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Abstract10

Identifying the directed connectivity that underlie networked activity between different cortical areas is crit-11

ical for understanding the neural mechanisms behind sensory processing. Granger causality (GC) is widely12

used for this purpose in functional magnetic resonance imaging analysis, but there the temporal resolution is13

low, making it difficult to capture the millisecond-scale interactions underlying sensory processing. Magne-14

toencephalography (MEG) has millisecond resolution, but only provides low-dimensional sensor-level linear15

mixtures of neural sources, which makes GC inference challenging. Conventional methods proceed in two16

stages: First, cortical sources are estimated from MEG using a source localization technique, followed by GC17

inference among the estimated sources. However, the spatiotemporal biases in estimating sources propagate18

into the subsequent GC analysis stage, may result in both false alarms and missing true GC links. Here, we19

introduce the Network Localized Granger Causality (NLGC) inference paradigm, which models the source20

dynamics as latent sparse multivariate autoregressive processes and estimates their parameters directly from21

the MEG measurements, integrated with source localization, and employs the resulting parameter estimates22

to produce a precise statistical characterization of the detected GC links. We offer several theoretical and23

algorithmic innovations within NLGC and further examine its utility via comprehensive simulations and24

application to MEG data from an auditory task involving tone processing from both younger and older25

participants. Our simulation studies reveal that NLGC is markedly robust with respect to model mismatch,26

network size, and low signal-to-noise ratio, whereas the conventional two-stage methods result in high false27

alarms and mis-detections. We also demonstrate the advantages of NLGC in revealing the cortical network-28

level characterization of neural activity during tone processing and resting state by delineating task- and29

age-related connectivity changes.30

Keywords: MEG, Granger causality, source localization, statistical inference, functional connectivity31

analysis, auditory processing32

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.03.09.483683doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483683
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction33

Characterizing the directed connectivity among different cortical areas that underlie brain function is34

among the key challenges in computational and systems neuroscience, as it plays a key role in revealing35

the underlying mechanism of cognitive and sensory information processing (Sporns, 2014; Lochmann and36

Deneve, 2011). A remarkable data-driven methodology for statistical assessment of directed connectivity is37

commonly referred to as Granger causality, which quantifies the flow of information based on improvement38

in the temporal predictability of a time-series given the history of another one (Bressler and Seth, 2011).39

Mathematically speaking, for two time series x1,t and x2,t, if using the history of x1,t can significantly40

improve the prediction of x2,t, we say that there is a Granger causal (GC) link from x1,t to x2,t, i.e., x1 7→ x2,;41

otherwise, there is no GC link from x1 to x2. An essential attribute of Granger causality distinguishing42

it from other connectivity metrics, such as Pearson correlation or mutual information, is its directionality,43

which makes it a powerful statistical tool for brain functional connectivity analysis (Seth et al., 2015).44

Granger causality has been widely utilized in analyzing functional magnetic resonance imaging (fMRI)45

data (Roebroeck et al., 2005; Deshpande et al., 2009; Chen et al., 2018; Dong et al., 2019; Azarmi et al., 2019).46

In addition to technical challenges such as hemodynamic variability and ambiguity in the interpretation of47

Granger causality analysis for fMRI data (Roebroeck et al., 2011; Deshpande and Hu, 2012), due to the48

relatively low temporal resolution of fMRI, on the order of seconds, cortical network interactions that occur49

on the millisecond-scale in cognitive and sensory processing cannot be captured. Magnetoencephalography50

(MEG) and Electroencephalography (EEG), on the other hand, provide higher temporal resolution in the51

order of milliseconds, but unlike fMRI, only provide low-dimensional linear mixtures of the underlying neural52

sources. Typically, the number of sensors and sources are in the order of ∼ 102 and ∼ 104, respectively,53

which makes the problem of estimating cortical sources highly ill-posed (Hämäläinen and Ilmoniemi, 1994;54

Baillet et al., 2001; Hauk et al., 2019; Samuelsson et al., 2020). To address this issue, existing methods55

typically follow a two-stage procedure, in which the neuromagnetic inverse problem is solved first to obtain56

sources estimates, followed by connectivity analysis performed on the estimated sources (Schoffelen57

and Gross, 2009; Sohrabpour et al., 2016; Brookes et al., 2016; Cope et al., 2017; Farokhzadi et al., 2018;58

Seymour et al., 2018; Blanco-Elorrieta et al., 2018; Liu et al., 2019, 2020; Rosenberg et al., 2021; Lu et al.,59

2013; Hejazi and Nasrabadi, 2019; Gao et al., 2020).60

While this two-stage approach is convenient to adopt, it comes with significant limitations. First, Granger61
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causality, as a network-level property, is a second-order spatiotemporal relation between two sources. As62

such, it requires reliable estimates of second-order moments of cortical source activity. Source localization63

techniques, however, predominantly use strong priors to combat the ill-posedness of the neuromangetic64

inverse problem and thereby to estimate first-order moments of cortical sources with controlled spatial65

leakage. In additional to the challenges caused by artefactual spatial mixing and mis-localization of the66

estimated sources, which can readily complicate connectivity analysis (Palva and Palva, 2012), the biases67

introduced in favor of accurate estimation of first-order source activities typically propagate to the second68

stage of connectivity analysis and may result not only in mis-detection of pair-wise interactions, but also69

capturing spurious ones (Palva et al., 2018).70

Second, a necessary step in establishing causal relationships among cortical sources entails accurate71

estimation of their temporal dependencies. Source localization methods using linear and non-linear state-72

space models address this challenge by modeling source dynamics as multivariate autoregressive processes73

(Long et al., 2006; Pirondini et al., 2018; Lamus et al., 2012; Hui and Leahy, 2006; Ding et al., 2007; Limpiti74

et al., 2009; Nalatore et al., 2009; Sekihara et al., 2010; Cheung et al., 2010; Cheung and Van Veen, 2011;75

Sekihara et al., 2011; Fukushima et al., 2015; Cho et al., 2015). While these methods are able to notably76

increase the spatiotemporal resolution of the estimated sources, they come with massive computational77

requirements, especially when the number of sources and the length of the temporal integration window78

grows (Long et al., 2011; Cheung et al., 2010; Sekihara et al., 2010). Finally, existing methods that address79

these challenges lack a precise statistical inference framework to assess the quality of the inferred GC links80

and control spurious detection (Manomaisaowapak et al., 2021).81

In this paper, we address the foregoing challenges by introducing the Network Localized Granger Causal-82

ity (NLGC) inference framework to directly extract GC links at the cortical source level from MEG data,83

without requiring an intermediate source localization step. We model the underlying cortical source activ-84

ity as a latent sparse multivariate vector autoregressive (VAR) process. We then estimate the underlying85

network parameters via an instance of the Expectation-Maximization (EM) algorithm with favorable com-86

putational scalability. The estimated network parameters are then de-biased to correct for biases incurred by87

the sparsity assumption, and used to form a test statistic that allows to detect GC links with high statistical88

precision. In doing so, we provide a theoretical analysis of the asymptotic distribution of said test statistic.89

We evaluate the performance of NLGC through comprehensive simulations by comparing it with several90

two-stage procedures. Our simulation results indeed confirm the expected performance gains of NLGC in91

terms of reducing spurious GC link detection and high hit rate.92

We further examine the utility of NLGC by application to experimentally recorded MEG data from93

two conditions of pure-tone listening and resting state in both younger and older individuals. We consider94

two frequency bands of interest, namely, combined Delta and Theta bands (0.1 − 8 Hz) and Beta band95

(13− 25 Hz), for GC analysis which have previously yielded age-related changes in resting state coherence96
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Figure 1: A schematic depiction of the proposed NLGC inference. For cortical sources that form an underlying
network, our contribution is to directly infer this network, using the framework of Granger, from the MEG mea-
surements. NLGC is composed of network parameter estimation (blue block) and statistical inference (green blocks)
modules. Unlike the conventional two-stage methods, NLGC extracts the GC links without an intermediate source
localization step.

analysis (Fleck et al., 2016). The detected GC networks using NLGC reveal striking differences across97

the age groups and conditions, in directional interactions between frontal, parietal, and temporal cortices.98

Further inspection of these networks reveals notable inter- vs. intra-hemispheric connectivity differences.99

In summary, NLGC can be used as a robust and computationally scalable alternative to existing two-stage100

connectivity analysis approaches used in MEG analysis.101

2. Results102

2.1. Overview of NLGC103

Here, we give an overview of the proposed NLGC inference methodology, as depicted in Fig. 1, and104

highlight the novel contributions.105

The sources of the signals recorded by MEG/EEG sensors are mainly the post-synaptic primary currents106

of a bundle of tens of thousands of synchronously active pyramidal cells that form an effective current dipole107

(Murakami and Okada, 2006; Hämäläinen et al., 1993; Da Silva, 2009). As such, to formulate the MEG/EEG108

forward model, a distributed cortical source space is considered in which the cortical surface is discretized109

using a mesh comprising a finite number of current dipoles placed at its vertices. These current dipoles are110

henceforth called sources, and their activity as source time-courses.111

Assuming that there are M such sources, we denote the collective source activity at discrete time t112

as an M -dimensional vector xt, where its ith element, xi,t is the activity of source i, for i = 1, 2, · · · ,M113
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and t = 1, 2, · · · , T , where T denotes the data duration. The N MEG sensors measure the N -dimensional114

observation vector yt at time t. The MEG observations follow a well-known linear forward model given by115

(Sarvas, 1987; Mosher et al., 1999; Baillet et al., 2001):116

yt = Cxt + nt, (1)117

where the N×M matrix C maps the source space activity to the sensor space and is commonly referred to as118

the lead-field matrix. The N -dimensional measurement noise vector nt is modeled as a zero mean Gaussian119

random vector with covariance matrix R and is assumed to be identically and independently distributed120

(i.i.d.) across time (Cheung and Van Veen, 2011; Cheung et al., 2010; Long et al., 2011; Wipf et al., 2010).121

As for the evolution of the sources, we consider xt as a latent state vector and model its evolution over122

time by the following generic stochastic dynamical model:123

xt =
K∑
k=1

Akxt−k + wt, t = 1, · · · , T, (2)124

where the M -dimensional vectors wt are assumed to be i.i.d. zero mean Gaussian random vectors with125

unknown diagonal covariance matrix Q = diag(σ2
1 , · · · , σ2

M ) and independent of vt. The M ×M coefficient126

matrix Ak quantifies the contribution of the neural activity from time t− k to the current activity at time127

t, for k = 1, . . . ,K. This dynamical model is conventionally called a Vector Autoregressive (VAR) model of128

order K (or VAR(K)) and is commonly used in time-series analysis (Johansen, 1995).129

Assuming that the source time-series xt form an underlying network (Fig. 1, top left), our main con-130

tribution is to find the inverse solution to this latent network, in a Granger causality sense, directly from131

the MEG observations yt (Fig. 1, bottom left). If reliable estimates of the network parameters {Âk}Kk=1132

were at hand, one could perform a statistical assessment of causality from source j to i by checking whether133

[Âk]i,j = 0 for all k = 1, 2, · · · ,K (i.e., no causal link) or [Âk]i,j 6= 0 for at least one of k = 1, 2, · · · ,K (i.e.,134

causal link). However, reliable estimation of the network parameters based on noisy and low-dimensional135

measurements yt of typically short duration is not straightforward. When noisy, but direct, observations of136

the sources are available, statistical methods such as LASSO are typically used to test for these hypotheses;137

however, when the number of sources M and lags K are large, such methods suffer from the large number138

of statistical comparisons involved.139

The classical notion of Granger causality circumvents this challenge by considering the ”bulk” effect of140

the history of one source on another in terms of temporal predictability. To this end, for testing the GC141

link from source j to source i, two competing models are considered: a full model, in which all sources are142

considered in Eq. (2) to estimate the network parameters and thereby predict source i; and a reduced model,143

in which the coefficients from source j to i are removed from Eq. (2), followed by estimating the network144

parameters and predicting source i. The log-ratio of the prediction error variance between the reduced and145
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full models is used as the Granger causality measure. In other words, the better the prediction of the full146

model compared to the reduced model, the more likely that source j has a causal contribution to the activity147

of source i, in the sense of Granger causality.148

Considering the inverse problem of Fig. 1, there are several key challenges. First, unlike the classical GC149

inference frameworks, the sources are not directly observed, but only their low-dimensional and noisy sensor150

measurements are available. Second, GC inference inherently demands single-trial analysis, but the trial151

duration of cognitive and sensory experiments are typically short, which renders reliable model parameter152

estimation difficult. Finally, testing the improvement of the full model over the reduced model requires a153

precise statistical characterization to limit false detection of GC links.154

Existing methods mostly treat these challenges separately, by operating in a two-stage fashion: a source155

localization procedure is first performed to estimate the sources, followed by performing parameter estimation156

and conventional GC characterization. However, source localization techniques use specific priors that aim at157

combating the ill-posed nature of the neuromagnetic inverse problem and thereby bias the source estimates158

in favor of spatial sparsity or smoothness (Lamus et al., 2012; Krishnaswamy et al., 2017; Babadi et al.,159

2014; Wipf et al., 2010; Sohrabpour et al., 2016; Gramfort et al., 2013b). As such, the network parameters,160

which inherently depend on second-order current source moments, are recovered from these biased first-order161

source estimates and thus incur significant errors that complicate downstream statistical analyses.162

In contrast, NLGC aims at addressing these challenges jointly and within a unified inference framework.163

The resulting solution is composed of a network parameter estimation module, in which the VAR model164

parameters {Ak}Kk=1 are estimated directly from the MEG data by assuming sparse interactions among165

the sources, as opposed to the commonly-used spatial sparsity assumption. As such, the biases induced166

by this approach only effect the VAR coefficients, and not the spatiotemporal distribution of the sources.167

Furthermore, we account for these biases in the statistical inference module of NLGC: a de-biasing block168

is used to correct for biases incurred by sparse VAR estimation, a false discovery rate (FDR) control block169

is used to correct for multiple comparisons, and a test strength characterization block assigns a summary170

statistic in the range of [0, 1] to each detected link, denoting the associated statistical test power (i.e.,171

Youden’s J-statistic).172

While the building blocks that form NLGC are individually well-established in statistical inference liter-173

ature, including but not limited to Granger causal inference from directly observable states (Bolstad et al.,174

2011; Endemann et al., 2022) and state-space model parameter estimation (Cheung et al., 2010; Nalatore175

et al., 2009; Sekihara et al., 2010; Pirondini et al., 2018), our contribution is to unify them within the same176

framework and specializing them to the problem of direct GC inference from MEG observations. To this177

end, our technical contributions include: 1) developing a scalable sparse VAR model fitting algorithm by178

leveraging steady-state approximations to linear Gaussian state-space inference, sparse model selection, and179

low-rank approximations to the lead field matrix (Sections 4.4.1, 4.5.1, 4.5.2 and Appendix A); and 2) pro-180
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viding a theoretical analysis characterizing the asymptotic distribution of a carefully designed test statistic,181

namely the de-biased deviance difference, that allows both FDR correction and test strength characterization182

(Theorem 1 in Section 4.4.3 and Appendix B).183

2.2. An Illustrative Simulation Study184

We first present a simple, yet illustrative, simulated example to showcase how the main components185

of NLGC work together to address the shortcomings of two-stage approaches. Consider M = 84 cortical186

patches, within which patches 1 through 8 are active and forming a VAR(5) network as shown in Fig.187

2A, and the rest are silent (See Section 4.5.1 for details of source space construction). The ground truth188

GC map of a subset of sources, indexed from 1 through 15, are shown in Fig. 2B (top left) for visual189

convenience. The (i, j) element of the GC matrix indicates the GC link (j 7→ i). The time courses of the190

cortical patch activities are observed through a random mixing matrix (each element is independently drawn191

from a standard normal distribution) corresponding to N = 155 sensors for three trials of duration T = 1000192

samples each. To simulate the MEG observations, we used one lead-field per cortical patch for simplicity.193

The detailed parameter settings for this simulation study are given in Section 4.8.1.194

We compare the performance of NLGC to two baseline two-stage methods composed of an initial source195

localization stage via the Minimum Norm Estimate (MNE) algorithm, followed by VAR model fitting via196

either 1) least squares with no sparsity assumption, and 2) `1-norm regularized least squares to capture197
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Figure 2: An illustrative simulated example. A. The underlying true GC network between the active sources
indexed by 1, 2, · · · , 8 (explaining 90% of the power of the 84 sources). The remaining 76 sources are silent and
are modeled as independent white noises accounting for the remaining 10% of the source power. B. The ground
truth and estimated GC maps using NLGC and MNE (with and without accounting for sparsity). Only a subset of
sources indexed by 1, 2, · · · , 15 are shown for visual convenience. NLGC fully captures the true links with only a few
false detection; on the other hand, the two-stage approaches using MNE, capture around half of the true links, but
also detect numerous spurious links. While enforcing sparsity mildly mitigates the false alarm performance of the
two-stage approach, it is unable to resolve it. C. Estimated activity time-courses of the patches with index 1, 3, 6,
and 10 based on full models and the reduced models corresponding to the GC link (1 7→ 3) and non-GC links (1 7→ 6)
and (1 7→ 10) as examples. As expected, since the GC link (1 7→ 3) exists, removing the 1st patch contribution from
the VAR model of the 3rd patch dramatically changes the predicted activity of patch 3 (second line). However, this
is not the case for the other two examples, since the links (1 7→ 6) and (1 7→ 10) do not exist (third and fourth lines).
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sparse parameters, similar to that used in NLGC. The details of the VAR model fitting given the source198

estimates are presented in Appendix A.3.199

Fig. 2B shows the J-statistics corresponding to the detected GC links for NLGC and the two baseline200

methods based on MNE. Note that a J-statistic near 1 interprets as a detection with both high sensitivity201

and specificity, and a J-statistic near 0 corresponds to either low sensitivity or specificity, or both. As it202

can be seen in Fig. 2B, NLGC not only captures the true links, but also only detects a negligible number203

of false links. On the other hand, the two-stage methods based on MNE only detect about half of the true204

links and suffer from numerous spurious links. Note that while enforcing sparsity in the two-stage method205

seems to mitigate the number of spurious links (Fig. 2B, bottom left) compared to the two-stage method206

with no sparsity (Fig. 2B, bottom right), the errors incurred in the first stage of source localization can not207

be corrected through the second stage of parameter estimation.208

Fig. 2C shows the expected value of estimated cortical patch activities corresponding to the full and209

reduced models of 4 cortical patches (indexed by 1, 3, 6, and 10). Since the GC link (1 7→ 3) exists, in the210

corresponding reduced model, i.e., when the contribution of the 1st cortical patch (shown in the first line) is211

removed from the VAR model of the 3rd cortical patch, the activity of cortical patch 3 is highly suppressed212

(second line, gray trace) compared to that of the full model (second line, black trace). On the other hand,213

for cortical patches 6 and 10, since none of the GC links (1 7→ 6) and (1 7→ 10) exist, including or excluding214

the 1st patch in their VAR model does not effect their prediction accuracy and as a result, their estimated215

activity time-courses for both the full and reduced models are similar (third and fourth lines).216

The results so far validate the superior performance of the first component of NLGC, i.e., network217

parameter estimation. As for the second component, statistical inference, a key theoretical result of this218

work is to establish the asymptotic distribution of a test statistic called the de-biased deviance difference219

between the full and reduced models of a link (i 7→ j), denoted by Ddb(i 7→j). In Theorem 1, we establish that if220

a GC link from cortical patch i to j does not exist, the corresponding test statistic Ddb(i 7→j) is asymptotically221

chi-square distributed, and if the GC link exists, Ddb(i 7→j) is distributed according to a non-central chi-square.222

Here we empirically examine this theoretical result for the foregoing simulation. Consider the links223

(7 7→ 1) and (7 7→ 4) which are GC and non-GC, respectively. We generated 200 different realizations224

of the VAR processes with the same parameters and compared the empirical distribution of the de-biased225

deviance corresponding to these two links with their theoretical distribution obtained by Theorem 1. Fig.226

3A illustrates the close match between empirical and theoretical distributions of Ddb(77→1) and Ddb(77→4). Based227

on Theorem 1, for the non-GC link (7 7→ 4), the de-biased deviance has a central χ2(5) distribution. On228

the other hand, the de-biased deviance of the GC link (7 7→ 1) is distributed according to a non-central229

χ2(5, 61.4).230

In Fig. 3B, the histogram of the de-biased deviance differences corresponding to all links within the231

subset of sources indexed from 1 through 15 is plotted for three different realizations of the VAR processes232

8

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.03.09.483683doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483683
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

0.2

0.1

0 60 120

Non-GC link (Central        )

GC link (Non-central        )

Theory

Empirical

0 70 1403015

H
is

to
g

ra
m

 o
f 
D

e
-b

ia
s
e

d
 

D
e

v
ia

n
c
e

 D
if
fe

re
n

c
e

s

0

130

0.01 0.0001

Realization 1

Realization 2

Realization 3

GC links
Non-GC 

links

A.

B.

Figure 3: Empirical validation of Theorem 1. A. Theoretical and empirical distributions of the de-biased deviance
differences corresponding to the GC link (7 7→ 1) and non-GC link (7 7→ 4) from the setting of Fig. 2. The
empirical distributions closely match the theoretical predictions of Theorem 1. B. Histogram of the de-biased deviance
differences of all possible links between the first 15 sources for three different realizations of the VAR processes with
the same parameters and for two significance levels α = 0.01 and 0.0001. The de-biased deviance differences show a
clear delineation of the significant GC links (to the right of the dashed vertical lines) and insignificant ones (to the
left of the dashed vertical lines), while exhibiting robustness to the choice of the significance level.

with the same parameters as before. Depending on the threshold α for rejecting the null hypothesis to233

detect a GC link, one can obtain an equivalent threshold for Ddb(i 7→j). In Fig. 3B, two thresholds are shown234

with dashed lines for α = 0.01 and 0.0001. It is noteworthy that most of de-biased deviance differences235

corresponding to the true GC links lie on the right hand side of the dashed lines for both thresholds and for236

the three realizations, suggesting robustness of GC link detection framework. On the other hand, most of237

the possible GC links are non-existent in our simulation setting, which results in the concentration of most238

of the de-biased deviance difference values to the left of the dashed lines, and hence few false detections239

as shown in Fig. 2B. In NLGC, we further leverage this virtue by using an FDR correction procedure to240

control the overall false discovery rate at a target level.241

2.3. Simulated MEG Data Using a Head-Based Model242

We next present a more realistic and comprehensive simulation to evaluate the performance of NLGC and243

compare it with other two-stage approaches based on a number of different source localization techniques.244

In addition, we consider the effect of signal-to-noise (SNR) ratio and model mismatch on the performance of245

the different algorithms. The latter is an important evaluation component, as model mismatch is inevitable246
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in practice due to co-registration errors between MR scans and MEG sensors as well as the choice of the247

distributed cortical source model.248

As for the baseline methods, we consider two-stage GC detection schemes in which the source localization249

is performed by either the classical MNE (Hämäläinen and Ilmoniemi, 1994) and Dynamic Statistical Para-250

metric Mapping (dSPM) (Dale et al., 2000) methods, or the more advanced Champagne algorithm (Wipf251

et al., 2010). As for the VAR fitting stage, we use the same `1-regularized least squares scheme that is252

utilized by NLGC, to ensure fairness (See Appendix A.3).253

In order to create realistic test scenarios for assessing the robustness of the different algorithms, we254

consider four cases with attributes defined by the presence vs. absence of source model mismatch, and exact255

vs. relaxed link localization error:256

Source Model Mismatch. As it is described in detail in Section 4.5.1, in order to reduce the computational257

complexity of NLGC, we utilize low-rank approximations to the lead field matrix by grouping dipoles over258

cortical patches and summarizing their contribution using singular value decomposition (SVD) to reduce259

the column-dimension of the lead-field matrix. Let rgen. be the number of SVD components used for each260

cortical patch to generate the simulated MEG data, and let rest. be the number of SVD components used261

in the GC detection algorithms. Clearly, if rest. = rgen., the forward model matches the ones used in the262

inverse solution, so there is no model mismatch. However, if rest. < rgen., some modes of activity in the263

simulated data cannot be captured by the inverse solution, thus creating a mismatch between the forward264

and inverse models. We note that this notion of model mismatch pertains to lack of spatial resolution in265

the inverse model as compared to the forward model. As such, it does not account for the misalignment of266

the lead-fields with respect to the anatomy, but instead captures the spatial resolution limitation incurred267

by the choice of the source space used in the inverse solution.268

Link Localization Error. Suppose that the GC link (i 7→ j) exists. If in the GC detection algorithm,269

i is mis-localized to i′ 6= i or j is mis-localized to j′ 6= j, the link is considered a miss under the exact270

link localization error criterion. Let N(k) be the 6 nearest neighbors of a source k. Under the relaxed link271

localization error, if i′ ∈ N(i) and j′ ∈ N(j), we associate (i′ 7→ j′) to the correct link (i 7→ j) and consider272

it a hit. This way, small localization errors, potentially due to errors in the head model or the underlying273

algorithms can be tolerated.274

The source space is again composed of M = 84 cortical patches whose activity is mapped to N = 155275

MEG sensors using a real head model from one of the subjects in the study. For more details on the276

parameter settings for this study, see Section 4.8.2. Fig. 4A shows the ground truth GC network and277

the estimated ones using NLGC and two-stage methods using MNE, dSPM, and Champagne when m = 10278

patches are active. In this case, NLGC detected no spurious links and missed only 3 of the true GC links.279

On the other hand, even though MNE, dSPM and Champagne capture almost all true GC links, they suffer280

from a considerable number of falsely detected GC links.281
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Figure 4: Comparison of NLGC with two-stage procedures using a realistic simulation setting. A. Example of
the ground truth GC network, and estimates obtained by NLGC and two-stage approaches based on MNE, dSPM,
and Champagne overlaid on dorsal and lateral brain plots, with m = 10 active patches. NLGC captures nearly
all the existing GC links with no spurious detection, whereas the other three methods suffer from significant false
detection. B. ROC curves (hit rate vs. false alarm) corresponding to NLGC, and two-stage approaches based on
MNE, dSPM, and Champagne for exact/relaxed link localization and in the presence/absence of model mismatch.
Each point corresponds to simulating data based on m active patches averaged over 10 different realization with
randomly assigned source locations, for m = 2, 4, · · · , 20. NLGC provides equal or better hit rate, while consistently
maintaining low false alarm rate. C. Evaluating the effect of SNR for an example setting of m = 12 active patches in
presence/absence of model mismatch. While the hit rate of NLGC is comparable or better than the other algorithms,
it consistently maintains low false alarm rates across a wide range of SNR settings.

To quantify this further, Fig. 4B shows the receiver operating characteristic (ROC) curves correspond-282

ing to the different methods for exact vs. relaxed link localization and presence vs. absence of model283

mismatch. Each point is obtained by varying the number of active patches m in the simulation in the range284

m = 2, 4, · · · , 20 and averaging the performance of each method over 10 independent trials with randomly285

allocated patch locations. The 95% quantiles for the hit and false alarm rates are shown as vertical and286

horizontal bars, respectively. In the absence of source model mismatch (left columns), NLGC outperforms287

the other three methods in terms of both hit and false alarm rates. The gap between NLGC and the other288

methods widens when there is source model mismatch (right column, top panel). While the hit rate of NLGC289

degrades using the exact localization criterion, it remarkably maintains a false alarm rate of < 5%, whereas290
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the other algorithms exhibit false alarm rates as high as ∼ 50%. By using the relaxed link localization error291

criterion (bottom plots), the hit rate of NLGC becomes comparable or better than the other three methods,292

while it still maintains its negligible false alarm rate. Moreover, the corresponding vertical and horizontal293

errors bars for NLGC are considerably smaller than the other three algorithms, suggesting the robustness294

of NLGC to the location of the active patches used for different trials.295

Finally, in Fig. 4C, the hit and false alarm rates are plotted for varying levels of SNR in the range296

{0,−2,−5,−10} dB. The performance is averaged over 10 trials for m = 12 active patches. As the SNR297

reduces, even though the performance of all four methods becomes similar in terms of the hit rate, NLGC298

maintains its low false alarm rate whereas the other algorithms exhibit considerably high rates of false alarm.299

Overall, while NLGC achieves comparable hit rate to the other three methods, it maintains consistently300

low false alarm rates over a wide range of the simulation parameter space. This is a highly desirable virtue,301

as false detection is the main pitfall of any connectivity analysis methodology. Thus, this simulation study302

corroborates our assertion that NLGC is a reliable alternative to existing two-stage approaches.303

2.4. Application to Experimentally Recorded MEG Data304

We next consider application to MEG data from auditory experiments involving both younger and older305

subjects (the data used here is part of a larger experiment whose results will be reported separately). The306

MEG data corresponds to recordings from 22 subjects, 13 younger adults (5 males; mean age 21.1 years,307

range 17–26 years) and 9 older adults (3 males; mean age 69.6 years, range 66–78 years). Resting state308

data were recorded before and after the main auditory task, each 90 s long in duration. During the resting309

state condition, subjects with eyes open fixated at a red cross at the center of a grey screen. Just before the310

first resting state recording, 100 repetitions of 500 Hz tone pips were presented, during which the subjects311

fixated on a cartoon face image at the center of the screen and were asked to silently count the number of312

tone pips. The tones were presented at a duration of 400 ms with a variable interstimulus interval (1400,313

1200, and 1000 ms). The task was around 150 s long, from which two segments, each 40 s long in duration,314

were used for analysis. More details on the experimental setting is given in Section 4.6.315

In order to assess the underlying cortical networks involved in tone processing and compare them with316

the resting sate, we further considered two key frequency bands of interest (Shafiei et al., 2021), namely317

the combined Delta and Theta bands (0.1–8 Hz), here called Delta+Theta band, and the Beta band (13–318

25 Hz). Since the goal is to capture the (age-related) differences across tone listening versus resting state319

conditions, we combined the Delta and Theta bands for simplicity of our analysis, as they are both shown320

to be primarily involved in auditory processing (Baar et al., 2001). In addition, to structure our analysis in321

an interpretable fashion, we considered the frontal, temporal, and parietal regions of interest (ROIs) in each322

hemisphere, which are known to play key roles in auditory processing and to change with age (Kuchinsky323

and Vaden, 2020).324
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NLGC for the Delta+Theta Band (0.1−8 Hz). Fig. 5A shows the detected GC links between frontal (F)325

and temporal (T) areas overlaid on the dorsal brain view, for the tone processing vs. resting state conditions326

and separately for the younger and older subjects. The group average of the detected links across younger327

and older participants are shown on the left and those of two representative individuals (one younger and328

one older) are shown on the right. Note that the links involving parietal areas are not shown for the sake of329

visual convenience. As it can be seen from both the group average and individual-level plots, the top-down330

links from frontal to temporal areas (red arrows) have a higher contribution to tone processing (first and331

third columns) compared to resting state (second and fourth columns) for both younger and older adults.332

On the other hand, more bottom-up links from temporal to frontal areas (green arrows) are detected in the333

resting state as compared to the tone processing condition.334

In Fig. 5B, the average normalized J-statistics of the detected GC links between the frontal, temporal335

and parietal (P) ROIs are shown as color-weighted edges in a directed graph. For instance, the arrows336

between temporal and frontal areas, enclosed in dashed ovals, show the normalized average of the arrows337

shown in the first two columns of Fig. 5A. In addition to the notable change of connectivity between338

temporal and frontal areas, i.e., from dominantly bottom-up under resting state to dominantly top-down339

under tone processing, there are several other striking changes both across conditions and age groups. First,340

from tone processing to the resting state condition, for both age groups, the contribution of outgoing links341

from frontal to parietal and temporal areas drops. Secondly, in the resting state condition, incoming GC342

links from parietal and temporal to frontal areas increase. Finally, frontal to frontal interactions become343

more prevalent in the resting state condition, for both younger and older subjects.344

To further quantify these observation, Fig. 5C summarizes statistical test results for comparing the345

detected link counts for the different connectivity types and across age groups. Interestingly, no significant346

difference between younger and older participants is detected in either of the conditions. Within each age347

group, however, several significant changes are detected. In particular, the aforementioned visual observa-348

tions from Fig. 5B are indeed statistically significant: the top-down frontal to temporal connectivity under349

tone processing switches to bottom-up temporal to frontal connectivity; outgoing links from the frontal to350

temporal/parietal areas are significantly increased under tone listening compared to resting state; parietal351

to frontal connections have more contribution in the resting state compared to tone processing; and frontal352

to frontal connections increase in the resting state, as previously reported in the literature (Müller et al.,353

2009; Di Liberto et al., 2018; Henry et al., 2017).354

We further inspected the inter- vs. intra-hemispheric contributions of the aforementioned changes, as355

shown in Fig. 6, where we have combined the older and younger subject pools, given that no significant356

age difference was detected. In the resting state, the inter- and intra-hemispheric networks are similar357

(Fig. 6A, right column). However, there are several interesting changes in the inter- vs. intra-hemispheric358

networks under tone processing (Fig. 6A, left column), such as the increased involvement of intra-hemispheric359
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Figure 5: NLGC analysis of experimentally recorded MEG data in the Delta+Theta band (0.1 − 8 Hz). A.
Extracted GC links between frontal and temporal areas overlaid on dorsal brain plots for younger (top row) and
older (bottom row) participants. The first two columns correspond to the group averages and the last two correspond
to two representative participants, for the two task conditions of tone processing (first and third columns) and resting
state (second and fourth columns). For the group average plots, only J-statistic values greater than 0.75 are shown
for visual convenience. There is a notable increase of top-down links from frontal to temporal areas during tone
processing (red arrows, first and third columns) as compared to the resting state in which bottom-up links from
temporal to frontal areas dominate (green arrows, second and fourth columns). B. Normalized J-statistics, averaged
over subjects within each age group, between frontal, temporal, and parietal areas for tone processing vs. resting
state conditions and younger vs. older participants. The dashed ovals indicate the normalized average number of
links shown in panel A. There are notable changes across task conditions, including dominantly top-down frontal
to temporal/parietal connections during tone processing, in contrast to dominantly bottom-up temporal/parietal to
frontal connections during resting state. C. Statistical testing results showing several significant differences across
conditions. No significant age difference is detected in the Delta+Theta band (∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05).
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Figure 6: Inter- vs. intra-hemispheric refinement of the analysis of experimentally recorded MEG data in the
Delta+Theta band (0.1 − 8 Hz). A. Normalized J-statistics, averaged over all subject, between frontal, temporal,
and parietal areas for inter-hemispheric and intra-hemispheric connectivity types. Given that no significant age
difference was detected, the two age groups are pooled together. While the inter- vs. intra-hemispheric contributions
to the detect networks are highly similar under resting state, there notable differences under tone processing, including
higher number of intra-hemispheric connections from frontal to parietal and from parietal to temporal areas. C.
Statistical testing results showing several significant differences across conditions and inter- vs. intra-hemispheric
contributions (∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05).

connections from frontal to parietal and from parietal to temporal areas. Statistical test results shown in Fig.360

6B suggest that the detected intra-hemispheric connections are significantly higher than inter-hemispheric361

ones under tone processing. In addition, the change from a dominantly bottom-up temporal to frontal362

network under resting state to a dominantly top-down frontal to temporal network under tone processing363

occurs at both inter- and intra-hemispheric levels.364

NLGC for the Beta Band (13 − 25 Hz). Fig. 7 shows the results of Beta band NLGC analysis in a365

similar layout as Fig. 5. Fig. 7A shows the detected GC links between frontal and parietal areas for the366

tone processing vs. resting state conditions and separately for the younger and older subjects. The group367

average of the detected links across younger and older participants are shown on the left and those of two368

representative individuals (one younger and one older) are shown on the right. Note that the links involving369

temporal areas are not shown for the sake of visual convenience. As it can be seen from both the group370

average and individual-level plots, there is a striking dominance of frontal to parietal links (blue arrows) for371

older subject under tone listening (first and third columns, bottom plots), whereas in all the other three372

cases, parietal to frontal links (green arrows) dominate.373

Fig. 7B shows the average normalized J-statistics of the detected GC links between the frontal, temporal374

and parietal ROIs as color-weighted edges in a directed graph. The edges between parietal and frontal areas,375

enclosed in dashed ovals, correspond to the normalized average of the weighted arrows shown in the first376

two columns of Fig. 7A. The GC network under the resting state condition is similar for both age groups,377
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Figure 7: NLGC analysis of experimentally recorded MEG data in the Beta band (13 − 25 Hz). A. Extracted
GC links between frontal and parietal areas overlaid on dorsal brain plots for younger (top row) and older (bottom
row) participants. The first two columns correspond to the group averages and the last two correspond to two
representative participants, for the two task conditions of tone processing (first and third columns) and resting state
(second and fourth columns). For the group average plots, only J-statistic values greater than 0.75 are shown for
visual convenience. There is a notable increase of frontal to parietal links under tone processing for older adults
(blue arrows, first and third columns, bottom row), whereas in all the other cases parietal to frontal links (green
arrows) are dominant. B. Normalized J-statistics, averaged over subjects within each age group, between frontal,
temporal, and parietal areas for tone processing vs. resting state conditions and younger vs. older participants. The
dashed ovals indicate the normalized average number of links shown in panel A. There are notable changes across
both task conditions and age groups, including the higher involvement of parietal areas during resting state, increase
of frontal to frontal connections for younger participants and top-down links from frontal to parietal areas for older
participants, during tone processing. C. Statistical testing results showing several significant differences across task
conditions and age groups (∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05).
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but during tone processing, the network structures are quite different. First, for younger subjects, frontal to378

frontal connections have a higher contribution to the network as compared to older subjects. On the other379

hand, as pointed out earlier, for older participants during tone processing, the number of incoming links380

to parietal from frontal areas increase, as compared to the younger group. Finally, for both younger and381

older subjects, there are more parietal to temporal connections in resting state compared to tone processing.382

Fig. 7C summarizes the statistical test results which indeed show both across-age and across-condition383

differences, for the two connectivity types of frontal to frontal and frontal to parietal, as well as several384

connectivity changes across the task conditions within the two age groups.385

3. Discussion and Concluding Remarks386

Extracting causal influences across cortical areas in the brain from neuroimaging data is key to revealing387

the flow of information during cognitive and sensory processing. While techniques such as EEG and MEG388

offer temporal resolution in the order of milliseconds and are thus well-suited to capture these processes389

at high temporal resolution, they only provide low-dimensional and noisy mixtures of neural activity. The390

common approach for assessing cortical connectivity proceeds in two stages: first the neuromagnetic inverse391

problem is solved to estimate the source activity, followed by performing connectivity analysis using these392

source estimates. While convenient to use, this methodology suffers from the destructive propagation of the393

biases that are introduced in favor of source localization in the first stage to the second stage of network394

inference, often resulting in significant spurious detection.395

In this work, we propose a unified framework, NLGC inference, to directly capture Granger causal links396

between cortical sources from MEG measurements, without the need for an intermediate source localization397

stage and with high statistical precision. We evaluated the performance of NLGC through comprehensive398

simulation studies, which revealed the performance gains of NLGC compared to the conventional two-stage399

procedures in terms of achieving high hit rate, remarkably low false alarm rate, and robustness to model400

mismatch and low SNR conditions.401

We applied NLGC to experimentally recorded MEG data from an auditory experiment comparing tri-402

als of tone processing and resting conditions, from both younger and older participants. We analyzed the403

data in two frequency bands whose coherence has been shown to differ when processing auditory stimuli404

compared to rest (Weiss and Rappelsberger, 2000), namely the combined Delta+Theta band and the Beta405

band. The extracted cortical networks using NLGC revealed several striking differences across the fre-406

quency bands, age groups, and task conditions. In particular, in the Delta+Theta band, the networks were407

dominantly top-down from frontal to temporal and parietal areas during tone processing. Previous studies408

have observed increased coherence between frontal and central and temporal electrodes during auditory409

processing versus rest, potentially indicative of greater demands on memory and inhibitory processes that410

are required for active listening (Weiss and Rappelsberger, 2000). Greater anterior to posterior interactivity411
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has particularly been observed in the Theta band in support of working memory (Sarnthein et al., 1998) and412

other top-down processes (Sauseng et al., 2008), in line with the functioning of the frontal-parietal attention413

network (Sauseng et al., 2005). However, during resting state, bottom-up links towards frontal areas sig-414

nificantly increased. This broadly aligns with a previous Granger causality analysis that found evidence of415

unidirectional parietal to frontal connections during resting state fMRI (Duggento et al., 2018). In addition,416

intra-hemispheric links were more dominant during tone processing as compared to inter-hemishpheric links,417

whereas the inter- and intra-hemispheric contributions were nearly balanced during resting state. This may418

align with evidence that even low level auditory stimuli are processed in a lateralized fashion (Millen et al.,419

1995; Brown and Nicholls, 1997). Additionally, in an fMRI study of 100 adults, Granger causality analyses420

revealed that parietal-to-frontal connectivity was localized to within-hemispheric pathways (Duggento et al.,421

2018). Cross-hemispheric connectivity was largely observed within lobes (e.g., frontal-to-frontal). Although422

there are a number of methodological differences between these studies, together they suggest that NLGC423

can reveal robust differences in the directionality and band specificity of patterns of connectivity during task424

processing and at rest.425

In general, greater and/or more extensive frontotemporalparietal functional connectivity has been ob-426

served when processing clearer auditory stimuli (Abrams et al., 2013; Yue et al., 2013) and for younger427

compared to older adults (Andrews-Hanna et al., 2007; Peelle et al., 2010). The current results broadly428

align with these results, but further indicate the directionality and frequency band that may drive those429

observed differences in connectivity. While our analysis of the Delta+Theta band did not suggest any age430

differences across age groups, the networks seen in the Beta band revealed key age-related differences during431

the tone processing task. For younger participants, most of the connections were from parietal and tempo-432

ral to frontal areas, including frontal to frontal connectivity. However, in older participants, parietal areas433

were significantly more engaged in the network with notable connections towards frontal areas. Long-range434

synchrony between frontal and parietal cortices in the Beta band has been observed to dominate during435

top-down attentional processing (Buschman and Miller, 2007) and is thought to support the enhancement436

of task-relevant information (Antzoulatos and Miller, 2016). There is also some evidence that Beta band437

connectivity increases with aging (Moezzi et al., 2019; Vysata et al., 2014). The results did not yield support438

for previous observations of inter-hemispheric asymmetry reduction with age (Dolcos et al., 2002) in terms of439

increasing inter-hemispheric connectivity (Maurits et al., 2006). However, this is likely due to the simplicity440

of the tone counting and rest conditions examined in the present study. Future analyses of speech materials441

with greater task demands may be more sensitive to such differences.442

The NLGC framework includes several technical contributions that are unified within the same method-443

ology, but may also be of independent interest in neural signal processing. These include: 1) a scalable444

sparse VAR model fitting algorithm based on indirect and low-dimensional observations, that leverages445

steady-state approximations to linear Gaussian state-space inference, sparse model selection, and low-rank446
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approximations to the lead field matrix; and 2) establishing the asymptotic distributions of the de-biased447

deviance difference statistics from MEG observations, that may be used in more general hypothesis testing448

frameworks.449

Along with its several improvements over existing work, NLGC comes with its own limitations. First,450

NLGC requires sufficiently long trial duration, so that the underlying network parameters can be estimated451

reliably. While the sparsity regularization in NLGC mitigates this issue to some extent, in general the452

number of parameters needed to be estimated from NT observed MEG sensor data points is in the order453

of ∼ KM2. As an example, to ensure that the number of parameters is in the order of the number of data454

points for the sake of estimation accuracy, for the typical configurations in this work (i.e., N = 155 sensors,455

M = 84 sources, 5-fold cross-validation, 10 Hz frequency band, 100 ms integration window), trials of at456

least T = 25 s in duration are needed. While this requirement was satisfied by the experimental trials used457

in our work, as also validated in Section 4.8.3, NLGC may not perform well in experiments involving short458

trials, such as those studying sensory evoked field potentials in which a large number of trials, each in the459

order of 1 s in duration, are available (David et al., 2006a,b).460

Second, while NLGC maintains a remarkably low false alarm rate in a wide range of settings, it is461

more sensitive to model mismatch in terms of its hit rate performance, as compared with existing two-stage462

approaches, as examined in Fig. 4B. This is due to the fact that while integrating source localization and VAR463

parameter estimation in NLGC is advantageous to rejecting spurious GC links, eliminating the first stage464

of source localization makes NLGC more sensitive to the accuracy of the source space used in estimating465

the source time-courses and thereby correctly detecting the true GC links. The hit rate performance of466

NLGC could be improved by using a more refined source space, but this in turn might require a longer467

observation duration for accurate parameter estimation. Finally, our experimental data validation here was468

limited by the lack of access to ground truth source activity. We defer validating the performance of NLGC469

using invasive recordings such as electrocorticography or intracranial EEG, in which the sources are directly470

observable, to future work.471

In addition to the aforementioned technical contributions, NLGC also offers several practical advantages472

over existing work. First, due to its scalable design, it can be applied to any frequency band of interest473

to extract the underlying GC networks. Secondly, due to the precise statistical characterization of the474

detected links, the networks can be transformed to span ROIs of arbitrary spatial resolution, from cortical475

dipoles to anatomical ROIs, cortical lobes, and hemispheres. Third, unlike most existing connectivity476

analysis methods that require heavy trial averaging to mitigate spurious detection, NLGC exhibits robustness477

to model mismatch and low SNR conditions, even where few trials are available. Finally, thanks to the478

plug-and-play nature of the NLGC building blocks, it can be modified for inferring other network-level479

characterizations, such as cortical transfer entropy (Daube et al., 2022). To ease reproducibility, we have480

made a python implementation of NLGC publicly available on Github (Soleimani and Das, 2022). In481
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summary, NLGC can be used as a robust and scalable alternative to existing approaches for GC inference482

from neuroimaging data.483

4. Theory and Methods484

Here we lay out in detail the generative framework that entails the computational model for relating the485

neural activity, which produces magnetic fields outside of the brain, to the recordings at the highly sensitive486

MEG sensors. This generative framework deals with the unobserved neural activity as latent entities: the487

notion of Granger causality is defined with respect to the latent neural activity. We then propose a novel488

approach to identify the parameters of the generative model from the multi-channel MEG recordings and489

construct Granger causal measures to quantify the detected links. We call this unified framework the490

Network Localized Granger Causality (NLGC) framework.491

4.1. Main Problem Formulation492

Recall the observation and state evolution models given in Eqs. (1) and (2):493

yt = Cxt + nt, xt =
K∑
k=1

Akxt−k + wt, t = 1, · · · , T,494

where T is the observation duration, xt ∈ RM and yt ∈ RN are, respectively, the cortical activity of M495

distributed sources and the measurements of N sensors at time t. The process noise wt and observation496

noise vt are assumed to be independent of each other and are modeled as i.i.d. sequences of zero mean497

Gaussian random vectors with respective covariance matrices Q = diag(σ2
1 , · · · , σ2

M ) and R.498

The lead-field matrix C ∈ RN×M can be estimated using a quasi-static solution to the Maxwell’s equa-499

tions using a realistic head model obtained by MR scans (Sarvas, 1987; Mosher et al., 1999; Baillet et al.,500

2001). The measurement noise covariance matrix R is assumed to be known, as it can be estimated based501

on empty room recordings (Engemann and Gramfort, 2015). Thus the unknown parameters in these models502

are: the M ×M coefficient matrices Ak, that quantify the contribution of the neural activity from time503

t− k to the current activity at time t, for k = 1, . . . ,K, and the process noise covariance matrix Q.504

Assuming that the source time-series xt form an underlying network, our main contribution is to find the505

inverse solution to this latent network, in the sense of Granger causality, directly from the MEG observations506

yt. We first give an overview of Granger causality while highlighting the challenges in GC inference from507

MEG data.508

4.2. Overview of Granger Causality509

First, we assume that the sources xt are directly observable. Noting that [Ak]i,j quantifies the contri-510

bution of source j at time t− k to the present activity of source i at time t, one can statistically assess the511

causal effect of source j on source i via the following hypothesis test:512
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• H0: [Ak]i,j = 0 for all k = 1, 2, · · · ,K, i.e., there is no causal influence from source j to source i.513

• H1: [Ak]i,j 6= 0 for any k = 1, 2, · · · ,K, i.e., there exists a causal influence from source j to source i.514

Given that the VAR coefficients {Ak}Kk=1 are unknown, to test this hypothesis, reliable estimates
[
Âk

]
i,j

,515

1 ≤ i, j ≤M and 1 ≤ k ≤ K are needed. However, such accurate estimates are often elusive due to limited516

observation horizon T compared to the number of parameters. Granger causality (Granger, 1969; Geweke,517

1984, 1982) addresses this issue by considering the “bulk” effect of the VAR model coefficients through the518

prediction error metric. To this end, in assessing the causal influence of source j on source i two competing519

models are considered:520

• Full model, where the activity of source i is modeled via the past activity of all the sources:521

xi,t =
M∑
m=1

K∑
k=1

[
Af
k

]
i,m

xm,t−k + wf
i,t, wf

i,t ∼ N (0, σ2
i ), t = 1, . . . , T. (3)522

• Reduced model, where the contribution of the past of source j is removed from the full model by523

enforcing [Ak]i,j = 0, ∀k = 1, 2, · · · ,K:524

xi,t =
M∑

m=1,
m6=j

K∑
k=1

[Ar
k]i,m xm,t−k + wr

i,t, wr
i,t ∼ N (0, σ2

i\j), t = 1, . . . , T. (4)525

Note that we here use the conditional notion of Granger causality (Geweke, 1984), which includes all the526

processes xm,·,m 6= j in both the reduced and full models. The process noise variables wf
i,t and wr

i,t have527

different variances given by σ2
i and σ2

i\j , respectively. Define528

F(j 7→i) := log
σ2
i\j

σ2
i

. (5)529

Clearly, when j has no causal influence on i, F(j 7→i) = 0, otherwise F(j 7→i) > 0, since the reduced model530

is nested in the full model, i.e., σ2
i\j ≥ σ2

i . In practice, the VAR model coefficients Af
k and Ar

k, as well531

as the prediction variances σ2
i and σ2

i\j need to be estimated from the data. Let σ̂2
i and σ̂2

i\j be the532

respective estimates of the prediction variances of the full and reduced models. Then, the resulting estimate533

F̂(j 7→i) := log
σ̂2
i\j
σ̂2
i

is a data-dependent random variable. Using F̂(j 7→i), the previous hypotheses H0 and H1534

for causality can be replaced by those of Granger causality (Greene, 2003):535

• H ′0: F̂(j 7→i) ≈ 0, or equivalently σ̂2
i ≈ σ̂2

i\j . This implies that including the activity history of source536

j does not significantly improve the prediction error of source i, i.e., there is no Granger causal link537

from j to i.538

• H ′1: F̂(j 7→i) � 0, or equivalently σ̂2
i � σ̂2

i\j . This implies that including the activity history of source539
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j significantly improves the prediction accuracy of source i, i.e., there is a Granger causal link from j540

to i.541

The test statistic F̂(j 7→i) is referred to as the GC metric. In order to perform the latter hypothesis test,542

the asymptotic distribution of F̂(j 7→i) is utilized to obtain p-values (Kim et al., 2011). More specifically,543

under mild conditions, T×F̂(j 7→i) converges in distribution to a chi-square random variable with K degrees544

of freedom, i.e., χ2(K) (Wald, 1943; Davidson and Lever, 1970).545

4.3. Challenges of GC Analysis for MEG546

When it comes to GC analysis of cortical sources using MEG, there are several outstanding challenges:547

1) Indirect and Low-dimensional Sensor Measurements. The foregoing notion of Granger causality assumes548

that the source time-series {xi,t}Tt=1, i = 1, 2, · · · ,M are directly observable. However, MEG only provides549

indirect and low-dimensional sensor measurements yt ∈ RN , where typically N �M . As such, GC analysis550

of MEG data inherits the ill-posedness of estimating high-dimensional sources from low-dimensional sensor551

measurements (Wipf et al., 2010; Tait et al., 2021).552

2) Limited Observation Duration. In order to obtain accurate estimates of the VAR model parameters and553

consequently prediction variances of the full and reduced models, typically observations with long duration554

T are required. However, the observation length is limited by the typically short duration of cognitive or555

sensory experimental trials. Even if trials with long duration were available, for the stationary model of Eq.556

(2) to be valid (i.e., static VAR parameters), T may not be chosen too long.557

3) Precise Statistical Characterization of the GC Links. While the asymptotic distribution of the null hy-558

pothesis in the classical GC setting allows to obtain p-values, it is not clear how this asymptotic distribution559

behaves under the indirect and low-dimensional observations given by MEG. Furthermore, p-values only560

control Type I error, and in order to precisely characterize the statistical strength of the detected GC links,561

Type II errors need to also be quantified.562

Existing methods aim at addressing the aforementioned challenges separately. In order to address chal-563

lenge 1, source localization is used in a two-stage approach, where the cortical sources are first estimated564

using a source localization method, then followed by GC analysis (Cai et al., 2021, 2018; Owen et al., 2012);565

in order to address challenge 2, regularized least squares estimation is used to reduce the variance of the566

estimated VAR parameters (Endemann et al., 2022; Bolstad et al., 2011); and challenge 3 is usually ad-567

dressed using non-parametric statistical testing, which may have limited power due to the large number568

of statistical comparisons involved (Cheung et al., 2010; Sekihara et al., 2010; Manomaisaowapak et al.,569

2021). It is noteworthy that these challenges are highly inter-dependent. For instance, the biases incurred570

by the source localization stage in favor of addressing challenge 1, may introduce undesired errors in the571
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VAR parameter estimation to address challenge 2 (Schoffelen and Gross, 2009). Similarly, using regularized572

estimators to address challenge 2 introduces biased in the test statistics used in addressing challenge 3.573

4.4. Proposed Solution: Network Localized Granger Causal (NLGC) Inference574

We propose to address the foregoing challenges simultaneously and within a unified inference framework.575

To this end, we first cast Granger causal inference as an inverse problem using the generative models of576

Eqs. (2) and (1). To address the parameter estimation challenge of this inverse problem, we leverage sparse577

connectivity in cortical networks and utilize `1-regularized estimation of the VAR parameters. Finally, to578

characterize the statistical strengths of the identified GC links, we establish the asymptotic properties of579

a test statistic, namely the de-biased deviance difference, which will allow us to parametrically quantify580

both Type I and Type II errors rates and also control the false discovery rate. We refer to our proposed581

method as the Network Localized Granger Causality (NLGC) analysis. The main building blocks of NLGC582

are introduced in the remaining part of this subsection.583

4.4.1. Efficient Parameter Estimation and Likelihood Computation584

It is straightforward to show that this classical GC metric, i.e., log-ratio of the prediction variances of585

the reduced and full models in Eq. (5) is equivalent to the difference of the log-likelihoods of the full and586

reduced models, for linear Gaussian generative models. This correspondence has led to the generalization587

of the GC metric to non-linear and non-Gaussian settings (Kim et al., 2011; Sheikhattar et al., 2018).588

We take a similar approach to generalize the classical notion of GC for direct observations of the sources589

to our indirect observations given by the MEG sensors. Recall that for assessing the GC from source j to590

i, we considered the full and reduced models given by Eqs. (3) and (4). Let Af := (Af
1,A

f
2, · · · ,Af

K) and591

Ar := (Ar
1,A

r
2, · · · ,Ar

K) be the VAR parameters matrices, and Qf := diag(σf2
1 , σ

f2
2 , · · · , σf2

M ) and Qr :=592

diag(σr2
1 , σ

r2
2 , · · · , σr2

M ) be the process noise covariance matrices of the full and reduced models, respectively.593

The main difference between these sets of parameters is that [Ar
k]i,j = 0, ∀k = 1, 2, · · · ,K. Let the log-594

likelihoods of the MEG observations under the full and reduced models be defined as:595 `
i
(
Af ,Qf |y1:T

)
:= log p

(
y1:T ; Af ,Qf

)
, full model log-likelihood

`i\j (Ar,Qr|y1:T ) := log p (y1:T ; Ar,Qr) , reduced model log-likelihood

(6)596

Let Âf , Âr, Q̂f , and Q̂r be the regularized maximum likelihood estimates of the corresponding parameters.597

We then define the GC metric from source j to i given the MEG observations as (Kim et al., 2011; Sheikhattar598

et al., 2018; Soleimani et al., 2020):599

F̃(j 7→i) := `i
(
Âf , Q̂f

∣∣∣y1:T

)
− `i\j

(
Âr, Q̂r

∣∣∣y1:T

)
. (7)600
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As for the regularization scheme, we consider `1-norm regularized maximum likelihood estimation. Let601

ai be the ith row of A, correspond to all the network interactions towards source i. The parameters are602

estimated as:603 
{

Âf , Q̂f
}

= argmax
A,Q

`i (A,Q|y1:T )− λ
M∑
m=1

‖am‖1,{
Âr, Q̂r

}
= argmax

A′,Q′
`i\j (A′,Q′|y1:T )− λ′

M∑
m=1

‖a′m‖1,
(8)604

where λ, λ′ are regularization parameters that are tuned in a data-driven fashion using cross-validation (See605

Appendix A.1 for details). Since the source activity {xt}Tt=1 is not directly observable, we employ an606

instance of Expectation-Maximization (EM) algorithm (Shumway and Stoffer, 1982; Dempster et al., 1977)607

to solve the regularized maximum likelihood problem. The EM algorithm is an iterative procedure which608

maximizes a lower bound on the log-likelihood function and provides a sequence of improving solutions.609

The EM algorithm has two steps: 1) The Expectation step (E-step) where we calculate the expectation610

of the log-likelihood of both the observed and unobserved variables given the observations and a current611

estimate of the parameters to construct a lower bound on the actual observation log-likelihood, and 2) The612

Maximization step (M-step) where we maximize the surrogate function obtained in the E-step to update613

the estimate of the unknown parameters.614

More specifically, we illustrate these two steps for estimating the parameters of the full model; the case of615

reduced model is treated in a similar fashion. Let the unknown parameters be denoted by θ := (θ1, . . . ,θM ),616

where θi := (σf2
i ,a

f
i) is the corresponding unknown parameters of the ith source with af

i := ([Af
k]i,j , ∀j, k).617

The EM algorithm in this case comprises the following steps:618

The E-step: Starting from an initial point, let us denote the parameter estimates at the lth iteration of the619

EM algorithm by θ̂(l). At the E-step, we define the so-called Q-function:620

Q(θ|θ̂(l)) := E
[

log p(x1:T ,y1:T ;θ)|y1:T ; θ̂(l)
]
. (9)621

Given the linear Gaussian state-space model used as our generative model, the expectation in Eq. (9)622

requires the first and second moments of xt given y1:T and θ̂(l) and can thus be efficiently computed using623

Fixed Interval Smoothing (FIS) (Anderson and Moore, 2005).624

The M-step: At the M-step, we update the parameters as625

θ̂(l+1) := argmax
θ

Q(θ|θ̂(l)) +Rp(λ,θ), (10)626

where Rp(λ,θ) is a regularization function to enforce sparsity of the parameters. Here, we use the FASTA627

algorithm to solve the optimization problem in Eq. (10) (Goldstein et al., 2014). These steps continue628

until convergence of the iterates θ̂(l). To assess convergence, the log-likelihood of the MEG observations629
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Figure 8: Block diagram of the EM algorithm for sparse VAR parameter estimation.

is calculated (Gupta and Mehra, 1974) at each iteration, to check whether the successive improvements of630

the log-likelihood fall below a specified threshold. Fig. 8 gives an overview of the EM algorithm, which is631

derived in full details in Appendix A.632

Employing the foregoing EM procedure, one can reliably estimate the set of parameters θ corresponding633

to the full model and reduced models for all possible links (j 7→ i) and evaluate the log-likelihoods to form634

the GC metric F̃(j 7→i) of Eq. (7), for all i, j = 1, 2, · · · ,M, i 6= j.635

4.4.2. Computational Complexity of the Parameter Estimation Procedure636

Applied to MEG, off-the-shelf solvers do not scale well with the dimensions of the source space M , sensor637

space N , and observation length T . We employ several solutions to address this need for scalability of the638

parameter estimation procedure:639

(1) First, we use a low-rank approximation to the lead-field matrix that reduces the effective dimensionality640

of the source space. This approach is explained in detail in Section 4.5.1.641

(2) We use the steady-state solution to the smoothing covariance matrices involved in FIS that notably642

speed up the computations. This approach is explained in detail in Appendix A.2.643

(3) We use the Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) algorithm to efficiently solve the644

`1-regularized optimization in the M-step. This approach is explained in Appendix A.1.645

(4) We efficiently evaluate the various log-likelihood functions, which are key for cross-validation and the646

EM stopping criterion, using the innovation form of the smoothed states (Gupta and Mehra, 1974).647

In what follows, we discuss the implications of these algorithmic solutions in reducing the computational648

complexity of our EM-based parameter estimation procedure used for solving Eq. (8), in comparison to649

existing work.650

As it will be shown in Section 4.5.1, Solution (1) results in an effective lead-field matrix with rM columns,651

where M is the number of cortical patches used and r ≥ 1 is the number eigenmodes retained in the low-652

rank representation of the lead-fields in each patch. Also, Solution (2), using the steady-stake Kalman653

filtering/smoothing, reduces the total number of state covariance matrix inversions in the FIS procedure654
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from T to 2, by only adding O
((

(rM)
2
K
)3)

multiplications required to find the steady-state covariance655

matrices (Malik et al., 2010). Considering the cubic dependence of matrix inversion to the matrix dimension,656

each instance of FIS requires O
((

(rM)
2
K
)3)

+O
(
T
(
(rM)

2
K
)2)

multiplications, which can then be used657

to form the elements of the Q-function in the E-step.658

At the M-step, Solution (3) uses FASTA to update the parameters. As a gradient-based method, for659

an optimality gap of ε > 0, it requires O( 1
ε ) iterations, and each iteration requires O

(
((rM)

2
K
)2)

multi-660

plications (Beck and Teboulle, 2009; Goldstein et al., 2014). Here, we denote the complexity of FASTA by661

LFASTA = O
(

1
ε

(
(rM)

2
K
)2)

. Next, Solution (4) provides an efficient method to compute the log-likelihood662

of the MEG observations (Gupta and Mehra, 1974), which only includes matrix additions and matrix663

by vector multiplications based on the quantities already calculated at the FIS procedure, adding up to664

O
(
T
(
(rM)

2
K
)2)

multiplications. Finally, letting LEM be the number of EM iterations, each application of665

the EM algorithm requires O
((

(rM)
2
K
)3
LEM

)
+O

(
T
(
(rM)

2
K
)2
LEM

)
+O

(
LFASTALEM

)
multiplications.666

The problems in Eq. (8) need to be solved for both the full and reduced models. The only difference667

between the full model and reduced model corresponding to the link (j 7→ i) is the fact that in the reduced668

model, one set of the cross-coupling coefficients ai,j,k (k = 1, · · · ,K) are constrained to be zero during the669

EM procedure (See Remark 2 in Appendix A.1). The total number of such estimation problems to be670

solved is M(M − 1) + 1 = O(M2). Thus, the overall computational complexity of our parameter estimation671

procedure is given by O
(
r6M8K3LEM

)
+ O

(
Tr4M6K2LEM

)
+ O

(
M2LFASTALEM

)
. In the applications672

of interest in this work, typically the convergence criteria is satisfied with a choice of LFASTA ≈ 100 and673

LEM ≈ 1000, which mitigates the dependence of the overall computational complexity on these parameters.674

The improvements achieved by Solutions (1) and (2) provide notable computational savings over existing675

work (Nalatore et al., 2009; Cheung et al., 2010; Sekihara et al., 2010; Long et al., 2011; Lamus et al., 2012):676

1) If the low-rank approximation to the lead-field matrix is not used, the term r is replaced by 61 (see Section677

4.5.1 for details). Given that we use a value of r = 4 in our work, this amounts to a ∼ 107-fold reduction678

in the complexity of the leading term that is O
(
r6M8K3LEM

)
; 2) If the steady-state filtering/smoothing679

is not used, the first term in the computational complexity of the EM procedure would be increased to680

O
(
Tr6M8K3LEM

)
. Our approach reduces this term by a factor of T , which in the applications of interest681

in this paper amounts to a ∼ 103-fold reduction in complexity.682

4.4.3. Statistical Test Strength Characterization683

The next component of NLGC is the characterization of the statistical significance of the obtained GC684

metrics. Let I := {(j 7→ i)|1 ≤ i, j ≤ M, i 6= j} be the set of all possible GC links among M sources.685

Consider the link (j 7→ i) ∈ I and let us represent the corresponding parameters of the full and reduced686

models of the link as θf and θr, respectively, where for θr we have ari,j,k = 0, ∀k. It is worth noting687

that the number of parameters to be estimated in the full and reduced models are M f := K(rM)2 and688
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M r := K(rM)2 −Kr2, respectively. We define the null hypothesis H(j 7→i),0 : θ = θr for the case that no689

GC link exists, and the alternative H(j 7→i),1 : θ = θf for the existence of a GC link from source j to source690

i. A conventional statistic for testing the alternative against the null hypothesis is the deviance difference691

between the estimated full and reduced models defined as692

D(j 7→i) := 2
(
`(θ̂f)− `(θ̂r)

)
= 2F̃(j 7→i), (11)693

where `(θ) := log p(y1:T ;θ) is the log-likelihood of the observations. Large values of D(j 7→i) � 0 indicate694

a large improvement in the log-likelihood of the full model compared to that of the reduced model, which695

implies the existence of a GC link. Similarly, D(j 7→i) ≈ 0 can be interpreted as the absence of a GC link696

from source j to source i (Kim et al., 2011).697

Conventionally, the asymptotic distribution of the deviance difference is derived as a chi-square distri-698

bution, thanks to the asymptotic normality of maximum likelihood estimators (Wald, 1943; Davidson and699

Lever, 1970). However, due to the biases incurred by `1-norm regularization, the estimates are no longer700

asymptotically normal. To remove the bias and obtain a statistic with well-defined asymptotic behavior, we701

use the de-biased version of the deviance difference introduced in (Sheikhattar et al., 2018; Soleimani et al.,702

2020):703

Ddb(j 7→i) := D(j 7→i) − B(θ̂r) + B(θ̂f), (12)704

where B(θ) := − ˙̀(θ)> ῭(θ)−1 ˙̀(θ) is the empirical bias incurred by `1-norm regularization (van de Geer et al.,705

2014), with ˙̀(.) and ῭(.) denoting the gradient vector and Hessian matrix of the log-likelihood function `(.),706

respectively. Removal of the bias allows to recover the well-known asymptotic behavior of the deviance707

difference. We characterize these distributions using the following theorem:708

Theorem 1. The de-biased deviance difference defined in Eq. (12) converge weakly to the following distri-709

butions, under the null and alternative hypotheses (as T →∞):710

[Ddb(j 7→i)|H(j 7→i),0]
d−→ χ2(Md), (13)711

[Ddb(j 7→i)|H(j 7→i),1]
d−→ χ2(Md, ν(j 7→i)), (14)712

where χ2(q) denotes the central chi-square distribution with q degrees of freedom, and χ2(q, ν) represents the713

non-central chi-square distribution with q degrees of freedom and non-centrality parameter ν, with Md :=714

M f −M r = Kr2.715

Proof. See Appendix B. �716

In words, Theorem 1 states that the asymptotic distribution of the de-biased deviance difference in the717

absence and presence of a GC link is distributed according to central and non-central χ2 distributions, both718

with degree of freedom Kr2, i.e., the number of VAR parameters from patch j to i, respectively. The non-719
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centrality parameter in Eq. (14) can be estimated as ν̂(j 7→i) = max
{∑L

l=1D
db,(l)
(j 7→i)/L−M

d, 0
}

where Ddb,(l)(j 7→i)720

is the lth sample of the de-biased deviance computed from L ≥ 1 independent trials (Saxena and Alam,721

1982). We will next show how the result of Theorem 1 can be used for FDR control as well as characterizing722

the test strength.723

FDR control. Recall that rejection of the null hypothesis for a given source and target pair implies the724

existence of a GC link. As a consequence, determining GC links among the source and target pairs requires725

preforming M(M − 1) multiple comparisons, which may result in high false discovery. To address this issue,726

we employ the Benjamini-Yekutieli (BY) FDR control procedure (Benjamini and Yekutieli, 2001). Consider727

the link (j 7→ i) ∈ I. According to the first part of Theorem 1, if the null hypothesis is true, i.e., the GC link728

does not exist, the corresponding de-biased deviance difference is central chi-square distributed. Thus, at a729

confidence level 1− α, the null hypothesis H(j 7→i),0 is rejected if Ddb(j 7→i) > F−1
χ2(Md)

(1− α) where F−1
χ2(Md)

(.)730

is the inverse cumulative distribution function (CDF) of the central χ2 distribution with Md degrees of731

freedom. Using the BY procedure, the average FDR can be controlled at a rate of α := (|I|+1)α
2|I| log |I| where732

|I| = M(M − 1) represents the cardinality of the set I.733

Algorithm 1 FDR control and test strength characterization

Input: Degree of freedom Md, confidence interval 1 − α, de-biased deviance and non-centrality parameter of all possible

links
{
Ddb

(j 7→i), ν̂(j 7→i)
∣∣(j 7→ i) ∈ I

}
.

1: Define p-values

p(j 7→i) := 1− Fχ2(Md)(Ddb(j 7→i)), ∀(j 7→ i) ∈ I.

2: Sort p-values as pn1 ≥ pn2 ≥ · · · ≥ pn|I| where {n1, n2, . . . , n|I|} = I.

3: Find largest imax such that pni ≤
iα

|I| log |I| .

4: Set α =
(|I|+1)α
2|I| log |I| (FDR).

5: Reject null hypothesis Hni,0 for i = 1, 2, . . . , imax and calculate J-values:

Jni =


1− α− Fχ2(Md,ν̂(ni)

)(F
−1
χ2(Md)

(1− α)), i = 1, 2, · · · , imax,

0, otherwise.

Output: J-values
{
J(j 7→i)

∣∣(j 7→ i) ∈ I
}

.

Test Strength Characterization. To determine the test strength, we use the second part of Theorem 1 as734

well to quantify Type II errors. To this end, the false negative rate at the given confidence level 1 − α for735

a source-target pair (j 7→ i) is given by η(j 7→i)(α) := Fχ2(Md,ν̂(j 7→i))(F
−1
χ2(Md)

(1 − α)) where Fχ2(Md,ν̂(j 7→i))(.)736

denotes the non-central χ2 distribution with Md degrees of freedom and non-centrality parameter ν̂(j 7→i).737

Given the false negative rate, we use the Youden’s J-statistic (Youden, 1950) to summarize the strength of738

the test as:739

J(j 7→i) := 1− α− η(j 7→i)(α), (15)740

for the given confidence level 1 − α. The J-statistic has a value in the interval [0, 1] summarizing the741

performance of a diagnostic test. When J(j 7→i) ≈ 0, the evidence to choose the alternative over the null742
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hypothesis is weak, i.e., the GC link is likely to be missing. On the other hand, when J(j 7→i) ≈ 1, both743

the false positive and negative rates are close to zero, implying high test strength, i.e., strong evidence in744

support of the GC link.745

The overall statistical inference framework is summarized in Algorithm 1. Finally, obtaining the J-746

statistics for all links, we can construct the GC map Φ as follows747

[Φ]i,j :=

J(j 7→i), (j 7→ i) ∈ I

0, otherwise

. (16)748

It is worth noting that to repeatedly evaluate the de-biased deviance difference statistic, one needs to749

efficiently calculate the log-likelihood function `(.), which is done using the innovation form described in750

(Gupta and Mehra, 1974). In the spirit of easing reproducibility, a python implementation of the NLGC is751

available on the open source repository Github (Soleimani and Das, 2022).752

4.5. Dimensionality Reduction and VAR Model Order Selection753

There are two remaining ingredients of NLGC which are key to ensure its scalability, namely, reducing754

the dimensionality of the source space and VAR model order selection.755

4.5.1. Source Space Construction and Eigenmode Decomposition756

In practice, using MR scans of the participants, individual head models can be numerically computed757

and co-registered to each individual’s head using the digitized head shapes. We first define a cortical surface758

mesh-based source space for the ‘fsaverage’ head model (Dale et al., 1999), named ico-4, with average spacing759

of ∼ 6 mm between any two neighboring sources, which is then morphed to each participant’s head model.760

The lead-field matrix is obtained by placing 3 virtual dipoles at each of the 5124 vertices of ico-4 source761

space and solving Maxwell’s equations. We further restrict the dipoles to be normal to the cortical surface,762

so that the resulting lead-field matrix C has M = 5124 columns of length N each (Gramfort et al., 2013a,763

2014). Solving the NLGC inverse problem over this source space is quite computationally demanding, as764

the computational time of FIS scales as O
((

(rM)2K
)3)

(See Section 4.4.2). We thus need to reduce the765

dimension of the lead-field matrix to control the computational complexity.766

To this end, we summarize the contribution of the dipoles placed on the ico-4 source space vertices767

within a given region using their principal components (Limpiti et al., 2006; Cheung et al., 2010). We start768

from a coarse surface mesh-based source space, namely ico-1, with 84 vertices (42 vertices per hemisphere).769

We consider the Voronoi regions based on the geodesic distance between these vertices induced by ico-1770

vertices over the original ico-4 vertices, so that all the ico-4 vertices are partitioned into 84 non-overlapping771

patches (Babadi et al., 2014). The Voronoi regions around each of the ico-1 vertices are referred to as cortical772

patches in this work. We then approximate the contribution of the dipoles placed on the ico-4 vertices within773

each cortical patch by the first r leading eigenvectors of the partial lead-field matrix following singular value774
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decomposition (SVD). We refer to these leading eigenvectors as eigenmodes. As such, the number of columns775

in the effective lead-field matrix is reduced to r×84, as opposed to original 5124, which significantly reduces776

the computational complexity. In addition to providing computational savings, dimensionality reduction777

through retaining the leading eigenmodes of the lead-field sub-matrices serves as denoising by suppressing778

the effect of small lead-field errors (which are expected to appear in eigenmodes with small singular values).779

Fig. 9 shows a schematic depiction of the eigenmode decomposition for a given patch with r = 2780

eigenmodes. For this example, the 10 × 7 lead-field matrix of the cortical patch is reduced to a 10 × 2781

matrix, for which the two eigenmodes capture the main contributions of the patch to the MEG sensors. In782

other words, we summarize all the dipoles placed on ico-4 vertices within each cortical patch by the best r783

effective dipoles, which explain most of the lead-field variance within that cortical patch. With increasing r,784

the approximation gets better in a similar way that a finer cortical mesh improves cortical current density785

approximation. The parameter r can be chosen by controlling the reconstruction error at a desired level.786

We will provide an example of this choice in the following subsection.787

4.5.2. VAR Model Order Selection788

In Section 4.4, the VAR model order K is assumed to be known. To estimate K in a data-driven789

fashion, we utilize the Akaike Information Criterion (AIC) to determine which model order best fits the790

MEG observations (Ding et al., 2018). Given a set of candidate model orders K for K, the optimal model791

order can be chosen as:792

KAIC = argmin
K∈K

− 2`
(
θ̂[K]

)
+ 2df,793

+

+

1
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Figure 9: An illustration of low-rank approximation to the lead-field matrix using eigenmode decomposition using
r = 2 eigenmodes. The contribution of the 7 dipoles to 10 MEG sensors is originally captured by a 10 × 7 sub-
matrix of the lead-field matrix (left), whereas using the eigenmode decomposition, it can be approximated by two
10-dimensional eigenmodes (right), resulting in a 10× 2 effect sub-matrix.
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Figure 10: Model selection curves. A. Histogram of the ratio of the explained variance to total variance for all
ROIs using r = 2, 3, 4 eigenmodes for head models of three representative subjects. With r = 4 eigenmodes, at least
85% of the variance can be explained for all ROIs. B. AIC curve for r = 4 egienmodes, suggesting a choice of K = 2
for the VAR model order for the three representative subjects.

where df is the degrees of freedom of the `1-norm regularized maximum likelihood problem (Zou et al., 2007)794

and θ̂[K] denotes the estimated parameters corresponding to a VAR(K) model.795

Ideally, one can search within a large set of candidate values for K and r (number of eigenmodes) and796

choose the optimal pair according to an information criterion (Ding et al., 2018). However, due to high797

computational complexity of the estimation procedure in NLGC, especially for higher values of K and r,798

we first pick a suitable value for the number of eigenmodes r, followed by choosing the VAR model order K799

via AIC.800

To choose r, we require that at least 85% of the variance within each ROI can be explained using r801

eigenmodes. Depending on the subject’s head model and also the location of the dipoles, the choice of802

r may vary. For the MEG data in this study, r = 4 eigenmodes sufficed to capture at least 85% of the803

variance. Fig. 10A shows the histogram of explained variance ratio for all ROIs using r = 2, 3, 4 eigenmodes804

corresponding to 3 representative subjects.805

Once r = 4 is fixed, we use AIC to pick the optimal value of K. For the MEG data in this study, K = 2806

was the optimal choice according to AIC for all subjects. Fig. 10B shows the AIC curves of the same 3807

subjects as in panel A. Even though in some cases (e.g. subject 2), a choice of K = 3 results in a slight808

improvement compared to K = 2, to reduce the overall run-time of our inference framework, we picked809

K = 2 for all cases.810

4.6. MEG Experiments: Procedures and Recordings811

The data analyzed in this study was a part of a larger experiment whose results will be reported sep-812

arately. Out of 36 total participants who completed the MEG experiment, 24 participants completed the813

structural MRI scans. Additionally, 2 subjects were excluded due to bad fiducials measurements. Ultimately,814

22 subjects, 13 younger adults (5 males; mean age 21.1 years, range 17–26 years) and 9 older adults (3 males;815

mean age 69.6 years, range 66–78 years) were included in the analysis. All participants had clinically normal816

hearing (125–4000 Hz, hearing level ≤ 25 dB) and no history of neurological disorder.817
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The study was approved by the University of Maryland’s Institutional Review Board. All participants818

gave written informed consent and were compensated for their time. Subjects came in on two different days.819

MEG auditory task recording was performed on the first day and structural MRIs were scanned on the820

second day. Neural magnetic signals were recorded in a dimly lit, magnetically shielded room with 160 axial821

gradiometer whole head MEG system (KIT, Kanazawa, Japan) at the Maryland Neuroimaging Center. The822

MEG data were sampled at 2 kHz, low pass filtered at 200 Hz and notch filtered at 60 Hz. Participants823

laid supine position during the MEG experiment while their head was in the helmet and as close as possible824

to the sensors. The head position was tracked at the start and end of the experiment with 5 fiducial coils.825

During the task subjects were asked to stare at the center of the screen and minimize the body movements826

as much as possible.827

The resting state data were recorded before and after the main auditory task, each 90 s long in duration.828

During the resting state subjects fixated at a red cross at the center of grey screen. 100 repetitions of 500829

Hz tone pips were presented at the end. During the tone pips task, subjects were staring at a face image at830

the center of screen and were asked to silently count the number of tone pips. The tones were presented at831

a duration of 400 ms with a variable interstimulus interval (1400 ms, 1200 ms, 1000 ms). The tone pip task832

was around 150 s long and was divided into two trials, 40 s after the beginning of the first tone pip onset833

resulting in two trials. In summary, we analyzed the GC link counts in resting state and listening to tone834

pips task, each consisted of two trials.835

4.7. Pre-processing and Data Cleaning836

All the pre-processing procedures have been carried out using MNE-python 0.21.0 (Gramfort et al.,837

2013a, 2014). After removing the noisy channels, temporal signal space separation (tsss) was used to remove838

the artifacts (Taulu and Simola, 2006). The data were filtered between 0.1 Hz and 100 Hz using a causal FIR839

filter (with phase=‘minimum’ setting). Independent component analysis (extended Infomax algorithm, with840

method=‘infomax’ and fit_params=dict(extended=True) settings) was applied to extract and remove841

cardiac and muscle artifacts (Bell and Sejnowski, 1995; Lee et al., 1999). The initial 5 seconds of the data842

were removed and the subsequent 40 seconds were extracted. Finally, the data were filtered to the desired843

frequency bands using causal FIR filters followed by downsampling to 50 Hz.844

4.8. NLGC Parameter Settings845

As mentioned in Section 4.5.2, the VAR model order K is selected via AIC over a set of candidates846

K = {1, 2, 3, 4, 5}. The regularization parameter for the `1-norm are chosen using a standard 5-fold cross-847

validation over the range [10−15, 1] spanned by 25 logarithmically-spaced points (Appendix A.1, Remark848

3). As for the convergence of the EM algorithm, we used a normalized error tolerance of tol = 10−5, with a849

maximum number of 1000 iterations (Algorithm 2). For all simulation studies as well as real data analysis850

FDR was controlled at 0.1% using the BY procedure.851
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4.8.1. Parameters for the Illustrative Example852

We considered M = 84 cortical patches, whose activities are projected onto the MEG sensor space with853

N = 155 sensors. We simulated 3 different realizations (with T = 1000 samples each) for each run. To854

simplify the projection onto the MEG sensors, we considered a single lead-field vector for each cortical patch,855

generated via drawing 155 independent samples from a standard normal distribution. This simplification856

using a single lead-field vector per patch could be thought of as taking a random linear combination of all857

the lead-field vectors within a cortical patch as the representative of its activity. The noise measurement858

covariance matrix was assumed to be diagonal R = σ2I where σ2 was chosen to set the SNR at 0 dB.859

The cortical patch activities were simulated as a VAR(5) process. Among them, 8 patches were randomly860

selected to carry the dominant activities, i.e., explaining 90% of the total signal power. To compare the861

performance of NLGC with a two-stage method using MNE, we first obtained the source estimates for the862

first stage as:863

x̂1:T = min
x1:T

T∑
t=1

‖xt‖22 s.t.
T∑
t=1

‖yt −Cxt‖2 ≤ ζ,864

for some ζ > 0. Given the source estimates, we then fit the VAR models to obtain the network parameters865

(Appendix A.3). Then, the same statistical inference framework used in NLGC was applied to extract the866

GC links in the second stage.867

4.8.2. Parameters for the Simulated MEG Data Using a Head-Based Model868

We computed the forward solution for ico-4 source space from a representative younger subject’s head869

model via MNE-python 0.21.0 and then obtained the low-rank lead-field matrix approximation over ico-1870

source space using the previously mentioned dimensionality reduction strategy (see Section 4.5.1 for details).871

Each of the cortical patches corresponding to ico-1 vertices had rgen. eigenmodes, resulting in 84×rgen. lead-872

field columns, which are summarizing the contribution of 5124 ico-4 sources, partitioned into 84 groups873

according to the Voronoi regions formed over the cortical manifold. As a result, in the generative model,874

the lead-field matrix has M = 84 × rgen. columns and N = 155 rows. The dipole activities {xt}Tt=1 were875

generated using VAR(3) processes with T = 3000 time points (3 segments, 1000 samples each). With gki876

denoting the kth eigenmode of the ith cortical patch, the MEG observation at time t is generated as877

yt =
84∑
i=1

(
rgen.∑
k=1

γki gki

)
x(i−1)rgen.+k,t + nt, t = 1, 2, · · · , T,878

where γki are drawn uniformly in the interval [−1, 1] and nt is a zero mean Gaussian random vector with879

a diagonal covariance matrix R = σ2I. The value of σ2 is determined according to the desired SNR level880

which is set to 0 dB, unless otherwise stated.881

We considered varying numbers of dominant cortical patches, m = 2, 4, · · · , 20 that explain 90% of the882

total signal power. The remaining 10% of the signal power was uniformly distributed as white noise among883
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the rest of cortical patches. The true underlying GC network structure among the dominant cortical patches884

was assumed to have 20% sparsity, i.e., with m active cortical patches, there are d0.2m(m−1)e true GC links,885

where dze denotes the smallest integer greater than or equal to z. For each m, we generated 10 different886

trials of the VAR processes, while randomly selecting cortical patches from the temporal and frontal lobes887

for each trial.888

In all the four cases considered to assess the robustness of the algorithms, we used rest. = 2. To induce889

source model mismatch, we simply used rgen. = 10 (> rest.) eigenmodes for the data generation process.890

We also considered a relaxed link localization criterion in addition to the exact link localization criterion.891

The rationale behind the relaxed link localization criterion is as follows: Let (j 7→ i) be a true GC link, and892

let N(i) denote the 6 nearest cortical patches to cortical patch i over the ico-1 source space. If instead the893

link (j′ 7→ i′) is detected, we consider it a hit if i′ ∈ N(i) and j′ ∈ N(j). This way, we account for minor894

spatial localization errors. Note that in the exact link localization criterion, the link (j 7→ i) is considered a895

hit only if it is exactly detected by NLGC.896

The NLGC settings were the same in all the aforementioned cases. For the two-stage methods, we used897

the standard MNE and dSPM methods as well as the Champagne algorithm implemented in MNE-python898

0.21.0 using their default settings to localize the simulated MEG data into cortical time-courses. For each899

value of m, we ran NLGC and the three two-stage procedures and evaluated the performance of each method900

by calculating the hit rate (number of true detected links normalized by the total number of true links) and901

false alarm rate (number of spurious links normalized by the total number of non-GC links), both averaged902

over the 10 trials.903

4.8.3. Parameters in the Analysis of Experimentally Recorded MEG Data904

For the MEG data that were recorded during an auditory task, we analyzed the connectivity between905

ROIs in frontal, temporal, and parietal lobes (in both hemispheres) that broadly comprise the auditory906

cortex, the fronto-parietal network, the cingulo-opercular network, the ventral attention network, and the907

default mode network, which are known to fluctuate with task versus rest conditions (Fox et al., 2005) and908

with aging (Kuchinsky and Vaden, 2020). The included ROIs are selected from the 68 anatomical ROIs in909

the Desikan-Killiany atlas (Desikan et al., 2006):910

• Frontal: ‘rostralmiddlefrontal’, ‘caudalmiddlefrontal’, ‘parsopercularis’, ‘parstriangularis’.911

• Temporal: ‘superiortemporal’, ‘middletemporal’, ‘transversetemporal’.912

• Parietal: ‘inferiorparietal’, ‘posteriorcingulate’.913

We then mapped the 84 cortical patches onto these 68 anatomical ROIs. To illustrate this procedure,914

consider the example given in Fig. 11. There are three representative cortical patches, denoted by dk, k =915

1, 2, 3 with corresponding vertices in ico-1 (crosses) and ico-4 (arrows) mesh are shown with the same color.916
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Figure 11: Illustration of anatomical ROI to cortical patch assignment. Three ico-1 vertices shown as d1 (red ×),
d2 (green ×) and d3 (blue ×) as well as the corresponding ico-4 vertices (colored arrows) in the respective patches are
shown with the same color coding. Two anatomical ROIs R1 (dark grey) and R2 (light gray) are also highlighted.
Using the proposed association scheme, each cortical patch is assigned a pair of weights indicating its relative overlap
with the two ROIs. Here, the association weights of d1, d2 and d3 are given by (0, 1), (0.2, 0.8) and (0.67, 0.33),
respectively.

The goal is to allocate the representative cortical patches between the two ROIs marked by R1 and R2. For917

each representative cortical patch, we compare the ratio of the number of ico-4 vertices that lie within each918

ROI and use it as an association weight between the representative cortical patch and the ROI. For the given919

example in Fig. 11, the association weights to R1 and R2 for the three representative cortical patches d1, d2,920

d3 are given by (0, 1), (0.2, 0.8), and (0.67, 0.33), respectively. Using this many-to-one mapping, the obtained921

NLGC map Φ, which represents the GC links among the ico-1 cortical patches, can be translated into a922

connectivity map among the 68 ROIs as follows. Let W ∈ R84×68 denote the aforementioned association923

weight matrix, where [W]i,j is the association weight of the ith representative cortical patch to the jth ROI.924

The transformed connectivity map Φ̃ is then defined as Φ̃ = W>ΦW.925

As an example of this transformation, consider the setting of Fig. 11 and suppose that NLGC only926

detects one GC link (d2 7→ d2). Assuming that there are only 3 patches d1, d2, and d3 in the model, we927

have:928

Φ =


0 0 0

0 1 0

0 0 0

 , W =


0 1

0.2 0.8

0.67 0.33

 ,929

where the weight matrix W contains the association weights of the setting in Fig. 11. The transformed930

connectivity matrix is thus given by:931

Φ̃ = W>ΦW =

0.04 0.16

0.16 0.64

 .932

We can then interpret Φ̃ as follows: the captured link (d2 7→ d2) is decomposed into several possible links933

between the 2 anatomical ROIs R1 and R2, namely (R1 7→ R1) with a weight of 0.04, (R1 7→ R2) with a934

weight of 0.16, (R2 7→ R1) with a weight of 0.16, and (R2 7→ R2) with a weight of 0.64. Notably, the elements935
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Figure 12: Evaluating the effect of trial duration on the NLGC performance. The group average GC links from
frontal to temporal areas for younger participants during tone processing are overlaid on the dorsal brain plot in
the top tow. The corresponding directed graphs indicating the normalized J-statistics of the links between frontal,
temporal, and parietal areas are shown in the bottom row. Columns correspond to different choices of T corresponding
to the first 20, 25, 30, 35 and 40 s of the data. While for smaller values of T , several links are missing, by increasing
T beyond 30 s the detected networks stabilize and converge.

of Φ̃ add up to one, which guarantees that the link (d2 7→ d2) is not double-counted under the many-to-one936

mapping from the patches to anatomical ROIs, and thus the total number of GC links is preserved.937

The VAR model order and the number of eigenmodes are chosen as K = 2 and r = 4 using AIC938

criterion. The details of the model selection is described in Section 4.5.2. To obtain the directed networks939

between frontal, temporal, and parietal areas, for each of the Delta+Theta and Beta frequency bands940

of interest, we encoded the inferred connectivity maps for each subject in each trial and condition using941

a 9-dimensional vector, where each entry represented the number of detected GC links corresponding to942

the connectivity types A 7→ B where A,B ∈ {Frontal, Temporal, Parietal}. For the inter- vs. intra-943

hemispheric refinement of our analysis, encoded the GC maps using a 36-dimensional vector in which the944

entries also distinguished between the connectivity across and within hemispheres, i.e., A(h) 7→ B(h) where945

h ∈ {left hemisphere, right hemisphere} and A,B ∈ {Frontal, Temporal, Parietal}.946

Another key parameter that may affect the performance of NLGC is the choice of the trial duration T . To947

investigate the effect of the trial duration on the performance of NLGC, we repeated NLGC analysis using948

different values of T corresponding to the first 20, 25, · · · , 40 seconds of the data. The results corresponding949

to the younger participants under the tone processing condition over the Delta+Theta band is shown are950

Fig. 12. As it can be observed from the figure, for small values of T the detected networks are quite sparse,951

as the algorithm does not have enough statistical power to detect all relevant links. It is worth noting that952

NLGC did not capture any GC links using only the first 10 seconds of the data. For ∼ 30 s and higher, the953
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captured GC network stabilizes and converges. Therefore, the choice of 40 s used in our analysis is taken954

conservatively to make sure that enough data points are available for GC link detection.955

4.8.4. Statistical Testing956

We used generalized linear mixed effect models (GLMM) to analyze the effects of age, condition, connectivity957

type and hemisphere on the GC link counts for each frequency band. The statistical analysis was conducted958

via R version 4.0.5 (R core Team 2021) using glmmTMB (Brooks et al., 2017) with zero-inflated generalized959

Poisson distributions to model the link counts. Based on a full model accounting for all the variables, the960

best fit model was selected by stepwise elimination, implemented in buildglmmTMB Voeten (2021) based961

on the likelihood ratio test (LRT). Model assumptions for dispersion, heteroskedasticity and zero-inflation962

were examined and verified using the DHARMa package (Hartig, 2021). The post-hoc differences among963

the levels of the effects were tested using pairwise comparisons based on estimated marginal means, with964

Holm corrections using the package emmeans Lenth (2021). The summary of the statistical models is given965

in Appendix C.966
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van de Geer, S., Bühlmann, P., Ritov, Y., Dezeure, R., 2014. On asymptotically optimal confidence regions and tests for1097

high-dimensional models. The Annals of Statistics 42, 1166 – 1202. https://doi.org/10.1214/14-AOS1221.1098

Geweke, J., 1982. Measurement of linear dependence and feedback between multiple time series. J. Am. Stat. Assoc. 77,1099

304–313. https://doi.org/10.1080/01621459.1982.10477803.1100

Geweke, J.F., 1984. Measures of Conditional Linear Dependence and Feedback Between Time Series. J. Am. Stat. Assoc. 79,1101

907–915. https://doi.org/10.1080/01621459.1984.10477110.1102

Goldstein, T., Studer, C., Baraniuk, R., 2014. A field guide to forward-backward splitting with a FASTA implementation.1103

arXiv preprint URL: https://arxiv.org/abs/1411.3406.1104

Gorodnitsky, I.F., George, J.S., Rao, B.D., 1995. Neuromagnetic source imaging with FOCUSS: a recursive weighted min-1105

imum norm algorithm. Electroencephalography and Clinical Neurophysiology 95, 231–251. https://doi.org/10.1016/1106

0013-4694(95)00107-A.1107

Gramfort, A., Luessi, M., Larson, E., Engemann, D., Strohmeier, D., Brodbeck, C., Goj, R., Jas, M., Brooks, T., Parkko-1108
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2017. Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG. Proceedings of the National1146

Academy of Sciences 114, E10465–E10474. https://doi.org/10.1073/pnas.1705414114.1147

Kuchinsky, S.E., Vaden, K.I., 2020. Aging, hearing loss, and listening effort: Imaging studies of the aging listener, in: Ag-1148

ing and Hearing: Causes and Consequences. Springer International Publishing, pp. 231–256. https://doi.org/10.1007/1149

978-3-030-49367-7_10.1150
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Appendix A. Parameter Estimation1296

This appendix provides the details and derivations of the EM algorithm used in NLGC as well as the1297

VAR fitting used by the two-stage approaches. The EM algorithm is derived in Appendix A.1. In Appendix1298

A.2, we present the filtering and smoothing procedures to obtain the conditional distribution p(x1:T |y1:T ;θ),1299

followed by the VAR fitting procedure used in two-stage approaches that are derived in Appendix A.3.1300

Appendix A.1. EM Algorithm1301

In this section, we derive the E- and M-steps used in the network parameter estimation module of NLGC.1302

E-step1303

We start from the joint distribution of {xt}Tt=1 and {yt}Tt=1. From the Bayes’ rule we have1304

log p(y1:T ,x1:T ;θ) = log p(y1:T |x1:T ;θ) + log p(x1:T ;θ). (A.1)1305

The conditional distribution can be directly written from observation model in Eq. (1) as1306

log p(y1:T |x1:T ;θ) =

T∑
t=1

log p(yt|xt;θ) = −T
2

log(2π|R|)− 1

2

T∑
t=1

‖yt −Cxt‖R−1 , (A.2)1307

where ‖a‖B := a>Ba is utilized for notational convenience.1308

Using the fact that Q = diag(σ2
1 , . . . , σ

2
M ) along with the source dynamic model in Eq. (2), one can write1309

down1310

log p(x1:T ;θ) = −T
2

log(2π
M∏
i=1

σ2
i )−

M∑
i=1

1

2σ2
i

‖xi −Xai‖22, (A.3)1311

where xi := [xi,K+1:T ]>, ai = [[Ak]i,j , ∀k, j]>, and1312

X :=
[
[x1,K:T−1]>, . . . , [x1,1:T−K ]>, . . . , [xM,1:T−K ]>

]
.1313

Now, substituting Eqs. (A.2) and (A.3) into Eq. (A.1) along with taking the expectation yields1314

Q(θ|θ̂(l)) = E
[

log p(x1:T ,y1:T ;θ)|y1:T , θ̂
(l)
]

= K(θ̂(l))− T

2

M∑
i=1

log(σ2
i )−

M∑
i=1

1

2σ2
i

(
ai
>G(l)ai − 2h

(l)
i

>
ai + f

(l)
i

)
,

1315

where K(θ̂(l)) represents the constant terms with respect to θ1316

K(θ̂(l)) = −T
2

log(2π|R|)− T

2
log(2π)− 1

2

T∑
t=1

E
[
‖yt −Cxt‖R−1 |y1:T ; θ̂(l)

]
,1317

and1318

G(l) = E
[
X>X|y1:T ; θ̂(l)

]
, h

(l)
i = E

[
X>xi|y1:T ; θ̂(l)

]
, f

(l)
i = E

[
xi
>xi|y1:T ; θ̂(l)

]
(∀i).1319
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It is noteworthy to mention that the variables G(l), h
(l)
i , and f

(l)
i can be written as a function of first- and1320

second-order moments of the conditional density p(x1:T |y1:T ; θ̂(l)). It can be shown that the conditional1321

density p(x1:T |y1:T ; θ̂(l)) is Gaussian due to underlying Gaussian assumptions on wt and nt. Thus, the1322

mean and covariance matrices can be efficiently computed via the Fixed Interval Smoothing (FIS) algorithm1323

(Anderson and Moore, 2005). The details are presented in the next subsection.1324

M-step1325

To avoid ill-posedness caused by the low-dimensional MEG measurements, we leverage the sparse con-1326

nectivity feature of cortical sources and add a regularization term in the M-step as follows:1327

θ̂(l+1) = argmax
θ

{
Q(θ|θ̂(l)) +Rp(λ,θ)

}
, (A.4)1328

where Rp(λ,θ) := −2
∑M
i=1 λi‖ai‖pp is the regularization function and λ = [λ1, . . . , λM ]> ∈ RM is the1329

regularization coefficients vector. The closed-form solution for p = 2 can be obtained as1330

â
(l+1)
i =

(
G(l) + λiI

)−1
h
(l)
i , ∀i (A.5)1331

1332

σ̂2
i
(l+1)

=
1

T

(
â
(l+1)
i

>
G(l)â

(l+1)
i − 2h

(l)
i

>
â
(l+1)
i + f

(l)
i

)
, ∀i. (A.6)1333

To enforce sparsity, we use p = 1. However, the closed-form solution does not exist. We use the well-known1334

Fast Adaptive Shrinkage/Thresholding Algorithm (FASTA) to find the `1-norm regularized solution to Eq.1335

(A.4) (Goldstein et al., 2014).1336

The EM procedure for the full model is summarized in Algorithm 2. It is noteworthy that in order1337

to find the VAR model parameters for the full and reduced models, one requires to run the algorithm for1338

a total of M(M − 1) + 1 times, i.e., 1 full model where we consider all interactions between the sources1339

and M(M − 1) reduced models corresponding to all possible links in the set I. Thus, it is crucial to have1340

computationally efficient solutions to carry out the computations in the E-step. Before presenting the FIS1341

procedure used for this purpose, some remarks regarding the initialization of the EM algorithm, estimating1342

the reduced models, and choosing the regularization parameters λ are in order:1343

Remark 1. (Initialization) Due to the biconvex nature of the problem in Eq. (A.4), the problem may1344

have several saddle points. As a result, choosing a proper initial point for the EM algorithm is crucial and1345

helps the algorithm to converge faster as well. We first obtain the minimum norm source estimates as follows1346

X̂ = (C>C)−1C>Y,1347

where Y = [y>1 , · · · ,y>T ]> is the MEG measurement matrix and X̂ = [x̂>1 , · · · , x̂>T ]> is the source estimates1348

matrix. Given the source estimates, we initialize all coefficients {A}Kk=1 with zero and variances matching1349

the average power of each source, i.e., â
(0)
i = 0, σ̂2

i
(0)

= 1
T

∑T
t=1 x̂

2
i,t, ∀i. In this way, the algorithm is1350

initialized with an unbiased solution (Gorodnitsky et al., 1995).1351

Remark 2. (Reduced Models) Algorithm 2 represents the full model parameter estimation. With some1352

minor modification, one can find the reduced model estimation in a similar way. Let us assume we want to1353
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Algorithm 2 EM-based Parameter Estimation

Input: MEG measurements {yt}Tt=1, lead field matrix C, measurement noise covariance matrix R, VAR model order K,

regularization coefficients λ, convergence tolerance tol, maximum number of iterations L.

1: Set l = 0 and initialize θ̂(l) based on the minimum norm solution.

2: repeat

3: Compute the conditional density p(x1:T |y1:T ; θ̂(l)) via FIS.

4: Calculate the surrogate function Q(θ|θ̂(l)) in Eq. (A.4). . E-step

5: Solve θ̂(l+1) = argmax
θ

{
Q(θ|θ̂(l)) +R1(λ,θ)

}
via FASTA. . M-step

6: Set l← l + 1.

7: until
`(θ̂(l))−`(θ̂(l−1))

`(θ̂(l))
< tol or l = L.

Output: θ̂.

estimate the reduced model parameters corresponding to the link (j 7→ i) ∈ I. We can use Algorithm 2 by1354

enforcing ai,j,k = 0, ∀k at the M-step in each iteration. The output of the Algorithm 2 in this case is the1355

estimated parameters for the reduced model corresponding to the link (j 7→ i).1356

Remark 3. (Regularization Parameters) To obtain the regularization parameters λ, we utilize the1357

standard K-fold cross-validation. To save the computational complexity and to speed up the tuning process,1358

we assume λ = λ1 where 1 is the all-one vector. As for the cross-validation metric, we use the estimation1359

stability criterion presented in (Lim and Yu, 2016). Given a set of candidates for λ, this criterion constructs1360

estimated versions of the MEG measurements based on the underlying parameters of the VAR model and1361

returns the model with the lowest variance across the folds. In this way, the chosen λ gives a stable solution1362

across the folds. Moreover, once the optimal regularization parameter λ is chosen for the full model, we1363

use the same regularization parameter for all the subsequent reduced models (Das and Babadi, 2021). This1364

way, the cross-validation only needs to be carried out for the full model.1365

Appendix A.2. Fixed Interval Smoothing1366

As mentioned earlier, under Gaussian assumptions on nt and wt, the conditional density of p(x1:T |y1:T ;θ)1367

is also Gaussian (Anderson and Moore, 2005). As a result, we just need to find the conditional mean and1368

covariance matrix of the random vector x1:T given y1:T and θ.1369

Using the Kalman filter, we can compute the filtered densities p(xt|y1:t;θ) for t = 1, 2, . . . , T . Using1370

the filtered densities, the FIS procedure allows us to also find p(xt|y1:T ;θ) for t = 1, 2, . . . , T . To this1371

end, we first perform state augmentation to transform VAR(K) models to equivalent VAR(1) models. The1372

augmented state vector is defined as x̃t = [x>t ,x
>
t−1, . . . ,x

>
t−K+1]> ∈ RKM . The VAR(K) model in Eq. (2)1373

can thus be rewritten as a VAR(1) model given by:1374

x̃t = Ãx̃t−1 + w̃t, t = 1, 2, . . . , T , (A.7)1375
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where1376

Ã :=



A1 A2 . . . AK−1 AK

IM 0 . . . 0 0

0 IM . . . 0 0
...

...
. . .

...
...

0 0 . . . IM 0


∈ RKM×KM ,1377

and w̃t ∈ RKM is the augmented state noise vector with covariance matrix Q̃ := diag(σ2
1 , . . . , σ

2
M , 0, 0, . . . , 0).1378

Similarly, we can modify the measurement model in Eq. (1) as follows1379

yt = C̃x̃t + nt, t = 1, 2, . . . , T , (A.8)1380

with C̃ = [C,0, . . . ,0] ∈ RN×KM .1381

Let us define the conditional mean, covariance, and cross-variance of the sources as x̃t1|t2 := E[x̃t1 |y1:t2 ],1382

Σt1|t2 := Cov[x̃t1 |y1:t2 ], and P̃t1,t2|T := Cov[x̃t1 , x̃t2 |y1:T ], respectively, for two given time-points 1 ≤ t1, t2 ≤1383

T . Assuming that matrices Ã, B̃, C̃, Q̃, R, and {yt}Tt=1 are given, we can utilize the Kalman filter to obtain1384

p(x̃t|y1:t) ∼ N (x̃t|t, Σt|t), t = 1, . . . , T . Next, we use FIS to also find p(x̃t|y1:T ) ∼ N (x̃t|T , Σt|T ), t =1385

1, . . . , T .1386

According to (Jong and Mackinnon, 1988), for the the conditional cross-covariance, we have the following1387

recursive relationship:1388

P̃t1,t2|T =


P̃>t2,t1|T , t1 > t2,

Σt1|T , t1 = t2,

St1P̃t1+1,t2|T , t1 < t2,

1389

where St1 = Σt1|t1Ã
>Σ−1t1+1|t1 .1390

Finally, to extract the first- and second-order moments of the sources from the augmented model, we1391

define xt|T := E[xt|y1:T ] and Pt1,t2|T := Cov[xt1 ,xt2 |y1:T ]. From the definition of the augmented model, we1392

have1393

xt|T =
[
x̃t|T

]
1:M

, t = 1, . . . , T,

Pt1,t2|T =
[
P̃t1,t2|T

]
1:M,1:M

, t1, t2 = 1, . . . , T.
1394

Algorithm 3 summarizes the overall procedure for finding the smoothed means and covariance matrices. A1395

costly computational step in Algorithm 3 is the inversion of Σt+1|t ∈ RKM×KM that needs to be performed1396

in each iteration. In order to mitigate this source of computational complexity, we use the steady-state1397

filtering approach of (Pirondini et al., 2018). Let us define the steady-state covariance matrices Σ(+) and1398
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Algorithm 3 Fixed Interval Smoothing

Input: MEG measurements {yt}Tt=1, lead field matrix C, measurement noise covariance matrix R, VAR models parameters

{Ak}Kk=1 and Q.

1: Construct augmented matrices Ã, Q̃, and C̃.

2: Forward filter for t = 0, 1, . . . , T − 1:

x̃t+1|t = Ãx̃t|t.

Σt+1|t = ÃΣt|tÃ
> + Q̃.

Kt+1 = Σt+1|tC̃
>(C̃Σt+1|tC̃

> + R)−1.

x̃t+1|t+1 = x̃t+1|t + Kt+1(yt+1 − C̃x̃t+1|t).

Σt+1|t+1 = Σt+1|t −Kt+1(C̃Σt+1|tC̃
> + R)K>t+1.

3: Backward smoothing for t = T − 1, T − 2, . . . , 1, 0:

x̃t+1|t = Ãx̃t|t.

Σt+1|t = ÃΣt|tÃ
> + Q̃.

St = Σt|tÃ
>Σ−1

t+1|t.

x̃t|T = x̃t|t + St(x̃t+1|T − x̃t+1|t).

Σt|T = Σt|t + St(Σt+1|T −Σt+1|t)S
>
t .

4: Covariance smoothing for t1, t2 = T, T − 1, . . . , 1, 0:

P̃t1,t2|T =


P̃>
t2,t1|T

, t1 > t2,

Σt1|T , t1 = t2,

St1P̃t1+1,t2|T , t1 < t2.

5: Extract the first- and second-order moments of source activities from the augmented model:

xt|T =
[
x̃t|T

]
1:M

, t = K + 1, . . . , T,

Pt1,t2|T =
[
P̃t1,t2|T

]
1:M,1:M

, t1, t2 = K + 1, . . . , T.

Output: Smoothed means and covariances xt1|T ,Pt1,t2|T , t1, t2 = 1, 2, · · · , T .

Σ(−) as follows1399

Σ(+) := lim
t→∞

Σt|t,

Σ(−) := lim
t→∞

Σt+1|t.
1400

Replacing these steady-state values into the forward filter yields1401

Σ(−) = ÃΣ(+)Ã> + Q̃,

Σ(+) = Σ(−) −Σ(−)C̃>(C̃Σ(−)C̃> + R)−1C̃Σ(−),
(A.9)1402

which is known as the discrete-time algebraic Riccati (DARE) equation with respect to Σ(+). The DARE1403

equation can be solved efficiently using the MacFarlane-Potter-Fath eigen-structure method (Malik et al.,1404

2011). Solving the Riccati equation gives the steady-state covariance matrices and from there, we can1405
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compute the Kalman gain (Kt) and smoothing gain (St) independent of t:1406

Kt+1 ≈ K := Σ(−)C̃>(C̃Σ(−)C̃> + R)−1, ∀t,

St+1 ≈ S := Σ(+)Ã>
(
Σ(−)

)−1
, ∀t.

1407

As a result, only two matrix inversions are required at the beginning of the FIS, thereby providing significant1408

computational savings.1409

Appendix A.3. VAR Model Fitting in the Two-Stage Methods1410

In the two-stage approaches, the source estimates are first computed using a source localization procedure,1411

followed by VAR model fitting. Let us denote the source estimates by {x̂t}Tt=1. The VAR(K) model fitting1412

can be performed in various ways, among which maximum likelihood estimation is a popular method (Haykin,1413

2013). To this end, one needs to compute θ̂MLE := argmax
θ

log p(x̂1:T ;θ), where1414

log p(x̂1:T ;θ) = −T
2

log(2π
M∏
i=1

σ2
i )−

M∑
i=1

1

2σ2
i

‖x̂i − X̂ai‖22,1415

with x̂i := [x̂i,K+1:T ]>, and X̂ :=
[
[x̂1,K:T−1]>, . . . , [x̂1,1:T−K ]>, . . . , [x̂M,1:T−K ]>

]
. Setting the derivative of1416

the log-likelihood with respect to the parameters to zero gives the following closed-form solution1417

âi = (X̂>X̂ )−1X̂>x̂i, σ̂2
i =

1

T
‖x̂i − X̂ âi‖22, ∀i.1418

Similar to NLGC, we can enforce sparsity by considering an `1-norm regularized maximum likelihood prob-1419

lem. To this end, we need to find θ̂SMLE := argmax
θ

log p(x̂1:T ;θ)+R(λ,θ), whereR(λ,θ) := −
∑M
i=1 λi‖ai‖11420

is the `1-norm penalty and λ := [λ1, · · · , λM ]> ∈ RM is the regularization vector. As mentioned in Ap-1421

pendix A.1, this problem does not have a closed-form solution. However, we can use iterative methods1422

such as FASTA (Goldstein et al., 2014) or Iteratively Re-weighted Least Squares (IRLS) (Ba et al., 2014)1423

to obtain the `1-norm regularized estimates. The regularization parameters λ can be tuned using standard1424

cross-validation techniques, as mentioned in Appendix A.1.1425

Appendix B. Proof of Theorem 11426

The proof of Theorem 1 follows that of the main theorem in (Sheikhattar et al., 2018). First, we define1427

the following notations for a given log-likelihood function `(θ) with parameter θ:1428

˙̀(θ) := ∇θ`(θ),

῭(θ) := ∇2
θ`(θ),

I(θ) := E
[

˙̀(θ) ˙̀(θ)>
]
,

1429
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where ˙̀(.) denotes the gradient vector of the likelihood with respect to θ, also referred to as the score1430

statistics, ῭(.) denotes the Hessian matrix of the log-likelihood, and I(.) is the Fisher information matrix.1431

We define the de-biased deviance difference between the true value of θ and its estimate θ̂ as (Sheikhattar1432

et al., 2018):1433

D(θ̂;θ) := 2
(
`(θ̂)− `(θ)

)
− ˙̀(θ̂)> ῭(θ)−1 ˙̀(θ̂). (B.1)1434

Starting from the definition of the log-likelihood function, we can decompose `(θ) as1435

`(θ) =
T∑
t=1

`t(θ). (B.2)1436

where `t(θ) = log p(yt|y1:t−1;θ) for t = 2, · · · , T with the convention `1(θ) = log p(y1;θ). Using the1437

second-order Taylor expansion of `(θ) around θ̂ along with the intermediate value theorem, we have1438

`(θ) = `(θ̂) + (θ − θ̂)> ˙̀(θ̂) +
1

2
(θ − θ̂)> ῭(θ̃)(θ − θ̂), (B.3)1439

where θ̃ := βθ + (1 − β)θ̂ for some β ∈ (0, 1) such that ‖θ̃ − θ‖2 <‖θ̂ − θ‖2. Substituting `(θ) from Eq.1440

(B.3) into Eq. (B.1) gives1441

D(θ̂;θ) = −2(θ − θ̂)> ˙̀(θ̂) + (θ − θ̂)> ῭(θ̃)(θ − θ̂) + ˙̀(θ̂)>Θ ˙̀(θ̂),1442

where Θ := ῭(θ)−1. Using an auxiliary vector ϑ := θ̂ − Θ ˙̀(θ̂) and after rearrangement, the de-biased1443

deviance can be rewritten as1444

D(θ̂;θ) = −(ϑ− θ)> ῭(θ̂)(ϑ− θ) + ∆, (B.4)1445

with1446

∆ = 2(θ − θ̂)>
(
I− ῭(θ̂)Θ

)
˙̀(θ̂) + ˙̀(θ̂)>Θ

(
I− ῭(θ̂)Θ

)
˙̀
i(θ̂) + (θ − θ̂)>

(
῭(θ̃)− ῭(θ̂)

)
(θ − θ̂). (B.5)1447

Employing the consistency of the estimation, i.e., θ̂
p−→ θ and the Lipschitz property of the second-order1448

derivative of the Gaussian log-likelihood function, one can show that the term ∆ asymptotically goes to zero1449

as T →∞ with a rate of ‖θ̂ − θ‖3 = oP
(
1/T 3/2

)
(van de Geer et al., 2014; Sheikhattar et al., 2018).1450

Let us now consider the link (j 7→ i) ∈ I. In what follows, we prove the first and second assertions of1451

the theorem regarding the null and alternative hypotheses separately.1452

Null Hypothesis1453

The Taylor expansion of the score statistics can be expressed as1454

˙̀(θ̂) = ˙̀(θ) + ῭(θ̃)(θ̂ − θ), (B.6)1455

where θ̃ = βθ + (1− β)θ̂ for some β ∈ (0, 1). Combining the Taylor expansion in Eq. (B.6) along with the1456

definition ϑ = θ̂ −Θ ˙̀(θ̂), we have1457

ϑ− θ = −Θ ˙̀(θ) + ∆, (B.7)1458
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with ∆ :=
(
I − Θ ῭(θ̃)

)
(θ̂ − θ). Following the same argument for ∆ in Eq. (B.5), one can show that1459

∆ = oP(1/T ) is asymptotically negligible as T → ∞ (van de Geer et al., 2014). In order to obtain the1460

asymptotics of the score statistic and the Hessian matrix of the log-likelihood function `(θ), the conventional1461

law of large numbers (LLN) and the central limit theorem (CLT) can be used, since the process realizations1462

in the log-likelihood decomposition of Eq. (B.2) (yt|y1:t−1, ∀t > 1) are independent across time. This is due1463

to the fact that the noise processes wt and nt in our generative model are i.i.d. Gaussian noise sequences1464

and are independent of each other (Anderson and Moore, 2005).1465

Using the LLN for the Hessian matrix of `(.) yields1466 [ 1

T
῭(θ)|H(j 7→i),0

]
p−→ E

[
῭
t(θ)

]
= −I(θ). (B.8)1467

Moreover, the CLT for the score statistics gives1468 [ 1√
T

˙̀(θ)|H(j 7→i),0

]
d−→ N

(
0,I(θ)

)
. (B.9)1469

Using Slutsky’s theorem along with Eqs. (B.6), (B.8), and (B.9), asymptotic normality of ϑ under the null1470

hypothesis can be obtained as1471 [√
T (ϑ− θ)|H(j 7→i),0

]
d−→ N

(
0,I(θ)−1

)
, (B.10)1472

as T →∞. Following the definition of the deviance in Eq. (B.4) along with Eq. (B.8), we have1473 [
D(θ̂;θ)|H(j 7→i),0

]
d−→ χ2(M), (B.11)1474

as T →∞, where M is the dimension of the parameter θ. Following the results in (Wald, 1943) and (Wilks,1475

1938) along with the fact that
[
Ddb(j 7→i) = D(θ̂f ;θf)−D(θ̂r;θr)

∣∣∣H(j 7→i),0

]
, it can be shown that the de-biased1476

deviance difference converges to a central χ2 distribution with Md degrees of freedom1477 [
Ddb(j 7→i)|H(j 7→i),0

]
d−→ χ2(Md), (B.12)1478

where Md = M f −M r is the difference between dimensions of the two nested models. This proves the first1479

assertion of Theorem 1. �1480

Alternative Hypothesis1481

Following the development in (Davidson and Lever, 1970), we define a non-decreasing sequence
{
Tn
}∞
n=1

1482

such that limn→∞ Tn = T . Instead of defining a fixed alternative against the null hypothesis H(j 7→i),0 : θ =1483

(θ0,0), we instead define a sequence of local alternatives1484 {
H
{Tn}
(j 7→i),n

}∞
n=1

=
{
H
{Tn}
(j 7→i),1 : θ{Tn} =

(
θ∗0 ,θ

{Tn}
1

)}∞
n=1

,1485
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where θ
{Tn}
1 = 1√

Tn
δ is an unspecified sub-vector excluded from the reduced model with dimension Md =1486

M f −M r and δ is a constant vector. According to (Davidson and Lever, 1970), we test for the departure1487

of the sequence of local alternatives from the null hypothesis at the true parameter θ∗ = (θ∗0 ,θ
∗
1) with1488

θ∗1 = limn→∞ θ
{Tn}
1 .1489

For notational convenience, we hereafter drop the subscript n in Tn, noting that the equations involving1490

limits of T denote sequential limits. Defining the de-biased vector ϑ{T} := θ̂{T}−Θ∗ ˙̀
(
θ̂{T}

)
corresponding1491

to the local alternative H
{T}
(j 7→i),1 with Θ∗ := ῭(θ∗)−1 and utilizing the following expansions1492

˙̀
(
θ̂{T}

)
= ˙̀(θ∗) + ῭(θ∗)

(
θ̂{T} − θ∗

)
+ oP(1/T ),

˙̀
(
θ{T}

)
= ˙̀(θ∗) + ῭(θ∗)

(
θ{T} − θ∗

)
+ oP(1/T ),

1493

we have1494

ϑ{T} − θ∗ = θ{T} − θ∗ −Θ∗ ˙̀
(
θ{T}

)
+ oP(1/T ). (B.13)1495

Using LLN and CLT similar to the case of the null hypothesis, we conclude1496 [ 1

T
῭
(
θ{T}

)∣∣∣HT
(j 7→i),1

]
p−→ −I(θ∗),[ 1√

T
˙̀
(
θ{T}

)∣∣∣HT
(j 7→i),1

]
d−→ N

(
0,I(θ∗)

)
,

1497

and the asymptotic normality of ϑ follows as1498 [√
T
(
ϑ{T} − θ∗

)∣∣∣HT
(j 7→i),1

]
d−→ N

(
δ,I(θ∗)−1

)
, (B.14)1499

where δ := [0>, δ>]> is the asymptotic mean. It is noteworthy that the non-zero asymptotic mean is1500

obtained from the Pitman drift rate where the sequence of true local parameters θ{T} tends to its limit θ∗1501

at a rate
∥∥θ{T} − θ∗∥∥ = O(1/

√
T ) (Davidson and MacKinnon, 1987).1502

Next, using an extension of Cochrans theorem to non-central chi-square distribution (Tan, 1977) and1503

using the asymptotic normality of ϑ{T} in Eq. (B.14), it follows that under the sequence of local alternatives1504

H
{T}
(j 7→i),1, the de-biased deviance difference of the two nested full and reduced models converges to a non-1505

central chi-squared distribution as T →∞:1506 [
Ddb(j 7→i)

∣∣∣H{T}(j 7→i),1

]
d−→ χ2(Md, ν(j 7→i)), (B.15)1507

where Md is the difference between the dimensions of the two nested models and ν(j 7→i) presents the non-1508

centrality parameter. To identify the non-centrality parameter, let us consider the block decomposition of1509

I(θ∗) corresponding to θ∗0 and θ∗1 as1510

I(θ∗) =

I0,0(θ∗) I0,1(θ∗)

I1,0(θ∗) I1,1(θ∗)

 .1511

51

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 11, 2022. ; https://doi.org/10.1101/2022.03.09.483683doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.09.483683
http://creativecommons.org/licenses/by-nc-nd/4.0/


Theory

Empirical

0 10050 0 10050
0

0.06

0.03

0

0.06

0.03

Tone Rest

R
e

p
re

s
e

n
ta

ti
v
e

 I
n

d
iv

id
u

a
ls

Y
o

u
n

g
e

r
O

ld
e

r

Figure B.1: Histograms of the debiased deviance differences corresponding to non-GC links for younger and older
representative subjects in tone and rest conditions from Section 2.4. The histograms closely match the prediction of
Theorem 1.

Then, ν(j 7→i) := δ>I1,1(θ∗)δ with I1,1(θ∗) := I1,1(θ∗)− I1,0(θ∗)I−10,0(θ∗)I0,1(θ∗). This proves the second1512

assertion of the theorem. �1513

Finally, to test whether the theoretical prediction of Theorem 1 regarding the null distribution is valid1514

for our analysis of experimental MEG data, we chose 4 representative trials (one older and one younger1515

participant in each condition) and plotted the histogram of the debiased deviance differences of all the1516

tested GC links that were not significant. According to Theorem 1, the debiased deviance differences of1517

such non-GC links should follow a chi-square distribution with degree of freedom 2 × 42 = 32 (r = 41518

eigenmodes and VAR(2) model). Fig. B.1 shows the corresponding chi-square density and the empirical1519

histograms. As it can be seen, the empirical histograms closely match the theoretical chi-square density.1520

Appendix C. Mixed-Effects Model1521

Full models for the mixed effect models included interactions among the fixed effects of age, condition,1522

connectivity type and hemisphere, and random slopes and intercepts for within-subject factors of condition,1523

connectivity type and hemisphere per subject. Summary tables for each frequency band are given in Table1524

C.1.1525
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Parameter Delta+Theta Band Beta Band
Count model: (Intercept) 3.06(0.07)∗∗∗ 2.24(0.10)∗∗∗

Count model: connectivityF->P −0.84(0.11)∗∗∗ −0.10(0.14)
Count model: connectivityF->T −1.29(0.13)∗∗∗ 0.29(0.12)∗

Count model: connectivityP->F 0.13(0.08) 0.96(0.11)∗∗∗

Count model: connectivityP->P −0.79(0.12)∗∗∗ 1.03(0.11)∗∗∗

Count model: connectivityP->T −0.84(0.11)∗∗∗ 0.86(0.11)∗∗∗

Count model: connectivityT->F −0.29(0.09)∗∗ 0.66(0.12)∗∗∗

Count model: connectivityT->P −1.10(0.12)∗∗∗ −0.02(0.13)
Count model: connectivityT->T −0.97(0.12)∗∗∗ −0.13(0.14)
Count model: AgeOlder −0.16(0.11) −0.05(0.16)
Count model: Conditiontone −0.93(0.12)∗∗∗ 0.96(0.11)∗∗∗

Count model: hemi2inter −0.01(0.04)
Count model: connectivityF->P:AgeOlder −0.18(0.18) −0.10(0.23)
Count model: connectivityF->T:AgeOlder 0.25(0.21) −0.30(0.22)
Count model: connectivityP->F:AgeOlder 0.05(0.13) −0.07(0.19)
Count model: connectivityP->P:AgeOlder 0.26(0.17) −0.29(0.19)
Count model: connectivityP->T:AgeOlder −0.46(0.21)∗ 0.24(0.18)
Count model: connectivityT->F:AgeOlder 0.12(0.15) −0.42(0.20)∗

Count model: connectivityT->P:AgeOlder 0.26(0.19) −0.25(0.23)
Count model: connectivityT->T:AgeOlder 0.14(0.18) −0.03(0.23)
Count model: connectivityF->P:Conditiontone 1.86(0.16)∗∗∗ −0.99(0.19)∗∗∗

Count model: connectivityF->T:Conditiontone 2.61(0.17)∗∗∗ −0.88(0.16)∗∗∗

Count model: connectivityP->F:Conditiontone −0.07(0.16) −1.31(0.15)∗∗∗

Count model: connectivityP->P:Conditiontone 1.39(0.17)∗∗∗ −1.65(0.15)∗∗∗

Count model: connectivityP->T:Conditiontone 1.47(0.16)∗∗∗ −1.60(0.16)∗∗∗

Count model: connectivityT->F:Conditiontone −0.07(0.17) −1.07(0.15)∗∗∗

Count model: connectivityT->P:Conditiontone 1.13(0.18)∗∗∗ −0.82(0.17)∗∗∗

Count model: connectivityT->T:Conditiontone 0.91(0.19)∗∗∗ −0.82(0.18)∗∗∗

Count model: AgeOlder:Conditiontone −0.50(0.22)∗ −0.57(0.19)∗∗

Count model: Conditiontone:hemi2inter −0.32(0.06)∗∗∗

Count model: connectivityF->P:AgeOlder:Conditiontone 0.51(0.29) 1.57(0.29)∗∗∗

Count model: connectivityF->T:AgeOlder:Conditiontone 0.30(0.30) 0.46(0.33)
Count model: connectivityP->F:AgeOlder:Conditiontone 0.72(0.28)∗ 0.22(0.26)
Count model: connectivityP->P:AgeOlder:Conditiontone 0.64(0.28)∗ 0.90(0.26)∗∗∗

Count model: connectivityP->T:AgeOlder:Conditiontone 1.20(0.31)∗∗∗ 0.43(0.26)
Count model: connectivityT->F:AgeOlder:Conditiontone 1.02(0.29)∗∗∗ 0.77(0.26)∗∗

Count model: connectivityT->P:AgeOlder:Conditiontone 0.40(0.32) 0.26(0.32)
Count model: connectivityT->T:AgeOlder:Conditiontone 0.67(0.32)∗ 1.03(0.29)∗∗∗

Zero model: (Intercept) −3.49(0.22)∗∗∗ −3.31(0.18)∗∗∗

AIC 10122.64 10803.40
Log Likelihood −5020.32 −5362.70
Num. obs. 1584 1584
Num. groups: MEG ID 22 22
Var (count model): MEG ID (Intercept) 0.01 0.01
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

Table C.1: Statistical model summary table corresponding to Section 2.4.
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