
cite-lq and the second column in reconstructed-hq data.

Figure 4: Expression reconstruction improves COVID-19 cell type identi�cation and allows
for e�cient disease severity prediction. Two COVID-19 blood datasets were reconstructed
and analyzed. Hamburg covid-blood-lq and covid-lung-lq data was reconstructed using bulk-
hq data, resulting in the respective -hq datasets. Similarly, Cambridge covid-blood-severity-lq
data, which contains disease severity information, was reconstructed using bulk-hq data. A:
t-SNE representation of TH17 subclusters using reconstructed covid-blood-hq data. Clusters
were defined using the leiden clustering algorithm on CD4+ T cells. B : t-SNE representation
colored by expression of reconstructed genes distinguishing TH17 cluster1 and TH17 cluster2
cells. TH17 cluster1 displays a central memory and TH17 cluster2 a more activated pheno-
type. C: Violin plots of expression levels for genes distinguishing TH17 cluster1 (C1) and
TH17 cluster2 (C2) cells before (covid-blood-lq) and after (covid-blood-hq) reconstruction
with DISCERN. D: Rare and unexpected cell types found in the reconstructed covid-blood-
hq data with covid-blood-severity and bulk data. Cytotoxic CD4+ T cells (CD4 cytotoxic) are
displayed in green, CD8+ Tc2 helper cells (CD8 Tc2) in blue, and all other cells in gray color.
E: t-SNE representation of key marker genes in covid-blood-hq data for CD4 cytotoxic and
CD8 Tc2 cells displayed in D. F: Best and worst confusion matrix for disease severity predic-
tion using GBM classifiers trained on fractions of five T cell types (CD4 CM, CD4 cytotoxic,
CD4 naive, CD8 EM, CD8 effector) using reconstructed covid-blood-severity-hq data. Cat-
egory “critical” was combined with “severe” and “asymptomatic” with “mild”. G: ROC
curve of the GBM predictions outlined in F using reconstructed (blue color) covid-blood-
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severity-hq (CD4 CM, CD4 cytotoxic, CD4 naive, CD8 EM, CD8 effector) and published T
cell information from uncorrected (yellow color) data (CD4.CM, CD4.Tfh, CD8.EM, NKT,
Treg). Confidence intervals (color shades) indicate one standard deviation.

855

856

4. Methods857

4.1. Data availability858

In this manuscript many different scRNA-seq and RNA-seq datasets were859

used. A comprehensive overview of dataset, method, cell type, origin, size, and860

naming convention can be found in Tables S1 to S3. All datasets are publicly861

available as listed in Table S1.862

4.2. Dataset description863

Pancreas. The pancreas dataset is a collection of different scRNA-seq datasets,864

profiling pancreas cells in the context of diabetes [65]. The pancreas dataset is865

a widely used dataset for batch correction benchmark experiments and due to866

its high number of cell types and sequencing technologies it allows to evaluate867

differences between cells and sequencing technologies at the same time. The ex-868

pression table, including the annotation, is available from SeuratData (https://869

github.com/satijalab/seurat-data) as panc8.SeuratData (v3.0.2) [65]. The870

dataset was sequenced using five sequencing technologies (Smart-Seq2, Flu-871

idigm C1, CelSeq, CEL-Seq2, inDrop) and consists of 13 cell types (alpha, beta872

,ductal, acinar, delta, gamma, activated stellate, endothelial, quiescent stellate,873

macrophage, mast, epsilon, schwann). In total, before preprocessing, the dataset874

contains 14 890 cells.875

difftec. The difftec dataset was created for a systematic comparative analysis876

of scRNA-seq methods [66]. Similar to pancreas, the difftec dataset is ideal877

for the evaluation of expression reconstruction across many cell types and se-878

quencing technologies. Seven sequencing technologies (10x Chromium v2, 10x879

Chromium v3, Smart-Seq2, Seq-Well, inDrop, Drop-seq, CEL-Seq2) were used880

with at least two replicates each. In this dataset 10 different cell types (Cy-881

totoxic T cell, CD4+ T cell, CD14+ monocyte, B cell, Natural killer cell,882

Megakaryocyte, CD16+ monocyte, Dendritic cell, Plasmacytoid dendritic cell,883

Unassigned) were annotated, and make up for 31 021 cells in total before filter-884

ing. The expression table including the annotation is available from SeuratData885

as pbmcsca.SeuratData (v3.0.0).886

snRNA & scRNA. The dataset was created for the validation of a single cell887

and single nuclei analysis toolbox [38]. Since snRNA-seq and scRNA-seq data888

varies in the amount of counts per cell and the genes detected, we tested if889

DISCERN could reconstruct snRNA-seq expression so that it would closely890

resemble scRNA-seq expression, providing a biological ground-truth. While we891

label snRNA-seq data as lq and scRNA-seq as hq, this distinction is incorrect892
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from a biological perspective, as gene expression should be in part different893

between the nucleus and the cytosol. The dataset consists of a liver biopsy894

sample (HTAPP-963) of metastatic breast cancer with single cell sequencing895

and single nuclei sequencing. Eight cell types (Epithelial cells, Macrophages,896

Hepatocytes, T cells, Endothelial cells, Fibroblasts, B cells, NK cells) were found897

in the original publication in a total of 12 423 cells. The data was sequenced898

using the Chromium V3 technology on a Illumina HiSeq X sequencer.899

covid-lung & covid-blood. The COVID-19 dataset we have previously published900

consists of blood and bronchoalveolar lavage (BAL) samples from four patients901

with bacterial pneumonia and eight patients with SARS-CoV-2 infection[24].902

In total 155 706 cells were sequenced using TCR-seq technology, which allows903

for the comparison of clonal expansion in both tissues. While we investigated904

the lung data in detail in the original publication, the analysis of the blood was905

largely limited to cell type identification. Using DISCERN, we use the blood906

data to find previously unobserved cell types, link them to cell clones found in907

the lung, and derive a biomarker based on cell fractions (see also covid-blood-908

severity data). Cell type annotations for the BAL samples were used as in the909

original publication.910

citeseq. This dataset contains CITE-seq information of healthy human PBMCs911

for 6 cell types (B cells, CD4 T cells, NK cells, CD14+ Monocytes, FCGR3A+
912

Monocytes, CD8 T cells) [39]. In our analyses we used the cell type information913

provided in the original publication [67]. The CITE-seq data is ideal to bench-914

mark DISCERN, as the information of 13 surface proteins offers ground-truth915

information on the cell types and a good proxy for the expression of the 13916

corresponding genes.917

bulk. We used this large dataset of 28 FACS sorted and bulk sequenced immune918

cell types as ‘ultimate’ hq reference data for lq immune single cell sequencing919

data. Each of the 9852 samples provides an average expression information for920

13 104 genes for a specific immune cell type, providing a hq reference for e.g. lq921

single cell PBMC CITE-seq data with only 798 expressed genes per cell. We922

further assume that this dataset is large enough to provide enough per cell type923

variability for our deep neural network to faithfully learn and represent its gene924

expression. In more detail, the dataset consists of 28 sorted immune cell types925

(Naive CD4, Memory CD4, TH1, TH2, TH17, Tfh, Fr. I nTreg, Fr. II eTreg,926

Fr. III T, Naive CD8, Memory CD8, CM CD8, EM CD8, TEMRA CD8, NK,927

Naive B, USM B, SM B, Plasmablast, DN B, CL Monocytes, Int Monocytes,928

NC Monocytes, mDC, pDC, Neutrophils, LDG) with ¿ 99% purity [54]. Total929

RNA was extracted using RNeasy Micro Kits (QIAGEN). Libraries for RNA-seq930

were prepared using SMART-seq v4 Ultra Low Input RNA Kit (Takara Bio).931

In total, the dataset contains 9852 samples collected in two phases from 416932

donors, out of which 79 are healthy. For training DISCERN, bulk TPM counts933

and all cell types were used if not stated otherwise.934
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covid-blood-severity. This dataset is an aggregation of three COVID-19 sequenc-935

ing studies using the 10X Genomics Chromium Single Cell 5’ v1.1 technology.936

It contains a large number of cell types with fine-grained cell type annotations937

that are complemented with information on COVID-19 disease severity for each938

patient sequenced. We used this dataset to obtain a blood-based biomarker of939

COVID-19 disease severity, based on T cell fractions observed with DISCERN.940

The data consists of PBMCs from 29 healthy, 89 COVID-19 and 12 LPS-treated941

patients. The authors detected 51 cell types in their original work (see Ta-942

ble S1) [53] and COVID-19 patients were classified by their disease severity943

(worst clinical outcome) into ‘asymptomatic’, ‘mild’, ‘moderate’, ‘severe’, ‘crit-944

ical’, and ‘death’. Count data together with CITE-seq information was used945

as provided in the original publication (https://covid19.cog.sanger.ac.uk/946

submissions/release1/haniffa21.processed.h5ad).947

kidney-lq (snRNA-seq) & kidney-hq (scRNA-seq). The kidney dataset consists948

of single cell RNA-seq and single nuclei RNA-seq data of 9 patients with acute949

kidney injury sequenced using 10X Genomics Chromium technology. It contains950

in total 82 701 cells with 52 934 cells sequenced using snRNA-seq and 29 767 cells951

sequenced using scRNA-seq. The dataset does not contain cell type annotation,952

but in initial analysis using a different subset [68] suggested that identification953

of T cells in the snRNA-seq data is challenging. For this reason, the analysis954

was focused on the detection of T cells and their subtypes.955

4.3. Code availability956

All original code has been deposited at github.com (https://github.com/957

imsb-uke/discern) and is publicly available as of the date of publication. Any958

additional information required to reanalyze the data reported in this paper is959

available from the lead contact upon request.960

4.4. Preprocessing961

Raw expression data (Counts) preprocessing was performed as previously962

described [69] using the scanpy (v1.6.1, [70]) implementation. In particular,963

the intersection of genes between batches was used. The cells were filtered964

to a minimum of 10 genes per cell and a minimum of 3 cells per gene. Li-965

brary size normalization was performed to a value of 20 000 with subsequent966

log-transformation. As model input for DISCERN the genes were scaled to967

zero mean and unit variance. However, for all further evaluation the genes968

were scaled to their uncorrected mean and variance not considering the batch969

information.970

4.5. Description of DISCERN971

DISCERN is based on a Wasserstein Autoencoder with several added and972

modified features. We will describe the details of DISCERN’s architecture in973

the next paragraphs and a compact representation can be found in Figure S1B.974
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Wasserstein Autoencoder. While neural network-based autoencoders have been975

widely used for decades for dimensionality reduction [71, 72], recent advances976

have also allowed their use to build a generative model of the distribution of977

the data at hand[73]. More recently, leveraging results from optimal transport978

[74], Wasserstein Generative Adversarial Networks (WGAN) [75] and Wasser-979

stein Autoencoders (WAE) [25] have been designed to explicitly minimize the980

(Wasserstein, or earth-mover) distance between the distribution of the input981

data and their reconstruction. WGANs only implicitly encode their input into982

a latent representation (called latent code), while WAE has the useful property983

of using an explicit encoder, which makes it possible for the model to directly984

manipulate the different representations of single-cell data. Finally, the WAE985

framework, established in [25], allows the use of a wide range of architecture and986

losses, which we are going to detail now. First of all, in order to effectively use a987

number of latent dimensions that adaptively matches the intrinsic dimension of988

the scRNA-seq data at hand, DISCERN uses a random encoder as prescribed989

in [76].990

Architecture. Autoencoders widely used for transcriptomics applications are991

shown to perform well on several tasks, like drug perturbation prediction [23]992

or dropout imputation [12]. Since the ordering of the genes in scRNA-seq count993

matrices is mostly arbitrary, fully-connected layers are usually used in this task.994

In our case, DISCERN consists of three fully connected layers in the encoder995

and the decoder. The bottleneck of the autoencoder (or latent space) contains996

48 neurons, which is sufficient to accurately model all the datasets we used in997

our experiments. Additionally, we exploit a finding from [76] to let the net-998

work learn the appropriate amount of latent dimensions. While the encoder999

will be tasked to transform the distribution of the input data into a fixed,1000

low-dimensional prior distribution (i.e. a standard Gaussian), the decoder will1001

perform the opposite, i.e. transforming the fixed, low-dimensional prior distri-1002

bution into gene space. scRNA-seq data is known to display a high level of zero1003

measurements, called dropout, which is essential to accurately model the count1004

distribution. To describe scRNA-seq data in a parametric way, it is common to1005

model the expression level of a gene with zero-inflated negative binomial dis-1006

tribution [77]. Despite the several non-linearities in the decoder architecture,1007

it is, however, difficult to learn an encoding function that maps a simple prior1008

to the distribution leading to low quality modeling of low expressed genes. To1009

address this issue, we scale the gene expression and attach a second head to the1010

decoder (i.e. a second decoder sharing all weights with the first, except for the1011

last layer). The task of the second decoder head is to predict, for each gene1012

of a cell, the probability of its expression to be dropped out, giving rise to a1013

random decoder. Thus, this second decoder head predicts dropout probabili-1014

ties and models the dropout probabilities for different batches. This additional1015

head allows modeling the dropout and the expression independently, to capture1016

the specific distribution of single cell data without the need for further explicit1017

assumption about the distribution. During inference the predicted expressions1018

are randomly set to zero based on these predicted dropout probabilities. This1019
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sampling procedure does not have any trainable parameter, is therefore not part1020

of the model training and only performed during inference.1021

Loss function. The loss optimized during the training of DISCERN is composed
of four terms: a data-fitting (or reconstruction) loss, a dropout fitting (cross
entropy) loss, a prior-fitting term (ensuring that DISCERN approximately min-
imizes the Wasserstein distance) and a variance penalty term (that controls the
randomness of the encoder). Thus, DISCERN can be considered as a Wasser-
stein Autoencoder as introduced in [25]. For the reconstruction term, the frame-
work introduced in [25] allows the use of any positive cost function. We elected
to use the Huber loss [78] as it is well suited for modeling scaled scRNA-seq ex-
pression data, because it allows to select a threshold value to give lower weight
to high differences in highly expressed genes and thus allows the model to learn
a more robust expression estimate without focusing too much on outlier values.
This reconstruction term is defined as

Lδ(x, x̂
count) =

1

dx

dx∑
i=1

{
1
2 (xi − x̂count

i )2 for ∥xi − x̂count
i ∥ ≤ δ,

δ (∥xi − x̂count
i ∥ − 1

2δ), otherwise.

where x is the input expression matrix, x̂count the predicted expression matrix1022

from one decoder head, dx the number of genes, and δ a threshold deciding1023

between the two conditions of the Huber loss.1024

For the prior-fitting term, following [25], DISCERN uses the MaximumMean1025

Discrepancy (MMD) [79] between the aggregate posterior (i.e. the distribution1026

of the input single-cells after encoding) and a standard Gaussian. We use the1027

sum over an inverse multiquadratic kernel with different sizes for this task.1028

Similar to [79], we define the MMD as

DZ(PZ , QZ) =
∥∥∫

Z
k(z, ·)dPZ(z)−

∫
Z
k(z, ·)dQZ(z)

∥∥
Hk

where PZ is the gaussian prior distribution and QZ the aggregated posterior1029

in the latent space for a positive-definite reproducing kernel k : Z × Z → R1030

and a corresponding real valued reproducing kernel hilbert space Hk. For the1031

implementation details please refer to [25] or the provided implementation.1032

Then, to prevent the random encoder (with diagonal covariance) from col-
lapsing to a deterministic one, a penalty term that enforces that some compo-
nents of the variance are close to 1. Intuitively, that means that the superfluous
latent dimensions will only contain random noise (see [76] for more details). We
define this penalty term as

Sσ(x) =

dZ∑
i=1

∥∥log (σ2
i (x)

)∥∥
where dz is the number of latent dimensions and σ the function generating the1033

components of the variance in the latent space, in our case, the encoder network.1034
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Another loss term, namely the binary cross-entropy loss, on the second de-
coder head is used to enable the model to learn a dropout probability for each
gene and sample. The loss on the dropout layer enables the model to capture
the bimodal distribution of single cell data. We define the binary cross-entropy
loss as

H(xdropout, x̂dropout) = − 1

dx

dx∑
i=1

xdropout
i log(x̂dropout

i )+(1−xdropout
i ) log(1− x̂dropout

i )

where xdropout is the binarized expression information, x̂dropout is the predicted
binarized expression (probability of dropout) and dx the number of genes. Addi-
tionally, activity regularization is applied on the Conditional Layer Normaliza-
tion (CLN), such that the weights of the conditional layers are only regularized
in a batch-specific manner and the regularization is not applied for batches,
which are not present in the current mini-batch. This has the advantage that
the batch dependent weights are not influenced too much by different batch
sizes. The four loss terms are added (and weighed using λs) together to form
the loss that DISCERN minimizes during training:

L = Lδ(x, x̂
count(z))+λprior ·DZ(qz, pz)+λsigma ·Sσ(x)+λdropout ·H

(
I>0(x), x̂

dropout(z)
)

See also Figure S1B for a graphical depiction of the loss terms.1035

Conditional Layer Normalization. The weights of those fully-connected layers are1036

shared for all the batches that DISCERN is trained on. However, to model the batch-1037

specific differences, we use a Conditional Layer Normalization (CLN) that applies the1038

idea proposed in [27] to Layer Normalization [28] after each fully connected layer (see1039

Figure S1B). In essence, for each batch, different sets of shifting factors are learned.1040

Note that in DISCERN, no scaling factors are used to limit the expressivity of the1041

conditioning and therefore reduce the chance of over integration. This allows not only1042

to accurately model the batch-specific differences between batches, but also to trans-1043

fer the batch effect from one dataset onto another, in the spirit of the style-transfer1044

approach developed in [27]. To make things clear, DISCERN does not explicitly train1045

to integrate datasets. Instead, it trains to accurately model the input data, capturing1046

the batch-specific differences with the weights of the CLN layers (i.e. conditioning),1047

and the biological signal (which is mostly shared across the batches to integrate) with1048

the weights of the fully-connected layers. After training, we encode all the cells we1049

want to reconstruct, conditioning the process on their batch of origin. Then, we take1050

the batch chosen by the user and proceed to decode all the cells conditioning on that1051

specific batch, effectively transferring the batch effect of one specific batch onto all1052

of the batches we want to integrate and reconstruct. The training loss is computed1053

over the complete minibatch, thus it is not different per batch (dataset). The weights1054

of the conditional layer normalization are learned together with the weights of the1055

feed-forward network using the same loss function.1056

Activations & dropout. With the exception of the output layer, every other fully-1057

connected layer of the encoder and the decoder was followed by a CLN, a Mish ([80]1058

activation function, and dropout during model training to reduce overfitting.1059
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Optimization. To optimize the weights of our model, DISCERN uses Rectified Adam1060

([81], which addresses some of the shortcomings of the widely used Adam [82] and gen-1061

erally yields more stable training. To prevent overfitting, the optimization is stopped1062

early. It is implemented as a modification of the Keras EarlyStopping (with parameter1063

minDelta set to 0.01 and the patience to 30) where the callback is delayed by a fixed1064

number of 5 epochs. The delay was implemented to prevent too early stopping due to1065

the optimization procedure.1066

Reconstruction. The reconstruction (or projection) to a reference batch is not per-1067

formed during training and thus the network is not optimized to it. However, during1068

inference, the reconstruction can be performed by providing the correct batch label1069

in the encoder part of the network, while only providing the reference batch label1070

for the decoder part. Therefore, The network will encode the dataset to a batch-1071

independent latent representation and decode it using only the reference label and1072

therefore project the complete dataset to the reference batch. This can be done for1073

any number of batches without re-training of DISCERN.1074

Running time and memory usage. DISCERNs running time for training is linear in1075

the number of cells and the number of training epochs. However, the use of the early1076

stopping mechanism greatly reduces the running time and improves model perfor-1077

mance. Additionally the running time, for training and inference, is dependent on the1078

size of the mini-batches. The memory requirements are also linear in the number of1079

cells and genes for training and inference. Since DISCERN is trained on mini-batches1080

the memory requirements can also be slightly adjusted by changing the mini-batch1081

size during training or inference.1082

4.6. Hyperparameters1083

As outlined in the architecture section of the methods and depicted in Figure S1,1084

DISCERN features several learnable hyperparameters. The complexity of the hyper-1085

parameter search space is a potential downside of DISCERN, if these hyperparameters1086

would be unstable across different datasets or in other words, would require constant1087

tuning. Fortunately, DISCERN’s hyperparameters are very stable across the multi-1088

tude of datasets tested in this manuscript, which we will outline in this paragraph.1089

Naturally, there is no rule without an exception, which in this manuscript are the1090

COVID-19 datasets that required optimization for several hyperparameters.1091

Constant hyperparameters. DISCERN features a number of hyper-parameters that1092

can be tuned through hyperparameter optimization (see below for details). Most1093

of them have default values that yield reasonable performance across the different1094

datasets we used and are being kept constant across experiments, including the COVID-1095

19 dataset. Those constant hyperparameters are: the choice of the reconstruction loss1096

(Huber loss), activation functions (Mish), CLN for the conditioning, number of fully-1097

connected layers (3) and their size (1024, 512, 256 and 256, 512, 1024 neurons for the1098

encoder and the decoder respectively), number of latent dimensions (48), learning rate1099

(1×10−3), decay rates β1 and β2 of Rectified Adam (0.85 and 0.95 respectively), batch1100

size (192), label smoothing for our custom cross entropy loss (0.1), dropout rates (0.41101

in the encoder and 0 in the decoder), delta parameter of the Huber loss (9.0), weight1102

on the penalty on the randomness of the encoder λsigma (1×10−8), weight on the cross1103

entropy loss term λdropout (1× 105), weight on the MMD penalty term λprior (1500).1104
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Dataset-specific hyperparameters. The optimal value of the L2 regularization applied1105

on the weights of our custom CLN highly depends on the dataset at hand and thus1106

requires dataset-specific tuning. For datasets with a very small variance in cell compo-1107

sitions the L2 CLN regularization can be turned off (weight set to 0). When datasets1108

have different compositions the L2 CLN regularization requires higher values (typically1109

between 1× 10−3 and 0.2).1110

COVID-19 hyperparameters. For the experiments with COVID-19 datasets slightly1111

adjusted hyperparameters were used: learning rate of 6e-3, label smoothing for our1112

custom crossentropy loss of 0.05, weight on the penalty on the randomness of the1113

encoder λsigma (1e-4), weight on the cross entropy loss term λdropout (2e3), weight on1114

the MMD penalty term λprior (2000).1115

Hyperparameter optimization. DISCERN implements different techniques for hyper-1116

parameter optimization by using the ray[tune] library [83]. For most use cases the1117

model does not require hyperparameter tuning and the default parameter should be1118

sufficient. However, DISCERN has a generic interface and supports nearly all tech-1119

niques implemented in ray[tune]. The initial hyperparameters were found using grid1120

search. The loss used for the hyperparameter selection is the classification perfor-1121

mance of a Random Forest classifier trying to classify real vs. auto-encoded cells.1122

Classification performance was measured using the area under the receiver operating1123

characteristic curve (AUC / AUROC).1124

4.7. Competing algorithms and methods1125

We briefly discuss competing methods and have compared their performance to1126

DISCERN in the results section. These algorithms can be grouped into two categories,1127

i) imputation algorithms that were developed to estimate drop-out gene expression1128

based on dataset inherent information (MAGIC, DCA, scImpute) and ii) algorithms1129

designed for batch correction that we have modified or extended to reconstruct gene1130

expression, although this is not their intended use (Seurat, scGen). Given the latter,1131

it is clear that DISCERN could be used purely for batch correction in latent space, a1132

subject beyond the scope of this manuscript.1133

MAGIC. [13] Markov affinity-based graph imputation of cells (MAGIC) denoises and1134

imputes the single-cell count matrix using data diffusion-based information sharing.1135

The construction of a good similarity metric is challenging for finding biologically1136

similar cells due to high sparsity. MAGIC finds a good similarity metric using a so-1137

phisticated graph-based approach that builds less-noisy cell-cell affinities and informa-1138

tion sharing across cells. A particular focus of MAGIC was to understand gene-gene1139

relationships and to characterize other dynamics in biological systems. MAGIC is1140

provided as a Python package.1141

DCA. [11] is a deep learning-based method for denoising single-cell count matrices.1142

DCA is implemented in Python and uses an autoencoder with a Zero-Inflated Negative1143

Binomial (ZINB) loss function. For each gene, DCA computes gene-specific parame-1144

ters of ZINB distribution, namely dropout, dispersion and mean. By modeling gene1145

distributions as a noise model and also computing dropout probabilities of each gene,1146

DCA is able to denoise and impute the missing counts by identifying and correcting1147

dropout events.1148
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scImpute. [12] Similarly to MAGIC, scImpute focuses on identifying cells that are1149

similar, which is challenging due to the high sparsity of single-cell count matrices.1150

scImpute is a statistical model using a three step process to impute scRNA-seq data. In1151

the first step spectral clustering is applied on principal components to find neighbors,1152

which later can be used to detect and impute dropout values. In the second step1153

scImpute fits a mixture model of a Gamma distribution and a Normal distribution1154

to distinguish technical and biological dropouts. In the last step, the model uses a1155

regression model for each cell to impute the expression of genes with high probability1156

of dropout. With this approach, scImpute avoids hallucinations and keeps the gene1157

expression distribution. scImpute is provided as an R package.1158

Seurat. [26] is an open-source toolkit for the analysis of single cell RNA-sequencing1159

data. In addition to general analysis functions, Seurat offers batch-correction function-1160

ality. Seurat uses canonical correlation analysis to construct this lower dimensional1161

representation and tries to find neighbors between batches in this shared space. These1162

anchors are filtered considering the local neighborhood of the cell pairs and remain-1163

ing anchors are finally used to construct correction vectors for all cells in this low1164

dimensional representation. While Seurats is intended to work in a lower dimensional1165

representation, it can also be used to reconstruct the expression information from this1166

lower dimensional representation. Seurat is provided as an R package.1167

scGen. [23] is a variational autoencoder based deep learning method with a focus on1168

learning features that help distinguish responding and non-responding genes and cells.1169

scGen constructs a latent space in which it estimates perturbation vectors associated1170

with a change between different conditions. Since scGen models the perturbation and1171

infection responses in single cells, it is focused on in-silico screening with the use of1172

cells coming from healthy samples.It can also be used for batch correction. For batch1173

correction, and unlike DISCERN or Seurat, scGen uses both batch and cell type labels.1174

scGen is built using the scvi-tools toolbox and implemented in python and pytorch.1175

Multigrate. [19] multigrate is an autoencoder based deep learning method developed1176

for the integration of different modalities to improve single cell RNA-seq downstream1177

analysis, mainly clustering. The main focus is the integration of CITE-seq protein1178

abundance since it is often available together with scRNA-seq. They use individual1179

encoders for each modality and build a shared latent representation by partially sharing1180

the decoder. Multigrate is built using the scvi-tools toolbox and implemented in1181

python and pytorch.1182

scVI. [36] is a variational autoencoder-based deep learning method developed for sev-1183

eral single cell analysis approaches like batch correction, clustering, and differential1184

expression analysis. It models expression data using a zero-inflated negative binomial1185

loss during the training. For comparison of scVI to other models, only the batch1186

correction functionality was used. For the differential expression analysis we used1187

the same workflow as for the other methods to allow for a fair comparison. scVI is1188

implemented in python and pytorch.1189

CarDEC. [14] is an autoencoder-based learning method developed for batch effect1190

correction, denoising of expression data and cell clustering. The CarDEC pipeline1191

computes highly variable genes across all batches and pre-trains an autoencoder to1192

reconstruct the expression of these genes. In a second step, the weights are transferred1193
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to a bigger network, which is trained jointly on the highly variable and lowly variable1194

genes using two reconstruction losses. Additionally, they include a self-supervised1195

clustering loss in the latent space to improve batch mixing. CarDEC is implemented1196

in python and Tensorflow.1197

DeepImpute. [15] is an ensemble method consisting of multiple autoencoder-like deep1198

neural networks, where each network is trained to learn the relationship between a1199

set of input genes and a set of target genes. Input and target gene sets are selected1200

based on correlation of gene expression values. The estimated expression values from1201

each of the networks is combined to yield the final imputed dataset. DeepImpute is1202

implemented in python and Tensorflow.1203

trVAE. [35] is a variational autoencoder based deep learning method developed for1204

the generation of unseen samples or conditions of single cell RNA-seq data. It uses an1205

encoder with additional inputs for encoding the condition and a decoder which gets,1206

together with the latent code, the target condition as input. To achieve a condition1207

independence the first layer is regularized using maximum mean discrepancy. trVAE1208

is implemented in python and Tensorflow.1209

4.8. Evaluation metrics1210

t-SNE & UMAP. For visualization of the datasets and to qualitatively assess the in-1211

tegration performance tSNE and UMAP were used. Both methods are based on PCA1212

representation and use non-linear representations to create a 2D representation of the1213

data. We used the scanpy [70] implementation. Default settings were used in nearly1214

all cases except: In the combined COVID-19 dataset analogue to Kobak et al.[84] the1215

dataset was subset to 25 000 cells and tSNE was computed using a perplexity of 250,1216

and a learning rate of 25 000/12. These positions were taken and used as input to tSNE1217

of all cells using a perplexity of 30 a learning rate of (number of observations)/12 and1218

a late exaggeration of 4.0 using FIt-SNE [85]. Clustering was performed using PARC1219

[86] with default parameters except dist std local=1.5 and small pop=300. Meth-1220

ods were changed here due to computation time issues for 350 000 cells. covid-blood1221

data was analyzed using a learning rate of (number of observations)/6 a perplexity1222

of (number of observations)/120 and early exaggeration=4. Clustering was performed1223

using default parameters except knn=100 and small pop=100 to reduce the number1224

of clusters with limited cell number. Clustering of the T helper cells in healthy blood1225

was performed using coarse clustering with 30 nearest neighbors and leiden cluster-1226

ing (https://github.com/vtraag/leidenalg) with a resolution of 0.6. Afterwards a1227

combined cluster of IFN-regulated and TREG was reclustered using a resolution of 0.41228

and effector T cells were reclustered using a resolution of 0.8. Resolution was chosen1229

to dissect the raw gene expression changes of known cell types.1230

Mean gene expression. Mean gene expression was calculated as average over log-1231

normalized expression over all cells, usually stratified by celltype. This evaluation1232

of expression data consists of many data points where several have values close to1233

zero, but could have a high weight on rank-based correlation methods. Thus Pearson1234

correlation was used to evaluate the performance.1235
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Differential gene expression. Differential gene expression was performed using the1236

scanpy [70] rank gene groups function using the t-test method for calculating sta-1237

tistical significance on log-normalized expression data. Differential gene expression1238

analysis was always performed under consideration of the cell type information. For1239

comparison of differential gene expression analysis between conditions, the Pearson1240

correlation was used. It is calculated either on the log2 fold-change or in most cases1241

on the t-statistics, computed during significance estimation. The data was compared1242

using the t-statistics, because it aggregates information on both the variance and the1243

change in mean expression. Thus it allows, roughly speaking, for simultaneously eval-1244

uating the significance and the log2 fold change. Usually all available genes were used1245

for correlation, except in the in-silico gene removal experiment, where only the re-1246

moved genes were considered. We used spearman rank correlation when all genes were1247

available and pearson correlation otherwise.1248

Pathway analysis. Pathway analysis or gene set enrichment analysis was done using1249

the prerank function from gseapy [87] on the t-statistics, computed as described in the1250

‘Differential gene expression’ section of the methods. To this end, the gene set library1251

“KEGG 2019 Human” provided by enrichr [88] was used. Top pathways were selected1252

using the normalized enrichment score as previously described [87].1253

Gene regulation. [48] The python implementation of the SCENIC (pySENIC) was1254

used to infer regulons specific for CD4+ T helper cells. SCENIC infers a gene regula-1255

tory network using GRNBoost2 and creates co-expression modules. The co-expression1256

modules get associated with transcription factors using the transcription factor motif1257

discovery tool RcisTarget. A pair of transcription factor and associated gene set is1258

called a regulon. For each cell, the regulons get scored using the AUCell algorithm1259

to examine if a cell is affected by the regulon. We used default parameters of the1260

pySENIC implementation.1261

Silhouette Score. [89] - is a measure to evaluate clustering performance by comparing1262

the mean intra-cluster distance to the mean nearest-cluster distance. The Silhouette1263

score is computed for batch and cell type labels on the scaled and PCA-transformed1264

data using a varying number of principal components (interval [10, 50]). The score is1265

defined in the intervall [−1, 1], where a positive value indicates separated clusters, a1266

value of zero signifies cluster overlap, and a negative value when the closest cluster is1267

not the wrong cluster. For accessing batch mixing a low, close to zero, value is best,1268

while for cell type clusters a value close to 1 is best. The scikit-learn implementation1269

was used.1270

Adjusted Rand Index. [90] - The Rand index estimates the similarity between two1271

clusterings by comparing all possible pairings of samples. The Adjusted Rand Index1272

is adjusted for chance, such that a random labeling would result in a value close to 0,1273

while a perfect clustering yields a score of 1. The Adjusted Rand Index is computed1274

on the result of the leiden clustering algorithm using 20 different resolution parameters1275

in the interval of [0.1, 30]. The best value (lowest for batch mixing, highest for cell1276

type clustering) was used as the final score. The neighborhood graph for the leiden1277

clustering algorithm is computed on scaled and PCA-transformed values, similar to1278

the silhouette score, for a varying number of principal components (interval [10, 5]).1279

The scikit-learn implementation was used.1280
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Adjusted Mutual Information. [91] - Mutual Information measures the similarity be-1281

tween two clusterings by computing the sizes of the intersection of all possible cluster1282

label pairs. The Adjusted Mutual Information is adjusted for chance, such that a1283

random labeling would result in a value close to 0, while a perfect clustering yields a1284

score of 1. Additionally, this accounts for the fact that Mutual Information is gener-1285

ally higher for clusterings with larger numbers of clusters. The AMI was computed on1286

clustering results as described for the Adjusted Rand Index. The scikit-learn imple-1287

mentation was used.1288

COVID-19 classification1289

To evaluate the importance of the cell types found in the covid-blood-severity-hq1290

dataset after reconstruction with DISCERN, the fraction for all T cell subtypes was1291

used to predict the disease severity, as provided in [53]. The data was classified using a1292

Gradient boosting classifier ([92], implemented in scikit-learn v1.0.2, default settings)1293

using 25 rounds of leave-one-out cross-validation (LOOCV). Each round consists of n1294

training-prediction iterations with n− 1 samples for training and 1 sample for testing,1295

such that after one round prediction results for all n samples could be evaluated.1296

We chose LOOCV over k-fold cross-validation and testing due to the limited size1297

of the dataset, consisting of only 71 patients. We used pycm ([93], v3.3) for the1298

performance evaluation. The final evaluation was done using the accuracy and F1 score1299

as provided by pycm. The area under the receiver operating characteristic (AUROC)1300

curve is computed with scikit-learn. Before training the classifiers a forward feature1301

selection was performed using the SequentialFeatureSelector implemented in scikit-1302

learn with default parameters. In total four experiments were performed. In the1303

first experiment, classification with three disease categories (mild, moderate, severe)1304

was used. Patients who died were excluded. For the other two experiments only1305

patients with asymptomatic, mild, severe and critical symptoms were included. In all1306

experiments the asymptomatic and mild category was merged to mild and severe and1307

critical to severe.1308
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