the weights of the1055

feed-forward network using the same loss function.1056

Activations & dropout. With the exception of the output layer, every other fully-1057

connected layer of the encoder and the decoder was followed by a CLN, a Mish ([80]1058

activation function, and dropout during model training to reduce overfitting.1059
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Optimization. To optimize the weights of our model, DISCERN uses Rectified Adam1060

([81], which addresses some of the shortcomings of the widely used Adam [82] and gen-1061

erally yields more stable training. To prevent overfitting, the optimization is stopped1062

early. It is implemented as a modification of the Keras EarlyStopping (with parameter1063

minDelta set to 0.01 and the patience to 30) where the callback is delayed by a fixed1064

number of 5 epochs. The delay was implemented to prevent too early stopping due to1065

the optimization procedure.1066

Reconstruction. The reconstruction (or projection) to a reference batch is not per-1067

formed during training and thus the network is not optimized to it. However, during1068

inference, the reconstruction can be performed by providing the correct batch label1069

in the encoder part of the network, while only providing the reference batch label1070

for the decoder part. Therefore, The network will encode the dataset to a batch-1071

independent latent representation and decode it using only the reference label and1072

therefore project the complete dataset to the reference batch. This can be done for1073

any number of batches without re-training of DISCERN.1074

Running time and memory usage. DISCERNs running time for training is linear in1075

the number of cells and the number of training epochs. However, the use of the early1076

stopping mechanism greatly reduces the running time and improves model perfor-1077

mance. Additionally the running time, for training and inference, is dependent on the1078

size of the mini-batches. The memory requirements are also linear in the number of1079

cells and genes for training and inference. Since DISCERN is trained on mini-batches1080

the memory requirements can also be slightly adjusted by changing the mini-batch1081

size during training or inference.1082

4.6. Hyperparameters1083

As outlined in the architecture section of the methods and depicted in Figure S1,1084

DISCERN features several learnable hyperparameters. The complexity of the hyper-1085

parameter search space is a potential downside of DISCERN, if these hyperparameters1086

would be unstable across different datasets or in other words, would require constant1087

tuning. Fortunately, DISCERN’s hyperparameters are very stable across the multi-1088

tude of datasets tested in this manuscript, which we will outline in this paragraph.1089

Naturally, there is no rule without an exception, which in this manuscript are the1090

COVID-19 datasets that required optimization for several hyperparameters.1091

Constant hyperparameters. DISCERN features a number of hyper-parameters that1092

can be tuned through hyperparameter optimization (see below for details). Most1093

of them have default values that yield reasonable performance across the different1094

datasets we used and are being kept constant across experiments, including the COVID-1095

19 dataset. Those constant hyperparameters are: the choice of the reconstruction loss1096

(Huber loss), activation functions (Mish), CLN for the conditioning, number of fully-1097

connected layers (3) and their size (1024, 512, 256 and 256, 512, 1024 neurons for the1098

encoder and the decoder respectively), number of latent dimensions (48), learning rate1099

(1×10−3), decay rates β1 and β2 of Rectified Adam (0.85 and 0.95 respectively), batch1100

size (192), label smoothing for our custom cross entropy loss (0.1), dropout rates (0.41101

in the encoder and 0 in the decoder), delta parameter of the Huber loss (9.0), weight1102

on the penalty on the randomness of the encoder λsigma (1×10−8), weight on the cross1103

entropy loss term λdropout (1× 105), weight on the MMD penalty term λprior (1500).1104
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Dataset-specific hyperparameters. The optimal value of the L2 regularization applied1105

on the weights of our custom CLN highly depends on the dataset at hand and thus1106

requires dataset-specific tuning. For datasets with a very small variance in cell compo-1107

sitions the L2 CLN regularization can be turned off (weight set to 0). When datasets1108

have different compositions the L2 CLN regularization requires higher values (typically1109

between 1× 10−3 and 0.2).1110

COVID-19 hyperparameters. For the experiments with COVID-19 datasets slightly1111

adjusted hyperparameters were used: learning rate of 6e-3, label smoothing for our1112

custom crossentropy loss of 0.05, weight on the penalty on the randomness of the1113

encoder λsigma (1e-4), weight on the cross entropy loss term λdropout (2e3), weight on1114

the MMD penalty term λprior (2000).1115

Hyperparameter optimization. DISCERN implements different techniques for hyper-1116

parameter optimization by using the ray[tune] library [83]. For most use cases the1117

model does not require hyperparameter tuning and the default parameter should be1118

sufficient. However, DISCERN has a generic interface and supports nearly all tech-1119

niques implemented in ray[tune]. The initial hyperparameters were found using grid1120

search. The loss used for the hyperparameter selection is the classification perfor-1121

mance of a Random Forest classifier trying to classify real vs. auto-encoded cells.1122

Classification performance was measured using the area under the receiver operating1123

characteristic curve (AUC / AUROC).1124

4.7. Competing algorithms and methods1125

We briefly discuss competing methods and have compared their performance to1126

DISCERN in the results section. These algorithms can be grouped into two categories,1127

i) imputation algorithms that were developed to estimate drop-out gene expression1128

based on dataset inherent information (MAGIC, DCA, scImpute) and ii) algorithms1129

designed for batch correction that we have modified or extended to reconstruct gene1130

expression, although this is not their intended use (Seurat, scGen). Given the latter,1131

it is clear that DISCERN could be used purely for batch correction in latent space, a1132

subject beyond the scope of this manuscript.1133

MAGIC. [13] Markov affinity-based graph imputation of cells (MAGIC) denoises and1134

imputes the single-cell count matrix using data diffusion-based information sharing.1135

The construction of a good similarity metric is challenging for finding biologically1136

similar cells due to high sparsity. MAGIC finds a good similarity metric using a so-1137

phisticated graph-based approach that builds less-noisy cell-cell affinities and informa-1138

tion sharing across cells. A particular focus of MAGIC was to understand gene-gene1139

relationships and to characterize other dynamics in biological systems. MAGIC is1140

provided as a Python package.1141

DCA. [11] is a deep learning-based method for denoising single-cell count matrices.1142

DCA is implemented in Python and uses an autoencoder with a Zero-Inflated Negative1143

Binomial (ZINB) loss function. For each gene, DCA computes gene-specific parame-1144

ters of ZINB distribution, namely dropout, dispersion and mean. By modeling gene1145

distributions as a noise model and also computing dropout probabilities of each gene,1146

DCA is able to denoise and impute the missing counts by identifying and correcting1147

dropout events.1148
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scImpute. [12] Similarly to MAGIC, scImpute focuses on identifying cells that are1149

similar, which is challenging due to the high sparsity of single-cell count matrices.1150

scImpute is a statistical model using a three step process to impute scRNA-seq data. In1151

the first step spectral clustering is applied on principal components to find neighbors,1152

which later can be used to detect and impute dropout values. In the second step1153

scImpute fits a mixture model of a Gamma distribution and a Normal distribution1154

to distinguish technical and biological dropouts. In the last step, the model uses a1155

regression model for each cell to impute the expression of genes with high probability1156

of dropout. With this approach, scImpute avoids hallucinations and keeps the gene1157

expression distribution. scImpute is provided as an R package.1158

Seurat. [26] is an open-source toolkit for the analysis of single cell RNA-sequencing1159

data. In addition to general analysis functions, Seurat offers batch-correction function-1160

ality. Seurat uses canonical correlation analysis to construct this lower dimensional1161

representation and tries to find neighbors between batches in this shared space. These1162

anchors are filtered considering the local neighborhood of the cell pairs and remain-1163

ing anchors are finally used to construct correction vectors for all cells in this low1164

dimensional representation. While Seurats is intended to work in a lower dimensional1165

representation, it can also be used to reconstruct the expression information from this1166

lower dimensional representation. Seurat is provided as an R package.1167

scGen. [23] is a variational autoencoder based deep learning method with a focus on1168

learning features that help distinguish responding and non-responding genes and cells.1169

scGen constructs a latent space in which it estimates perturbation vectors associated1170

with a change between different conditions. Since scGen models the perturbation and1171

infection responses in single cells, it is focused on in-silico screening with the use of1172

cells coming from healthy samples.It can also be used for batch correction. For batch1173

correction, and unlike DISCERN or Seurat, scGen uses both batch and cell type labels.1174

scGen is built using the scvi-tools toolbox and implemented in python and pytorch.1175

Multigrate. [19] multigrate is an autoencoder based deep learning method developed1176

for the integration of different modalities to improve single cell RNA-seq downstream1177

analysis, mainly clustering. The main focus is the integration of CITE-seq protein1178

abundance since it is often available together with scRNA-seq. They use individual1179

encoders for each modality and build a shared latent representation by partially sharing1180

the decoder. Multigrate is built using the scvi-tools toolbox and implemented in1181

python and pytorch.1182

scVI. [36] is a variational autoencoder-based deep learning method developed for sev-1183

eral single cell analysis approaches like batch correction, clustering, and differential1184

expression analysis. It models expression data using a zero-inflated negative binomial1185

loss during the training. For comparison of scVI to other models, only the batch1186

correction functionality was used. For the differential expression analysis we used1187

the same workflow as for the other methods to allow for a fair comparison. scVI is1188

implemented in python and pytorch.1189

CarDEC. [14] is an autoencoder-based learning method developed for batch effect1190

correction, denoising of expression data and cell clustering. The CarDEC pipeline1191

computes highly variable genes across all batches and pre-trains an autoencoder to1192

reconstruct the expression of these genes. In a second step, the weights are transferred1193
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to a bigger network, which is trained jointly on the highly variable and lowly variable1194

genes using two reconstruction losses. Additionally, they include a self-supervised1195

clustering loss in the latent space to improve batch mixing. CarDEC is implemented1196

in python and Tensorflow.1197

DeepImpute. [15] is an ensemble method consisting of multiple autoencoder-like deep1198

neural networks, where each network is trained to learn the relationship between a1199

set of input genes and a set of target genes. Input and target gene sets are selected1200

based on correlation of gene expression values. The estimated expression values from1201

each of the networks is combined to yield the final imputed dataset. DeepImpute is1202

implemented in python and Tensorflow.1203

trVAE. [35] is a variational autoencoder based deep learning method developed for1204

the generation of unseen samples or conditions of single cell RNA-seq data. It uses an1205

encoder with additional inputs for encoding the condition and a decoder which gets,1206

together with the latent code, the target condition as input. To achieve a condition1207

independence the first layer is regularized using maximum mean discrepancy. trVAE1208

is implemented in python and Tensorflow.1209

4.8. Evaluation metrics1210

t-SNE & UMAP. For visualization of the datasets and to qualitatively assess the in-1211

tegration performance tSNE and UMAP were used. Both methods are based on PCA1212

representation and use non-linear representations to create a 2D representation of the1213

data. We used the scanpy [70] implementation. Default settings were used in nearly1214

all cases except: In the combined COVID-19 dataset analogue to Kobak et al.[84] the1215

dataset was subset to 25 000 cells and tSNE was computed using a perplexity of 250,1216

and a learning rate of 25 000/12. These positions were taken and used as input to tSNE1217

of all cells using a perplexity of 30 a learning rate of (number of observations)/12 and1218

a late exaggeration of 4.0 using FIt-SNE [85]. Clustering was performed using PARC1219

[86] with default parameters except dist std local=1.5 and small pop=300. Meth-1220

ods were changed here due to computation time issues for 350 000 cells. covid-blood1221

data was analyzed using a learning rate of (number of observations)/6 a perplexity1222

of (number of observations)/120 and early exaggeration=4. Clustering was performed1223

using default parameters except knn=100 and small pop=100 to reduce the number1224

of clusters with limited cell number. Clustering of the T helper cells in healthy blood1225

was performed using coarse clustering with 30 nearest neighbors and leiden cluster-1226

ing (https://github.com/vtraag/leidenalg) with a resolution of 0.6. Afterwards a1227

combined cluster of IFN-regulated and TREG was reclustered using a resolution of 0.41228

and effector T cells were reclustered using a resolution of 0.8. Resolution was chosen1229

to dissect the raw gene expression changes of known cell types.1230

Mean gene expression. Mean gene expression was calculated as average over log-1231

normalized expression over all cells, usually stratified by celltype. This evaluation1232

of expression data consists of many data points where several have values close to1233

zero, but could have a high weight on rank-based correlation methods. Thus Pearson1234

correlation was used to evaluate the performance.1235
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Differential gene expression. Differential gene expression was performed using the1236

scanpy [70] rank gene groups function using the t-test method for calculating sta-1237

tistical significance on log-normalized expression data. Differential gene expression1238

analysis was always performed under consideration of the cell type information. For1239

comparison of differential gene expression analysis between conditions, the Pearson1240

correlation was used. It is calculated either on the log2 fold-change or in most cases1241

on the t-statistics, computed during significance estimation. The data was compared1242

using the t-statistics, because it aggregates information on both the variance and the1243

change in mean expression. Thus it allows, roughly speaking, for simultaneously eval-1244

uating the significance and the log2 fold change. Usually all available genes were used1245

for correlation, except in the in-silico gene removal experiment, where only the re-1246

moved genes were considered. We used spearman rank correlation when all genes were1247

available and pearson correlation otherwise.1248

Pathway analysis. Pathway analysis or gene set enrichment analysis was done using1249

the prerank function from gseapy [87] on the t-statistics, computed as described in the1250

‘Differential gene expression’ section of the methods. To this end, the gene set library1251

“KEGG 2019 Human” provided by enrichr [88] was used. Top pathways were selected1252

using the normalized enrichment score as previously described [87].1253

Gene regulation. [48] The python implementation of the SCENIC (pySENIC) was1254

used to infer regulons specific for CD4+ T helper cells. SCENIC infers a gene regula-1255

tory network using GRNBoost2 and creates co-expression modules. The co-expression1256

modules get associated with transcription factors using the transcription factor motif1257

discovery tool RcisTarget. A pair of transcription factor and associated gene set is1258

called a regulon. For each cell, the regulons get scored using the AUCell algorithm1259

to examine if a cell is affected by the regulon. We used default parameters of the1260

pySENIC implementation.1261

Silhouette Score. [89] - is a measure to evaluate clustering performance by comparing1262

the mean intra-cluster distance to the mean nearest-cluster distance. The Silhouette1263

score is computed for batch and cell type labels on the scaled and PCA-transformed1264

data using a varying number of principal components (interval [10, 50]). The score is1265

defined in the intervall [−1, 1], where a positive value indicates separated clusters, a1266

value of zero signifies cluster overlap, and a negative value when the closest cluster is1267

not the wrong cluster. For accessing batch mixing a low, close to zero, value is best,1268

while for cell type clusters a value close to 1 is best. The scikit-learn implementation1269

was used.1270

Adjusted Rand Index. [90] - The Rand index estimates the similarity between two1271

clusterings by comparing all possible pairings of samples. The Adjusted Rand Index1272

is adjusted for chance, such that a random labeling would result in a value close to 0,1273

while a perfect clustering yields a score of 1. The Adjusted Rand Index is computed1274

on the result of the leiden clustering algorithm using 20 different resolution parameters1275

in the interval of [0.1, 30]. The best value (lowest for batch mixing, highest for cell1276

type clustering) was used as the final score. The neighborhood graph for the leiden1277

clustering algorithm is computed on scaled and PCA-transformed values, similar to1278

the silhouette score, for a varying number of principal components (interval [10, 5]).1279

The scikit-learn implementation was used.1280
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Adjusted Mutual Information. [91] - Mutual Information measures the similarity be-1281

tween two clusterings by computing the sizes of the intersection of all possible cluster1282

label pairs. The Adjusted Mutual Information is adjusted for chance, such that a1283

random labeling would result in a value close to 0, while a perfect clustering yields a1284

score of 1. Additionally, this accounts for the fact that Mutual Information is gener-1285

ally higher for clusterings with larger numbers of clusters. The AMI was computed on1286

clustering results as described for the Adjusted Rand Index. The scikit-learn imple-1287

mentation was used.1288

COVID-19 classification1289

To evaluate the importance of the cell types found in the covid-blood-severity-hq1290

dataset after reconstruction with DISCERN, the fraction for all T cell subtypes was1291

used to predict the disease severity, as provided in [53]. The data was classified using a1292

Gradient boosting classifier ([92], implemented in scikit-learn v1.0.2, default settings)1293

using 25 rounds of leave-one-out cross-validation (LOOCV). Each round consists of n1294

training-prediction iterations with n− 1 samples for training and 1 sample for testing,1295

such that after one round prediction results for all n samples could be evaluated.1296

We chose LOOCV over k-fold cross-validation and testing due to the limited size1297

of the dataset, consisting of only 71 patients. We used pycm ([93], v3.3) for the1298

performance evaluation. The final evaluation was done using the accuracy and F1 score1299

as provided by pycm. The area under the receiver operating characteristic (AUROC)1300

curve is computed with scikit-learn. Before training the classifiers a forward feature1301

selection was performed using the SequentialFeatureSelector implemented in scikit-1302

learn with default parameters. In total four experiments were performed. In the1303

first experiment, classification with three disease categories (mild, moderate, severe)1304

was used. Patients who died were excluded. For the other two experiments only1305

patients with asymptomatic, mild, severe and critical symptoms were included. In all1306

experiments the asymptomatic and mild category was merged to mild and severe and1307

critical to severe.1308
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