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ABSTRACT 
 
Economic efficiency has been a popular explanation for how networks self-organize within 
the developing nervous system. However, the precise nature of the economic negotiations 
governing this putative organizational principle remains unclear. Here, we address this 
question further by combining large-scale electrophysiological recordings, to characterize 
the functional connectivity of developing neuronal networks in vitro, with a generative 
modeling approach capable of simulating network formation. We find that the best fitting 
model uses a homophilic generative wiring principle in which neurons form connections to 
other neurons which are spatially proximal and have similar connectivity patterns to 
themselves. Homophilic generative models outperform more canonical models in which 
neurons wire depending upon their spatial proximity either alone or in combination with the 
extent of their local connectivity. This homophily-based mechanism for neuronal network 
emergence accounts for a wide range of observations that are described, but not sufficiently 
explained, by traditional analyses of network topology. Using rodent and human monolayer 
and organoid cultures, we show that homophilic generative mechanisms can accurately 
recapitulate the topology of emerging cellular functional connectivity, representing an 
important wiring principle and determining factor of neuronal network formation in vitro.  
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INTRODUCTION  
 
During mammalian brain development, neuronal networks demonstrate remarkable self-
organization that gives rise to complex topological properties, including a greater-than-
random clustering and modular structure1,2, non-random occurrence of specific network 
motifs3,4, hierarchies5, heavy-tailed connectivity distributions6,7, and richly interconnected 
hubs8,9. Studies have indicated that these distinctive characteristics likely endow neuronal 
networks with robustness and the capability to support dynamic functional 
computations10,11, however, our understanding regarding the underlying mechanisms and 
wiring rules that give rise to these features is still incomplete. 
 
Neuronal network development can be characterized across spatial scales12,13. At the 
cellular level, neurons form computational units within circuits. Here, the role of individual 
neurons can be determined by a combination of factors, such as their laminar location, 
connectivity, neurochemical sensitivities and morphology14. During embryonic 
development, a series of spatiotemporally defined genetic and activity-dependent 
programs15 regulate the expression of cell-type specific recognition molecules to initiate 
axonal and dendritic outgrowth, which ultimately leads to the formation of synapses16–18. 
Although there is now a large body of evidence on the mechanisms of specific guidance cues 
during circuit formation19, linking this knowledge to explain the emergence of complex 
topological features remains challenging. 
 
At the whole-brain level in humans20, connectivity between brain regions can be inferred via 
diffusion tensor imaging (DTI)21,22, as myelinated axonal connections, or functional magnetic 
resonance imaging (fMRI)23, as correlated patterns of activity. Inferring connectomes from 
fetal brains in utero24, or from preterm infants25, have confirmed the early presence of 
organizational hallmarks, such as hubs, a rich-club architecture and a modular small-world 
organization. Building on such architectures, studies demonstrate that the functional role 
and organization of brain regions later on is shaped by their inter-regional connectivity and 
that a region’s inputs during development influences its functional specialization26. This 
principle allows brain regions to undergo a spatially-organized functional shift, for example, 
from distinct sensory and motor systems to more integrated connections with association 
cortices, likely supporting an acceleration in cognitive development27. 
 
There is growing evidence that some key organizational properties of nervous systems are 
conserved across scales, and, in some cases, across species12,13,28–32. Nervous systems both 
at the macro- and micro-scale, for example, have been shown to entail a canonical pattern 
of small-worldness33,34, a rich-club topology35–37 and a modular structure1,38. These complex 
organizational hallmarks allow for functional hierarchies, in which distinct segregated 
modules perform specialized local computations. While the later may reflect basic 
representational features of incoming signals, intermediary nodes integrate those signals to 
code for a more complex representation of the incoming signals39.  
 
One prominent explanation for these consistent organizational hallmarks is that they reflect 
the economics of forming and maintaining connections40–42. Given finite available resources, 
trade-offs between incurred costs (e.g., material, metabolic) and functional value have to be 
made continually by all distributed units to ensure optimal network function. In this view, 
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ideas, such as Peters’ rule43, which suggest that synaptic contacts simply occur if neurons 
are close enough in space and if their axons and dendrites overlap, are not sufficient to 
explain the existence of a specific connection44–47. Although spatial embedding and neuron 
morphology clearly have an impact on cortical network architecture48,49, costly features, 
such as long-range connectivity hub cells or regions, likely exist because they confer some 
additive functional value that outweighs the cost of its formation and maintenance40. Such 
principles likely apply not only to the connectivity between brain regions, but also to the 
cellular and subcellular level10,20,49,50. 
  
If an economic trade-off represents an important principle that guides network 
development, then it is important to consider the specific mechanisms that determine the 
outcome of this trade-off. Advances in generative network models (GNMs) provide a formal 
way of testing competing mechanistic accounts of network formation51–63. These 
computational models simulate the probabilistic formation of networks over time under 
specific mathematical rules. For example, recent whole-brain DTI work has shown that 
structural inter-regional connectivity can be simulated with a GNM51 which uses a simple 
economic wiring equation balancing connection costs with topological value51,53,61. These 
two components together define the probability of connections forming iteratively over 
time. However, the extent to which such models reflect underlying biological processes 
remains unclear due to the indirect nature of in vivo imaging.  
 
In the present study, we test whether key economic trade-off rules are also conserved at 
the cellular scale. Analyses are carried out on spike-sorted, high-density microelectrode 
array (HD-MEA) recordings that allow us to directly record from individual neurons and track 
both their activity and connectivity across development64–66. Previous studies have 
quantified the functional couplings among neurons during spontaneous electrical activity 
and suggested that the local topological statistics are related to firing properties that may 
drive neuronal self-organization67–69. Here, we expand on these analyses and use functional 
connectivity inferred for individual neurons tracked over several weeks to probe how 
spiking patterns of neurons facilitate the implementation of economic wiring. Moreover, we 
translate prior GNM research at the level of inter-regional brain connectivity51–53,56,58–61,63 to 
the cellular scale, to test whether common generative wiring principles are recapitulated in 
vitro.  
 
We acquire and analyze HD-MEA network recordings from populations of developing 
primary cells (PCs) derived from dissociated embryonic rodent cortices, three different lines 
of purified human induced pluripotent stem cell (iPSC)-derived neurons and sliced human 
embryonic stem cell (hESC)-derived cerebral organoids (hCOs). We compare the 
performance of different GNMs, and probe whether they can account for the emerging 
network topology. We also examine the effect of neuronal plating density on network 
topology and test whether GNMs are capable of recapitulating the local organizational 
properties of the observed networks. Moreover, by chronically blocking GABAA receptors, 
we probe how GABAergic signaling impacts neuronal variability and the subsequent 
formation of connections in the network. Across four model types, comprising 13 wiring 
rules, we find that homophilic wiring reliably recapitulates the topology and developmental 
trajectory of neuronal networks at the cellular scale. Homophily may therefore represent an 
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important wiring principle in which local network structure is refined via activity-dependent 
mechanisms.  
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RESULTS 
 
Tracking developing neuronal networks at single-cell resolution 
 
The datasets of this study comprise recordings of rodent and human neuronal networks that 
were plated and maintained on high-density multielectrode arrays (HD-MEAs)64 as 
previously described (Figure 1a)65,70,71. Our primary analysis focuses on primary rat 
embryonic day 18/19 cortical cultures (PCs), which were plated at two different plating 
densities (sparse cultures: 50,000 cells per well, n=6 cultures; dense cultures: 100,000 cells 
per well, n=12 cultures) and used to follow neuronal network development across several 
weeks in vitro. Figure 1 provides an overview on the experimental pipeline. We also 
analyzed human induced pluripotent stem cell (iPSC)-derived neuron/astrocyte co-cultures, 
containing predominantly glutamatergic, dopaminergic and motor neurons (plated at a 
density of 100,000 cells per array), as well as, sliced human cerebral organoids (hCOs; n=6 
slices). For the complete details of the datasets analyzed in the study, see Methods; Rodent 
primary cortical neuronal cultures; Human induced pluripotent stem cell-derived neuronal 
cultures; Human cerebral organoid slice cultures. All summary statistics across datasets are 
provided in Supplementary Table 1. 
 
To record the emerging spontaneous neuronal activity of neuronal cultures and to track 
developing rodent PC neuronal networks at single-cell resolution, we first acquired whole-
array activity scans to localize the neurons (Figure 1b), and then selected up to 1024 
readout electrodes, configured into 4x4 electrode high-density blocks (Figure 1d, e), at the 
respective recording start points (i.e., days in vitro (DIV) 7 for the sparse PCs and DIV14 for 
the dense PCs networks). Recordings with the same electrode configuration were acquired 
at the consecutive recording time points and concatenated for spike sorting72. Spike-sorted 
network data enabled us to assign the extracellular electrical activity to individual neurons 
and to follow them across development (Figure 1e; see also Methods; Spike-sorting and 
post-processing; number of neurons tracked for sparse PC networks: 130±28 (mean±S.D); 
number of neurons tracked for dense PC networks: 115±27; Supplemental Figure 1). In line 
with previous works, we find that PC neuronal networks developed robust network burst 
activity (Figure 1c, g) and that the firing rate of tracked units increased significantly in the 
first weeks of development (repeated measures analysis of variance (rmANOVA): 
F(3,12)=7.02, p=5.62x10-3; n=6 sparse PC networks; Figure 1f).  
 
To infer functional connectivity between neurons statistically and to characterize neuronal 
network development of tracked neurons over time, we computed the Spike Time Tiling 
Coefficient (STTC) among all neurons above a minimum firing rate threshold (0.01 Hz; Figure 
1h-j)73 and compared inferred empirical values to jittered surrogate values (see Methods; 
Functional connectivity inference). We use the STTC because it controls for the variability in 
firing rates between neuronal units and culture types. STTC values primarily reflect short-
latency co-activity rather than firing rates per se73. Although considered a robust measure of 
pairwise correlations between spike trains, it is important to note that the connectivity 
graphs inferred by the STTC do not necessarily match the underlying synaptic connections74. 
We also apply a recently published transfer entropy algorithm to show that the main results 
of this study translate to other measures of (effective) connectivity75. In line with previous 
research76,77, we find that overall STTC values increased with development (F(3,12)=11.82, 
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p=6.77x10-4, sparse cultures; Figure 1i), as did the network density of inferred functional 
connectivity graphs (F(3,12)=11.08, p=8.97x10-4, n=6 sparse PC networks; Supplementary 
Figure 2a). The probability of inferred STTC connections decayed with inter-neuronal 
distance (Supplemental Figure 2b). 
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Figure 1. High-density microelectrode array extracellular recordings of developing neuronal cultures. a 
Scanning electron microscope (SEM) image of primary neurons plated on a high-density microelectrode array (HD-MEA; 
neurons are colored in red, electrodes in green; the electrode center-to-center distance is 17.5 μm). b Activity scan across 
the entire HD-MEA for an example sparse PC neuron culture at DIV 14. Colors depict the average amplitude of online-
detected multi-unit activity per electrode (yellow colors indicate the location of potential neurons, i.e., high amplitude 
deflection, on the array; the array dimensions are 120 x 220 electrodes; electrode amplitude values are averaged over 1 
min recordings). c Example extracellular trace recorded from one electrode (10 s), with high action potential (AP) spiking 
activity and bursts (middle panel); a single AP is depicted in the lower panel. d Electrical footprint (EF) of a single spike-
sorted unit on the HD-MEA. The EF is the AP-triggered extracellular potential signature of a single unit on the HD-MEA, 
here depicted across 16 electrodes of a high-density recording block (in light gray: 100 AP-triggered cutouts for this EF; in 
black: the average EF. The lower panel shows a spike autocorrelogram for this unit. e Tracking of individual EFs across 
development in vitro. The upper panel depicts the EFs inferred for the four recording time points (DIV7, 10, 12, 14); the 
lower panel shows the average activity of the tracked unit (bin size: 100 s; gray to black colors correspond to the four 
recording time points; 30 min per recording day). f Spontaneous electrical activity of neuronal cultures, their average firing 
rate, increased significantly with development (n=6; sparse PC networks). g A spike raster plot shows the spike-sorted 
activity for one culture (300 s-long zoom in on a network recording with 134 units); the lower panel depicts the binned 
activity of the same recording (bin size: 0.1 s). All neuronal networks showed a mixture of regular and more synchronized 
activity periods (network bursts). h In order to probe neuronal network development, we used the spike time tiling 
coefficient (STTC) to infer functional connectivity statistically. The four parameters required to calculate STTC connectivity 
graphs between Unit A and Unit B are PA, PB, TA, and TB. TA is calculated as the fraction of the total recording time ‘tiled’ by 
±Δt of any spike from Unit A. PA is the proportion of spikes from Unit A, which lies within ±Δt of any spike(s) of Unit B 
(spikes in red). The spike trains for Unit A and B are depicted as black bars; ±Δt is depicted as blue lines for each spike. The 
significance of each STTC value was estimated against jittered surrogate spike train data. i The average STTC increased 
significantly with development (n=6; sparse PC networks). j Example functional connectivity graph inferred from a DIV 14 
PC network (only the top 2% strongest connections are displayed; each dot represents the physical location of a putative 
neuron on the HD-MEA; the dot size corresponds to the nodal degree of the neuron.
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Generative network models of functional neuronal networks in vitro 
 
Following STTC connectivity inference, we set out to describe the topology of these 
networks using graph theory, which provides a mathematical framework for capturing the 
topological properties of each node within the network, and the network as a whole. In 
Figure 2a we highlight three common topological measures (nodal degree, clustering, and 
betweenness centrality) and one geometric measure (edge length) that we will use 
throughout the current paper (see Methods; Network statistics for more details9,78). In 
Figure 2b we show how these statistics allowed us to compute the node-wise statistics for 
each functional connectivity graph, and to establish the distribution of different statistics 
across the network. 
 
Although graph theoretic measures provide a way to mathematically formalize the topology 
of networks, they do not provide an explanation as to what topological attachment 
principles may have shaped network development. To do this, we tested 13 wiring rules that 
may best explain the self-organization of cellular-level functional connectivity graphs over 
time. Each of these 13 rules that we tested is given in Supplementary Table 2. To simplify, 
for the main report we group the 13 rules into four broader attachment mechanisms by 
which they work: (i) Homophily, where a neuron, i, preferentially wires with another neuron, 
j, as a function of the similarity between i and j in terms of the other neurons they connect 
to (we expand on this later). (ii) Clustering, where neuron i preferentially wires with neuron j 
as a function of neuron i and j’s independently computed clustered connectivity or (iii) 
Degree, the number of their connections. (iv) Spatial, where neurons only wire with other 
neurons as a function of the physical distance between each other.  
 
We start with a model for which spatial proximity is the exclusive determining factor for the 
emergence of a connection. If neurons connect according to Ramón y Cajal’s laws of 
conservation79, balancing the costs of connections with the functional benefits that they 
provide, one may predict neurons would simply connect to their geometrically closest 
neighbors to minimize the cost of maintaining connections13,40,79. However, other network 
models incorporating the principle of preferential attachment, such as the Barabási-Albert 
model80, suggest that a rich-get-richer principle may drive the emergence of topology. This 
is where the more connections a neuron has, the greater the probability of forming more 
connections thus leading to scale-free, power law degree distributions62,80. Therefore, we 
also apply degree-based models, where connections are more likely the more connections 
one or both neurons have. Another canonical network model, the Watts–Strogatz model81, 
illustrates how networks deal with the tradeoff between local and global processing—nodes 
form clusters at the cost of global integration, though local topology is key for modular 
structure and regional functional specialization, hence are a key component of small-world 
networks81. We therefore include clustering-based models. However, clustering-based rules 
compute how many neighbors of neuron i are connected to each other and how many of 
neuron j’s neighbors are connected to each other, separately—they are not necessarily part 
of the same cluster with the same neighbors. Thus, the benefit of a connection between i 
and j may be less than if they had similar neighbors. This could provide a mechanism for 
neurons with similar functional purposes to connect. Hence, we also include homophily-
based models based on similarity in neighborhoods between neuron pairs. 
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We undertook our simulations using a generative network model, which was previously 
used to probe whole-brain network organization51,53,61. Generative network models develop 
in silico networks according to an economic trade-off, in which new connections are 
iteratively formed depending on both the modeled costs and values (Figure 2c). The 
generative algorithm is expressed as a simple wiring equation56,61, which is updated over 
time: 
 

𝑃",$ ∝ 	 '𝐷",$)
*'𝐾",$)

,
,	 (1)	

 
where the Di,j term represents the “costs” incurred between neurons modeled as the 
Euclidean distance between tracked neurons i and j (Supplementary Figure 3). The Ki,j term 
represents how single neurons i and j “value” each other, given by an arbitrary topological 
relationship which is postulated a priori (also termed, “wiring rule” given mathematically in 
Supplementary Table 2). Pi,j reflects the probability of forming a fixed binary connection 
between neurons i and j. This is proportional to the parametrized multiplication of costs and 
values. Two wiring parameters, η and γ, respectively parameterize the costs and value 
terms, which calibrate the relative influence of the two terms over time. We detail the 
generative network algorithms used in Methods; Generative network model. By iterating 
through different Ki,j terms and wiring parameter combinations, we can formally assess how 
variations in the generative model give rise to synthetic networks, which are statistically 
similar to those experimentally observed (Figure 2d). To assess this similarity, the first test 
comes in the form of an energy equation53, which computes the Kolmogorov-Smirnov (KS) 
distance between the observed and simulated distributions of individual network statistics. 
It then takes the maximum of the four KS statistics considered so that, for any one 
simulation, no KS statistic is greater than the energy: 
  

𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑚𝑎𝑥(𝐾𝑆;, 𝐾𝑆<, 𝐾𝑆=, 𝐾𝑆>),	 (2)	

 
where KS is the Kolmogorov-Smirnov statistic between the observed and simulated 
networks at the particular η and γ combination used to construct the simulation, defined by 
the network degree k, clustering coefficient c, betweenness centrality b and Euclidean edge 
length d. These four measures are critical statistical properties of realistic networks, have 
been used in prior GNM research to benchmark model fits51,53,54,61,63, and have featured 
within well-documented simulated network models80–82. 
 
For each empirical network, we simulated 20,000 networks across a wide parameter space 
(with η and γ limits -10 to 10) across the 13 wiring rules, for each network across all 
available time points. In the present study, we used this wide parameter space as there is 
little prior work guiding our choice of parameters; we also did not select a seed network. A 
Voronoi tessellation procedure53 was used as the parameter selection algorithm (see 
Methods; Parameter selection for details). 
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Figure 2. Probing wiring principles via generative network models. a Example networks highlighting four common 
graph theoretical metrics. For each schematic, the node size corresponds to the respective graph statistic, and we provide 
the statistic within the node. The panel on the left shows a schematic for the degree (blue), which relates to the total 
number of edges that each node has. The left-middle panel shows the clustering coefficient (green), which is a measure of 
how nodes in a graph tend to cluster together; the right-middle panel shows the betweenness centrality (pink), which 
relates to the number of shortest paths in the network which pass through the node; the panel on the right shows a 
schematic for the total edge length (yellow), which relates to the total sum of the edge lengths among all its connections 
for each node. b Functional connectivity graphs, as inferred from HD-MEA network recordings, were characterized by 
graph theoretical means. Each panel on the top row shows the same network, with the node size corresponding to the 
respective graph statistic (degree, clustering, betweenness centrality, total edge length). The lower row shows histograms 
with the distribution of the metric across the network. c The generative network model works by simulating network 
development probabilistically according to the costs incurred in the network (here reflected by the Di,j term, which is 
modeled as the Euclidean distances) and the topological values. Both terms are parameterized, meaning that for each 
simulation there is an altered tuning in how costs and values influence the probability with which nodes form connections 
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iteratively. Parameters (η and γ) alter direction and magnitude to which the costs and values respectively influence wiring 
probabilities. For any combination of wiring parameters, we simulate a network developing over time until it reaches the 
number of connections, m, equal to the observed empirical network. d Comparing the simulated and empirically observed 
network, we fit the generative network model to achieve a simulation that is the least dissimilar to the observation. This is 
quantified by the energy equation, and is shown by dark blue in the parameter space. The energy equation is given by the 
maximum KS statistic across degree, clustering, betweenness centrality and edge length. Each parameter combination is 
plotted on an energy landscape, which demarcates the model fits across the two-dimensional parameter space. Lower 
energy values correspond to better fits. 
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Homophilic wiring principles recapitulate the topology of developing rodent neuronal 
networks in vitro  
 
Previous studies employing generative models of human macroscopic structural brain 
organization have shown that generative rules based on homophilic attachment 
mechanisms can achieve very good model fits51,53,60,61,63. Homophily-based wiring prioritizes 
the wiring of nodes preferentially to those with overlapping connectivity patterns (e.g., via 
neighborhoods or connectivity profiles). For example, under a matching generative 
model51,53, if two nodes have a large proportion of their connections with the same nodes, 
they will have a correspondingly high matching score because they have similar connectivity 
profiles. This matching score is homophilic, because the measure is defined in terms of 
similarity (the Greek homós, “same”) and preference (philia, “liking”). To test what 
generative models can best simulate microscale connectivity, we applied the generative 
procedure to inferred STTC functional connectivity graphs. 
 
We first investigate the sparse (50,000 cells per well) PC rodent networks at DIV 7, 10, 12 
and 14. As previously shown (Figure 1), PC rodent networks underwent significant 
developmental changes during this time period, and this is reflected by large topological 
changes in their functional networks (Supplementary Figure 2). We find that over the 
developmental time course, generative models utilizing the homophilic attraction principle 
as their generative mechanism produce networks with increasingly good model fits (the 
energy) compared to the degree-, clustering- and spatially based rules tested (Figure 3a). By 
DIV 14, homophily alone performs best (p<4.11x10-5 for all pairwise comparisons and 
Cohen’s d>1.46 reflecting a very large effect size; Supplementary Table 3 shows all 
statistical comparisons). The single best performing homophily model, according to the 
energy equation, was the ‘matching model’ (see Supplementary Table 2 for detail), which 
generates network topology according to the overlapping connectivity between nodes 
(Supplementary Figure 4). To assess the extent to which these findings go beyond what may 
be expected by chance, we further examined model performances across a range of 
alternative procedures for formalizing the generative models, including a Ki,j only 
formalization (where space has no influence), comparison to density- and size-matched 
random null models, and a comparison of our networks to those constructed using transfer 
entropy (a model-free effective connectivity measure) rather than the STTC. We find that, 
regardless of the model specification or connectivity measure tested here, homophily 
performs best when approximating empirical networks, but not randomized networks 
(Supplementary Figure 5). In Figure 3b, we also show an immunohistochemistry staining of 
an example PC rodent network at DIV 14 and Figure 3c shows the energy landscapes 
acquired from the matching generative model at this same timepoint. 
 
The matching generative model, beyond providing the lowest energy values (i.e., very good 
model fits compared to other models), also produced synthetic networks whose aggregate 
nodal distributions were statistically indistinguishable from the experimentally observed 
networks (Figure 3d). We formally demonstrated this using a Monte Carlo sampling 
procedure83 to directly compare the statistics produced by the well-performing simulations 
with the observations (degree, prank =0.645; clustering, prank =0.590; betweenness, prank 

=0.815; edge length, prank =0.585; for detail of this procedure, see Methods; Cost functions). 
In Supplementary Figure 6 we provide the same bootstrapping analysis, but for each of the 
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best performing generative models of each model class (spatial, clustering average and 
degree average models). It is of note, that this matching generative model was the only 
model, that was able to produce statistically indistinguishable results when compared to the 
experimental observations; the next best performing non-homophily model, the degree 
average model, failed to approximate both the empirical edge lengths (prank=0.025) and 
participation coefficients (prank=0.04). 
 
Next, we asked how well generative models would approximate the time-course trajectories 
of neuronal network formation. An advantage of the GNM approach is that it allows one to 
decompose the developmental trajectory. Indeed, if networks are developing according to a 
homophilic attachment principle then the statistical properties of those simulated 
trajectories should vary in accordance to our longitudinal observations. To test this, we 
computed and compared the trajectories of two global network measures of segregation 
(modularity index Q2) and integration (global efficiency84) across the time-course of sparse 
rodent PC network development. We used these measures because they were both not 
included in the energy equation (Equation 2)—and it is well established, that they capture 
fundamental aspects of how efficient information can be processed across networks85,86. 
Next, we selected the best fitting model at DIV 14, and decomposed the simulated 
trajectories up to that point. This allowed us to test whether these simulated trajectories 
were consistent with the earlier longitudinal observations at DIV 7, 10 and 12. 
 
To do this, we compared each of the longitudinal observations (DIV 7, 10, 12 and 14) to the 
simulation at the corresponding time-point of the DIV 14 developing simulation (i.e., DIV 7, 
50%; DIV10, 71%; DIV12, 86% and DIV14, 100%). Figures 3e, f shows the developmental 
trajectories of modularity and global efficiency for individual simulations (the gray lines) 
along with the overlaid observed time-points. Simulations using the homophily generative 
model clearly captured the same developmental trend for modularity (decreasing over time) 
and efficiency (increasing over time) and accounted for a substantial amount of variance in 
both metrics (modularity: R2=58.5%, r=0.765, p=1.33x10-5; efficiency: R2=55.8%, r=0.747, 
p=2.74x10-4). 
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Figure 3. Homophilic principles underpin rodent primary network development and explain variance in their 
maturational trajectories. a The top row shows a representative rodent primary cortical (PC) network developing over 
the first two weeks in vitro on the HD-MEA (DIVs 7, 10, 12 and 14; sparse neuron plating density; gray nodes correspond to 
single neurons; the size of each neuron corresponds to its nodal degree). Below we show the energy of the top performing 
simulated networks, given across the four main categories of studied wiring rules. Boxplots represent the median and 
interquartile range (IQR); outliers are demarcated as small black crosses, and are those which exceed 1.5x the IQR away 
from the top or bottom of the box. b Immunohistochemical staining of a rodent PC culture (control experiment; NeuN 
staining in blue, βIII-tubulin in red, and Synaptophysin in green). c All energy landscapes of the matching generative 
network model for DIV 14. d Cumulative density functions (CDFs) of the matching generative model, showing that 
simulated and observed statistics overlap very well. CDFs are shown across the four network statistics included in the 
energy equation of the top=99 simulations for the matching model (best performing generative model) compared to an 
observed network (black line). Subsequent prank values were computed using a Monte Carlo sampling procedure. e and f 
Simulated network trajectories were examined to determine, if the later generative model’s trajectory (DIV 14) 
recapitulated earlier observed statistics. Simulated network statistics were derived by computing the modularity Q 
statistics (e) and global efficiency (f), at each time-point, within the generative model that was best fit to the DIV 14 
networks. Results were scaled to the developmental time so that observations and simulations could be compared directly.  
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Functional topology and generative model outcome hold in both sparsely and densely 
plated cultures 
 
So far, we quantified STTC connectivity graphs derived from sparse PC neuronal cultures, 
that is, cultures plated with an initial density of 50,000 cells per well (1000-1500 cells/mm2). 
Of note, the actual numbers of cells on the HD-MEAs are likely smaller due to activity-
dependent programmed cell death (apoptosis), that occurs during the first weeks in 
vitro87,88. Despite some research on the effect of plating density on the emergence of 
population activity in vitro89, synaptic strength and connectivity90, there is currently no 
consensus as to how different plating densities affect neuronal topology. As one critical 
element of the generative network model is the geometric spacing between neurons, we 
next probed whether our findings in sparse cultures generalize to networks at higher 
neuronal plating densities. Therefore, we recorded a second independent dataset of more 
densely plated rodent PCs (100,000 neurons per well, n=12; see Methods; Rodent primary 
cortical neuronal cultures) in the exact same way as outlined for the first PC rodent dataset 
and directly compared both densities at DIV 14. 
 
We found that only the empirical edge lengths and global clustering differed between 
sparsely versus densely plated PC networks; dense networks showed relatively shorter 
connections (Mann-Whitney U, p=0.0125) and were more topologically clustered 
(p=0.0135).  All other tested metrics remained very comparable (Supplementary Figure 7). 
The global correlational structure of these statistics also remained stable (Figure 4a,b). 
Given the topological differences in edge lengths and global clustering, we then asked 
whether this also translated into significant changes in the energy values among the 13 
tested generative network models. In Figure 4c we show that the model energy is 
unaffected by plating density (homophily between plating densities, p=0.191). All statistical 
comparisons, for each time-point in the dense PC networks, are presented in 
Supplementary Table 4; results demonstrate stability not only at DIV 14, but also at later 
time points (DIV 21 and 28). In Supplementary Figure 8, we show the same results, but 
broken down by each individual model, in addition to showing that this result holds also 
when considering the average energy over the top 10 and 50 best-performing parameter 
combinations. In Figure 4d we show the energy landscape for both plating densities, which 
again are very similar. 
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Figure 4. Effect of plating density on network topology and generative network principles. a Correlation matrix 
for global network statistics calculated across sparse (lower triangle) and dense (upper triangle) PC cultures shows a highly 
similar covariance structure; colors indicate the Pearson's correlation coefficient. Elements (5,9) and (9,5) of the correlation 
matrix are further highlighted in panel b. This plot shows the correlation between efficiency and small-worldness, for 
sparse and dense networks (r=-0.822, p=2.73x10-14); each point in the scatter plot corresponds to a single network. c  
Sparse and dense PC networks can be best simulated by the homophily generative models (DIV 14). Note, that the leftmost 
boxplot is the same as that given in Figure 3a. d The energy landscapes for the matching generative network model 
landscapes inferred for the sparse and densely plated PC networks (DIV 14; see also Figure 3c).  
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Topological fingerprints arise from homophilic mechanisms in developing neuronal 
networks in vitro 
 
We have shown that homophily-based generative models produce synthetic networks 
which are statistically similar to observed functional rodent PCs networks. However, this 
similarity depends upon the maximum KS distance of the four topological statistics as 
defined in the energy equation. Crucially, this means that while experimentally observed 
and simulated network statistical distributions mirror each other at the global level, the 
topological fingerprint (TF) of these network statistics could differ. That is, nodes within 
simulated and observed networks could have different local relationships to one another, 
because node-wise local organizational properties are not captured per se by the existing 
energy equation. Previous studies have investigated how well generative models can 
recapitulate local organizational properties and the location of features, such as hub-nodes 
in the C. elegans connectome91 or MRI-inferred human brain networks51,52,60. 
 
This can be exemplified by the topological relationship between central and peripheral 
nodes. Nodes which score high in centrality measures (e.g., betweenness centrality—which 
determines how many shortest paths pass through—as shown by the red node in Figure 5a, 
left) tend not to sit within segregated modules, meaning it is common that they 
concurrently score low in measures of segregation (e.g., clustering coefficients, in which 
neighbors connect to each other). The opposite is true for peripheral nodes (see the green 
node in Figure 5a). This means that when correlating measures of centrality with measures 
of clustering across a network, the correlation tends to be negligible or negative39 (Figure 
5a, right). 
 
To assess the ability of generative models to capture these types of local relationships in 
settings with no anatomical reference space (as neurons are randomly distributed on the 
HD-MEAs), we provide a very simple cost function, here termed topological fingerprint 
dissimilarity (TFdissimilarity). The TFdissimilarity demarcates the ability of in silico network 
simulations to recapitulate observe local hallmarks of organization. It is defined as: 
 

𝑇𝐹>"BB"C"DEF"GH = IJJ(𝑇𝐹K=BLFML>NO − 𝑇𝐹B"CQDEGL>NO)R
$"

	 (3)	

 
The TF is defined by the n-by-n correlation matrix of n local network statistics for the 
observed network (TFobserved) and its corresponding (simulated) network (TFsimulated). The 
TFdissimilarity is subsequently equivalent to the Euclidean norm92 of the difference between 
observed and simulated topological correlation matrices. Here, we use six common 
measures of topology to compute the TF matrix (see Methods; Cost functions for details). 
TFdissimilarity serves as a unitary measure of the difference between the simulated and 
observed networks in terms of local topology, in contrast the energy metric which reflects 
global topology. Figure 5a provides a schematic of how the TFs were constructed. 
 
If homophily is a plausible attachment mechanism by which single neurons together form 
networks, we should expect homophily-based GNMs to produce networks with a local 
topological structure resembling the observed data. To probe this (dis)similarity, we 
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calculated the TFdissimilarity between each experimentally inferred functional connectivity 
graph and the best performing simulated network (according to the energy equation), for 
each of the 13 generative models, and across all recording time points (Figure 5). 
 
Results demonstrate that synthetic networks generated with homophilic attachment rules 
provide the lowest TFdissimilarity from DIV 12 onwards (Figure 5b). These rules also result in the 
statistically smallest TFdissimilarity  at DIV 14 (compared to degree rules: p=1.91x10-3, Cohen’s 
d=1.34; compared to clustering rules: p=1.37x10-7, Cohen’s d=2.59). Of note, homophily and 
spatial rules could be distinguished significantly at DIV 12 (p=9.96x10-4) but not at other 
time-points (e.g., at DIV 14; p=0.0952), possibly indicative of spatial costs driving the 
topological fingerprint at this level of plating density (Supplementary Table 5). Interestingly, 
replicate analyses in the denser PC rodent dataset at DIV 14, 21 and 28 provided almost 
identical results, but with an even stronger distinguishability of homophilic rules relative to 
spatial models (Supplementary Table 6 and Supplementary Figure 9), possibly reflecting a 
weaker preponderance of costs driving topology (mirroring previously found edge length 
differences; Supplementary Figure 7). The left-most panel in Figure 5c shows the 
experimentally observed TF matrix averaged over n=6 sparse PC networks; the adjacent 
panels show average TF matrices for the matching, clustering-average, degree-average and 
spatial generative models. Depicted are the best performing models within their generative 
rule class. 
 
In sum, our results highlight the importance of assessing GNM simulation performance both 
in terms of overall global topology (energy) and the local topology generated (TF). We find 
that homophily models concurrently outperform the other models on both fronts (Figure 
5d, see Supplementary Figure 10 for a replication analysis in the dense rodent PC dataset). 
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Figure 5. Homophilic generative mechanisms capture the local topology in developing neuronal networks. a 
Schematic illustrating the inference of topological fingerprints (TFs). A TF measure is computed as the Pearson’s correlation 
matrix among several topological statistics at the nodal level (degree, clustering, betweenness, edge length, efficiency and 
matching). Each node in a corresponds to a single neuronal unit/neuron. The right panel shows the negative correlation 
between clustering and betweenness, which captures an aspect of the topological structure of the network shown on the 
left. The color bar is clipped to +/-1 (blue/yellow) for clarity. b The TFdissimilarity measures the extent to which GNM 
simulations capture the topological structure of the experimentally inferred networks. Homophily generative models, and 
spatial models, show the lowest TFdissimilarity, suggesting that both can reconstruct local connectivity patterns in vitro (n=6, 
sparse PC networks; boxplots present the median and IQR; outliers are demarcated as small gray crosses, and are those 
which exceed 1.5 times the IQR). c Averaged TF matrix for the empirically observed data (on the left; DIV 14), versus the 
GNM results obtained from models with the best fits, i.e., the lowest energy values obtained for each model class: the 
matching rule (top left panel), the clustering-average rule (bottom left panel), the degree-average rule (top right panel) and 
the spatial mode (bottom right panel). d This plot depicts the relationship between energy and TFdissimilarity values for each 
sparse PC network broken down by generative rule class (spatial in yellow, homophily in red, clustering in green, degree in 
blue). Each dot indicates the value of the two model fit functions for a single simulated network.
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Effect of GABAA receptor antagonism on network development and dynamics 
 
Previous studies have shown that GABAergic interneurons can act as network hubs and 
regulate synchronicity of spontaneous activity between neurons that is critical for the 
formation of connections93–95. The role of GABAergic interneurons during development is 
also relevant for understanding their function in more mature brain circuits93,94,96,97. 
Moreover, alterations in the ratio of GABAergic interneurons and glutamatergic projection 
neurons, respectively the balance of excitation and inhibition, has been implicated in many 
neurodevelopmental disorders98. Ionotropic GABAA receptors are known to mediate fast 
inhibitory transmission in the cortex (in contrast to slow inhibition mediated by 
metabotropic GABAB receptors)97,99 and are critical for persistent network activity required 
for behavioral functions97. However, the role played by GABAA receptors in functional 
network development is not fully understood. Furthermore, absence of GABA could also 
delay the developmental switch in GABA polarity from depolarizing to hyperpolarizing100. 
Therefore, it is unclear how cellular-scale functional networks would develop in the absence 
of GABAA receptor-mediated inhibition and whether connections would form on the basis of 
homophily as seen in our previous results. It is also unknown whether effects of 
perturbation to GABAA receptor-mediated inhibition transmission on network activity and 
functional connectivity would be reversible.  
 
To address this, we cultured sparse rodent primary neurons under chronic application of 
media without gabazine (n=6, control) or with gabazine (n=9 gabazine-treated), a selective 
GABAA receptor antagonist (see Methods; Pharmacological experiments). Following chronic 
application of gabazine for two weeks, we washed out gabazine at DIV 14 and performed a 
final recording at DIV 15 in a subset of the dataset (n=6, washout) to determine the extent 
to which the cultures recovered. We first examine the differences in spiking dynamics and 
functional connectivity as a result of GABAA blockade. Next, we examine changes in energy 
across rules and parameter values within the best-performing rule. We asked whether 
GABAA receptor blockade affected network formation by a) preventing any connectivity 
principle being implemented (where all models have high energy), b) altering the 
connectivity principle being implemented (where a different model than homophily has the 
lowest energy) or c) altering how homophily is implemented (where homophilic models still 
have the lowest energy but parameter directions or magnitudes are altered).  
 
The six control and nine gabazine-treated cultures were compared using Mann-Whitney 
tests; the six gabazine cultures recorded at DIV14 were compared to their respective 
recordings at DIV15 with Wilcoxon signed rank tests. In line with previous research88,101, we 
find that chronic application of gabazine has a significant impact on single-cell and network 
firing patterns. Compared to controls, gabazine-treated networks show a more stereotypic 
burst behavior with less variation in interburst intervals (CV of IBI, Mann-Whitney U: 
p<0.001; n=6 controls; n=9 gabazine-treated); Figure 6). Moreover, we find a trend towards 
lower firing rates during chronic gabazine treatment at DIV14 (p=0.0567), which was 
reversed following washout (DIV15; Wilcoxon signed rank: p=0.0156; n=6). Burst rates and 
the fraction of spikes occurring in bursts were highly variable across gabazine-treated 
networks and both metrics significantly decreased following washout (p=0.013). We provide 
a more detailed comparison of the spiking activity between control and gabazine-treated 
cultures in Supplementary Figure 11. 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 1, 2022. ; https://doi.org/10.1101/2022.03.09.483605doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483605
http://creativecommons.org/licenses/by/4.0/


 
 

 
22 

 
Control and gabazine treated networks differed in global functional connectivity 
(Supplementary Figure 12). On average, gabazine-treated networks showed an increase in 
average STTC (Mann-Whitney U; p<0.001), a higher network density (p=0.003), and a 
greater total edge length (p=0.026). Following the washout, average STTC (p=0.031), 
network density (p=0.031) and edge length (p=0.013) reduced significantly, resembling the 
untreated cultures. Whereas untreated cultures showed a small fraction of nodes with high 
nodal strength, indicative of potential hub nodes, we did not see this topological structure 
during chronic gabazine treatment. That is, control networks had a more positively skewed 
STTC distribution than controls (p=0.002). This is consistent with the notion that GABAA 
receptors are involved in regulation of spiking activity and synchrony between neurons in 
the network, as this was altered by GABAA receptor block.  
 
To further examine the extent to which washing out gabazine returned endogenous 
inhibitory activity as GABAA receptors are released from blockade, we also computed the 
spike transmission probability (STP; Supplementary Figure 13). This cross-correlogram 
based metric has been used to infer putative inhibitory functional connectivity from on-
going extracellular spiking activity and to identify neuron pairs with a reduction in spike 
transmission gain (STG)102. Indeed, we find that washout of gabazine led to a significant 
increase in the number of putative inhibitory connections (Wilcoxon signed rank: p=0.012; 
Figure 6b). 
 
Despite alterations in cellular activity and network topology (Supplementary Figure 11 and 
12), homophilic generative attachment rules were the best fitting models across both 
control, gabazine-treated and washout (Supplementary Figure 14a, b). However, gabazine 
cultures exhibit a higher energy relative to controls (p=0.0292; Figure 6c), which suggests 
that homophilic GNMs cannot approximate the topology of gabazine-treated cultures to the 
same extent as for control cultures. This finding supports our hypothesis that perturbing 
GABAA receptor-mediated inhibition alters network characterization, even though 
homophily remains the best-fitting model. After washout of gabazine, however, these same 
cultures exhibited homophily energy values indistinguishable from controls (p=0.285), which 
indicates, that this effect may be reversible. Supplementary Figure 14c shows how gabazine 
cultures are best fit when the η homophily wiring parameter increases so that it is closer to 
zero, i.e., moving from more negative to less negative, decreasing in magnitude (p=0.0360). 
Lower magnitude η corresponds to a weaker influence of physical distance on the 
probability of forming connections. On the other hand, γ (which varies the extent to which 
homophily influences wiring probability) is unaffected (p=0.456). Hence, gabazine weakens 
the spatial extent of functional connectivity wiring, enabling longer distance connections in 
the network. 
 
Differences in wiring parameterization may reflect more fundamental differences in 
neuronal variability elicited via changes in the neural dynamics. Within the homophily 
generative model, connections form via continual negotiations between the modeled cost 
and self-similarity that is present between all neurons. If there are clear relative winners in 
this negotiation, for example, connections that are lower cost than all others and 
connections that are more homophilic than all others, these connections are more likely to 
form. Of note, the probability of a connection is proportional to the wiring parameter 
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magnitudes (see Equation 1). Mathematically, the Pi,j distribution would look like a 
canonical lognormal distribution that is found at many anatomical and physiological levels of 
the brain103,104, where a small number of possible candidate connections elicit a higher 
wiring probability while the majority remains low. However, in the example of gabazine, 
neuronal synchrony increases, which is equivalent to exhibiting less variability in spike times 
between neurons. Therefore, we hypothesized that this would lead to a flattening of this 
lognormal distribution, meaning that the resultant topology became more random and 
spatially distributed. Indeed, in Figure 6d we show this to be the case: gabazine-treated 
networks exhibit a flattened wiring Pi,j distribution relative to both controls (median Pi,j 
value=0.135 and 0.322 for gabazine & control, respectively; p=1.54x10-44, Cohen’s d=0.550) 
and also after gabazine washout (median Pi,j value=0.179; p=5.04x10-8, Cohen’s d=0.196; see 
also Supplementary Figure 14d). This finding suggests that gabazine alters the network 
wiring distribution as to become less specific in its wiring, rather than being specific to a 
smaller number of candidate neurons that are deemed particularly valuable to wire with. 
 
In summary, we find that homophily wiring rules are also the best fitting GNM for neuronal 
networks chronically treated with gabazine. For the latter, however, homophilic GNMs 
achieve worse fits compared control cultures. At the level of model parameters, the 
homophily γ parameter remains stable over all conditions, but it is η - which alters the 
spatial extent over which wiring is constrained. Interestingly, following washout of gabazine 
at DIV14, numerous topological characteristics are recovered. Within our simulations, the 
washout effect is reflected as a shift towards a more canonical lognormal connectivity 
distribution103.  
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Figure 6. Chronic block of GABAA receptors alters the wiring parameters of the homophily generative model. 
a Representative neuronal population activity of a control/untreated (red, top) and gabazine-treated networks (bottom, 
blue) at DIV 14. In the gabazine condition, network burst activity is more strongly synchronized, compared to the control 
networks. b the number of putative inhibitory connections increased significantly following the washout of gabazine at DIV 
14. Putative pair-wise inhibitory connections were inferred by a cross-correlogram approach and using an algorithm to 
infer reductions in spike transmission probability102. c The wiring parameters of the best performing (matching) generative 
model. Energy values of the top performing simulated networks across control and gabazine-treated cultures are shown in 
Supplementary Figure 13a,b. Of note, the η wiring parameter (left boxplots), which reflects the influence of Euclidean 
distances on the generative model, decreased in the gabazine condition relative to controls. Wiring parameters were 
derived from the top n=1 best performing matching simulation. See Supplementary Figure 13c,d for a replication across 
increasing numbers of top performing parameters. d The average probability score kernel density distributions (Pij) for the 
control (brown), gabazine (cyan) and washout conditions (lilac) recorded in sparse primary culture networks across 
simulated network development. The average gabazine probability distribution is shifted to the right and flatter compared 
to the controls and the washout condition. This indicates that wiring becomes more random across all timepoints. In 
Supplementary Figure 13e,f we show all distributions used to construct these averages. Asterisk indicates p < 0.05.
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Probing generative wiring principles across different human neuronal networks 
 
As shown in the previous section, patterns of neuronal spiking dynamics may have an effect 
on how rodent neurons form functional connectivity in vitro. However, to what extent this 
idea translates to, for example, networks comprising specific kinds of human neurons and 
their respective/varying spiking dynamics105,106 remains unclear. We start to address this 
question by applying GNMs to purified human iPSC-derived neuron/astrocyte co-cultures. 
GNM analyses were performed at a time point, at which such cultures reach a state of 
relative maturity (DIV 28)65. The dataset for this analysis comprises purified glutamatergic 
neurons (GNs, n=8), motor neurons (MNs, n=7), and dopaminergic neuronal cultures (DNs, 
n=6). We also included slice cultures derived from 4-month-old human embryonic stem cell-
derived cerebral organoids (hCOs, n=6 slices). Previous studies have indicated that hCOs 
develop functional networks with increasing complexity from as early as 90 days in 
vitro107,108. Figure 7a shows an immunohistochemical staining of a DIV 21 human iPSC-
derived DN culture, expressing neuronal and astrocytic markers (MAP2, GFAP, and TH); 
Figure 7b shows stainings for hCOs slices (Tau, NeuN, and GFAP).  
 
Figure 7c provides an overview of the human and rodent neuronal spiking dynamics. 
Following a t-distributed stochastic neighbor embedding (tSNE) analysis, we find that 
networks can be clustered well according to their spiking dynamics. The tSNE analysis is 
based on spike-train autocorrelograms, derived from the aggregated activity of each 
neuronal network109 (see Methods; Autocorrelogram analysis). Example network activity 
plots, illustrating the different firing dynamics and corresponding autocorrelograms, are 
shown in Figure 7d and Supplementary Figure 15a. Overall, activity-based tSNE clustering 
allows grouping of different monolayer human neuronal cell lines in space; greater 
spread/variability is observed for the hCO slices. MN dynamics appear closest to rodent 
primary cortical neurons (PCs) in the tSNE space, which this is reflected by their similarity in 
ongoing spiking dynamics (Supplementary Figure 15b). Representative examples of the 
observed differences in population activities across different human neuron cultures are 
depicted in Figure 7d.  
 
As for the rodent cultures, we constructed STTC functional connectivity graphs for all human 
neuron cultures, and assessed key connectivity metrics and topology. Figure 7e and Figure 
7f show these network statistics respectively; Figure 7g provides an example of a single 
constructed hCO functional network. It is notable that human iPSC-derived neuronal 
networks did not differ significantly in average STTC (ANOVA, p=0.0912). However, we find a 
significant difference in network density (p=1.02x10-4) and topological metrics, such as the 
small-world index (p=1.51x10-4). MNs show the highest network density, as inferred by the 
STTC, and small-worldness values within the range previously observed for the rodent PC 
networks.  
 
Figure 7h depicts the GNM results across all human monolayer and organoid cultures. 
Overall, generative model findings approximately mirror the similarity in their underlying 
spiking dynamics (Figure 7d), in that human MNs show an energy profile across generative 
models aligning with rodent cultures, followed by GNs (Figure 7h, left and middle-left; 
homophilic rules p<3.70x10-3 for all pairwise comparisons and Cohen’s d>0.772 reflecting 
large effect sizes). In contrast, DNs and hCOs, which show differing underlying dynamics, 
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exhibit a very distinct profile with the degree average method achieving the lowest energy, 
but no non-spatial class of generative rules providing the statistically lowest energy (Figure 
7h, middle-right and right). As noted before, hCOs exhibited significant variability in their 
spiking dynamics and topology, and provide an energy profile somewhat resembling 
randomly rewired graphs (Supplementary Figure 5b, right). All statistical findings are 
provided in full in Supplementary Table 7.  
 
In summary, GNMs based on homophilic wiring mechanisms best recapitulate functional 
network connectivity in vitro in rodent PC networks, particularly, at later developmental 
stages (DIV 14 onwards). In few cases, including some immature rodent PC networks and 
human cultures, the degree-average-based model performs well, if not best. This may 
reflect differences in the underlying spiking dynamics (Supplementary Figure 15). Human 
GN and MN networks show the closest resemblance to rodent PC networks, and as such, 
mirror their underlying homophilic generative mechanisms. Results in hCOs are as yet 
inconclusive, likely due to their observed variability in spiking activity and immature 
functional connectivity. 
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Figure 7. Generative network modeling across human neuronal cultures and cerebral organoids. a An 
immunohistochemical staining of a single hCO slice (Tau in green, NeuN in purple and DAPI in blue; bottom panel: Tau in 
green, GFAP in purple and DAPI in blue). b Clustering of human and rodent neuronal cultures based on a t-distributed 
stochastic neighborhood embedding (tSNE). Each dot corresponds to one culture; similarity was estimated by correlating 
the spike train autocorrelograms across all datasets and by then applying the tSNE. Rodent PC neuronal networks (yellow, 
dense platings, n=12, DIV 28), human iPSC-derived dopaminergic (dark-blue, n=6), motor (purple, n=7) and glutamatergic 
neurons (pink, n=8) form clear clusters in 2D tSNE space; human ESC-derived hCOs (green, n=6) were more scattered. c  
Immunohistochemical staining of a control dopaminergic neuron (DN) network (top panel: expression of GFAP in red, 
MAP2 in blue, TH in green, and DAPI in gray). d Representative population activity plots for networks of glutamatergic 
(left), motor (left middle), dopaminergic (right middle) iPSC-derived neuronal cultures and a hCO slice (right). e Global 
topological measures of human iPSC-derived neuronal networks at DIV 28: the mean STTC (top left), network density (top 
right), small-worldness (bottom left) and proportion of extant connection by distance (bottom right). f STTC functional 
connectivity measures and small-worldness of hCO slices including: average STTC (top left), network density (top right), 
small-worldness (bottom left), and connectivity as a function of distance (bottom right). g Functional connectivity graph 
inferred from a 120-day-old hCO slice. h Fits across generative model rules in human iPSC-derived neuronal networks (DIV 
28; n=6 for each cell line, left, middle left and middle right) and hCOs (n=6, right). The energy of the top n=1 performing 
simulated networks are shown. Boxplots represent the median and IQR. Outliers are demarcated as small black crosses, 
and are those which exceed 1.5x the IQR away from the top or bottom of the box. The asterisk reflects homophilic rules 
which demonstrate statistically lower energy (p<0.05) than other rules. All statistics are provided in Supplementary Table 
7. 
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DISCUSSION 
 
In the current study we applied large-scale electrophysiological recordings to track and 
characterize single-unit functional connectivity as neuronal networks develop in vitro. We 
systematically tested which candidate topological attachment mechanisms could explain 
this developing self-organization, using a range of generative network models to simulate 
network formation in silico. In the majority of cases tested, we found that a model utilizing 
an homophilic attachment mechanism45 performed best. This model accurately captures the 
developmental trajectories of neuronal networks, their local topological organization and 
highlights how neuronal variability is likely critical to the emergence of the canonical 
lognormal distribution103 of neuronal functional connectivity within networks. The apparent 
symmetry between these findings and previous work at various scales of analysis51,53,60,61,63 
and species54,110 may have implications for the study of brain development.  
 
Topological self-similarity as a driver of in vitro topology 
 
In line with previous work, we find that functional connectivity increased with development, 
and that developing neuronal networks in vitro exhibited typical characteristics of complex 
network architecture seen across numerous scales66,111. Our work demonstrates that, 
beyond the other tested models, homophily best recapitulates complex functional network 
topology in vitro.  
 
Interestingly, we find that the degree-average model tends to consistently follow the 
performance of homophily in cultures that are relatively less complex (e.g., immature 
rodent cultures and human single-cell-type cultures). Conceptually, the degree-average 
generative model prefers connection formation when both neurons simultaneously have 
large numbers of connections (given that γ>0). Importantly, the degree-average model (as 
with all other models apart from homophily) treats the underlying computation for how 
networks form connections as entirely independent. That is, the computation for the 
probability to wire is made not with direct respect to any other node pair—it is made on 
each neuron before then performing some other operation (e.g., taking the average, or 
maximum). In contrast, homophily is a function made with respect to the direct relationship 
between the connections of the neurons. This is a subtle but important theoretical 
distinction, because it highlights, how homophily can occur via the local communication 
between neurons, where signals are propagated via their connections. This is likely critical, 
as any generative mechanism by which complex neurobiological networks develop are likely 
to emerge from these interactions between the local components over time26—without a 
central mechanism aiming to optimize its global network properties112.  
 
A related observation is that the homophily heuristic—much like in social networks113,114—
enables each part of the network to interact with its local environment without requiring 
inordinate computational resources. Indeed, homophily has been shown to provide an 
efficient trade-off capable of producing small-world networks through which information 
can propagate efficiently91,92. Under this view, as limits to local-knowledge and 
computational capacity hold for any interacting developing system, homophily becomes a 
generative heuristic for any sufficiently large network. Notably, this resonates with accounts 
of Hebbian learning115,116 and spike-timing dependent plasticity (STDP)117 whereby neurons 
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wire with each other as a function of similarity118 to themselves (e.g., concurrent or 
temporally precedent neuronal firing, respectively) provided that neurons are sufficiently 
close in space. 
 
Models of developing networks across scales, species and time 
 
The combination of generative modeling and graph theory allows us to use in silico 
simulations as a lingua franca to probe micro-connectomic self-organization13. Comparative 
studies have examined economic accounts of connectomic organization across different 
species20—such as in the worm C. elegans37,91,119, larval zebrafish29, mouse120, macaque54 
and human connectome51–53,56,58–61,63. For example, Nicosea, et al.91 modeled the growth of 
C. elegans using the known birth times of its somatic neurons—finding that as the body of 
the animal progressively elongates, the cost of longer-distance connections become 
increasingly penalized. In human brain scans, Oldham, et al.60 incorporated known early 
changes in brain macroscopic geometry and other physiological measures of homophily 
(e.g., correlated gene expression) to improve an additive generative model’s network 
embedding (also see52). These works have highlighted the benefit of incorporating specific 
developmental changes, that are specific to the organism, within a growth model able to 
simulate developmental outcomes. 
 
Homogeneous spiking dynamics may lead to stochastic wiring through reduced parameter 
magnitude 
 
In line with previous findings, the inhibition of GABAA receptors led to increased neuronal 
synchronization compared to untreated cultures97,121. Despite this difference in population 
dynamics the homophily generative model better reproduced network topology than the 
other models, albeit with less error in the control networks. Crucially, GABAA receptor block 
did significantly push the model parameter, η, closer to zero. Reduced η magnitude 
indicates a weaker preference for short-distance connections in gabazine-treated networks 
compared to controls, whilst still preferring shorter connections as indicated by η being 
negative. One explanation might be that increased synchronicity with gabazine application 
leads to functionally less distinguishable spike dynamics between neurons—hence the 
connection probability distribution was flatter and shifted to the right relative to the 
probability distribution of controls. One might expect that without outstanding high-
probability connections to make, connection formation will be driven by cost with neuronal 
units preferentially connecting with more proximal units with long-range connections 
having little added value. However, η magnitude decreased rather than increased with 
gabazine treatment. This indicates that gabazine-treated cultures showed a weaker rather 
than stronger preference for short-distance connections compared to controls. One 
explanation could be that gabazine-treated cultures fail to deselect less homophilic long-
distance connections. Consistent with this, gabazine-treated cultures showed a longer total 
edge length, reflecting more long-distance, high-cost connectivity than controls. Together, 
these results support that GABAA receptor-mediated activity influenced connection 
specification that can elicit the same network topology more efficiently by maximizing value 
relative to cost of connections.  
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Interestingly, previous GNM work at the whole-brain scale has shown that lower magnitude 
wiring parameters are associated with poorer cognitive scores51, age51,53 and a diagnosis of 
Schizophrenia61,63. Perhaps, inhibitory hub neurons fail to implement the principle of 
homophily in the same way, thus constraining the emergence of small-worldness which has 
also been related cognitive function122,123. This may suggest convergent evidence for how 
developmental randomness, intrinsic to how developing parts interact with each other, may 
influence functional outcomes124. A remaining challenge in the field is to be able to directly 
parse the extent to which stochasticity and specific economic trade-offs may influence 
network outcomes under different conditions.  
 
Limitations and future work 
 
There is a lack of consensus as to how functional connectivity can be inferred from the 
spontaneous activity of neurons developing in vitro125. In the present study, we utilized the 
spike time tiling coefficient (STTC73) which was developed to improve on some of the 
limitations of traditional metrics for the coupling between neurons, such as the correlation 
index126. Crucially, our goal was not to infer synaptic connections, direct structural 
connections nor reconstruct the underlying circuit of synaptic (and autaptic127) connections 
present. Rather we sought to infer relationships in temporal patterns of spiking activity 
between neuronal units that may be relevant to network emergence and its functioning. 
Thus, the present analysis sits at a larger spatial scale than the synaptic or circuit level 
within the spatial and temporal structure of the brain. Nevertheless, in Supplementary 
Figure 5, we show that our results can be replicated with transfer entropy-based 
methods75,128, i.e., measures of effective connectivity, which may better correspond to 
aggregated connections weights between neurons. Furthermore, similar results were found 
in standard density MEAs, though neuronal units were not tracked over time67.   
 
An important outstanding question is how the role of GABAA receptor-mediated activity 
changes with development, and whether there is any link to the observed findings. From 
DIV 7 to DIV 14, homophily became more distinguishable from other rules in terms of its 
recapitulation of network topology in rodent PC networks. This coincides with the gradually 
increasing proportion of GABAergic synapse switching from depolarization to 
hyperpolarization during this time in rodent cultures100,129.  However, we inhibited GABAA 
receptors chronically from DIV1 and found homophilic rules still provided the best fit. 
Therefore, whilst GABAA receptor-mediated inhibition may play a role in de-coupling 
neurons and hub node function93,94,97, further work is required to understand the precise 
relationship between inhibition mediated by different receptor subtypes (e.g. GABAB 
receptor-mediated), cell types and how this changes wiring parameter magnitude, and 
ultimately network topology, over development. 
 
Another potential limitation relates to the application of our modeling approach to human 
monolayer and organoid cultures. The human iPSC-derived neuronal networks consist of 
purified cell-types, which is clearly artificial. As reflected by the lack of connectivity and 
topology in some of these cultures, such as the DN networks, which also did not show 
homophilic wiring, there is perhaps little surprise they performed differently. A more 
veridical account will likely come from cultures with mixed iPSC lines exhibiting more 
complex spiking dynamics arising from defined cell-type driven heterogeneity130. It is also 
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possible that the spatial extent of the recording from 3D hCOs onto the 2D HD-MEA system 
may have limited our network inferences. 
 
Despite these caveats, our present work shows that homophilic generative models per se 
are appropriate growth models for in vitro neuronal networks as they were capable of 
recapitulating key statistical properties—both at the local and global level. However, as 
noted in prior GNM studies51,60, a significant future advance in this research area will come 
from weighted generative network models capable of recapitulating weighted topological 
architectures. Such an approach would allow for both the tuning of connection weights over 
developmental time—a clear principle of network maturation119—but also enable further 
study of how developing network topology, genetics52,60,131 and information processing54,132 
together explain neuronal network organization across scales. 
 
In conclusion, we find that the complex topology of developing rodent and many human 
neuronal networks in vitro can be simulated via a simple homophily generative model, 
where neurons aim to maximize locally shared connectivity within an economic context. 
With this, and prior research at the macroscopic level in mind, we suggest that homophily 
wiring rules provide a compelling isomorphic explanation for any decentralized, locally 
computing, developing system.  
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METHODS 
 
High-density microelectrode arrays 
 
Two types of CMOS-based high-density microelectrode array (HD-MEA) recording systems, 
produced by MaxWell Biosystems (Zurich, Switzerland), were used in the present study64,133. 
The single-well HD-MEA MaxOne, consisting of 26,400 low-noise electrodes with a center-
to-center electrode pitch of 17.5 μm, arranged in a 120 x 220 electrode array structure. This 
HD-MEA can record simultaneously from a total of 1024 (user-selected; 3.85 × 2.10 mm2 
sensing area) readout-channels at 20 kHz; for more technical details see previous 
studies64,133. The second recording system was the multi-well HD-MEA MaxTwo (MaxWell 
Biosystems, Zurich, Switzerland), comprising the same number of electrodes and readout-
channels and electrode specifications as MaxOne for each well. With this system it is 
possible to simultaneously record from six wells at a time and at a sampling rate of 10 kHz. 
To decrease the impedance and to improve the signal-to-noise ratio (SNR), electrodes were 
coated with platinum black64.  
 
Rodent primary cortical neuronal cultures 
 
Before plating, HD-MEAs were sterilized in 70% ethanol for 30 minutes and rinsed three 
times with sterile water. To enhance cell adhesion, the electrode area of all HD-MEAs was 
treated with poly-D-lysine (PDL, 20 μL, 0.1 mg mL−1; A3890401, Gibco, ThermoFisher 
Scientific, Waltham, USA) for 1 hour at room temperature and then rinsed three times with 
sterile water. Next, 10 μL Geltrex (A1569601, Gibco, 0.16 mg mL−1) was pipetted on each 
array and again left for about one hour at room temperature. For the main analysis of the 
paper, we used rodent primary cortical (PC) neurons prepared as previously described64. 
Briefly, cortices of embryonic day (E) 18/19 Wistar rats were dissociated in trypsin with 
0.25% EDTA (Gibco), washed after 20 min of digestion in plating medium (see below), and 
triturated. Following cell counting with a hemocytometer, either 50,000 cells (sparse plating 
condition) or 100,000 cells were seeded on each array, and afterwards placed in a cell 
culture incubator for 30 min at 37°C/5% CO2. Next, plating medium was added carefully to 
each well. The plating medium contained 450 mL Neurobasal (Invitrogen, Carlsbad, CA, 
United States), 50 mL horse serum (HyClone, Thermo Fisher Scientific), 1.25 mL Glutamax 
(Invitrogen), and 10 mL B-27 (Invitrogen). After two days, half of the plating medium was 
exchanged with growth medium containing 450 mL D-MEM (Invitrogen), 50 mL horse serum 
(HyClone), 1.25 mL Glutamax (Invitrogen) and 5 mL sodium pyruvate (Invitrogen). Across all 
experiments, the medium was then exchanged twice a week, at least one day before the 
recording sessions. All animal experiments were approved by the veterinary office of the 
Kanton Basel-Stadt, and carried out according to Swiss federal laws on animal welfare. A 
summary of the data used is provided in Supplementary Table 1. 
 
Human induced pluripotent stem cell-derived neuronal cultures 
 
Three different human iPSC-derived neuronal cell lines were included in the study: iCell 
DopaNeurons, iCell Motor Neurons and iCell GlutaNeurons, all commercially available from 
FUJIFILM Cellular Dynamics International (FCDI, Madison, USA). All neural cells were co-
cultured with human iCell Astrocytes (FCDI, see above). Cell plating: Cell plating medium 
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consisted of 95 mL of BrainPhys Neuronal Medium (STEMCELL Technologies, Vancouver, 
Canada), 2 mL of iCell Neuronal Supplement B (FCDI), 1 mL iCell Nervous System 
Supplement (FCDI), 1 mL N-2 Supplement (100X, Gibco), 0.1 mL laminin (1 mg/mL, Sigma-
Aldrich) and 1 mL Penicillin-Streptomycin (100X, Gibco). Neurons and astrocytes were 
thawed in a 37°C water bath for 3 minutes. The cells were then transferred to 50 mL 
centrifuge tubes, and 8 mL plating medium (at room temperature) was carefully added. Cell 
suspensions were centrifuged at 380 x g (1600 RPM) for 5 minutes, and the supernatant was 
aspirated. Cell pellets were then resuspended in plating medium and combined to achieve a 
final concentration of 10,000 neurons and 2,000 astrocytes per μL. Finally, 100,000 neurons 
and 20,000 astrocytes were seeded per HD-MEA by adding 10 μL of the prepared solution, 
after removing the Geltrex droplet. After incubating the cells for one hour at 37°C/5% CO2, 
another 0.6 mL (small well MaxOne) / 1.2 mL (large well MaxOne) of plating medium was 
added. Half of the medium was changed twice a week. 
 
Human cerebral organoid slice cultures 
 
Human embryonic stem cell (hESC)-derived cerebral organoids (hCOs) were generated from 
a commercially available hESC stem cell line (Takara Bio, Osaka, Japan), using the STEMdiff 
cerebral organoid kit (STEMCELL Technologies) following the manufacturer’s instructions. 
Slices were obtained from 120-day old hCOs. Single organoids were first transferred from 
maturation medium to ice-cold BrainPhys (STEMCELL Technologies) using cut 1000 µl 
pipette tips. Next, cross-sectional 500-µm-thick slices were cut from hCOs using a sterile 
razor blade and collected in petri dishes filled with BrainPhys medium at room temperature. 
Before the plating, HD-MEAs were sterilized in 70% ethanol for 30 minutes and rinsed 3 
times with distilled water. To improve tissue adhesion, arrays were coated with 0.05% (v/v) 
poly(ethyleneimine) (Sigma-Aldrich) in borate buffer (pH 8.5, Thermo Fisher Scientific) for 
30 minutes at room temperature, rinsed with distilled water, and left to dry. To attach hCOs 
on HD-MEAs, we applied a thin layer of Matrigel (Corning) to the center of the HD-MEA and 
then transferred individual organoid slices to the coated HD-MEAs. After positioning the 
tissue, we placed a tissue “harp” on top of the organoid slice and applied several drops of 
recording medium (STEMCELL Technologies, #05793) around the organoid. HD-MEAs were 
then covered with a lid and placed in a humidified incubator at 37°C, 5% CO2/95% air for 30 
minutes, before adding more medium to a final volume of 2 ml per chip. Half of the 
recording medium was changed every 2-3 days. 
 
Immunohistochemistry 
 
Rodent PC neurons were stained as previously described64. Briefly, PC neurons were fixed 
using 4% paraformaldehyde solution (ThermoFisher, #FB001). Samples were permeabilized 
and blocked using a PBS 10X (ThermoFisher, #AM9625) solution containing 10% normal 
donkey serum (NDS) (Jackson ImmunoResearch, West Grove, USA, #017000001), 1% bovine 
serum albumin (BSA) (Sigma-Aldrich, 0 5482), 0.02% Na-Az (Sigma-Aldrich, #S2002) and 
0.5% Triton X (Sigma-Aldrich, #93443). Permeabilization facilitated antigen access to the 
cell, while blocking prevented non-specific binding of antibodies to neurons. Primary and 
secondary antibodies were diluted in a PBS solution containing 3% NDS, 1% BSA, 0.02% Na-
Az and 0.5% Triton X. The used antibodies are also listed in Supplemental Table 8. Note, 
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immunohistochemistry was performed on control PC cultures prepared as previously 
outlined65. 
 
Human iPSC-derived neurons were fixed using 8% PFA solution (#15714S, Electron 
Microscopy Sciences) and blocked for 1 hour at room temperature (RT) in blocking buffer 
containing 10% normal donkey serum (NDS) (Jackson ImmunoResearch, West Grove, USA, 
#017-000-001), 1% bovine serum albumin (BSA) (#05482, Sigma-Aldrich), and 0.2% Triton X 
(Sigma-Aldrich, #93443) in PBS (ThermoFisher Scientific, #AM9625). Primary antibodies 
(Supplementary Table 8) were diluted in a blocking buffer and incubated overnight at 4°C. 
Samples were washed three times with 1% BSA in PBS and incubated with the secondary 
antibody (Supplementary Table 8) diluted in blocking buffer for 1 hour at RT. After three 
additional washes with PBS, DAPI was added for 2 min at RT (1:10000). Images were acquired 
using the Opera Phenix Plus High-Content Screening System (cat. HH14001000, PerkinElmer, 
Waltham, MA, USA). 
 
hCOs were fixed using 4% paraformaldehyde (PFA) for 4 hours at room temperature, 
washed with PBS and immersed in 30% sucrose solution at 4 °C overnight. PFA-fixed 
organoids were embedded in OCT compound (Sakura Finetek, Alphen aan den Rijn, 
Netherlands, #4583) and stored at -80 °C. 10 μm sections were cut on a cryostat and 
collected on Superfrost plus slides (Thermo Scientific, #22-037-246). For 
immunohistochemistry, sections were permeabilized in 0.1% Triton X-100 and blocked with 
animal-free blocker (Vector Laboratories, Burlingame, CA, USA, #SP-5030-250). Slides were 
incubated with primary antibodies for 1 hour at room temperature. Sections were washed 
in PBS and further incubated with secondary antibodies for 1 hour at room temperature. 
After washing with PBS, sections were incubated with PureBlu DAPI (Bio-Rad, Hercules, CA, 
USA, #1351303) for 3 minutes and mounted with ProLong Gold antifade mounting medium 
(Thermo Scientific, #P36930). Fluorescence images were acquired with a SP8 confocal 
microscope (Leica, Wetzlar, Germany). The primary and secondary antibodies used for hCO 
stainings are listed in Supplementary Table 8. 
 
Scanning electron microscope imaging 
 
Fresh tissue samples were fixed in 2.5% glutaraldehyde solution (Sigma-Aldrich, St. Louis, 
USA) overnight. After fixation, the samples were dehydrated in ascending acetone series 
(50%, 70%, 80%, 90%, 95%, 100%), and critically point dried (CPD; Quorum Technologies, 
West Sussex, UK), using CO2 as the substitution fluid. The procedure is generally suited for 
SEM preparation and ensures that surface structures of animal tissue samples are preserved 
in their natural state, i.e., without shrinkage, distortion or dissolution. After CPD, specimens 
were carefully mounted on aluminum stubs using double sticky carbon-coated tabs as 
adhesive (Plano, Wetzlar, Germany). Thereafter, they were coated with gold-palladium in a 
sputter device for 45 seconds (Bio-Rad SC 510, Munich, Germany). SEM analyses were 
carried out with a Zeiss Digital Scanning Electron Microscope (SUPRA 40 VP, Oberkochen, 
Germany) in SE2 mode at 5-10 kV. 
 
Electrophysiological recordings 
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In order to track the development of functional connectivity of in vitro neuronal networks 
on HD-MEAs, we performed weekly recordings, starting one week after plating. In order to 
select a network recording configuration, we performed whole-array activity scans, i.e., 
series of 1-minute long high-density recordings, covering all 26,400 electrodes of the HD-
MEA, using the MaxLab Live software (MaxWell Biosystems). To select recording electrodes, 
we estimated the multi-unit activity for each electrode using an online sliding window 
threshold-crossing spike-detection algorithm (window length: 1024 samples; detection 
threshold: 4.5 × the root mean squared error (RMSE) of the noise of the 300-3000 Hz band-
pass filtered signal). After the activity scan, we selected up to 1024 readout-electrodes, 
based on the detected average activity and a ranking of the inferred, average amplitude 
values. Additional high-density network recordings, consisting of 4 x 4 electrode blocks (17.5 
μm pitch), were acquired for the tracking experiments (see below). The duration of the HD-
MEA network recordings was about 30 minutes; an overview on the different datasets is 
provided in Supplemental Table 1. The PC neuronal network and the hCO data were 
acquired by MaxTwo multi-well plates (MaxWell Biosystems); the human iPSC-derived 
neurons (glutamatergic, motor and dopaminergic neurons) were recorded on single-well 
MaxOne HD-MEAs (MaxWell Biosystems). 
 
Pharmacological experiments 
 
Pharmacological experiments with the GABAA receptor blocker gabazine (SR 95531 
hydrobromide, Sigma-Aldrich, #104104509), were performed on sparse (50,000 per well) 
primary cortical (PC) neuronal cultures. Three cultures were treated with 1 μM gabazine one 
day after plating and tracked until DIV14; media+gabazine exchanges were performed 2-3 
times per week. 
 
Spike-sorting and post-processing 
 
All HD-MEA network recordings underwent an initial quality control to assess the overall 
noise level and signal stability of each recording. Next, we used the software package 
Kilosort 2 (KS2)72 to spike sort data, applying default parameters. For the developmental 
tracking analyses, we concatenated all recordings (i.e., DIV7, 10, 12, and 14 for the PC 
cultures at 50k plating density, and DIV14, 21 and 28 for the PC cultures plated at 100k per 
well). After spike sorting, we inferred array-wide spike-triggered averages (STAs) for all units 
labeled as ‘good’ by KS2. Next, we calculated the spatial similarity between all detected 
units/STAs to minimize the influence of potential cluster splits that might have occurred 
during spike sorting of bursty spontaneous activity. The spatial similarity among the inferred 
array-wide templates was probed by the normalized pairwise maximum cross-correlation: 
units/STAs that showed a similarity r >0.75 and had at least 5 electrodes in common 
underwent an iterative elimination process using a simple clustering heuristic134. Please see 
Supplementary Table 1 for a summary of the data sets used in this study, and Supplemental 
Figure 1 for the number of trackable units for both datasets. 
 
Firing rate and burst statistics 
 
Firing rates across each neuronal unit were calculated as the total number of spikes per unit 
time (in seconds) in the entire recording. Array values were calculated as the mean across 
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all active units (firing rates >0.01 Hz). Burst rates were calculated using a maximum 
interspike interval (ISI) method135 based on the ISI between every Nth spike (ISIN)136. The ISIN 
threshold for determining the onset/offset of bursting activity was determined by finding 
the local trough in the bimodal logISI distribution (see Supplemental Figure 11b). The two 
peaks, at short ISIs and long ISIs represent more high frequency bursting and regular 
activity, respectively. The coefficient of variation (CV) of interburst intervals (IBIs) was 
calculated as the standard deviation of IBIs relative to the mean IBI in a given neuronal unit; 
the array value was the mean of this across all neuronal units. 
 
Functional connectivity inference 
 
To detect pairwise correlations in spike trains, here referred to as functional connectivity, 
we computed the spiketime tiling coefficient (STTC)73. The STTC aims to mitigate potential 
confounding in basic correlation indices introduced by different firing rates, by quantifying 
the proportion of spikes in one train which fall within ±Δt (the synchronicity window) of 
another. It is given by: 
 

𝑆𝑇𝑇𝐶	 = 	 U
R
( VWXYZ
UXVWYZ

+ VZXYW
UXVZYW

),	 	
(4)	

where TA is the proportion of total recording time which lies within ±Δt of any spike from A 
(TB is calculated similarly). PA is the proportion of spikes from A which lies within ±Δt of any 
spike from B (PB is calculated similarly). The synchronicity window, Δt, is the only free 
parameter in the STTC calculation. In the present study, we used a Δt=10 ms. A visualization 
of the STTC calculation is provided in Figure 1h; STTC was calculated using publicly available 
Matlab code82. We used permutation-based testing to determine the significance of 
connections. For a given neuronal unit’s spike train, spike times were randomly jittered by 
±10ms to create a surrogate spike train, using code provided by the Neural Complexity and 
Criticality Toolbox137. This was repeated for each neuronal unit for 1000 permutations. To 
calculate significance of pairwise functional connectivity, experimentally inferred STTC 
values were compared to the distribution of surrogate SSTC values. A significance value of p 
< 0.01 was used as a cutoff to binarize functional connectivity matrices and calculate 
network related analysis throughout the manuscript; only units with firing rates >0.01 Hz 
were considered. 
 
Network statistics 
 
In Figure 2a we provide a visualization of key graph theoretical metrics relevant for this 
study. Here we provide both a written and mathematical definition for each measure used. 
Each statistic was calculated using the Brain Connectivity Toolbox78: 
 
Degree. The degree is the number of edges connected to a node. The degree of node i is 
given by: 

𝑘" 	= 	J𝑎",$,
$∈_

 (5)	
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where 𝑎",$  is the connection status between 𝑖 and 𝑗. 𝑎",$  =1 when link 𝑖,𝑗 exists (when 𝑖 and 𝑗 
are neighbors); 𝑎",$  = 0 otherwise (𝑎"," = 0 for all 𝑖). 
Clustering coefficient. The clustering coefficient is the fraction of a node’s neighbors that are 
neighbors of each other. The clustering coefficient for node i is given by: 

𝑐" =
1
𝑛J

2𝑡"
𝑘"(𝑘" − 1)

	,
"∈_

 (6)	

where 𝑐" is the clustering coefficient of node 𝑖 (𝑐" = 0 for 𝑘" < 2). 
Betweenness centrality. The betweenness centrality is the fraction of all shortest paths in 
the network that contain a given node. Nodes with high values of betweenness centrality 
therefore participate in a large number of shortest paths. The betweenness centrality for 
node i is given by: 

𝑏" =
1

(𝑛 − 1)(𝑛 − 2) J
𝜌h$(𝑖)
𝜌h$

,
h,$∈_

 (7)	

where 𝜌h$  is the number of shortest paths between h and 𝑗, and 𝜌h$ (𝑖) is the number of 
shortest paths between h and 𝑗 that pass through 𝑖. 
Edge length. The edge length is the total edge lengths connected to a node. It is given by: 

𝑑" 	= 	J𝑎",$𝑑",$,
$∈_

 (8)	

where 𝑑",$	is the Euclidean distance between 𝑖 and 𝑗. The Euclidean distances of functional 
connectivity graphs inferred in the present study are depicted in Supplementary Figure 3. 
Global efficiency. The global efficiency is the average of inverse shortest path length. It is 
given by: 
 

𝐸" =
1
𝑛J

∑ 𝑑",$XU$∈_,$m"

𝑛 − 1
"∈_

 (9)	

Matching. The matching index computes the proportion of overlap in the connectivity 
between two nodes. It is given by: 

𝑀",$ 	= 	
|_N/O∩_O/N|
|_N/O∪_O/N|

, (10)	

where 𝑁"/$  refers to neighbors of the node i excluding node j. Where global measures of 
matching have been used, we averaged across the upper triangle of the computed matching 
matrix. 
Small-worldness. Small-worldness refers to a graph property where most nodes are not 
neighbors of one another, but the neighbors of nodes are likely to be neighbors of each 
other. This means that most nodes can be reached from every other node in a small number 
of steps. It is given by: 

𝜎 = 	 </<wxyz
D/Dwxyz

,	 (11)	
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where c and 𝑐FE{> are the clustering coefficients, and l and 𝑙FE{> are the characteristic path 
lengths of the respective tested network and a random network with the same size and 
density of the empirical network. Networks are generally considered as small-world 
networks at σ>1. In our work, we computed the random network as the mean statistic 
across a distribution of n=1000 random networks. The characteristic path length is given by: 

𝐿" =
1
𝑛J

∑ 𝑑",$$∈_,$m"

𝑛 − 1
"∈_

	 (12)	

Modularity. The modularity statistic, Q, quantifies the extent to which the network can be 
subdivided into clearly delineated groups: 

𝑄 =
1
𝑙 J �𝑎",$ −

𝑘"𝑘,$
𝑙 � 𝛿CNCO

",$∈_

 (13)	

where 𝑚"  is the module containing node 𝑖, and 𝛿CNCO= 1 if 𝑚"  = 𝑚$, and 0 otherwise.  
Participation coefficient. The participation coefficient is a measure of diversity of 
intermodular connections of individual nodes, where community allocation was determined 
via a Louvain algorithm, with a resolution parameter γ = 1, which aims to form a subdivision 
of the network which maximizes the number of within-group edges and minimizes between 
group edges. 
 
Generative network modeling 
 
The generative network model can be expressed as a simple wiring equation51,53,56,61, where 
wiring probabilities are computed iteratively by trading-off the cost of forming a connection, 
against the value of the connection being formed in terms of a network topology term. 
Connections are added iteratively according to these wiring probabilities. It is given by the 
wiring equation as provided in Equation 1. The Di,j term represents the “costs” incurred 
between neurons modeled as the Euclidean distance between tracked units 
(Supplementary Figure 3). The Ki,j term represents how neurons “value” each other, given 
by an arbitrary topological relationship which is postulated a priori (also termed, “wiring 
rule” given mathematically in Supplementary Table 2). Pi,j reflects the probability of forming 
a fixed binary connection at the current time step. The simulation continues until the 
simulated network has the same number of connections of the observed network. The Di,j 
term remains constant during the simulation while the Ki,j term updates at each time point 
(and therefore also the Pi,j term). 
 
Cost functions 
 
In the present study, we make a distinction between simulated networks which mirror the 
statistical distributions of observed networks and those which mirror the topological 
organization of those statistics. The former can be accessed via a previously used energy 
equation53 whereby the model fit is given by the “worst” of the four KS distances assessed, 
given by Equation 2. KS is the Kolmogorov-Smirnov statistic between the observed and 
simulated networks at the particular η and γ combination used to construct the simulation, 
defined by the network degree k, clustering coefficient c, betweenness centrality b and 
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Euclidean edge length d. Notably, the KS distance between two vectors simply considers 
their statistical distributions. 
 
In Supplementary Figure 6, we further assess the ability of the best performing generative 
models in each class (spatial, matching, clustering average and degree average) to 
recapitulate network statistics as included in the energy equation, but also two measures 
outside (local efficiency and participation coefficient). We did this via a Monte Carlo 
sampling procedure83. First, we took the top n=99 performing simulations for each sparse 
rodent culture’s model considered, and computed each of the six local statistics as shown in 
Supplementary Figure 6 as cumulative density plots. For each statistic, we computed a KS 
statistic between the observed local statistics distribution and an average of the statistics of 
the 99 simulations. We then undertook 99 individual leave-one-out iterations in which we 
replaced a single simulation of the 99 with the observed distribution. For each of the 99 
permutations, we computed the same statistic, forming a null distribution. We then 
calculated a prank by ranking how close the original observed statistic was to the mean of this 
computed null distribution (i.e., how close was the observation to the middle of the null). 
This was computed for each culture and statistic, for each of the considered generative 
models. We then quoted the median prank across cultures. 
 

Later in the study, we provide an alternative but simple cost function which does not assess 
distributions of statistics, but instead assesses the topological fingerprint dissimilarity of 
these network statistics. The topological fingerprint (TF) matrix is calculated as a Pearson’s 
correlation matrix between each pair-wise combination of the local statistics. In our study, 
we used six common network statistics to form this correlation matrix, however, in 
principle, these can be extended to any number or range of local statistical measures. The 
construction of the TF is visualized in Figure 5a. The TFdissimilarity is then calculated as the 
Euclidean norm92 of the difference between the observed and simulated TF matrices. This is 
given in Equation 3. 
  
Parameter selection 
 
We optimized η and γ using a Voronoi tessellation procedure as used in prior work53. This 
procedure works by first randomly sampling the parameter space and evaluating the model 
fits of the resulting simulated networks, via the energy equation. As there is little prior 
literature that can be used to guide the present study, we considered a wider range of 
parameter values, with η values in the range from -10 to 10 and γ values in the range -10 to 
10. Following an initial search of 4000 parameters in this space, we performed a Voronoi 
tessellation, which establishes two-dimensional cells of the space. We then preferentially 
sampled from cells with better model fits according to the energy equation (see53 for further 
detail). Preference was computed with a severity of α = 2 which determines the extent to 
which cell performance led to preferential sampling in the next step. This procedure was 
repeated a further four times, leading to a total of 20,000 simulations being run for each 
considered network across the 13 generative rules as described in Supplementary Table 2. 
 
Generative probability distributions 
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In Figure 6d, we show the mean probability score (Pi,j) distributions within the generative 
models fit to gabazine and control networks. This was calculated by measuring the Pi,j across 
all node pairs i and j in the network, in 1% intervals, before plotting the average distribution 
of Pi,j across these timesteps. In Supplementary Figure 13e,f, we show each distribution of 
these probability distributions (that was averaged to provide comparisons in Figure 6d). 
Note that the probability score distribution flattening means there are more edges with 
higher probabilities of being connected, leading to decreased specificity of future wiring. 
This flattening effect is equivalent to the network outcomes being more random. 
 
Autocorrelogram analysis 
Autocorrelogram analysis was carried out using the CellExplorer Matlab Toolbox CGG 
function109,138. First, spike times were concatenated cumulatively across units to give a 
single vector of spike times. Spikes were summed into consecutive one millisecond bins 
giving a vector where each element is a one millisecond bin containing the number of spikes 
occurring in the network at each time point. This vector, v, was then correlated with itself 
plus a lag value, x. The range of lag values tested was -500 – 500 ms. Lag values between -1 
– 1 ms were removed to impose a refractory period—hence, these values are 0 in 
Supplementary Figure 15. For example, where x is 5 ms, the CCG function is the sum of vi 
and vt+x across all time points, t. This gives a vector of CCG values, corresponding to 
spatiotemporal overlap in spike times, for lag values between -500 – 500 ms in increments 
of 1 ms. To control for variability in firing rate between recordings, the CCG values were 
normalized to the maximum value in this CCG vector.  
 
Code availability 
 
Results were generated using code written in Matlab 2020b. All code is available at 
https://github.com/DanAkarca/MEA_generative_models   
 
Data availability  
 
All data used in this study, along with documentation detailing each dataset, is openly 
available at https://zenodo.org/record/6109414#.Yid27y-l2J8   
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