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Abstract 

Collateral circulation in the circle of Willis (CoW), closely associated with disease mechanisms 

and treatment outcomes, can be effectively investigated using one-dimensional–zero-

dimensional hemodynamic simulations. As the entire cardiovascular system is considered in 

the simulation, it captures the systemic effects of local arterial changes, thus reproducing 

collateral circulation that reflects biological phenomena. The simulation facilitates rapid 

assessment of clinically relevant hemodynamic quantities under patient-specific conditions by 

incorporating clinical data. During patient-specific simulations, the impact of clinical data 

uncertainty on the simulated quantities should be quantified to obtain reliable results. However, 

as uncertainty quantification (UQ) is time-consuming and computationally expensive, its 

implementation in time-sensitive clinical applications is considered impractical. Therefore, we 

constructed a surrogate model based on machine learning using simulation data. The model 

accurately predicts the flow rate and pressure in the CoW in a few milliseconds. This reduced 

computation time enables the UQ execution with 100 000 predictions in a few minutes on a 

single CPU core and in less than a minute on a GPU. We performed UQ to predict the risk of 

cerebral hyperperfusion (CH), a life-threatening condition that can occur after carotid artery 

stenosis surgery if collateral circulation fails to function appropriately. We predicted the 

statistics of the postoperative flow rate increase in the CoW, which is a measure of CH, 

considering the uncertainties of arterial diameters, stenosis parameters, and flow rates measured 

using the patients’ clinical data. A sensitivity analysis was performed to clarify the impact of 

each uncertain parameter on the flow rate increase. Results indicated that CH occurred when 

two conditions were satisfied simultaneously: severe stenosis and when arteries of small 

diameter serve as the collateral pathway to the cerebral artery on the stenosis side. These 

findings elucidate the biological aspects of cerebral circulation in terms of the relationship 

between collateral flow and CH. 

Author summary 

Cerebral arteries generate a ring-like network that provides alternative routes for blood supply 

in the case of carotid artery stenosis. This collateral circulation is closely associated with the 

potential risk of stroke and treatment outcomes in patients with stenosis. In this study, we 

propose a method to elucidate the cerebral circulation of individual patients using a blood flow 

simulation that incorporates the patient’s clinical data. A key feature of our approach is its 

capability to obtain the probability of the different outputs using simulation, considering the 

uncertainty of patient conditions. Although this capability is essential for obtaining reliable 

results, the process is time-consuming and requires numerous computer resources. We solved 

this problem by combining the blood flow simulation with machine learning to perform 

predictions 43 000 times faster than conventional simulations. We applied the proposed method 

to predict cerebral circulation following surgery in three patients with stenosis and verified that 

the method can assess the surgical risk almost in real-time, even on a desktop computer. 

Additionally, extensive prediction results (100 000 cases for each patient) obtained using this 

method clarify the relationship between collateral circulation and life-threatening surgical 

outcomes.  
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Introduction 

Carotid artery stenosis is a major risk factor for stroke, one of the leading causes of death and 

disability worldwide. Stroke can occur if the stenosis reduces the blood supply to the brain 

significantly. In general, the severity of stenosis is a principal indicator closely associated with 

the risk of stroke [1]. Despite the severity of the stenosis, most patients are asymptomatic owing 

to adequate collateral circulation. Collateral circulation refers to the flow of blood through an 

arterial network connecting the diseased and normal sides and is particularly abundant in 

cerebral arteries that form a ring-like network. If collateral circulation is adequate, cerebral 

blood flow is maintained regardless of stenosis. However, if the severity of the stenosis 

increases such that the collateral circulation attains its limit or if certain arteries are absent in 

the patient, cerebral blood flow on the diseased side is no longer maintained. In such cases, the 

best opportunity for treatment is lost by the time the patient develops symptoms. 

For predictive medicine, such as stroke prediction, a hemodynamic simulation is a 

promising tool that provides clinically relevant hemodynamic quantities under various 

conditions. However, the clinical application of simulation tools has certain requirements. First, 

as stroke is associated with aging or arteriosclerosis [2], the simulation should reflect the effects 

of these factors on the entire cardiovascular system. Second, the computation time must be 

sufficiently short to obtain immediate clinical feedback of the simulation results. To satisfy 

these requirements, a one-dimensional–zero-dimensional (1D–0D) model is considered 

practical for simulations. The 1D–0D model is multi-scale and considers the entire 

cardiovascular system. The model can capture the systemic effects of local arterial changes and 

thus reproduce hemodynamics that reflects biological phenomena in vivo. Additionally, it 

facilitates rapid assessment of the primary features of blood flow, such as flow distribution and 

pulse wave propagation in the arterial network [3-6]. On comparing the 1D–0D model with 

typical three-dimensional (3D) simulations [7, 8], in vitro measurements [9, 10], and in vivo 

measurements [3, 11, 12], it was observed that the 1D–0D model provides accurate results for 

spatially averaged flow rate and pressure. It has also been widely used to answer specific 

clinical questions on hemodynamics in cerebral [13], hepatic [14], and visceral [15] arteries. 

Furthermore, the 1D–0D simulation is suitable for investigating the collateral circulation in 

cerebral arteries. Over the past decade, the 1D–0D model of cerebral circulation has been 

extensively developed. Cerebral arteries have been modeled in detail, including the circle of 

Willis (CoW), which serves as a major collateral pathway [11, 13, 16]. Changes in cerebral 

circulation caused by arterial occlusion [16], cerebral autoregulation [17], and surgeries for 

carotid artery stenosis [18, 19] have been increasingly investigated. Moreover, recent studies 

have focused on individualizing models by incorporating patients’ clinical data. Typically, this 

patient-specific approach uses geometric data obtained from medical imaging, such as 

computed tomography (CT) or magnetic resonance imaging (MRI), to assign parameters and 

assimilate the measurements of flow and pressure into the simulation [20-22]. Such 

individualized simulations directly reflect the patients’ physiological condition in their 

predictions, thus yielding precise outputs. 

However, simulation-based predictions are often restricted by their deterministic nature, 

wherein output quantities do not account for uncertainties in clinical data because of the 

limitations in existing measurement techniques. Uncertainties in clinical data are generated 
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from various sources, including limited resolution, threshold-based lumen segmentation, 

measurement errors, and fluctuations in blood flow. Particularly, obtaining small diameters of 

cerebral arteries from medical images with limited resolution involves considerable uncertainty. 

Moreover, as cerebral arteries are surrounded by the skull, flow measurements are often 

subjected to severe limitations, and the measured values exhibit large variations. Such 

uncertainties change the geometric and physiological parameters when incorporated into the 

simulation, thereby affecting the output significantly. Therefore, it is essential to assess the 

variability of simulation outputs caused by uncertainties to obtain reliable results for effective 

decision-making. 

Typically, stochastic approaches to uncertainty quantification (UQ), such as Monte Carlo 

methods, require numerous simulations to obtain the output statistics. This inevitably increases 

the required computational cost for UQ, posing a major challenge to its implementation in a 

practical clinical setting. Therefore, several studies on hemodynamic simulation have focused 

on two primary strategies to reduce the cost of UQ to a feasible scale. The first strategy involves 

reducing the number of required simulations. Herein, the core idea is to explore the stochastic 

space efficiently using stochastic collocation methods [23] and multi-resolution stochastic 

expansion [24, 25] to achieve faster convergence of statistics. The second strategy involves 

reducing the cost of an individual simulation by employing a 1D–0D model [26-28]. Despite 

the considerable progress reported in recent studies, implementing UQ in routine clinical 

diagnosis remains a challenge. As individual simulations generally involve iterative 

calculations to assimilate data or obtain converged solutions, even the UQ based on 1D–0D 

model is intractable in medical institutions, where time and computational resources are often 

limited. 

This problem can be addressed by constructing a data-driven surrogate model, obtained by 

fitting a regression model to the simulation data. The surrogate model performs predictions 

based on the superficial input–output relationships of well-established cardiovascular models, 

which significantly accelerate the predictions while maintaining accuracy. In the context of 

data-driven modeling, machine learning with deep neural networks (DNNs) has been widely 

explored in recent years [29, 30]. Although integrating machine learning techniques with 

hemodynamic simulations has been actively researched in the past few years [31-34], most 

studies focused on predicting the fractional flow reserve in coronary arteries. 

In this study, we constructed a surrogate model of the cerebral circulation to replace the 

existing 1D–0D simulation. This resulted in the fast execution of UQ (within a few minutes) 

even on a desktop computer. We used the surrogate model to perform the UQ for investigating 

the biology of cerebral circulation, focusing on collateral circulation through the CoW. 

Particularly, we predicted the risk of cerebral hyperperfusion (CH) and analyzed its relationship 

with collateral circulation. Similar to stroke, CH is considered to occur when collateral 

circulation fails to function appropriately [35-38]. CH is defined as an increase of more than 

100% in the time-averaged flow rate through the cerebral arteries immediately after carotid 

artery stenosis surgery as compared to preoperative values. Although the incidence varies (0.2–

18.9%) [38], CH can lead to intracerebral hemorrhage, which can be life-threatening as 

indicated by its high mortality rate (38.2%) [39]. Therefore, it is important to identify the 

patients at risk in the preoperative stage to adopt appropriate interventions for preventing 
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hemorrhages caused by CH [36, 40]. 

For this, we considered three patients with internal carotid artery (ICA) stenosis and 

predicted the flow rate increase in the cerebral arteries when the stenosis was virtually dilated. 

The predictions considered the uncertainties in the clinical data used to set the patient-specific 

conditions. We focused on uncertainties in arterial diameters, stenosis parameters, and flow 

rates derived from the patients’ clinical data. Initially, the uncertainty of these parameters was 

estimated. Subsequently, the statistics of the flow rate increase under the uncertainty were 

evaluated through UQ. In addition to the UQ, we performed sensitivity analysis (SA) to measure 

the impact of each parameter on the flow rate increase. Based on the analysis of the UQ and SA 

results, we explored the risk factors associated with CH, particularly those related to the 

collateral circulation function. 

Methods 

Overview 

In this study, we used the 1D–0D simulation to generate a large dataset comprising a pair of 

anatomical and physiological conditions (inputs) and the corresponding cerebral circulation 

under those conditions (outputs). The generated data were used to perform supervised learning 

of the DNN (Fig 1). This facilitated the construction of a surrogate model that can rapidly 

predict cerebral circulation under specified anatomical and physiological conditions. The 

surrogate model was verified by comparing the prediction results of the test data (not used for 

the training) and actual patient conditions with those obtained from the 1D–0D simulation. 

Using the surrogate model as an alternative to the 1D–0D simulation, we performed UQ to 

predict the percentage increase in the cerebral blood flow caused by the ICA stenosis surgery. 

We considered the uncertainties in the input parameters derived from the patient’s clinical data, 

including the arterial diameters, stenosis parameters, and flow rates. The possible range of each 

uncertain parameter was defined, and the uncertainties were subsequently propagated using the 

Monte Carlo method. Additionally, SA was conducted to quantify the impact of each parameter 

on the predicted results. 

The four primary segments of the methods used in this study include the 1D–0D simulation, 

learning data generation, machine learning, and UQ and SA. The remaining subsections focus 

on the patient data used in this study and the details of the method for each segment. 

Patient data 

We used the clinical data of actual patients to 

 infer a physiologically reasonable range of inputs (in the “Learning data generation” 

subsection), 

 verify the surrogate model (in the “Machine learning” subsection), and 

 perform UQ in predicting postoperative CH (in the “Uncertainty quantification and 

sensitivity analysis” subsection). 

Seven patients who underwent endarterectomy or stenting for ICA stenosis were included in 

the study (Table 1). The imaging data, measurements of inflows and outflows of the CoW, and 

mean arterial pressure in the upper arm were collected for all patients before surgery. Patient   
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Fig 1. Overview of the proposed approach to perform uncertainty quantification. We 

trained a deep neural network using the datasets obtained from one-dimensional–zero-

dimensional (1D–0D) simulation. The datasets were generated by randomly sampling 60 inputs 

(column vector 𝒙 ∈ ℝ60 ) describing the geometry of cerebral arteries and stenoses, and 

collecting the corresponding 45 simulation outputs (column vector 𝒚sim ∈ ℝ45 ) of time-

averaged flow rates and pressures. After performing the data acquisition and model training in 

the offline phase, the surrogate model was used in the online phase to predict the outputs rapidly. 

This ensured a fast and efficient uncertainty quantification. 

 

 

data were collected and provided by the Rakuwakai Otowa Hospital (Kyoto, Japan) and Fujita 

Health University Hospital (Aichi, Japan), with written informed consent from the patients and 

approval from the ethics committee. 

1D–0D simulation 

We employed the closed-loop 1D–0D cardiovascular model developed by Liang et al. [18, 41] 

for blood flow simulations. In this model, large arteries are represented as 1D segments, which 

are assumed to be straight, axisymmetric, and deformable tubes. The arterial network comprises 

83 segments that contribute to the systemic circulation throughout the body, including 22 

segments of the cerebral circulation, as depicted in Fig 2. The inlet and outlet boundary 

conditions for the 1D network were obtained by coupling the network with the 0D closed-loop 

model, which represents the peripheral circulation and heart as lumped parameter networks. In 

the subsequent subsections, we briefly explain the governing equations of the models,   
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Table 1. Patient characteristics. 

Patient Age/Sex Lesiona Treatment Imaging Flow measurements 

1 82/M RICA stenosis (59%) CEA CT PC-MRI, SPECT 

2 63/M LICA stenosis (83%) Staged CAS CT US, SPECT 

3 72/M RICA stenosis (91%) CEA CT PC-MRI, SPECT 

4 63/M RICA stenosis (35%) CEA CT PC-MRI, SPECT 

5 68/M LICA stenosis (63%), 

RICA stenosis (65%) 

CEA CT PC-MRI, SPECT 

6 70/M LICA stenosis (73%) CAS CT/MRIb PC-MRI, SPECT 

7 79/F LICA stenosis (86%) CEA CT/MRIb PC-MRI, SPECT 
aStenosis ratio in parentheses denotes the percentage reduction in diameter to the maximum 

distal diameter. 
bCT scan of the neck and MRI scan of the head. 

CAS, carotid artery stenting; CEA, carotid endarterectomy; CT, computed tomography; LICA, 

left internal carotid artery; MRI, magnetic resonance imaging; PC-MRI, phase contrast 

magnetic resonance imaging; RICA, right internal carotid artery; SPECT, single photon 

emission computed tomography; US, ultrasound. 

 

 

numerical methods used to solve them, and the methods implemented for the patient-specific 

setup of the simulation. 

Governing equations. The governing equations for blood flow in 1D arteries are derived 

from the principle of conservation of mass and momentum, as follows [5, 6]: 

𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 0, (1) 

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝑄2

𝐴
) +

𝐴

𝜌

𝜕𝑃

𝜕𝑥
= −𝐾R

𝑄

𝐴
. (2) 

Herein, 𝑡 represents the time; 𝑥 indicates the axial coordinate along the artery; 𝐴, 𝑄, and 𝑃 

denote the cross-sectional area of the artery, volumetric flow rate, and internal pressure, 

respectively; 𝜌 = 1060 kg m−3 indicates the blood density; and 𝐾R = 22𝜋𝜇/𝜌 represents the 

resistance parameter [4] with blood viscosity 𝜇  = 0.0047 Pa s. The ( 𝐴 , 𝑄 ) system in 

Equations (1) and (2) is closed by the relationship between the pressure and cross-sectional area, 

derived from Laplace’s law [3, 5] as follows: 

𝑃 − 𝑃0 =
√𝜋𝐸ℎ

𝐴0(1 − 𝜎2)
(√𝐴 − √𝐴0), (3) 

where 𝐴0 denotes the cross-sectional area at reference pressure 𝑃0 = 85 mmHg, ℎ indicates 

the arterial wall thickness, 𝐸 represents Young’s modulus, and 𝜎 denotes Poisson’s ratio. In 

this study, 𝜎  was set to 0.5, and 𝐸ℎ  in Equation (3) was assigned based on the empirical 

relationship with the arterial radius [3]. 

In a stenotic artery, the abrupt changes in the cross-sectional area cause a large pressure 

loss associated with flow separation and reattachment. As the 1D model alone cannot   
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Fig 2. Schematic representation of the one-dimensional–zero-dimensional (1D–0D) model. 

The 1D network comprises 83 arterial segments, including 22 segments (blue dots) composing 

the cerebral circulation. Cerebral arteries form a ring-like network, referred to as the circle of 

Willis, which supplies blood to the brain through the six outlets (green diamonds). The arrows 

indicate the direction of the flow defined as positive in the simulation. The inlet and outlet 

boundary conditions for the 1D network are obtained by coupling with the 0D closed-loop 

model, which represents the peripheral circulation and heart. 

 

 

completely describe such a pressure loss, a stenosis model, which relates pressure loss across 

the stenosis (∆𝑃) to geometric parameters, was coupled with the 1D model. We employed the 

model reported in previous studies [42-44]: 

∆𝑃 = 𝑅v𝑄 + 𝐾t

8𝜌

𝜋2𝐷n
4

{
1

(1 − 𝑆𝑅)2
− 1}

2

𝑄|𝑄| + 𝐾u

4𝜌𝐿s

𝜋𝐷n
2

𝑄̇, (4) 

𝑅v = ∫
128𝜇

𝜋{𝐷(𝑥)}4

𝐿s

0

𝑑𝑥 , (5) 

where 𝑅v  denotes the viscous resistance of the stenosis, evaluated considering the axial 

diameter change 𝐷(𝑥) ; 𝐷n  indicates the maximum diameter distal to the stenosis; 𝑆𝑅 

represents the stenosis ratio defined as the percentage reduction in diameter (1 − 𝐷s/𝐷n, with 

the minimum stenosis diameter 𝐷s); 𝐿s denotes the stenosis length; and 𝑄̇ indicates the time 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2022. ; https://doi.org/10.1101/2022.03.10.483573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483573
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

derivative of 𝑄. The first, second, and third terms in Equation (4) account for the contribution 

of viscous friction, flow separation, and pulsatility to the pressure loss, respectively. Although 

coefficients 𝐾t and 𝐾u rely on the stenosis geometry, they have been empirically set to 1.52 

and 1.2, respectively, in the literature [43, 45]. In this study, we considered 𝐾t as an uncertain 

parameter ranging between 1.0 and 2.699 [46], whereas 𝐾u was maintained constant at 1.2, 

owing to its negligible influence on ∆𝑃. 

The 0D closed-loop model comprises the peripheral artery, upper and lower body blocks, 

and heart (Fig 2). The peripheral arteries distal to the 1D terminal arteries are represented by 

the three-element Windkessel model (RCR circuit). In each upper or lower body block, the 

capillaries, venules, and veins are modeled as RLC circuits in series. The heart is modeled based 

on the time-varying elastance method, which provides the inlet boundary condition to the 1D 

network, generating a closed-loop system. The governing equations for the 0D model are 

derived by linearizing and integrating Equations (1)–(3) along the axial direction, as follows 

[47, 48]: 

𝐶
𝑑𝑃1

𝑑𝑡
+ 𝑄2 − 𝑄1 = 0, (6) 

𝐿
𝑑𝑄2

𝑑𝑡
+ 𝑃2 − 𝑃1 = −𝑅𝑄2, (7) 

where 𝑅, 𝐿, and 𝐶 represent the viscous resistance, inertia of blood, and vascular compliance, 

respectively; and subscripts 1 and 2 denote the quantities upstream and downstream, 

respectively. 

Numerical methods. The governing equations for the 1D model were solved using the 

two-step Lax–Wendroff scheme. Bifurcated 1D segments were coupled by enforcing the 

conservation of mass and total pressure at the bifurcations. As this yields the coupled nonlinear 

equations (see [41] for detailed formulas), we used the iterative Newton–Raphson method to 

solve them [6, 41]. Furthermore, simultaneous ordinary differential equations in the 0D model 

were solved using the fourth-order Runge–Kutta scheme. The 1D, 0D, and stenosis models 

were coupled using Riemann invariants [41]. 

Patient-specific modeling. Initially, all model parameters were assigned as reported by 

Liang et al. [18, 41]. Subsequently, certain parameters associated with cerebral circulation were 

assigned or adjusted based on the patient’s clinical data. The patient-specific parameters 

included the diameters and lengths of the carotid and cerebral arteries, stenosis model 

parameters, and peripheral resistances (PRs), which represent the sums of the two resistances 

in the three-element Windkessel model at the six outlets of the CoW. Additionally, the stiffness 

and diameter of the aorta were adjusted based on the patient’s age, and the total PR was adjusted 

to match the measured pressure. 

The diameters and lengths of the carotid and cerebral arteries were extracted from medical 

images (CT or MRI) and directly assigned to the corresponding parameters in the 1D model. In 

the case of the stenotic artery, 𝑅v, 𝐷n, 𝑆𝑅, and 𝐿s in Equations (4) and (5) were evaluated 

based on the acquired geometry. Image processing for arterial lumen segmentation, centerline 

extraction, 3D reconstruction, and calculation of geometric parameters was conducted using in-

house software, namely “V-Modeler” [49]. As routine diagnostic imaging generally involves 
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only the diseased region (head and neck in this case), patient-specific geometries for the 

remaining 1D segments could not be obtained. Therefore, we used the geometries prescribed in 

the literature for these segments; however, the stiffness and diameters of the aortic segments 

were modified to reflect age-related changes [50]. 

At the six outlets of the CoW, including the left and right anterior, middle, and posterior 

cerebral arteries, the PRs were adjusted through iterative calculations to match the measured 

flow rates [20, 51]. Outflow rates in these arteries were measured using single photon emission 

computed tomography (SPECT) combined with phase contrast magnetic resonance imaging 

(PC-MRI) or ultrasound measurement [20]. Initially, we converted the regional brain perfusion 

map on SPECT images to the flow rates averaged over a cardiac cycle duration at the six outlets, 

{𝑄̅𝑖
SPECT}

𝑖=1

6
 , using vascular territory templates [52]. Subsequently, these flow rates were 

corrected as follows based on the measured total inflow rate to the CoW while maintaining 

constant flow distribution ratios among the outlets: 

𝑄̅𝑖
target

= 𝑄̅total ∙
𝑄̅𝑖

SPECT

∑ 𝑄̅𝑗
SPECT6

𝑗=1

, 𝑖 = 1, 2, …, 6. (8) 

Herein, 𝑄̅total denotes the summation of the flow rates in the three inlets of the CoW (the left 

and right ICAs and the basilar artery), which is measured either using PC-MRI or ultrasound. 

Finally, we used 𝑄̅𝑖
target

 in Equation (8) as the target value for the PR adjustment. 

The total PR was adjusted to match the patient’s mean arterial pressure measured at the 

upper arm [51]. This was implemented by changing the PRs of the terminal arteries, excluding 

the CoW, with the scaling factor relative to the initial values. 

Learning data generation 

We generated a dataset of simulated cerebral circulation for 200 000 synthetic conditions using 

the 1D–0D simulation. These conditions reflected the anatomical and physiological variations 

in patients with and without ICA stenosis and were reproduced by randomly sampling 60 input 

parameters within a reasonable range (as will be discussed later in the “Design of experiments” 

subsection). The dataset was used for the supervised learning of the DNN. The following 

subsections describe the steps for generating the learning data, which include defining inputs 

and outputs, designing the input space for collecting the data samples, and running simulations. 

Defining inputs and outputs. Although the 1D–0D model includes a large number of 

parameters, only some have a significant impact on cerebral circulation. As described in the 

“Patient-specific modeling” subsection, we set those parameters in a patient-specific manner 

based on the patients’ clinical data. The parameters include 

 Diameters of 22 carotid and cerebral arteries in the 1D model (22 parameters); 

 Lengths of 22 carotid and cerebral arteries in the 1D model (22 parameters); 

 𝑅v, 𝐷n, and 𝑆𝑅 in Equation (4) for each left and right ICA stenoses (6 parameters); 

 PRs at the six outlets of the CoW (6 parameters); 

 Scaling factor for the total PR (1 parameter); 

 Age (1 parameter); 

and an uncertain parameter for the stenosis model, which is 
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 𝐾t in Equation (4) for each left and right ICA stenoses (2 parameters). 

The aforementioned 60 parameters characterize the patient’s anatomical and physiological 

conditions and significantly affect the cerebral circulation. We selected all these parameters as 

inputs to capture their influence on the cerebral circulation. Note that we do not select the 

stenosis length, 𝐿s, as an input. As shown in Equation (4), 𝐿s has two effects on ∆𝑃: one on 

the third term and the other on the first term via 𝑅v. The effect of 𝐿s on the third term can be 

ignored because the third term is negligible compared to the other terms. Furthermore, since we 

selected 𝑅v as the input representative of the stenosis geometry, encompassing the variations 

of 𝐷(𝑥) and 𝐿s, it is unnecessary to select 𝐿s as a separate input to be varied. 

Based on the 1D–0D simulation, 𝐴(𝑡, 𝑥), 𝑄(𝑡, 𝑥), and 𝑃(𝑡, 𝑥) at each axially aligned grid 

point of the 1D artery can be obtained as the output. However, according to the definition of 

CH (percentage increase in time-averaged flow rate), the focus lies on the assessment of 

cerebral circulation as a “time average” in several clinical situations. Therefore, we aimed to 

construct a surrogate model that predicts hemodynamic quantities averaged over a cardiac cycle 

duration and limits the outputs to be predicted, which include 

 Cycle-averaged flow rates, 𝑄̅ , in the middle of the carotid and cerebral arteries (22 

quantities); 

 Cycle-averaged pressures, 𝑃̅ , in the middle of the carotid and cerebral arteries (22 

quantities); 

 Mean arterial pressure, which is the cycle-averaged pressure in the middle of the left 

subclavian artery (1 quantity). 

Here, cycle-averaged flow rate and pressure refer to 𝑄 and 𝑃 averaged over a cardiac cycle 

duration: 

𝑄̅(𝑥) =
1

𝑇c
∫ 𝑄(𝑡, 𝑥) 𝑑𝑡

𝑡s+𝑇c

𝑡s

, (9) 

𝑃̅(𝑥) =
1

𝑇c
∫ 𝑃(𝑡, 𝑥) 𝑑𝑡

𝑡s+𝑇c

𝑡s

, (10) 

where 𝑡s and 𝑇c respectively denote the time to start averaging and cardiac cycle duration 

(fixed as 1 s). In the axial direction, 𝑄̅  is constant and 𝑃̅  decreases almost linearly unless 

there is a significant axial change in 𝐴̅. Therefore, 𝑄̅ and 𝑃̅ at the middle grid point of each 

artery can be regarded as the axially averaged quantities in each artery. The aforementioned 45 

outputs are the primary clinically relevant quantities describing the cerebral circulation. 

Consequently, we constructed a surrogate model that defines a mapping from the inputs 𝒙 ∈

ℝ60 to the outputs 𝒚 ∈ ℝ45. 

Design of experiments. The input–output paired learning data can be obtained by 

randomly sampling 𝒙 ∈ ℝ60 and performing 1D–0D simulations to obtain the corresponding 

𝒚 ∈ ℝ45. In this step, the sampling ranges for 𝒙 must be adequately prescribed. If the ranges 

are extremely narrow, the trained surrogate model would be accurate only in limited input 

space, restricting the model’s coverage. Particularly, the prediction accuracy of the DNN 

outside the trained range decreases significantly because of its interpolative nature [53].   
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Table 2. Sampling ranges of inputs used to generate the learning data. 
Input parameters Ranges 

Diameter (mm), length (mm), 

peripheral resistance 

(mmHg s mL−1) 

R. com. carotid [3.9, 11.6], [78, 222], — 

L. com. carotid [3.9, 11.6], [109, 252], — 

R. int. carotid Ⅰ [2.3, 6.8], [120, 195], — 

L. int. carotid Ⅰ [2.3, 6.8], [120, 195], — 

R. int. carotid Ⅱ [1.9, 6.0], [2, 12], — 

L. int. carotid Ⅱ [1.9, 6.0], [2, 12], — 

R. vertebral [1.4, 4.9], [113, 276], — 

L. vertebral [1.4, 4.9], [113, 276], — 

Basilar [1.6, 4.9], [15, 36], — 

R. ant. cerebral Ⅰ [0.1a, 3.6], [7, 31], — 

L. ant. cerebral Ⅰ [0.1a, 3.6], [7, 31], — 

R. ant. cerebral Ⅱ [1.2, 3.6], [6, 45], (0, 200] 

L. ant. cerebral Ⅱ [1.2, 3.6], [6, 45], (0, 200] 

R. mid. cerebral [1.4, 4.3], [10, 51], (0, 100] 

L. mid. cerebral [1.4, 4.3], [10, 51], (0, 100] 

R. post. cerebral Ⅰ [0.1a, 3.2], [2, 23], — 

L. post. cerebral Ⅰ [0.1a, 3.2], [2, 23], — 

R. post. cerebral Ⅱ [1.1, 3.2], [2, 54], (0, 250] 

L. post. cerebral Ⅱ [1.1, 3.2], [2, 54], (0, 250] 

Ant. comm. [0.1a, 2.6], [2, 7], — 

R. post. comm. [0.1a, 2.7], [4, 27], — 

L. post. comm. [0.1a, 2.7], [4, 27], — 

Scaling factor for the total peripheral resistance (-) [0.5, 2.0] 

Viscous resistance of the stenosis 𝑅v (mmHg s mL−1) [0, min(𝑅v,max, 500)b] 

Maximum diameter distal to the stenosis 𝐷n (mm) [2.9, 7.0] 

Stenosis ratio 𝑆𝑅 (%) [0, 100) 

Coefficient of the second term in Equation (4) 𝐾t (-) [1.0, 2.699] 

Age [25, 90] 
aMissing arteries were represented as extremely narrow arteries with diameters of 0.1 mm, 

which enabled efficient execution of simulations without requiring a redefinition of the arterial 

network topology in each case. 
bThe upper bound was defined as a function of 𝑆𝑅 as 128𝜇𝐿s,max 𝜋𝐷n,min

4 (1 − 𝑆𝑅)4⁄  with 

an upper limit of 500 mmHg s mL−1 (S1 Appendix). Herein, 𝐿s,max  denotes the maximum 

value of the stenosis length (assumed to be 40 mm), and 𝐷n,min indicates the lower bound of 

𝐷n. 

 

 

Therefore, we inferred physiologically reasonable ranges for {𝑥𝑛}𝑛=1
60  by investigating the data 

of the seven patients (Table 1) and reviewing the literature [54-58]. The basic policy was to 

calculate the mean and standard deviation (SD) of the data to adopt a range that covers the mean 
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± 3SD (details in S1 Appendix). Table 2 summarizes the ranges of inputs used to generate the 

learning data. 

Simulations. Learning data were generated considering four scenarios, namely (i) intact 

ICAs, (ii) left ICA stenosis, (iii) right ICA stenosis, and (iv) left and right ICA stenoses. In each 

scenario, 𝒙 was randomly sampled in the prescribed range (Table 2); however, the stenosis 

parameters for the intact ICA were set as 𝑅v = 0, 𝐷n = 𝐷ICA (diameter of the ICA), 𝑆𝑅 = 0, 

and 𝐾t = 0. We sampled 50 000 sets of 𝒙 for each scenario and obtained the corresponding 𝒚 

from the simulation. Consequently, learning data {𝒙(𝑠), 𝒚(𝑠)}
𝑠=1

𝑁data
  were generated with the 

number of samples 𝑁data = 200 000. We observed that certain inputs resulted in unphysical or 

non-physiological outputs, such as 𝑃̅ < 0, or reversed flow in terminal arteries. Such samples 

were replaced with new samples. All simulations were performed on the Oakforest-PACS 

supercomputer system provided by the Information Technology Center at The University of 

Tokyo (Tokyo, Japan). The samples were equally allocated to 31 280 CPU cores (Intel Xeon 

Phi 7250). The total computation time required was approximately 25 h. 

Data splitting. We split the learning dataset into training, validation, and test data in the 

ratio of 6:2:2. The training data were used to construct the surrogate model, and the prediction 

accuracy of the model was evaluated using the validation/test data. The validation data were 

specifically used to determine the stopping point of model training (see the “Model training” 

subsection), whereas the test data were used to assess the performance of the trained model. 

Machine learning 

Deep neural network. We used a fully connected DNN as a regression model to fit the 

training data. The DNN comprises a total of 𝑁layer + 2 layers: an input layer, a series of 𝑁layer 

hidden layers, and an output layer (S1 Fig). The input and output layers include nodes equal to 

the number of inputs and outputs, respectively. Each hidden layer comprises an equal number 

of nodes, 𝑁node, and each node is connected to all nodes in the adjacent layers. Initially, the 

values of {𝑥𝑛}𝑛=1
60  serve as input to the nodes in the input layers. Subsequently, each node in 

the first hidden layer receives the weighted inputs, sums them up, adds a bias, and finally applies 

the rectified linear unit (ReLU) activation. This process continues for each layer up to the last 

hidden layer. The nodes in the last hidden layer and the output layer are fully connected without 

ReLU activation. Consequently, the DNN turns into a recursive function, as follows: 

𝒚𝑙 = {

𝒙, (𝑙 = 1)

max(0, 𝑾𝑙𝒚𝑙−1 + 𝒃𝑙) , (2 ≤ 𝑙 ≤ 𝑁layer + 1)

𝑾𝑙𝒚𝑙−1 + 𝒃𝑙, (𝑙 = 𝑁layer + 2)

 (11) 

where 𝒚𝑙, 𝑾𝑙, and 𝒃𝑙 denote the output vector, weight matrix, and bias vector of the 𝑙-th 

layer, respectively. 

Model training. The DNN was trained using the data by adjusting the weights and biases 

to minimize the loss function, which is defined as the mean squared error of the outputs, as 

follows: 
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ℒ =
1

𝑁sample
∙

1

𝑁out
∑ ‖𝒚sim

(𝑠)
− 𝒚DNN

(𝑠)
‖

2
𝑁sample

𝑠=1

, (12) 

where ‖∙‖ denotes the Euclidean norm (l2-norm of a vector), 𝑁out = 45 indicates the number 

of outputs, 𝑁sample represents the total number of samples used for evaluation, 𝒚sim
(𝑠)

 denotes 

the outputs in the training data (outputs from the 1D–0D simulation), and 𝒚DNN
(𝑠)

 indicates the 

outputs predicted by the DNN. We used the gradient-based algorithm “Adam” [59] for 

optimization, with an initial learning rate 𝑙𝑟. Furthermore, mini-batch training was employed 

with a batch size 𝑁batch , and batch normalization [60] was applied between the linear 

transformation and ReLU activation in individual layers. 

During the training, the coefficient of determination (𝑅2 score), defined as 

𝑅2 = 1 −
∑ ‖𝒚sim

(𝑠)
− 𝒚DNN

(𝑠)
‖

2𝑁sample

𝑠=1

∑ ‖𝒚sim
(𝑠)

− 𝒚̅sim‖
2𝑁sample

𝑠=1

, (13) 

was evaluated based on the validation data at the end of each epoch to assess the performance 

improvements. Herein, 𝒚̅sim denotes the mean of 𝒚sim
(𝑠)

. The closer the 𝑅2 score is to 1, the 

more precise the prediction; 𝑅2 = 1 if 𝒚DNN
(𝑠)

  and 𝒚sim
(𝑠)

  are equal for all 𝑠 . For every 100 

epochs, we monitored the 𝑅2  score averaged over the latest 100 epochs; training was 

terminated if no improvements were observed in three successive evaluations. The weights and 

biases with the highest 𝑅2 scores at the epoch were selected for the trained model. The DNN 

and its training were implemented using “Chainer” [61], which is a Python-based open-source 

framework for deep learning. 

Training the DNN involves certain hyperparameters, namely 𝑁layer, 𝑁node, 𝑁batch, and 

𝑙𝑟 , which are not trainable through the optimization process as they are chosen arbitrarily. 

Although the choice of hyperparameters affects the prediction accuracy of the trained model 

significantly, the optimal values cannot be known in advance as they vary considerably 

depending on the data. Therefore, we conducted a grid search to identify the best combination 

of hyperparameters in 𝑁layer ∈ {5, 7, 10, 13} , 𝑁node ∈ {50, 100, 200, 400} , 𝑁batch ∈

{300, 1000, 3000, 10000} , and 𝑙𝑟 ∈ {
  10−3, 10−2.5, 10−2, 10−1.5

 
} . After 44 = 256 rounds of 

training, the 𝑅2 scores evaluated by the models based on the test data were compared, and the 

best-performing model was selected as the final surrogate model. 

The training data were preprocessed to improve the model performance. We normalized the 

inputs such that their upper and lower bounds were 1 and −1, respectively, and standardized the 

outputs to ensure zero mean and unit SD. The inputs of the validation and test data were 

normalized similar to the training data, whereas the outputs were scaled as 𝑦′ =

(𝑦 − 𝜇train)/𝜎train. Herein, 𝜇train and 𝜎train denote the mean and SD of the outputs of the 

training data, respectively. The normalization and standardization (also known as z-score 

normalization) applied to the data herein constitute standard preprocessing in supervised 

learning [62]. 

Model verification. The surrogate model was verified by (i) assessing the prediction 

accuracy using 40 000 samples of test data, and (ii) comparing the surrogate model and 1D–0D 

simulation in terms of the predicted outputs and adjusted inputs of the seven patients (Table 1). 
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In the second step, the procedure for assigning or adjusting the inputs based on the patient’s 

clinical data during the prediction performed by the surrogate model was identical to that of the 

simulation (“Patient-specific modeling” subsection). In both steps, we used the mean absolute 

error (MAE) 

𝑀𝐴𝐸𝑚 =
1

𝑁sample
∑ |𝑦DNN,𝑚

(𝑠)
− 𝑦sim,𝑚

(𝑠)
|

𝑁sample

𝑠=1

, 𝑚 = 1, 2, …, 45 (14) 

in addition to the 𝑅2 score to assess the prediction accuracy of the surrogate model. 

Uncertainty quantification and sensitivity analysis 

We used the surrogate model to perform the UQ while predicting the risk of postoperative CH 

in three patients with ICA stenosis. This demonstrated the application of the surrogate model to 

the UQ problem and facilitated the investigation of the relationship between collateral 

circulation in the CoW and CH. 

Quantity of interest. CH is defined as an increase of more than 100% in the flow rate of 

cerebral arteries due to ICA stenosis surgery [35-38]. Therefore, we focused on predicting the 

cerebral circulation when the stenosis is dilated, to evaluate the percentage increase in outflows 

of the CoW as follows: 

∆𝑄̅𝑖 =
𝑄̅𝑖

post
− 𝑄̅𝑖

pre

𝑄̅𝑖
pre × 100%, 𝑖 = 1, 2, …, 6. (15) 

Herein, 𝑄̅𝑖
pre

 and 𝑄̅𝑖
post

 denote the cycle-averaged flow rates at the six outlets of the CoW 

before and after dilating the stenosis, respectively. By definition, ∆𝑄̅𝑖 > 100% represents CH. 

Target patient characteristics. Three patients (Patients 1–3 in Table 1) were included in 

the surgical outcome prediction. The imaging data (CT), measurements of inflows (PC-MRI or 

ultrasound) and outflows (SPECT) of the CoW, and mean arterial pressure collected before the 

surgery were used for the predictions. The evaluated stenosis ratios (𝑆𝑅) for Patients 1, 2, and 

3 were 59%, 83%, and 91%, and the corresponding 𝑅v values (evaluated using Equation (5)) 

were 0.5 mmHg s mL−1, 11.3 mmHg s mL−1, and 66.6 mmHg s mL−1, respectively, exhibiting 

the same trend as the 𝑆𝑅 (see S2 Fig for the stenosis geometry). Patients 1 and 3 each had a 

complete CoW; however, CT images of Patient 2 suggested hypoplasia (missing) of an anterior 

communicating artery (ACoA). Patient 2 was identified by the surgeon as being at risk for CH 

based on the collected data. To minimize the potential risk of CH, Patient 2 underwent staged 

surgery, where the stenosis was pre-dilated using a balloon, followed by complete dilation with 

a stent after two weeks. 

Uncertainty modeling. We evaluated the uncertainty in the clinical data that were used to 

assign or adjust the patient-specific inputs. We focused on uncertainties in the arterial diameters 

and stenosis parameters, which were used directly as inputs, and those in the CoW inflow and 

outflow measurements, which were used to obtain the target outputs. The arterial length is more 

robustly measured than the diameter and has a minor effect on flow resistance; therefore, the 

uncertainty in length was not considered. 

In all three patients, arterial diameters and stenosis parameters were obtained through   
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Fig 3. Computed tomography (CT) images of Patient 2. (A) Transverse plane, (B) frontal 

plane, and (C) volume-rendered image. The ACoA was not recognized on CT images of this 

patient, suggesting hypoplasia of the ACoA. 

ACoA, anterior communicating artery; LACA, left anterior cerebral artery; RACA, right 

anterior cerebral artery. 

 

 

segmentation of the arterial lumen on CT images. The geometry obtained during the 

segmentation can vary based on the threshold used to determine the boundary. In the case of 

CT, the lumen boundary spanned 2–3 pixels, and the diameter changed by ±2 pixels based on 

the threshold used. Therefore, we assumed uncertainty of ±2 pixels (±0.702–0.936 mm, 

depending on image resolution) with respect to the arterial diameter obtained from the 

segmentation. Similarly, uncertainties in the stenosis parameters were estimated by considering 

a 2-pixel uncertainty in the underlying geometry. However, an exception was made for Patient 2, 

as the ACoA was not recognized on CT images of this patient, suggesting hypoplasia of the 

ACoA. Nevertheless, we could not rule out the possibility that the ACoA, hidden between the 

extremely close presence of the left and right anterior cerebral arteries, might have failed to 

resolve on the images (Fig 3). Therefore, we assumed uncertainty of 0.1–2.6 mm in the ACoA 

diameter, thereby including the possibility of its absence as well as presence. 

Uncertainties in the measured flow rates were determined based on modality. The 

uncertainty in the measured values were assumed to be ±16%, ±35%, and ±16% for PC-MRI, 

ultrasound, and SPECT, respectively, based on the literature [19, 63-68] and discussions with 

surgeons. The uncertainty ranges were intentionally overestimated to maximize the chance of 

including the “true” (yet unknown) value regardless of the modality used. 

Uncertainty propagation. Uncertain inputs and targets were treated as random variables 

with uniform distribution on the determined interval. To estimate the statistics of the predicted 

∆𝑄̅𝑖 under uncertainties, we used the most straightforward approach for UQ, namely the Monte 

Carlo method. In each realization, uncertain inputs and targets were sampled from a specified 

probability distribution, and ∆𝑄̅𝑖  was predicted through successive steps of “preoperative 

adjustment” and “postoperative prediction” (Fig 4). In the first step, the PRs of the CoW and 

scaling factor for the total PR were adjusted to match the predicted outputs to the targets. The 

samples were rejected if target convergence was not attained. Subsequently, the stenosis 

parameters were modified to 𝑅v = 0, 𝐷n = 𝐷ICA, 𝑆𝑅 = 0, and 𝐾t = 0 to reflect the complete 

dilation of the stenosis. The modified stenosis parameters and adjusted PRs were used as inputs 

in the subsequent steps to predict cerebral circulation immediately after the stenosis surgery.   
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Fig 4. Flowchart for uncertainty quantification using the Monte Carlo method. For each 

Monte Carlo sample, peripheral resistances of the circle of Willis and the scaling factor for total 

peripheral resistance were adjusted (“preoperative adjustment”), followed by a virtual dilation 

of the stenosis to predict the cerebral circulation immediately after the surgery (“postoperative 

prediction”). The number of samples was increased sequentially until the statistics converged. 

The method can be applied to any probability density function; however, we assume a uniform 

distribution in this study. Additional details regarding the algorithm are provided in 

S2 Appendix. 

 

 

Finally, ∆𝑄̅𝑖 was calculated using the flow rates before and after the surgery. The statistics of 

∆𝑄̅𝑖 under uncertainties were estimated using the collected {∆𝑄̅𝑖
(𝑠)

}
𝑠=1

𝑁MC

, where 𝑁MC denotes 

the number of realizations. 𝑁MC  was increased sequentially until the statistics of ∆𝑄̅𝑖 

converged. As a basic policy, we increased 𝑁MC by 10 000 and ensured that the change in mean 

and variance of ∆𝑄̅𝑖 was within 0.1%. We also confirmed that there was no significant change 

in the probability of ∆𝑄̅𝑖  > 100% when 𝑁MC  was increased. A detailed description of the 

algorithm for uncertainty propagation is provided in S2 Appendix. 

In this study, we assumed that the surgery did not alter the arterial geometry (except for 

stenosis) and PRs. This assumption is justified because we aim to predict the cerebral 

circulation immediately after the surgery. Additionally, autoregulation and remodeling of the 

cerebral arteries generally prevent an abrupt change in blood flow. Therefore, our assumption 

is appropriate for predicting the maximum possible ∆𝑄̅𝑖, which is the most dangerous surgical 

outcome in terms of CH. 

Sensitivity analysis. In addition to UQ, we performed SA to measure the impact of each 

parameter (uncertain input or target) on ∆𝑄̅𝑖. We adopted a variance-based global SA proposed 

by Soboľ [69] to consider the interaction between the parameters. In this method, the impact of 

parameter 𝑥𝑛 on output 𝑦 is quantified as the Soboľ sensitivity indices [69, 70]: 
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𝑆𝑛 =
𝕍[𝔼[𝑦|𝑥𝑛]]

𝕍[𝑦]
, (16) 

𝑆T,𝑛 = 1 −
𝕍[𝔼[𝑦|𝒙−𝑛]]

𝕍[𝑦]
, (17) 

where 𝔼[𝑦|𝑥𝑛] denotes the conditional expectation of 𝑦 for a fixed 𝑥𝑛; 𝕍[𝑦] indicates the 

variance of 𝑦; 𝒙−𝑛 represents all parameters except 𝑥𝑛; 𝑆𝑛, the first-order sensitivity index, 

quantifies the independent contribution of 𝑥𝑛 to the measured variability of 𝑦; and 𝑆T,𝑛, the 

total sensitivity index, quantifies the overall contribution of 𝑥𝑛  to the variability of 𝑦 , 

including indirect contributions through interactions with other parameters. A large 𝑆T,𝑛 − 𝑆𝑛 

indicates that the impact of 𝑥𝑛 varies significantly with the values of other parameters. 

We used Saltelli’s algorithm with the Monte Carlo method to compute the sensitivity 

indices [70, 71]. The accuracy of the sensitivity indices in terms of the sampling error was 

assessed by estimating the 95% confidence interval using the bootstrap method [72] with a 

sample size of 1000. The SA was implemented using the open-source Python library “SALib” 

[73]. 

Results 

Surrogate modeling 

Effect of hyperparameters. Based on the grid search for 256 sets of hyperparameters, the 

highest 𝑅2  score was achieved when 𝑁layer  = 7, 𝑁node  = 200, 𝑁batch  = 3000, and 

𝑙𝑟  = 10−2.5 (S3 Fig). Combinations with 𝑁node  = 200 yielded an overall higher 𝑅2  score, 

indicating that 𝑁node affects the 𝑅2 score more than the other hyperparameters. 

𝑁layer and 𝑁node determine the total number of trainable parameters (weights and biases) 

of the DNN, whereas 𝑁batch and 𝑙𝑟 control the gradient and the rate of parameter update, 

respectively, during the optimization process. To compare the influences of these effects on 

prediction accuracy, we plotted the 𝑅2  score with respect to the number of trainable 

parameters, as illustrated in Fig 5A, using the following equation: 

𝑁param = ∑ (𝑁node
𝑙 ∙ 𝑁node

𝑙−1 + 𝑁node
𝑙 )

𝑁layer+2

𝑙=2

, (18) 

where 𝑁node
𝑙  denotes the number of nodes in the 𝑙-th layer. Note that the index of summation 

starts at 2 instead of 1 since the input layer (𝑙 = 1) has no parameters. Fig 5A indicates that the 

𝑅2  score has an inverted U-shaped relationship with 𝑁param . The highest 𝑅2  score was 

achieved when the DNN contained 262 445 trainable parameters; increasing or decreasing the 

number of parameters from this optimal number resulted in lower 𝑅2  scores. The vertical 

variations in the 𝑅2  score indicate that the effects of 𝑁batch  and 𝑙𝑟  were relatively small 

when the DNN comprised an optimal number of parameters. However, the choice of 𝑁batch 

and 𝑙𝑟 significantly affected the prediction accuracy when training the DNN with more than 1 

million parameters. 

Effect of number of training samples. To investigate the effect of the number of training   

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2022. ; https://doi.org/10.1101/2022.03.10.483573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483573
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

 

Fig 5. Changes in the 𝑅2  score of the trained model. (A) Changes with respect to the 

number of trainable parameters in the deep neural networks. The number of training samples 

was maintained constant at 120 000, and the 𝑅2  scores were evaluated using 40 000 test 

samples. Under- or over-parameterized indicate that the networks contain fewer or more 

trainable parameters than the number of training data, respectively. (B) Changes in the 𝑅2 

score with respect to the number of samples used for training. 

 

 

samples on the 𝑅2 score, we trained the DNN with different numbers of training samples while 

maintaining the hyperparameters constant in the optimal combination. Fig 5B compares the 

networks’ 𝑅2  scores evaluated using identical test data. Increasing the number of training 

samples improved the prediction accuracy significantly, particularly with a smaller number of 

samples. However, the accuracy reached a plateau with 120 000 samples, indicating that the 

accuracy cannot be improved further with more samples. 

Model performance. The best-performing DNN, trained with hyperparameters 𝑁layer = 7, 

𝑁node = 200, 𝑁batch = 3000, and 𝑙𝑟 = 10−2.5, was selected as the final surrogate model and 

verified. Initially, we assessed the prediction accuracy of the model using 40 000 samples of   
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Fig 6. Comparison of one-dimensional–zero-dimensional (1D–0D) simulation and 

surrogate model predictions. The (A) flow rate, (B) pressure, (C) adjusted peripheral 

resistance of the circle of Willis, and (D) adjusted scaling factor for total peripheral resistance 

in seven patient-specific cases are compared. The negative flow rate indicates that the flow 

direction is opposite to the arrows in Fig 2. The 𝑅2 scores and mean absolute errors (MAEs) 

of each quantity are depicted in the corresponding panels. 

 

 

test data. The overall 𝑅2  scores for the flow rate and pressure were 0.9959 and 0.9973, 

respectively. On average, the MAE was 2.617 mL/min for the flow rate and 0.7226 mmHg for 

the pressure, which correspond to approximately 4% and 0.9% of the flow rate and pressure 

mean absolute values, respectively. A detailed comparison of the flow rate and pressure in each 

artery predicted by the surrogate model and 1D–0D simulation are illustrated in S4 Fig and 

S5 Fig. 

Furthermore, to verify the model accuracy using the patients’ clinical data for assigning 

and adjusting the inputs, we compared the surrogate model and 1D–0D simulation in terms of 

flow rates, pressures, and adjusted PRs of the CoW for the seven patients (Fig 6). The flow 

rates at the six outlets of the CoW were excluded from the evaluation, as they matched the 

measured flow rates. As indicated in Fig 6, the outputs and adjusted PRs from the surrogate   
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Fig 7. Comparison of the time required for prediction. Computation times for a one-

dimensional–zero-dimensional (1D–0D) simulation and surrogate model on one CPU core and 

a surrogate model on GPU are compared. 

 

 

model were in agreement with those from the simulation. Even in the case of patient-specific 

predictions that involved iterative adjustment of inputs, the flow rate and pressure errors were 

comparable to those evaluated using the test data. 

Fig 7 compares the surrogate model and simulation in terms of the time required for a single 

prediction. On a single CPU core (Intel Core i9-9900K, 3.6 GHz), the surrogate model achieved 

a prediction time of several milliseconds, reducing the computation time of the simulation by a 

factor of over 43 000. Furthermore, the surrogate model exhibited excellent parallelization 

performance, particularly when executed on a GPU (NVIDIA GeForce RTX2080 Ti), and 

significantly reduced the computation time per prediction. As illustrated in Fig 7, the 

computation time was only five times longer when the surrogate model performed 10 000 

predictions on a GPU than a single prediction on a single CPU core. Parallelization on the GPU 

was performed using the built-in backend of Chainer [61] for CUDA-based parallel matrix 

operations. The latest deep learning libraries, including TensorFlow, Keras, PyTorch, and 

Chainer, support GPU execution using their built-in backends, allowing easy parallelization of 

matrix operations in training and predictions. 

Uncertainty quantification and sensitivity analysis 

Flow rate increase following the stenosis surgery. The percentage increase in flow rate 

(∆𝑄̅ ) following the ICA stenosis surgery was evaluated for Patients 1–3, considering the 

uncertainties in arterial diameters, stenosis parameters, and target flow rates. The number of 

realizations (𝑁MC) to obtain the statistics of ∆𝑄̅ was set to 100 000. The time required for the 

UQ was a few minutes on a single CPU core, which was shorter than the time required for a 

single prediction using the 1D–0D simulation. The time was reduced to less than a minute when 

executed on a GPU.  
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Fig 8. Probability density of the predicted value of postoperative flow increase (∆𝑄̅). Flow 

increase at the middle cerebral artery on the stenosis side is illustrated for Patients 1–3. 

Triangles indicate the values predicted by one-dimensional–zero-dimensional (1D–0D) 

simulation without considering uncertainties. 

 

 

Although we obtained ∆𝑄̅ at each outlet of the CoW, we focused only on the results at the 

middle cerebral artery (MCA) on the stenosis side, which was subjected to the largest ∆𝑄̅. Fig 8 

depicts the probability density of the predicted ∆𝑄̅ for Patients 1–3 along with the values from 

the deterministic 1D–0D simulation (represented as triangles). Additionally, the figure depicts 

the interval, mean, and mode (the value with the highest frequency) of ∆𝑄̅ and the probability 

of ∆𝑄̅ being more than 100%. A negative ∆𝑄̅ indicates a decrease in the flow rate following 

the surgery. This situation may be rare in actual patients with severe stenosis; nonetheless, it is 

not non-physiological, as observed in certain clinical cases [36]. 

Overall, uncertainties in the clinical data generated large variations in the predicted ∆𝑄̅. 

Based on the comparison of patients’ results, we observed that the mode of ∆𝑄̅ was close to 

the ∆𝑄̅ predicted by the deterministic simulation and higher when stenosis was more severe 

(larger 𝑆𝑅 and 𝑅v). In all patients, the distribution of ∆𝑄̅ was skewed to the right, with a 

higher mean than the mode. The distribution of ∆𝑄̅ was spread extensively to large values in 

Patients 2 and 3, wherein the stenosis was more severe than in Patient 1. The increase in the 

prediction uncertainty in ∆𝑄̅  with higher stenosis severity is attributed to the 2-pixel 

uncertainty considered for the arterial diameter. With the same variation width of diameter, the 

uncertainty in 𝑅v  (Equation (5)) and 𝑆𝑅  (= 1 − 𝐷s/𝐷n ) increases with a smaller diameter, 

leading to a larger uncertainty in ∆𝑄̅. 

However, the comparison of Patients 2 and 3 indicated that CH (∆𝑄̅ > 100%) is not caused 

solely by the severity of stenosis. Patient 2 exhibited a 3.8% chance of CH, whereas the 

corresponding estimates for Patients 1 and 3 were 0% and 0.001% (only one sample out of 
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100 000 samples), respectively. In Patient 2, who was assumed to have a possible missing 

ACoA, the variability of ∆𝑄̅  to values above 100% was prominent compared to Patient 3, 

implying that ∆𝑄̅ was significantly affected by this artery. 

Patient conditions causing cerebral hyperperfusion. To clarify the conditions under 

which CH occurs, we further investigated the characteristics of 3796 samples in Patient 2 and 

1 sample in Patient 3 with ∆𝑄̅  > 100%. The left column in Fig 9 depicts the relationship 

between the preoperative PR of the MCA on the stenosis side (𝑃𝑅MCA) and ∆𝑄̅ in each patient. 

Furthermore, the right column in Fig 9 illustrates the variation in ∆𝑄̅  with respect to the 

diameters of the ACoA and the posterior communicating artery (PCoA) on the stenosis side in 

each patient. 

As indicated in the left column of Fig 9, ∆𝑄̅ exhibits an inverse relationship with 𝑃𝑅MCA. 

This is natural because ∆𝑄̅ ∝ ∆𝑃̅MCA/𝑃𝑅MCA, where ∆𝑃̅MCA denotes pressure recovery at the 

MCA on the stenosis side caused by the surgery. Even with the same ∆𝑃̅MCA, a smaller 𝑃𝑅MCA 

results in a larger ∆𝑄̅ . Figs 9C and 9E depict the results of Patients 2 and 3, respectively, 

wherein the 𝑃𝑅MCA  is smaller than 20 mmHg s mL−1 in most samples when ∆𝑄̅  exceeds 

100%. However, we observed that a small 𝑃𝑅MCA did not always result in ∆𝑄̅ > 100%, as 

∆𝑃̅MCA varied with respect to some factors. Samples with ∆𝑄̅ > 100% were associated not only 

with a small 𝑃𝑅MCA  but also with small diameters of the ACoA and PCoA that form the 

collateral pathway to the artery on the stenosis side (Figs 9D and 9F). Particularly, an extremely 

small ACoA diameter (<1 mm) resulted in ∆𝑄̅  > 100%, regardless of the PCoA diameter 

(Fig 9D). 

Fig 10 depicts the variation in the preoperative flow rate in the ACoA (left column) and 

PCoA (right column) with respect to the diameter. Note that the flow rate shown in Fig 10 varies 

both horizontally and vertically. As indicated by the relationship between ∆𝑃  and 𝑅v𝑄  in 

Equation (4), the flow rate in an artery is proportional to the pressure difference between the 

two ends and is inversely proportional to the fourth power of the diameter. The horizontal 

variation in flow rate shown in Fig 10 is attributed to the diameter variation of the 

communicating artery within the uncertainty range. On the contrary, the vertical variation is 

caused by variations in the pressure difference between the ends (i.e., the pressure difference 

between arteries on the normal and stenosis sides) resulting from uncertainties in the diameter 

of other arteries, stenosis severity, and flow measurements. As seen from the large vertical 

variations, the flow rate of the communicating artery is strongly influenced not only by the 

diameter uncertainty of this artery but also by other uncertainties. 

As indicated in Fig 10C, the flow rate in the ACoA of Patient 2 is distributed up to 

250 mL/min regardless of the diameter when it is ≥1 mm. However, when the diameter < 1 mm, 

the flow rate decreases rapidly, and samples with ∆𝑄̅ > 100% appear frequently near the upper 

end of the distribution. In other words, ∆𝑄̅ exceeds 100% when the collateral flow through the 

ACoA is limited owing to the small diameter despite the large pressure difference between 

arteries on the normal and stenosis sides. Conversely, no such condition was observed in 

Patients 1 and 3. The small amount of collateral flow in Patient 1 indicates that the pressure 

difference was small, and in Patient 3, the diameters of the ACoA and PCoA were sufficiently 

large.  
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Fig 9. Postoperative flow increase (∆𝑄̅ ) in Patients 1–3 relative to several factors. Left 

column: scatter plot of ∆𝑄̅ at the middle cerebral artery on the stenosis side with respect to the 

adjusted preoperative peripheral resistance of this artery. Samples with ∆𝑄̅  > 100% are 

indicated in red. Right column: ∆𝑄̅  with respect to the diameters of the anterior 

communicating artery (ACoA) and posterior communicating artery (PCoA) that form the 

collateral pathway to the artery on the stenosis side. Samples with ∆𝑄̅ > 100% are depicted in 

yellow, regardless of their value. (A) (B) Patient 1; (C) (D) Patient 2; and (E) (F) Patient 3. 
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Fig 10. Scatter plots of preoperative flow rate versus diameter of the communicating 

arteries in Patients 1–3. The results for the anterior communicating artery (ACoA) and 

posterior communicating artery (PCoA) that form the collateral pathway to the artery on the 

stenosis side are illustrated. The flow rate is indicated as a positive value if blood flows from 

the artery on the normal side to that on the stenosis side. Samples with ∆𝑄̅  > 100% are 

represented in red. (A) (B) Patient 1; (C) (D) Patient 2; and (E) (F) Patient 3. 
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Sensitivity of uncertain parameters. To gain further insight into the factors associated 

with CH, we quantified the influence of each uncertain parameter on ∆𝑄̅  through SA. 

According to Saltelli’s algorithm, the number of samples required to compute the sensitivity 

indices was 370 000. Fig 11 depicts the first-order (𝑆𝑛) and total (𝑆T,𝑛) sensitivity indices. In 

most parameters, 𝑆T,𝑛 is considerably larger than 𝑆𝑛, indicating a strong interaction between 

the parameters. In all patients, the diameters of the ACoA and PCoA on the stenosis side 

influenced the ∆𝑄̅ significantly. Additionally, the diameters of the anterior cerebral artery Ⅰ 

(ACA Ⅰ) and posterior cerebral artery Ⅰ (PCA Ⅰ) exhibited substantial sensitivity. As depicted in 

Fig 12, these arteries form collateral pathways to supply blood to the MCA on the stenosis side. 

Furthermore, the severity of the stenosis affected the ∆𝑄̅ considerably. Although both 𝑅v 

and 𝑆𝑅 are measures of stenosis severity, only 𝑅v contributed to the variance of ∆𝑄̅. The 

impact of 𝑅v  on ∆𝑄̅  was smaller in patients with highly severe stenosis. In Patient 1, the 

sensitivity of 𝑅v was higher than that of collateral pathway diameters, whereas the opposite 

behavior was observed in Patients 2 and 3. 

Discussion 

Surrogate modeling approach for uncertainty quantification 

Quantifying the impact of uncertainties in clinical data on predictive results is essential for 

enabling the clinical application of hemodynamic simulations. However, as this task is time-

consuming and computationally expensive, it is impractical for time-sensitive clinical 

applications. To address this problem, we trained a DNN using datasets obtained from the 1D–

0D simulation to construct a surrogate model that rapidly predicts cerebral circulation subjected 

to specified geometric and physiological parameters. The DNN predicts the output by 

computing the input–output relationship, expressed as simple matrix-vector products 

(Equation (11)), rather than integrating the governing equations through many small time steps 

to obtain a converged solution. Consequently, the surrogate model reduces the prediction time 

by a factor of approximately 43 000 in comparison with that of the simulation. In other words, 

flow rates and pressures in the carotid and cerebral arteries are evaluated in milliseconds (Fig 7). 

Moreover, as running multiple predictions in parallel only increases the array dimension by one, 

the surrogate model exhibits excellent parallelization performance. As demonstrated, UQ with 

100 000 predictions can be executed nearly in real-time even on a desktop computer, requiring 

only a few minutes on a single CPU core and less than a minute when using a GPU. The 

proposed surrogate model facilitates the execution of the existing cost-prohibitive UQ, enabling 

fast feedback of robust results to the clinic. 

During the DNN training, it was evident that the choice of hyperparameters affected the 

prediction accuracy. For instance, a DNN trained with 120 000 training samples can be less 

accurate than that trained with only 40 000 samples with respect to the values of the 

hyperparameters used (Fig 5). The results of the grid search verified that model complexity, 

which can be represented by the total number of trainable parameters, is a major factor that 

affects the accuracy of the trained DNN. If the model is extremely simple, it is not sufficiently 

flexible to represent complex input–output relationships (underfitting). Conversely, if the model 

is highly complex, the model lacks generalization performance despite well-fitting the training   
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Fig 11. Sensitivities of uncertain parameters to the postoperative flow increase (∆𝑄̅). The 

first-order (𝑆𝑛) and total (𝑆T,𝑛) sensitivity indices are depicted as bars, and their 95% confidence 

intervals are represented by black lines. (A) Patient 1, (B) Patient 2, and (C) Patient 3. 
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Fig 12. Collateral flow to the middle cerebral artery downstream of the stenosis. The 

middle cerebral artery receives blood supply from the contralateral and posterior inlets to 

compensate for the reduced blood flow caused by stenosis. 

ACA Ⅰ, anterior cerebral artery Ⅰ; ACoA, anterior communicating artery; BA, basilar artery; 

ICA, internal carotid artery; MCA, middle cerebral artery; PCA Ⅰ, posterior cerebral artery Ⅰ; 

PCoA, posterior communicating artery. 

 

 

data, resulting in low accuracy on the test data (overfitting). Additionally, the batch size and 

initial learning rate influence the prediction accuracy; however, the effect is not significant as 

long as the numbers of hidden layers and nodes are chosen to ensure optimal model complexity. 

Furthermore, the number of training samples is important for improving the accuracy of a 

DNN. The results illustrated in Fig 5B indicate that the performance of machine learning cannot 

be exploited completely unless sufficient training samples are utilized. In this context, using 

1D–0D simulation can effectively obtain a large amount of data in a unified manner with a low 

computational cost. Although the key to the success of machine learning lies in large datasets, 

machine learning is an efficient means for surrogate modeling with a limited number of training 

samples. In this study, training the DNN required 120 000 samples, which was approximately 

0.5 times the number of parameters to be determined. This is substantially less than the number 

of samples required in polynomial chaos, which is a popular approach for surrogate modeling 

that typically requires oversampling by a factor of 1.5–3 [74]. We also observed that even the 

DNN trained with as few as 40 000 samples exhibited high performance of 𝑅2 > 0.96. 

The proposed surrogate model is capable of accurately predicting flow rates and pressures. 

The predicted outputs are in agreement with those obtained from the 1D–0D simulation for the 

test data (S4 Fig and S5 Fig) and the patient-specific cases (Fig 6). Particularly, no significant 

variation was observed in terms of error in cases with different conditions, such as stenosis site 

and severity, validating that the model can be applied to various patient conditions. This can be 

attributed to the two approaches used to generate the training data. First, the data were sampled 

in extremely wide input space. It comprised the entire range that each input could exhibit in an 
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actual patient, considering the inter-patient variability reported in the literature and found in the 

available clinical data and anatomical variations (S1 Appendix). Second, we considered four 

possible conditions, with and without ICA stenosis, and obtained sufficient samples for each 

condition. These approaches ensured that the surrogate model predicted using inputs that were 

always within the trained input space, avoiding any extrapolation that could significantly 

decrease accuracy [53]. 

Importance of considering clinical data uncertainties 

Patient-specific simulations of cerebral circulation use medical images and measurement data 

to set the geometric and physiological parameters that are appropriate to the patient’s condition. 

However, owing to the limitations of existing imaging technologies, it is difficult to evaluate 

the diameter of small arteries accurately. For instance, severe stenosis has a diameter less than 

the spatial resolution of CT scans (approximately 0.4 mm), which implies that a stenosis >90% 

cannot be evaluated using the images. Similarly, for an ACoA with a diameter of approximately 

1.5 mm, a 1-pixel error in lumen segmentation results in a 27% change in diameter. As the flow 

resistance in a tube is inversely proportional to the fourth power of the diameter (Equation (5)), 

the effects of a 27% error are significant. This indicates that the UQ facilitated by the proposed 

surrogate model is necessary to perform reliable predictions. 

In this study, we focused on uncertainties in the arterial diameters, stenosis parameters, and 

flow measurements derived from clinical data and quantified their impact on the predicted value 

of flow rate increase (∆𝑄̅) resulting from the ICA stenosis surgery. The UQ results for the three 

patients verified that the predicted ∆𝑄̅  significantly varies with uncertainty (Fig 8). 

Particularly, the deterministic simulation predicted a higher ∆𝑄̅ in Patient 3 than in Patient 2 

in proportion to the stenosis severity; however, this was reversed in the UQ results, wherein the 

mean value of ∆𝑄̅ under uncertainty was higher in Patient 2 than in Patient 3. This validates 

that predictions that do not consider uncertainties provide only fragmented information, 

resulting in an inaccurate risk assessment in diagnosis. Moreover, the UQ revealed that Patient 2 

had a 3.8% chance of ∆𝑄̅ being more than 100%, indicating a risk of CH. As predicted by the 

simulation, Patient 2 was identified by the surgeon as having a risk of CH and underwent staged 

surgery to lower the risk. The consistency between the predicted results and the surgeon’s 

judgment further emphasizes the importance of performing UQ and confirms the validity of the 

proposed approach as a diagnostic tool. 

Biological implications: Cerebral hyperperfusion and collateral circulation 

The CoW has a unique ring-like network, wherein the flow from the three inlets is redistributed 

to the six outlets via communicating arteries. Owing to this network, the MCA on the stenosis 

side receives collateral flow from the contralateral and posterior inlets through the ACA Ⅰ, 

ACoA, PCA Ⅰ, and PCoA, as depicted in Fig 12. Clinical studies report that CH after ICA 

stenosis surgery is associated with the collateral function [35-38]. Poor collateral circulation 

results in the maximal dilation of peripheral arteries of the MCA (reducing PR) through cerebral 

autoregulation to compensate for the flow into the MCA. In this situation, surgical dilation of 

the stenosis results in a significant increase in blood flow into the MCA, leading to CH. The 

results of our study are consistent with these conventional clinical perceptions and provide 
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further quantitative evidence. 

Based on the results of the UQ and SA, we determined that ∆𝑄̅ varied significantly with 

stenosis severity. The higher the severity of the stenosis, the more its dilation reduces the flow 

resistance of the ICA and the more drastic increase of the flow in this artery. Consequently, in 

patients with highly severe stenosis, the distribution of ∆𝑄̅ shifted to larger values (Fig 8). 

Among the two measures of stenosis severity, 𝑅v was determined to affect ∆𝑄̅ more than 

𝑆𝑅 (Fig 11). 𝑅v is a measure of the viscous resistance of the stenosis, which reflects the axial 

diameter change and length of the stenosis (Equation (5)). In contrast, 𝑆𝑅 is the stenosis ratio, 

evaluated using the diameters of the smallest and largest points. In clinical practice, 𝑆𝑅 is 

commonly used to assess stenosis severity, as several criteria for diagnosis and treatment are 

defined based on 𝑆𝑅 [1]. However, even if 𝑆𝑅 remains the same, 𝑅v can vary considerably 

with respect to the stenosis geometry; consequently, the hemodynamic significance of stenosis 

can differ. Therefore, it is important to consider the viscous resistance that relies on the stenosis 

geometry along with 𝑆𝑅 when assessing stenosis severity. 

Remarkably, severe stenosis did not necessarily lead to CH (∆𝑄̅ > 100%), as observed from 

the comparison of Patients 2 and 3. This is consistent with the clinical observation that there 

was no significant difference in 𝑆𝑅 between the groups with and without CH [36, 37]. When 

the stenosis is severe, the diameter of the arteries being the collateral pathway to the MCA on 

the stenosis side (i.e., ACA Ⅰ, ACoA, PCA Ⅰ, and PCoA) had a more significant impact on ∆𝑄̅ 

than the stenosis severity (Fig 11). A smaller diameter of the collateral artery limits the amount 

of collateral flow (Figs 10C and 10D), causing a compensatory decrease in the PR of the MCA 

(Fig 9C). Additionally, it prevents the increased flow in the ICA after surgery from being 

distributed to the six outlets, resulting in a large ∆𝑄̅ at the MCA where the flow is concentrated. 

In Patient 2, the collateral flow decreased rapidly with the ACoA diameter <1 mm, and the 

risk of CH increased accordingly. This result supports the use of a diameter <1 mm to define 

the inadequacy of the collateral artery [75, 76] and suggests that this criterion may apply to the 

risk of CH. However, the flow rate in one artery is affected by the geometry (particularly the 

diameter) of other arteries because the cerebral arteries form a ring-like network. Therefore, we 

believe that it is necessary to perform the UQ for each patient for reliable risk assessment, and 

the proposed approach is an effective tool for this purpose. 

In summary, ∆𝑄̅  was intimately associated with the severity of the ICA stenosis and 

diameter of the ACA Ⅰ, ACoA, PCA Ⅰ, and PCoA that form the collateral pathway to supply 

blood to the MCA on the stenosis side. CH occurred when the following conditions were 

satisfied simultaneously: (i) the stenosis was severe and (ii) the diameter of the collateral 

pathway was small. 

Limitations and future directions 

The limitations of this study are summarized in this subsection. First, we assumed a uniform 

distribution for uncertain parameters without considering the possible differences in 

distribution owing to modality characteristics. The probability distribution of ∆𝑄̅ can change 

with the assumed distribution for uncertain parameters. However, in this study, we did not aim 

to predict the accurate distribution of ∆𝑄̅  but rather to conduct a rapid assessment of the 

possibility of CH (∆𝑄̅ > 100%) by taking into consideration an intentionally wide range of 
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uncertainties, so as not to miss any patient at risk. The results verified that the upper bound of 

∆𝑄̅ is substantially lower than 100% in Patient 1 and slightly over 100% in Patient 3, which 

indicates that assuming different types of distribution (such as normal and log-normal) for 

uncertainties does not alter the probability of ∆𝑄̅ > 100% significantly. 

Second, the number of patients included in the prediction of CH was small. The results of 

the UQ and SA facilitated the clarification of the quantitative relationship between collateral 

circulation and CH. However, further validation is needed before the method can be used in 

clinical practice to assess the risk of CH. We believe that this can be achieved in the future with 

the availability of more patient data. 

Finally, the proposed model ignores the peripheral collateral pathways [77] that cannot be 

acquired using existing imaging technology. The presence of collateral pathways other than 

CoW may contribute to preventing CH. In the future, we intend to focus on modeling the 

peripheral network in detail by integrating the patient geometry with mathematical models, 

similar to a previous study [78]. 

Concluding remarks 

Understanding the collateral function in cerebral circulation is essential for elucidating disease 

mechanisms and reviewing treatment options. In this study, the biology of collateral circulation 

in the CoW was explored by performing UQ and SA, which are the measures that stochastically 

evaluate the prediction result variability, using 1D–0D simulation that considers the entire 

cardiovascular system. The major challenge in performing these tasks in a clinical setting is its 

high computational cost. To address this problem, we constructed a machine learning-based 

surrogate model trained using the 1D–0D simulation data. The surrogate model accurately 

predicted the flow rate and pressure in the CoW while simultaneously reducing the prediction 

time to a few milliseconds. The results verified that the surrogate model enabled the execution 

of UQ with 100 000 predictions in a few minutes on a single CPU core and less than a minute 

on a GPU. 

Leveraging the low computational cost of the surrogate model, we performed UQ in 

predicting the risk of CH, which is a life-threatening condition that can occur after carotid artery 

stenosis surgery if collateral circulation fails to function appropriately. Particularly, we 

predicted the statistics of the flow rate increase in the MCA after the ICA stenosis surgery, 

considering uncertainties in the parameters derived from the patient’s clinical data. Furthermore, 

we conducted an SA to clarify the impact of each uncertain parameter on the flow rate increase. 

The results indicated that the flow rate increase was greater when (i) the stenosis was severe 

and (ii) the diameters of the ACA Ⅰ, ACoA, PCA Ⅰ, and PCoA that form collateral pathways to 

supply blood to the MCA were small. When these two conditions were satisfied simultaneously, 

the PR of the MCA on the stenosis side reduced significantly, and the flow rate increase 

exceeded 100%, i.e., that the surgery caused CH. 

The proposed surrogate model can be applied more broadly to the prediction of the cerebral 

circulation and is not limited to the application demonstrated in this study. The approach 

facilitates the execution of computationally expensive tasks, such as UQ, SA, and extensive 

case studies. This can aid in analyzing the simulation results from a statistical perspective to 

gain new insights, accelerate the introduction of simulation tools into time-sensitive clinical 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 14, 2022. ; https://doi.org/10.1101/2022.03.10.483573doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483573
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

practices, and facilitate translational medicine. Despite the existing technical limitations of 

large uncertainties in measuring cerebral circulation, the proposed approach explains the effects 

of uncertainties efficiently and helps in understanding various biological aspects of cerebral 

circulation, including its physics, physiology, pathology, and treatments. 
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