
RF4Del: A Random Forest approach for accurate deletion detection 

Roberto Xavier1, Anna-Sophie Fiston-Lavier2,3, Ronnie C.O. Alves1,4+ and Emira Cherif2+*

1Federal University of Pará, R. Augusto Corrêa, 1, Belém, 66075-110, PA, Brazil
2ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
3Institut Universitaire de France (IUF)                           
4Instituto Tecnológico Vale, R. Boaventura da Silva, 955, Belém, 66055-090, PA, Brazil
+Last authors

*Corresponding author: emira.cherif@ird

Roberto Xavier : rbxjunior@gmail.com/ ORCID: 0000-0002-0465-1463

Anna-Sophie  Fiston-Lavier  :  anna-sophie.fiston-lavier@umontpellier.fr/  ORCID:  0000-0002-
7306-6532
Ronnie C.O. Alves : ronnie.alves@itv.org/ ORCID: 0000-0003-4139-0562
Emira Cherif : emira.cherif@ird.fr / ORCID:0000-0001-9365-7500

 
Abstract  

Efficiently  detecting  genomic  structural  variants  (SVs)  is  a  key  step  to  grasp  the 

“missing  heritability”  underlying  complex  traits  involved  in  major  evolutionary 

processes such as speciation, phenotypic plasticity, and adaptive responses. Yet, the 

SV-based genotype/trait association studies are still largely overlooked mainly due to 

the lack of reliable detection methods. Here, we present a random forest (RF) method 

for accurate deletion identification: RF4Del. By relying on the  analysis of the mapping 

profiles, data already available in most sequencing projects, RF4Del can easily and 

quickly call deletions.

Several  classic  and  ensemble  learning  strategies  were  carefully  evaluated  using 

proper benchmark data. RF4Del was trained and tested on simulated data from the 

model species Drosophila melanogaster to detect deletions. The model consists of 13 

features extracted from a mapping file. We show that RF4Del outperforms established 

SV callers (DELLY, Pindel) with higher overall performance (F1-score > 0.75; 6x-12x 

sequence coverage) and is less affected by low sequencing coverage and deletion 

size variations. RF4Del could learn from a compilation of sequence patterns linked to 

a given SV. Such models can then be combined to form a learning system able to  

detect all types of SVs in a given genome, beyond the one used in our study.

https://github.com/alvesrcoo/eletric-scheep
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Introduction

Genomic Structural Variants (SVs) are the major part of the variability between living 

organisms. SVs are three times more likely to be involved in genotype/complex trait 

association than a Simple Nucleotide Polymorphism (SNP), and SVs larger than 20 

Kb are up to 50 times more likely to affect gene expression [1]. Indels account for 31% 

of all human genome mutations with deletions being twice the number of insertions [2]. 

Although  SVs  identification  is  a  key  step  to  grasp  the  “missing  heritability”  (not  

explained  by  SNPs)  underlying  complex  traits  involved  in  major  evolutionary 

processes  such  as  speciation,  phenotypic  plasticity,  and  adaptive  responses,  SV-

based studies are too few mainly due to the lack of reliable detection methods [3]–[7].

The rise of the next-generation high-throughput DNA sequencing technologies opened 

up new possibilities to access these untapped genomic variations. However, despite a 

plentiful  supply  of  SVs  callers,  high-quality  SVs  mapping  from  sequencing  data 

remains a scavenger hunt.  SV callers'  difficulty  in characterizing precisely  SVs by 

inferring breakpoint positions is due to the inherent integrity of short-read mapping 

signals, including read-pair, split-read and read-depth, which rely on their algorithms 

[8]. Therefore, these tools suffer from low sensitivity (30–70%) and high false-positive 

rate  (up  to  85%),  and even combinatorial  approaches based on the  union  or  the 

intersection  of  detected  SVs  will  result  in  higher  false  positive  and  higher  false-

negative rates, respectively [7]. New methods are required to overcome these hurdles. 

Here we present a machine learning-based approach using a Random Forest (RF) 

method  for  accurate  deletion  identification:  RF4Del.  Our  approach  hinges  on  a 

different paradigm. Instead of basing SVs detection on one or a couple of alignment 

signals  (read-pair,  split-read,  read-depth)  as  the  vast  majority  of  callers,  RF4Del 

“learns” from 13 mapping features to identify a deletion-specific pattern used afterward 

to perform deletion detections.

Results & Discussion

Deletion detection approach. Our approach is composed of two main parts. The first 

part is dedicated to generating the prediction model using input mapping data. Once 

the prediction is done, the RF4Del tool can be used for the calling of deletions (see 

Fig.1). The prediction part starts by building the training matrix. To build the training 
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matrix,  twelve  features  were  extracted  from  the  simulated  bam  files  from  12.7X 

sequencing data. The final training matrix was obtained by adding the variation event 

(deletion or not) for each position. 

To  select  the  best  method for  the  deletion  detection,  Machine  Learning  (ML) 

strategies,  ranging  from  classic  ones  as  Logistic  Regression,  Linear  Discriminant 

Analysis,  k-Nearest  Neighbors,  Naive  Bayes  Classification,  and  Regression  Tree 

algorithm; to ensemble learning ones such as Adaptive Boosting classifier (AdaBoost), 

Gradient Boosting Machines (GBM) and Random Forest (RF) were evaluated  (see 

Supp  Fig.1).  At  the  end  of  this  first  round  of  model  testing,  Linear  Discriminant 

Analysis, Decision Tree, AdaBoost, RF and GBM reached the best results in all three 

metrics (see Supp  Fig.2).  Thus,  to  perform  the  subsequent  testing,  the  three 

ensemble models (AdaBoost, RF, and GBM) were selected mainly because of their 

robustness  when  running  with  complex  classification  datasets.  To  compare  the 

ensemble  models  against  each other,  60% of  the balanced dataset  was used for 

training and 40% for testing. Running time was also added to the evaluation metrics. 

All three models reached almost 100% in all metrics, RF being the best model when 

considering the execution time (see Supp Table1).  To assess the impact of deep 

learning compared to neural learning, the RF model was then tested against neural 

networks with the same balanced dataset and with F1 score, Recall, and Precision as 

evaluation  metrics.  Stratified  cross-validation  (10  k-folds),  and  the  train  and  test 

strategy  were  used  to  perform  this  final  evaluation.  Although  the  neural  network 

models achieved high F1 score, Recall,  and Precision scores,  the RF model  with 

equivalent scores outperformed in execution time (see Supp Table1, Supp Table2). 

The deletion caller method has been devised on the basis of a RF model. We have  

explored the trade-off between model complexity and performance [9]. Therefore we 

have  tried  several  RF models  having  distinct  numbers  of  trees  and  features.  No 

significant differences were detected between RF models configurations (see Supp 

Fig.3), most likely due to a balanced training dataset. The final prediction model built  

with 1000 decision trees is faster than a model with 100 decision trees (see Supp 

Table3).  The training and building model steps took about 50 seconds (see Supp 

Table4).

RF4Del can detect all deletions with accuracy. Testing SV callers using ground 

truth datasets is essential to assess a caller's performance and correctness. To test 
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the veracity of our approach, we start by choosing a set of highly accurate validated 

deletions of different sizes. We used a set of 8 962 deletions detected in 39 lines  

derived  from short-read  DNA sequencing  in  a  natural  population  (the  "Drosophila  

melanogaster Genetic  Reference  Panel,"  DGRP)  [10].  And  then  we  generated  a 

simulated D. melanogaster genome using the reference genome (dm6). In order to be 

close to  what  we can expect  in real  nature populations,  we launch the simulation 

taking into account the size of the 8 962 previously detected deletions from 50 bp to 

165.32 kb length. 

However, with a high prevalence of deletions smaller than 1 kb (37,6% : 3 376 out of 8  

962) observed in the real data (see Supp Fig.4.a), we decided to simulate a set with 

larger  deletions  to  assess  accurately  the  deletion  size  effect  on  the  detection. 

Comparison of the prevalence of deletions as a function of size between the "real" 

data from the study by Zichner et al. [10] and those from the simulation shows a size-

biased prevalence in the real data and a more homogeneous prevalence in the real  

data and a more homogeneous prevalence in the simulated data (see Materials and 

Methods). We ended up with a simulated genome of 99,29 Mb with 8 962 deletions 

with the same length range but with a higher density of long deletions (see Supp 

Fig.4.b).  We further simulated paired-end reads using this simulated genome with 

around  25X  depth  coverage  that  corresponds  to  approximately  20  million  reads, 

comparable  to  what  we  obtained  in  the  sequencing  data  from  the  natural  D. 

melanogaster populations. The reads were then mapped on the reference genomic 

sequences (dm6; see Materials and Methods).  93% of the (8 309 out  of the 8 962) 

deletions were correctly detected. The approach did not show a detection accuracy 

bias according to the deletion length. 

RF4Del can detect deletions with low coverage data

We further simulated paired-end reads using this simulated genome with lower depth 

coverage (1.2X, 6.3X and 12.7X, 25.3X). The short-reads from the  D. melanogaster 

were then mapped on the reference genome (dm6). The final RF model was then 

loaded to predict new datasets with different sequencing coverage, 1.2X, 6.3X, 12.7X, 

and  25.4X  corresponding  to  1  million,  5  million,  10  million,  and  20  million  reads 

respectively (see Supp Fig.5). As expected the 1.2X sample returns the worst result 

with only 1 729 out  of  8 962 deletions detected (19.3%). RF4Del shows a higher 

accuracy for the 6.3X (75.9% ; 6 808 out of 8 962 deletions) and 12.7X (75.6% ; 6 777 
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out of 8 962 deletions) samples than the 25X sample (67.8%; 6 078 out of 8 962 

deletions). Previous studies confirm such results as they suggest how the increase of 

the data evidence biais the variation detection accuracy by adding noise [11]. A depth-

analysis  of  the  mapping  for  deletions  detected  using  the  6.3X or  12.7X samples 

reveals putative deletions supported by numerous mapping evidence, not detected 

using the 25X sample. Even if the RF4Del sensibility for all the samples does increase 

with  average  coverages  from 1.2X to  6.3X,  the  precision  does  not  vary  with  the 

coverage and stay close to 100% (see Supp Fig.6).  By consequence, 6.3X depth 

coverage data seems to be sufficient to accurately detect most of the deletions with  

RF4Del.

RF4Del outperforms established SV callers.  We then test the RF4Del veracity by 

comparing  the  detection  results  with  those  from  well-known  and  commonly  used 

variant callers: Pindel  [12] and DELLY  [13].  In contrast with RF4Del, the amount of 

detected deletions using DELLY and Pindel appears to be correlated with the amount 

of  sequencing data.  While  DELLY detected around three-quarters  of  the deletions 

(73%;  6  542  out  of  8  962),  Pindel  detected  54  190  deletions,  suggesting  a  high 

number  of  false  positives  (see Fig.2A).  With  6.3X coverage  data,  the  amount  of 

deletions detected using Pindel is more than twice the amount of expected deletions 

(see Fig.2A). The F1-score estimated for  each dataset  and tool  confirms the low 

detection accuracy of Pindel. This analysis also highlights the higher sensitivity and 

precision of RF4Del with low coverage data compared with DELLY (see Fig.2B; see 

Supp Fig.6). Taken together, RF4Del appears as the best approach to detect most of 

the deletions with accuracy. A depth analysis allows estimating the F1 score using the 

25.4X  dataset  using  each  tool  per  deletion  size.  The  accuracy  for  the  three 

approaches slightly decreases with the deletion length. Pindel fails to detect very short 

deletions  (<100bp)  and  deletions  from  500kb  to  1.5kb  length  fail  to  be  correctly 

detected  by  both  DELLY and  Pindel (see  Fig.2C;  see Supp Fig.7).  The  manual 

curation  of  the  mapping  in  the  vicinity  of  deletions  of  around  1kb  reveals  some 

mapping issues due to the insert size of the paired-end data.  

Compared to other ML SV-callers, RF4Del is a good compromise for accurate 

deletion detection.  Other similar tools which are also using a deep learning-based 

approach  as  RF4Del  were  recently  developed:  DeepSVFilter  [14] and 

AquilaDeepFilter  [15]. Also, a similar method was published in the preprint bioRxiv, 
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called Scotch [16]. 

DeepSVFilter’s authors propose a deep learning-based approach for filtering SVs in 

short-reads sequencing data. In the training step, they use some state-of-the-art SV 

detection approaches, such as DELLY [13], Lumpy [17], and Manta [18], to detect SVs 

from data samples. Then DeepSVFilter encodes all SVs as images and trains CNN 

models. In the prediction module, they use the same strategy as the training module to 

generate SVs candidates and run CNN models to  predict  each candidate using a 

score between 0 and 1, representing the probability of the classification as the true 

SV. They adopt transfer learning with five state-of-the-art pre-trained CNN models on 

the ImageNet dataset  [19] for training and prediction, including Inception-ResNet v2 

[20],  MobileNet v1  [21],  MobileNet v2  [22],  NASNet-A Mobile  [23] and PNASNet-5 

Mobile  [24]*. However, this may not be the best approach as it takes considerable 

time in training and prediction steps with generated images. PNASNet-5 Mobile took 

about 4.87 hours and Inception-ResNet v2 took about 42.59 hours of training. Also, 

they run all CNN models on the server with the specifications: Intel(R) Xeon(R) Gold 

5220R CPU 2.20GHz, 24 cores and 284 GB RAM, while RF4Del can run easily in a 

personal computer with AMD Ryzen 5 3500U 2.10GHz and 8GB RAM in few minutes 

(see Supp Table1). To demonstrate the classification accuracy of DeepSVFilter [14], 

they trained the model with 90% split of the dataset and used another 10% split to  

validate the trained model. In RF4Del, we trained our model with 60% split  of  the 

dataset and used 40% split to predict and validate the trained model, and reached 

almost 100% in F1 Score, Recall and Precision metrics.

AquilaDeepFilter filters large deletions from Aquila  [25] and Aquila_stLFR [26]. Both 

tools  are  reference-assisted  local  assembly  approaches  to  generate  high-quality 

diploid assemblies and enable the genome-wide discovery and phasing of all types of 

variants including SNPs, small indels and SVs. However, they produce a substantial 

proportion  of  false  positives,  especially  for  large  deletions.  In  this  way, 

AquilaDeepFilter encodes the candidate variants from Aquila in RGB images splitted 

into two classes, candidate variants that are true deletions and candidate variants that 

are false-positive deletions, that will be the input of CNN Models. Then CNN models 

are trained in a supervised way and the prediction result of the model is stored in a  

BED file. In the evaluation step, they split the dataset in 90% for training and 10% for  

evaluation, and for all the experiments, a server with Intel(R) Xeon(R) CPU E5-2420 0 

@ 1.90GHz, 24 cores and two high-performance GPU RTX 2080 Ti was used. Using 
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this  server,  the training  step  took about  7  hours until  convergence.  In  the results 

section, it is possible to see that AquilaDeepFilter generally improves the performance 

of Aquila and Aquila_stLFR by 20% in F1 Score metric, and also is compared with the 

previous approach DeepSVFilter.  Using  the  same 10x lib  and stLFR lib  datasets, 

AquilaDeepFilter outperforms DeepSVFilter in most experiments in Precision, Recall 

and F1 Score metrics,  however,  there are some optimizations to increase general 

performance  [14][15].

DeepSVFilter  and AquilaDeepFilter  show that  Deep Learning using state-of-the-art 

CNNs can be applied to solve the problem of detecting SVs and InDels, respectively. 

Even  nowadays we can  run  neural  networks  on  our  personal  computer,  complex 

applications still  need a server with high-level  configuration to  do the experiments 

properly. In this case, the CNN models used took a high computational cost, and both 

approaches  performed  the  experiments  in  two  huge  servers.  One  of  the  main 

advantages of RF4Del using RF is that it can solve this problem, more specifically in 

deletions, using a simple personal computer with AMD Ryzen 5 3500U 2.10GHz and 8 

GB  RAM. Another  important  aspect  that  must  be  considered  using  CNNs  is  the 

preprocessing of the images that DeepSVFilter and AquilaDeepFilter use as input in 

training and prediction steps. The preprocess is a step where important features of the 

data are encoded as RGB images, then a deep neural network model can be trained 

with this information. Training a model until  it converges for good results so it can 

generalize and predict properly SVs and InDels in new data is a complex task that 

may  take  considerable  running  time.  DeepSVFilter  took  about  4.87  hours  with  a 

simpler CNN and 42.59 hours with a more complex CNN. In its turn, AquilaDeepFilter 

took  about  7  hours  until  convergence.  In  the  RF4Del  approach,  images  are 

unnecessary as it uses the important features of the data in a tabular file to train the 

model,  consequently,  the execution time is much faster,  achieving convergence in 

only a few minutes. Nevertheless, we also tried a simple neural network model to 

compare with the main model. In Supplementary Table 2, we can see the results of  

the neural network experiment measured using stratified cross-validation with 10 k-

folds for Recall, Precision and F1 Score, and the runtime was just over two minutes for 

each epoch. A second neural network experiment used 60% split data to train and 

40% split data to test, and the model performed an average of: F1 score 0.9295%; 

Recall  0.9185%;  and  Precision  0.9534  in  running  time  average  of  145  seconds. 

RF4Del  model's average prediction time varies between 22 sec and 6 min 43 sec, 
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which is much faster than the other tools, with a comparable amount of data. 

Scotch  is  another  ML-approach designed for  the  indel  breakpoint  detection,  more 

similar to RF4Del as it also uses RF in its approach. In the pre-processing step, the 

tool  examines designated sequence alignments (i.e.,  mapping) and analyzes each 

base individually. Then, it creates a numerical profile of these positions, describing 

features of the aligned sequencing data like depth, base quality, and alignment to the 

reference. For the prediction, each position is classified based on the RF model as a 

non-indel or a type of indel breakpoint. The Scotch efficiency was evaluated with five 

other tools, such as DeepVariant [27], GATK [28], VarScan2 [29] and two versions of 

Pindel using three benchmark datasets: simulated variants, Syndip [30], and NA12878 

[31].  For  the deletion detection,  Scotch outperformed both versions of  Pindel  with 

simulated data. However, its accuracy is quite low, as Scotch reaches only 38.2% of 

Precision and about 50% for F1 Metric [16].  In the supplementary section, analyzing 

the  hyperparameters  employed,  authors  considered four  possible  values  for  ntree 

(350,  450,  550,  650),  and  two  for  mtry  (7,  8),  resulting  in  eight  possible 

hyperparameter configurations. In the RF4Del model, we considered the values 100, 

200, 400, 800 and 1000 for ntree and 2, 4, 6, 8 and 10 for mtry, totalizing twenty-five 

different hyperparameter configurations. In Supplementary Figure 3, our experiments 

show  that  the  model  achieves  99.8%  on  F1  Score  metric  for  each  possible 

configuration. In addition, Supplementary Table 4 compares the running time of the 

RF4Del model with each ntree and mtry configuration, concluding that the faster took 

only 47 seconds with 100 ntree and 10 mtry. Scotch’s runtime is approximately 24 

hours when parallelized by chromosomes with their adopted data. In the results, even 

Scotch’s performance in deletions with simulated data is better than both versions of 

Pindel, the accuracy is not satisfactory, as it reaches only 50% for F1 Score Metric.  

Comparing  all  these  tools,  RF4Del  appears  thus  as  the  most  appropriate  tool  to 

investigate with accuracy the detection of a short and large deletion in a fast and easy 

way with a personal computer (see Table1).

Table 1. Comparison with recent other ML-based approach tools: DeepSVFilter [14], 
AquilaDeepFilter [15] and Scotch [16]. 

Type  of  input 
data 

Training  
step model

Prediction 
step model

SV 
detected

Deletion 
detection

DeepSVFilter short-reads CNN model CNN model SVs Accurate
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sequencing  data 
(or variant calling)

AquilaDeepFilter genome 
assemblies  (or 
variant calling)

CNN model Ensemble 
strategy

deletions Outperformed 
DeepSVFilter 
less  accurate 
for  larger 
deletions

Scotch short-reads 
sequencing  data 
(or mapping)

RF model RF model Insertions
deletions

Improves 
sensitivity  to 
larger variants

RF4Del short-reads 
sequencing  data 
(or mapping)

RF model RF model deletions High  accuracy 
for  all 
deletions

Materials & Methods

Genomics  data.  The  D.  melanogaster genome  release  6  were  downloaded 

(137.547Mb) on the ftp server: ftp://ftp.ensemblgenomes.org/pub/metazoa/release-43/

fasta/drosophila_melanogaster/dna/ 

Drosophila_melanogaster.BDGP6.22.dna.chromosome.*.  The  structural  variations 

(SVs) catalog come from the study of Zichner  et al.  [10]. In this study, the authors 

used 39 D. melanogaster lines from the DGRP pilot data [32] (Illumina® technology) 

to call SVs. The SVs detected by different tools such as DELLY and Pindel were then 

merged. Then some random SVs were experimentally validated. In the SV catalog, 

they detected 8 962 deletions from 50 pb to 165.32 kb (median 178 bp; see Supp Fig. 

4).

Simulated data.  We simulated sequencing data from the  D. melanogaster genome. 

Deletions  were  simulated  using  the  simulateSV  function  of  the  RSVsim package 

(version  1.34)[33].  The  size  range  and  the  number  of  simulated  deletions  were 

parameterized  according  to  the  SVs  catalog.  The  estimationSV  function  of  the 

RSVsim package (version 1.34) was used to  draw 8 962 random deletions,  sizes 

within  the  range  from  50  pb  to  61  kb  according  to  a  beta  distribution  and 

homogeneously distributed along the genome. The deletions are thus cut from the 

rearranged genome and their uniform breakpoints placed. The  inSilicoSeq software 

[34] was used to obtain simulated reads from the rearranged genome (99.285 Mb). 

The Hiseq (Illumina®) error model was used to generate read-pairs of 126 bp and four  

sequencing coverage (1.2X, 6.3X, 12.7X, and 25.4X). These reads were then aligned 
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to  the  D.  melanogaster reference  genome  (not  rearranged)  using  the  default 

parameters of BWA-mem alignment software [35].

Preparing training data set. To build the training matrix, 12 features were extracted 

from the simulated bam files from 12.7X sequencing data (see Supp tab 1). Bam files 

were converted to bed files using BEDTools (version 2.30.0)[36] suite sub-command 

BamtoBed with -cigare option to extract the CIGAR information for each mapped read. 

SAMtools bedcov (version 1.13) [37] command was used to estimate the coverage for 

each mapped read position from the bed file. The remaining features were extracted 

from the bam files using SAMtools view command (version 1.13)[37]. The final training 

matrix was obtained by adding the variation event (deletion or not) for each position. 

The final training data set has 13 features (see Supp tab 1) along with 10 015 384 

instances.  The  13th feature  corresponds  to  the  class  label.  Labels  are  defined 

according  to  a  dummy  transformation  for  the  class  either,  as  ‘No  Deletion’  or 

‘Deletion’. The data set mirrors biological reality, hence the predominant label being 

‘No Deletion’ with 9 835 103 instances and the Deletion label representing 0.5% of all  

instances with 180 181. To handle such an imbalanced data set, data corresponding 

to  ‘Deletion’  and  ‘No  Deletion’  was  first  separated  from the  original  dataset,  then 

random samples from each group were selected. A final balanced data set summing 

up a total of 700 000 instances (150.000 ‘Deletion’ (21.5%) and 550.000 ‘No Deletion’ 

(78.5%))  was  obtained. The  CIGAR  and  label  values  were  encoded  using  an 

one_hot_encoding strategy transforming each categorical value into a numerical one.

Benchmarking. The benchmark of the ML methods was performed by the machine 

learning-dedicated  Python  library,  scikit-learn  (version  0.22)  [38] using  default 

parameters.  RF4Del  performances  were  benchmarked  against  two  conventional 

callers relying on short-read mapping signals, DELLY (version 0.8.1) (RP and SR) [13] 

and Pindel (SR) [12] using F1 score, Recall, and Precision as metrics. 

The RF deletion prediction model. The final prediction model was built with 1000 

decision trees.  The model was saved in a .sav file that can be loaded anytime to 

perform prediction with new data. 

Conclusion & Perspectives

With new sequencing technologies advances, the study of the impact of  structural 

variations in genome evolution is more and more affordable. Deletions represent a 
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large part of structural variants. They can carry genes and by consequence change 

the gene expression or composition. Despite their effect on phenotype was not well 

studied. Approaches to detect genomics deletion might fail for some deletions based 

on their length and the amount of supporting evidence [39]. By consequence, current 

genome-wide deletion detection combines several tools that induce a large effort in 

terms of installing but also running time. Also as some organisms reveal preferentially 

large deletions with a specific evolutionary history, one might need to select the best 

tools to combine. The  in vitro experimentations generating large real datasets with 

specific  features are tedious and cost-prohibitive  [31].  In  silico simulations,  on the 

other  hand,  are  a  low-cost,  unbiased  alternative  and  unlimited  generating  data 

allowing accurate Precision and Recall estimations of SV calling methods. 

Here, we design a new learning-based approach to detect all types of deletions that  

we call RF4Del. This tool is based on an RF method for accurate deletion identification 

starting with mapping data. Taking all together, RF4Del overcomes the main deletion 

detection limits as it can be used to call deletions using short-read data, with very low 

coverage in a fast way (see Table1).  With the exponential increase of sequencing 

projects  for  which  we  are  interested  in  the  impact  of  deletions  on  evolutionary 

processes, we need tools to detect the SVs with accuracy and in a reasonable amount 

of time. As the features from the long-read mapping differ, for the moment, RF4Del  

cannot be used to detect deletions using long-read sequencing data. Thus, the next  

step will be to see how to adapt RF4Del or use the same approach to call other types 

of SVs using all types of sequencing data.
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Figures

Figure 1.                                                                                    
Two-step approach presented in  this  paper.  The  first  step in  the  black  dashed rectangle 
corresponds to the prediction model. Twelve mapping patterns are extracted from mapping 
data.  The  data  are  then  fractionned  to  build  1000  decision  trees  and  later  the  final 
classification. The second part in the red dashed rectangle corresponds to the deletion call by 
RF4Del using user’s data and based on the final prediction model. 
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Figure  2.                                            
Comparison of the detection of deletions using different dataset and different tools. A. Number 
of deletions detected using the callers DELLY, Pindel  and RF4Del with four datasets with 
variable  coverage  (1.2X,  6.3X,  12.7X,  25.4X).  B.  F1  score  estimates  based  on  all  the 
deletions  detected  using  the  callers  DELLY,  Pindel  and  RF4Del  with  four  datasets  with 
variable coverage (1.2X, 6.3X, 12.7X, 25.4X). C. F1 score based on all the deletions detected 
using the 12.7X coverage dataset with the callers DELLY, Pindel and RF4Del per deletion 
length.
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