
Empirical study on software and process quality in
bioinformatics tools

Katalin Ferenc1Y, Konrad Otto1Y, Francisco Gomes de Oliveira Neto1, Marcela Dávila
López2, Jennifer Horkoff1, Alexander Schliep1

1 Department of Computer Science and Engineering, University of Gothenburg,
Gothenburg, Sweden
2 Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg,
Gothenburg, Sweden

YThese authors contributed equally to this work.

Abstract

Software quality in computational tools impacts research output in a variety of scientific
disciplines. Biology is one of these fields, especially for High Throughput
Sequencing (HTS) data, such tools play an important role. This study therefore
characterises the overall quality of a selection of tools which are frequently part of HTS
pipelines, as well as analyses the maintainability and process quality of a selection of
HTS alignment tools. Our findings highlight the most pressing issues, and point to
software engineering best practices developed for the improvement of maintenance and
process quality. To help future research, we share the tooling for the static code analysis
with SonarCloud which we used to collect data on the maintainability of different
alignment tools. The results of the analysis show that the maintainability level is
generally high but trends towards increasing technical debt over time. We also observed
that the development activities on alignment tools are generally driven by very few
developers and are not utilising modern tooling to their advantage. Based on these
observations, we recommend actions to improve both maintainability and process
quality in open source alignment tools. Those actions include improvements in tooling
like the use of linters as well as better documentation of architecture and features. We
encourage developers to use these tools in order to ease future maintenance efforts,
increase user experience, support reproducibility, and ultimately increase the quality of
research through increasing the quality of research software tools.

Introduction 1

Biology and medicine have seen a data-driven transformation with the advent of 2

high-throughput experimentation, in particular high-throughput sequencing with ten 3

thousands of sequenced genomes. Computational tools integrate advanced algorithms, 4

data structures, and state-of-the-art methods from statistics and machine learning. 5

However, the developers and users of research tools are generally experts in their 6

respective fields and have little background in software engineering [1]. This hinders and 7

delays the widespread adaptation of software development best practices, such as the 8

usage of containers for deployment and reusability, within the bioinformatics community. 9

High Throughput Sequencing (HTS) is a field of bioinformatics, which includes 10

many of the state of the art approaches for analyzing DNA or RNA sequences generated 11

March 10, 2022 1/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


by sequencing instruments [2]. The analysis of HTS relies heavily on software tools 12

developed by various research groups. Hundreds of HTS pipelines are built and 13

employed in laboratories around the world to analyse the results of HTS applications 14

and draw conclusions in a wide variety of fields of biology. The applications include 15

measuring biodiversity, developing novel medical treatments, or diagnosing cancer 16

subtypes in patients. Despite their widespread usage and significance, the quality of 17

these bioinformatics tools has been poorly investigated from the software engineering 18

point of view, with some notable exceptions. 19

Previous findings indicate that many software qualities were not prioritised during 20

the development process of many of these tools. For example, the testability of these 21

tools is not adequately addressed [3], the accessibility and installability of bioinformatics 22

software was found poor [4] even though tools like Bioconda have recently improved the 23

situation. Furthermore, user inputs and dependencies are not checked properly, and 24

status logs are missing [5,6]. These shortcomings result in end users unsatisfied with the 25

user experience of these tools [7]. Although users can choose their favourite from a 26

multitude of software tools available to solve each step in a standard pipeline, the 27

compatibility of these tools is not always guaranteed [8]. Furthermore, the creation and 28

usage of pipelines often requires the knowledge of at least one of several pipeline 29

management frameworks [9]. As a result, experimental researchers often rely on 30

bioinformaticians to create and maintain their pipelines, or even restrict themselves to 31

problems they feel comfortable solving with the tools they are already familiar with [7]. 32

Most of the issues bioinformatics software development is facing are known and 33

studied in the field of software engineering. Knowledge exchange and guidelines that are 34

rooted in the best practices of software engineers can prove to be useful to practicing 35

bioinformaticians. However, to achieve transferability of software engineering practices 36

to scientific software development, issues within scientific communities need to be 37

correctly identified and field-specific constraints should be considered. Killcoyne and 38

Boyle claim that the nature of the ad hoc scientific approach and the structured 39

software engineering approach is conflicting [10]. We argue that several tools used in the 40

bioinformatics community are in fact in the maintenance phase of their life cycle, where 41

the ad hoc solutions should be replaced with a robust code. The maintainability of 42

scientific software has a direct impact on the reproducibility of research findings, as well 43

as on the time required for the developers to fix bugs and consequently, on the waiting 44

time for the user to run a updated tool when encountering a breaking issue. 45

Therefore, we aimed to characterise some of the well-known bioinformatics software 46

tools, which are in the maintenance phase of their life. First, we investigated whether a 47

selection of currently available, established, widely used, open source bioinformatics 48

tools address previously identified software quality issues including maintainability, 49

usability, and documentation. To this end, we evaluated the status of 20 HTS software 50

tools across 7 categories to get a broad overview of their quality in light of previous 51

research findings. Next, we investigated the code-level artefacts and software 52

development practices of 13 different, but comparable tools focusing on maintainability. 53

In particular, we selected alignment tools which are indispensable parts of any HTS 54

workflow. These tools are responsible for identifying the location of short DNA 55

fragments (reads) to the reference genome [11]. This process is called alignment or 56

mapping, and the tools are the aligners or mappers. Finally, we analysed the evolution 57

of 3 open source aligners to identify trends in maintenance and code quality. 58

Our aim was to identify key issues in widely used bioinformatics software tools from 59

the software engineering perspective, especially to evaluate to what extent software 60

engineering best practices are followed during software maintenance. We acknowledge 61

the lack of resources available for software maintenance, however, we would like to stress 62

the importance of good quality software for good quality research. Our experimental 63

March 10, 2022 2/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


findings support the necessity of following the guidelines found in literature [8, 12–15]. 64

This study is organised into three parts, one for each research question (RQ). 65

RQ1: What are the software quality characteristics of tools used in workflow pipelines 66

in HTS data analysis? 67

RQ2: What is the state of software and process quality in popular open source 68

alignment tools? 69

RQ2.1: How maintainable is the source code of alignment tools? 70

RQ2.2: What characterises the development activity of open source projects for 71

alignment tools? 72

RQ3: How does the maintainability of alignment tools evolve? Are there trends in the 73

software quality between the versions of a selected alignment tool? 74

Methods 75

Characterization of HTS tools 76

The data collection was performed at the Bioinformatics Core Facility, Sahlgrenska 77

Academy at the University of Gothenburg. The Core Facility employs bioinformaticians 78

and statisticians who support a wide variety of research projects and organize 79

workshops and training sessions. To this end, 20 standard, widely used tools (Table 1) 80

were selected from the HTS pipelines used in 2019 at the Core Facility. These tools are 81

fully developed and in the maintenance phase of their life cycle, thus their 82

characterization can shed light on the status of tools used by biological data analysts. 83

Table 1. List of Tools Selected for RQ1 with the Scope of Characterisation
Applied to Each

Tool Scope Reference

FastQC Quality check [16]
Qualimap Quality check [17]
RSeQC Quality check [18]
MultiQC Quality check [19]
Trimmomatic Trimming, Filtering [20]
Cutadapt Trimming, Filtering [21]
PrinSeq Trimming, Filtering, Quality check [22]
TrimGalore! Trimming, Filtering, Quality check [23]
STAR Alignment [24]
TopHat Alignment [25]
Bowtie Alignment [26]
Bowtie2 Alignment [27]
BWA Alignment [28]
Picard Data processing [29]
BEDtools Data processing [30]
HTSeq Data processing [31]
SAMtools Data processing, Variant calling [32]
GATK Data processing, Variant calling [33]
Annovar Annotating [34]
IGV Data visualization [35]

March 10, 2022 3/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


The main data source for RQ1 (characterization of tools) was the available 84

documentation, manual and GitHub repositories of the selected tools. Additionally, a 85

test installation and one or several test runs were performed using publicly available 86

DNA-seq (SRA: SRX3122951) and RNA-seq (SRA: SRP130955) data, using 87

Ubuntu 16.04 version. The software tools were characterized using 7 criteria selected 88

from literature [4, 7–9,14,36–38] and focusing on areas important to the everyday work 89

of users of these tools. The criteria are: 1) integration into the pipeline, 2) maintenance, 90

3) support, 4) usability, 5) documentation, 6) installability, and 7) dependency 91

management. For each criterion, a 3-level quality scale was defined (Table 2) and 92

applied following tests and review of the documentation. 93

Table 2. Definitions of the different levels for the 7 characteristics of HTS tools used in this analysis

pipeline integration

1 can run directly using any input and output files of standard format
2 requires specific input file name (e.g. * 1.fq and * 2.fq)
3 requires non standard file format or non standard changes within the input file

maintenance

1 latest commit no more than 1 year before this analysis (2020)
2 more than 1, but less than 5 years inactivity before this analysis
3 more than 5 years inactivity

support

1 has its own active GitHub issue / forum / bug report page
2 documentation about frequent errors and / or email support, but inactive issue page
3 user needs to rely on external forums or resources

usability

1 has a graphical user interface in Galaxy or standalone, test finished
2 only command line interface AND running requires 1 command for a single task, OR test crashed with useful error

messages
3 only command line interface AND running requires at least 2 commands for a single task, OR test crashed with hard

to understand or missing error messages

documentation

1 sufficient and necessary information for usage, easy to navigate
2 short, not well organized or hard to read
3 too short for effective usage, requires additional external resources

installation & dependencies

1 self-contained, i.e. sufficient information on the website and/or in the documentation
2 requires admin rights or external help
3 requires external tools

Data collection for RQ2 and RQ3 94

The most widely used sequencing technologies produce short (30-100 base pairs long) 95

DNA or RNA sequences (reads) which are then aligned (mapped) to the reference 96

genome of the species of interest. The first step in a standard analysis pipeline is the 97

quality check of the sequenced reads, which can be followed by a quality-based filtering 98

or trimming. Next, the reads are mapped to the reference genome. The mapping quality 99

March 10, 2022 4/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


is investigated by the bioinformatician before proceeding to subsequent, 100

application-specific data analysis. The analysis process relies on multiple tools and 101

frequent quality checks which drives the subsequent steps, such as the abortion of the 102

protocol or adjustment in the parameters of the tools. 103

For RQ2, we decided to focus on a single step in the investigated HTS pipelines. We 104

chose the mapping step, as several mappers have been developed and utilized in the 105

majority of HTS applications. Most mappers are written in the C or C++ languages 106

allowing for fair code-level comparison. We aimed to include several widely used open 107

source mappers [39]. This selection resulted in a total of 13 different mappers, all with 108

their code available on GitHub, being analysed. Table 3 lists the selected mappers and 109

provides a link to the each project’s source code. 110

Table 3. List of Mappers Selected for Analysis

Mapper Available at

Bowtie https://github.com/BenLangmead/bowtie

Bowtie2 https://github.com/BenLangmead/bowtie2

BWA https://github.com/lh3/bwa

BWA-PSSM https://github.com/pkerpedjiev/bwa-pssm

HISAT2 https://github.com/DaehwanKimLab/hisat2

MEGAHIT https://github.com/voutcn/megahit

MOSAIK https://github.com/wanpinglee/MOSAIK

mrFAST https://github.com/BilkentCompGen/mrfast

mrsFAST https://github.com/sfu-compbio/mrsfast

Salmon https://github.com/COMBINE-lab/salmon

SHRiMP https://github.com/compbio-UofT/shrimp

STAR https://github.com/alexdobin/STAR

TopHat https://github.com/infphilo/tophat

Static code analysis 111

Maintainability is one of the software qualities listed in ISO/IEC 25010 [40]. In the 112

model it is constructed from modularity, reusability, analysability, modifiability, and 113

testability [40]. According to Riaz et al., it can be summarised as “the ease with which a 114

software system can be modified” [41]. Maintainability is an indicator for the amount of 115

work needed to understand, reuse, and refactor a software component or project [42]. 116

Making changes or fixing bugs takes less effort in a project with good 117

maintainability [42]. Maintainability is directly affected by the quality of the applied 118

development process. Sing and Gautam describe the connection between the two, 119

especially how the four development activities (i.e., requirements, design, coding, and 120

testing [43]) included in any type of development process (e.g. waterfall, scrum) can 121

impact the maintainability of the end product [44]. Table 4 shows exactly what 122

requirement characteristics, design attributes, coding factors, and testing parameters 123

can be utilised to improve maintainability. 124

We used static code analysis to obtain the necessary measures for the 125

maintainability evaluation of HTS mappers. According to Riaz et al. [41] there is a 126

multitude of different metrics in the existing research which are used to quantify the 127

maintainability of software projects. In this study, maintainability is inspected based on 128

code smells and technical debt. Code smells describe the presence of bad programming 129

and bad code design in a software artefact [45]. Code smells can cause maintainability 130

issues, decrease comprehensibility, and cause concern to professional developers [46]. 131

They can be detected with automated tools for static code analysis and can therefore 132

March 10, 2022 5/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://github.com/BenLangmead/bowtie
https://github.com/BenLangmead/bowtie2
https://github.com/lh3/bwa
https://github.com/pkerpedjiev/bwa-pssm
https://github.com/DaehwanKimLab/hisat2
https://github.com/voutcn/megahit
https://github.com/wanpinglee/MOSAIK
https://github.com/BilkentCompGen/mrfast
https://github.com/sfu-compbio/mrsfast
https://github.com/COMBINE-lab/salmon
https://github.com/compbio-UofT/shrimp
https://github.com/alexdobin/STAR
https://github.com/infphilo/tophat
https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


Table 4. Factors that can be used to improve maintainability during
software development activities (adapted from [44])

Development Activity Maintainability Factors

Requirement Specification Completeness or Correctness

Software Design
Software Architecture
Design Patterns

Software Coding
Programming Features
Standardized Code
Code Clones

Software Testing
Test Criteria
Testing Effort

easily be target for refactoring and improving code quality [45,47]. The concept of 133

technical debt is based on a metaphor comparing the future work that quality issues in 134

production software cause to indebting yourself. The software can be released 135

immediately without resolving the quality issues. Not having fixed the issues can 136

however result in additional effort (potentially more than would have been necessary to 137

fix the original issue) becoming necessary in the future [48,49]. 138

SonarQube is one of the most widely used solutions for static analysis of software 139

quality [50–52]. For this work, we decided to use the online version of the tool 140

SonarCloud1, as it is freely available, suitable for C and C++ languages, supports 141

continuous integration, and enables direct analysis of code stored in GitHub and 142

Bitbucket repositories. These properties make SonarCloud appropriate for this research 143

and for future usage within the bioinformatics community. 144

We used manual analysis of SonarCloud, which is straightforward and can easily be 145

repeated on a multitude of different tools. To enable reproducibility, we decided to 146

provide a Docker image for the analysis. All dependencies for the project build and the 147

manual analysis are contained in the image and the commands for analysis are also 148

provided. The Docker image for replicating the analysis is publicly available on GitHub 149

(https://github.com/konradotto/sonar-analysis). This image has also been 150

published on DockerHub (https://hub.docker.com/r/konradotto/sonar-analysis) 151

and can therefore be fetched from there directly as konradotto/sonar-analysis. 152

As our analysis is focusing on maintainability, we selected the following measures 153

provided by SonarCloud: 154

• Size: lines of code (LOC) 155

• Number of code smells 156

• Technical debt (estimated time to fix issues) 157

• Debt ratio (technical debt divided by the estimated time to create a debt-free 158

solution from scratch) 159

• Maintainability rating 160

• Number of files 161

• Number of functions 162

The size of the various projects is important to allow a fair comparison of the 163

absolute measures provided by SonarCloud. By normalizing for the LOC, it is possible 164

1https://sonarcloud.io

March 10, 2022 6/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://github.com/konradotto/sonar-analysis
https://hub.docker.com/r/konradotto/sonar-analysis
https://sonarcloud.io
https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


to compare projects based on their inherent number of code smells and technical debt. 165

The debt ratio and maintainability rating are directly related and already relative 166

measures that take the project size into account. This maintainability rating allocates 167

letter grades (i.e. in descending order: A, B, C, D, E) to projects based on their debt 168

ratio. Finally, the number of files and the number of functions provide superficial, but 169

valuable insight on the modularity and design-level differences between the projects. 170

Development activity 171

To analyse the development activity on open-source mappers for HTS, artefacts from 172

the online versioning systems used for the project have been consulted. The GitHub 173

REST API has been used to collect those artefacts through the Requests Python HTTP 174

library [53]. The contributors’ GitHub aliases were anonymised for ethical reasons. For 175

subsequent analysis ad hoc Python scripts were used. 176

The measures about the contribution process that we are interested in for the 177

analysis are the following: 178

• Number of major contributors (bus count) 179

• Total number of commits 180

• Temporal distribution of commits 181

• Number of releases or tags 182

• Commits per release or tag 183

• Open issues 184

• Ratio of open issues versus all 185

• Duration until issues are fixed 186

These measures have been chosen due to their perceived significance for the quality 187

of the development process. Their importance is supported by the models that have 188

been designed to predict “socio-technical issues” in [54] and [55]. The term “bus count” 189

indicates how many developers have in-depth knowledge of a project, system or 190

component (e.g. in a distributed system); it is the minimum number of developers that 191

would have to suddenly disappear to endanger a smooth continuation. Tags are defined 192

as snapshots in time. They are closely related to releases, and can be used to follow the 193

development of the code throughout time. The high number of commits per tagged 194

release for some of the other projects can be seen as a sign of missing direction in the 195

development or underutilisation of releases. In either case this means that development 196

and improvements are not sufficiently broken down into small increments (i.e. releases) 197

that are communicated to the users. 198

Results 199

Characterisation of HTS tools 200

We summarised our findings on Table 5. The quality of the evaluated tools differed 201

across categories. In line with the findings of Mangul et al. [4], the majority of the tools 202

performed poorly on the scales of installability and dependency management, but most 203

achieved good scores in several other categories. 204

Integration of tools into workflows relies on scripts written by the users. For 205

example, running the same steps for several inputs, setting file structure and naming 206

March 10, 2022 7/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


conventions, parallelisation, downloading database dependencies are rarely included in 207

the tools. Workflow managers, such as Snakemake [56] or Nextflow [57] supports some 208

of these tasks. However, we noted some incompatibilities between tools which require 209

in-depth knowledge of them. One example is the presence (chrN) or absence (N) of 210

chromosome prefixes in input/output files, i.e., compatibility with UCSC or Ensembl 211

style reference genomes. Similarly, some tools are compatible with a specific subsequent 212

tool, such as Trim Galore! being compatible with Bowtie1 by performing an additional 213

base trimming from the input sequences [23]. This extra step is not necessary for the 214

compatibility with other tools. We also noted that some steps can be omitted from the 215

pipeline. For example, the BWA and Bowtie2 tools provide soft and hard clipping, thus 216

removing the need to rely on the trimming of reads. However, in some applications this 217

step is recommended. 218

Most of the investigated tools have been actively maintained at the time of the 219

analysis (2020) with the exception of PrinSeq [22]. To investigate trends in the 220

maintenance of tools, we performed an in-depth analysis of short sequence mappers in 221

RQ3. Most tools are supported at their own website or other platforms visited by the 222

creators. We noted that complete lack of support was rarely the case within the 223

bioinformatics community. Platforms such as Biostars [58] and StackExchange [59] 224

hosts extensive community knowledge for troubleshooting. 225

When considering usability, it is important to note that most tools are only available 226

with command line interfaces, limiting their usage to bioinformaticians or scientists with 227

knowledge in bash scripting. We argue that investing in a graphical user interface would 228

increase the learnability of these tools and (potentially at the expense of a reduced 229

number of available settings) would enable more researchers to utilize them in their 230

work. One such example is the Galaxy tool that hosts a collection of independently 231

developed tools and provides a graphical interface to them [60]. Indeed, it enables wider 232

usage of the tools and independence from bioinformatics support. 233

Additionally, we found poor error management of several of the tools which further 234

limits their usage to bioinformatician experts. For example, we tested Annovar with 235

Variant Call Format (VCF) input format instead of the standard TXT format and it 236

resulted in empty output file instead of an error message. Another example was Picard, 237

which produced a 43 line long error log for a single error (”SAM file doesn’t have any 238

read groups defined in the header.” - caused by incompatibility between Picard and 239

SAMtools). In the same error message another error was mentioned (”StatusLogger 240

Log4j2 could not find a logging implementation. Please add log4j-core to the class 241

path”) which did not cause break in the code, but caused confusion when trying to find 242

the main issue. A similar issue was observed when GATK was tested. The 243

RealignerTargetCreator, IndelRealigner and BaseRecalibrator functions were run in 244

sequence on the same input file, and the subsequent errors masked the original 245

formatting error. Additionally, we noted that some tools have the potential to be 246

merged into a single step. Especially in GATK functions such as VariantRecalibrator 247

and ApplyRecalibration, or RealignerTargetCreator and IndelRealigner depend on each 248

other in a linear order and thus can be merged into one function for the user. 249

We observed various types of documentation. We found documentations following 250

the guidelines of Lee [12]. For example, the documentation of SAMtools includes 251

common usage, and the documentation of GATK and BWA are written in an 252

easy-to-read language. BEDtools features interesting usage examples from the 253

community, which is a nice utilization of online forums and community resources. On 254

the other hand, we also found that some documentation are not compliant to the 255

guidelines. For example, Annovar’s documentation is unstructured, and it is hard to 256

navigate in the documentation of Bowtie2. We noted that it is easier to find usage 257

examples of Bowtie2 on forums than in the documentation. 258

March 10, 2022 8/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


Table 5. Scores of the analysed HTS tools on the scale defined in Table 2.
1: highest quality, 2: medium quality, 3: lowest quality

N
am

e
of

to
ol

In
te

gr
at

io
n

in
wor

kf
lo
w

M
ai
nt

en
an

ce

Su
pp

or
t

U
sa

bi
lit

y

D
oc

um
en

ta
tio

n

In
st
al
la
tio

n

D
ep

en
de

nc
ie
s

FastQC 1 1 1 1 1 1 3
Qualimap 1 2 1 1 1 3 3
RseQC 1 1 3 1 2 3 3
MultiQC 1 1 1 1 1 3 3
Trimmomatic 2 2 3 1 2 1 3
Cutadapt 1 1 1 1 1 3 3
PrinSeq 1 3 1 1 1 1 1
TrimGalore! 1 1 1 1 2 3 3
STAR 1 1 1 1 1 2 3
TopHat 2 2 2 1 2 3 3
Bowtie 3 1 1 1 1 3 3
Bowtie 2 ? 1 1 1 1 3 3
BWA 1 2 3 1 2 1 3
SAMtools 1 1 1 3 2 1 1
Picard 3 1 1 3 2 3 3
GATK 3 1 1 3 2 3 3
BedTools 1 1 1 1 1 2 1
HTSeq 1 1 1 1 1 3 3
Annovar 3 1 2 3 2 2 1
IGV 1 1 1 1 1 1 1

The low mark (score 3) of dependency management was mainly due to their 259

depencies on an external software which is not included in their release. For example, 260

TrimGalore! is a wrapper around Cutadapt and FastQC, but installation does not 261

include these two tools. This means that additional time and effort is required from the 262

user to install dependencies separately from a third party website. In some cases, such 263

as in TopHat, we found the requirement that another tool should be in the PATH, 264

requiring additional steps. 265

In line with the finding of Mangul et al. [4], the installation of the investigated tools 266

was longer than expected due to the lack of information or additional installation of 267

dependencies from third party websites. Furthermore, several of the tools requires root 268

privileges (e.g., STAR and GATK), which hinders the fast exploration and development 269

of applications, as clusters or even personal working computers might be managed by IT 270

personnel. 271

March 10, 2022 9/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


RQ1 We observed the following points about the characterization of tools:

• Most investigated tools have good documentation and are maintained at
the time of analysis

• Several tools have score 3 (poor quality) on support, workflow integration,
and usability. These shortcomings require additional time to spent and
glue code to apply for the end user

• Most investigated tools have score 3 (poor quality) on installation and
dependency management due to the need for external help or third party
tools. We expect this issue to be minimized with the usage of Bioconda

272

Software and Process Quality of Mappers 273

Table 6. Overview of the Maintainability and Size Metrics Collected from SonarCloud. The entries are
sorted by the debt ratio of the projects in increasing order.

Project Version Language LOC Files Functions Code Smells Debt Debt Ratio Rating

Bismark v0.16.2 HTML 4773 6 0 57 4 h 45 min 0.2 % A
MEGAHIT v1.2.9 C++ 22 795 127 2176 1752 32 d 2.3 % A
STAR 2.7.8a C/C++ 45 619 321 466 5231 67 d 2.4 % A
TopHat v2.1.2 C++ 243 037 745 5619 39 618 424 d 2.8 % A
BWA-PSSM latest C 15 732 73 538 1925 34 d 3.6 % A
HISAT2 v2.2.1 C 113 373 230 3369 12 174 270 d 3.8 % A
Salmon v1.4.0 C++ 21 638 47 446 3573 54 h 4.1 % A
BWA v0.7.17 C 14 500 61 544 1937 37 d 4.2 % A
mrFAST latest C 4960 15 94 620 13 d 4.3 % A
Bowtie2 v2.4.2 C++ 63 384 147 2462 7514 168 d 4.3 % A
SHRiMP v2 0 3 C++ 14 268 65 323 2408 42 d 4.7 % A
mrsFAST v3.4.2 C 5831 20 130 992 18 d 5.0 % B
MOSAIK latest C++ 30 924 172 989 5577 96 d 5.0 % B
Bowtie v1.3.0 C++ 41 078 112 1858 7798 142 d 5.5 % B

Median†: 22 795 3.4§ 29.7§ 133.6§ 2.55 d§

Minimum†: 4960 2.0§ 10.2§ 76.8§ 1.40 d§

Maximum†: 243 037 7.0§ 95.5§ 189.8§ 3.45 d§

†: without Bismark

§: relative value per 1000 LOC

Software Maintainability 274

Table 6 summarises the results of the static code analysis for all mappers that we 275

examined. Aside from BWA-PSSM, mrFAST, and MOSAIK, all repositories were 276

analysed at the latest tagged version available at the time of analysis. We made 277

exceptions for BWA-PSSM and mrFAST because the most recent tag was significantly 278

older than the most recent changes by over 1 year and nearly 4 years respectively. 279

MOSAIK had no tags at all. Therefore the latest commit was analysed for these three 280

projects instead. 281

The results for the number of files, number of functions, number of code smells, and 282

technical debt are all absolute. Therefore, it appears obvious that more code would 283

March 10, 2022 10/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


result in higher values for all of them. To confirm this assumption about these values 284

dependence on the project size, we did a simple linear regression for all of them with 285

LOC as the independent variable. Table 7 contains the goodness of fit (R2) and the 286

coefficients of the estimated line (slope and intercept) for each of these measurements. 287

Table 7. Linear regression results for multiple dependent variables against
the lines of code (LOC)

R2 Slope Intersect

Number of files 0.88 2.8 × 10−3 2.6 × 101

Number of functions 0.87 2.3 × 10−2 3.3 × 102

Number of code smells 0.97 1.6 × 10−1 −6.3 × 102

Technical debt 0.94 1.8 × 10−3 h 2.0 × 101

The high values for goodness of fit (close to 1.0) confirm that both the number of 288

code smells and technical debt have a strong linear dependency on LOC. The slopes of 289

these two linear models suggest that with the addition of 1000 LOC about 160 new 290

code smells are introduced on average and a time-equivalent of 1.8 days additional 291

technical debt is to be expected. For the number of files and the number of functions, 292

the linear model fits the measurements less precisely. Still, the values for goodness of fit 293

confirm the assumption that more LOC means more files and more functions. 294

With their dependence on LOC confirmed, these absolute measurements can now be 295

corrected for the size of the code. The distribution of their relative values (per 296

1000 LOC) has been plotted as boxplots that can be seen in Fig. 1. Interestingly 297

enough, for functions per 1000 LOC the highest (95 per 1000 LOC for MEGAHIT ) and 298

lowest value (10 per 1000 LOC for STAR) match the two projects that have the lowest 299

and second lowest debt ratio respectively. Regarding the utilisation of functions, 300

MEGAHIT is marked as an outlier. It has more than double the ratio of functions to 301

LOC than the next data point (Bowtie with 45 functions per 1000 LOC). 302

This shows that a high level of decomposition into functions can be an indicator for 303

a good modular code with appropriate separation of concerns. It also indicates that the 304

average length of functions alone is a bad indicator for code maintainability. Even 305

though Martin [61] recommends short functions that “should hardly ever be 20 lines 306

long” and should only do one thing but do that thing well, there is a lot of discussion 307

about this (e.g. [62]) and little actual data. Hence, we decided not to further interpret 308

the information on file size and function size. 309

To further visualises the amount of code smells and their severity in the analysed 310

repositories, we created a scatter plot that can be seen in Fig. 2. The graph confirms 311

the high goodness of fit from the linear regression as all mappers are grouped closely 312

around the line. The three most maintainable mappers, namely MEGAHIT, STAR and 313

TopHat, stand out through their purple color on the technical debt colour scale. 314

Especially for TopHat and STAR this cannot be explained through a low number of 315

total smells but rather indicates a lower average severity of code smells; Bowtie2 and 316

HISAT2 respectively have slightly less code smells per LOC and still higher technical 317

debt per LOC. 318

Overall, the results document a very consistent degree of debt ratio (between 2.3 % 319

and 5.5 %). All but 3 mappers (i.e. mrsFAST, MOSAIK, and Bowtie) are rated with 320

an A, the best possible grade for their code-level maintainability. With the absolute 321

dimensions of technical debt in these projects, this factor of 2.4 between the best (i.e. 322

MEGAHIT ) and worst (i.e. Bowtie) scoring project is quite considerable. 323

March 10, 2022 11/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


mappers
2

3

4

5

6

7

fil
es
 p
er
 1
00

0 
lin
es
 o
f c
od
e

(a)

mappers0

20

40

60

80

100

fu
nc
tio

ns
 p
er
 1
00

0 
lin
es
 o
f c
od
e

MEGAHIT

(b)

mappers60

80

100

120

140

160

180

200

co
de
 sm

el
ls 
pe
r 1

00
0 
lin
es
 o
f c
od
e

(c)

mappers

1.5

2.0

2.5

3.0

3.5

te
ch
ni
ca
l d
eb
t [
da
ys
] p

er
 1
00

0 
lin
es
 o
f c
od
e (d)

Fig 1. Boxplots of files, functions, code smells and technical debt (all per
1000 LOC) for the analysed group of mappers. The two upper boxplots are
concerned with the structuring of the project into files (a) and functions
(b). They show the medians which are about 3.4 files and roughly
30 functions per 1000 LOC. The range for files per 1000 LOC goes
from 2 (HISAT2) to 7 (STAR). The lower boxplots show the number of
code smells (c) and technical debt (d). The extremes in both match the
debt ratio and ordering displayed in Table 6; per 1000 LOC MEGAHIT
has the least code smells and lowest technical debt while Bowtie has the
highest values for both.

March 10, 2022 12/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


104 105
lines of code

101

102

103

104

105

co
de
 sm

el
ls

MEGAHIT

STAR

TopHat

BWA-PSSM

HISAT2

Salmon

BWA

mrFAST

Bowtie2

SHRiMP

mrsFAST

MOSAIK
Bowtie 

0

1

2

3

4

5

te
ch
ni
ca
l d
eb
t [
m
in
ut
es
/li
ne
]

Fig 2. Scatterplot showing the code smells and technical debt per line of
code for the analysed repositories. The color gradient is superimposed on
the scatter to signal the relative technical debt of each repository. The plot
shows the lines of code for each repository as an independent variable on
the x-axis, while the dependent code smells are plotted on the y-axis.
Since the lines of code span 2 orders of magnitude (4.7 × 103 to 2.4 × 105)
and the number of code smells even spans 3 orders of magnitude (1.3 × 101

to 4.0 × 104), both variables are displayed on a logarithmic scale. Code
smells are of varying severity resulting in differences in the average
technical debt per code smell, therefore the technical debt per line of code
contains interesting additional information. Besides the data points for the
various projects, a dashed blue line is used to show the result of the linear
regression for code smells against lines of code (Table 7 (i.e. technical
debt).

RQ2.1: We made the following observations about the source code maintainabil-
ity of open source sequencing analysis mappers:

• Most mappers score the best possible category in the SonarSource main-
tainability rating

• The technical debt of mappers is independent of the project size (LOC)

• Despite low overall debt ratios, the factor of 2.4 between lowest and highest
ratio is significant for absolute technical debt

• File size and function size are by themselves inadequate indicators for
project maintainability

324

Process Quality 325

Since our observations about the process quality are entirely based on publicly available 326

artefacts of the development process, this analysis has to be limited to tools for which 327

such artefacts are available. This means that tools that provide their source code but do 328

March 10, 2022 13/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


not have a publicly available version control system (i.e., an accessible git history) could 329

not be analysed for process quality. This concerns older versions of the tools from 330

Table 3 which were only hosted on SourceForge before moving to GitHub. The results 331

of this analysis are summarised in Table 8. It shows the observed values for the different 332

process quality factors described in the Development activity Section. 333

Table 8. Overview of the Collected Process Quality Data.* The order of entries follows that of the
maintainability data; so the technical debt ratio is ascending within this table as well.

Project Major Commits Tags ∅ Commits Total Open Ratio ∅ Time
Contributors per Tag issues issues issues open to close issues

Bismark 1 808 19 42.5 532 14 2.6 % 17 d
MEGAHIT 1 678 34 19.9 403 89 22.1 % 44 d
STAR 1 1082 43 25.2 1318 379 28.8 % 179 d
TopHat 3 65 0 NaN 0 0 NaN -
BWA-PSSM 2 416 1 416.0 2 2 100.0 % -
HISAT2 3 1381 4 345.3 391 216 55.2 % 47 d
Salmon 2 772 38 20.3 743 282 38.3 % 38 d
BWA 1 802 4 200.5 423 243 57.4 % 114 d
mrFAST 2 20 1 20.0 2 2 100.0 % -
Bowtie2 4 1255 21 59.8 438 152 34.7 % 148 d
SHRiMP 2 234 0 NaN 2 2 100.0 % -
mrsFast 2 175 1 175.0 26 10 38.5 % 14 d
MOSAIK 1 418 0 NaN 74 60 81.1 % 234 d
Bowtie 4 483 7 69.0 219 75 34.2 % 198 d

Mean 2.1 613.5 12.4 126.7 326.6 109.0 49.5 % 103.4 d
StdDev 1.0 414.6 15.1 134.3 360.4 120.4 33.0 % 77.6 d
Median 2.0 580.5 4.0 59.8 305.0 67.5 38.2 % 80.4 d

* data recorded on May 6th, 2021

An important result regarding the process quality is the ratio of contribution per 334

author to the various repositories (Fig. 3). The contributors are anonymised with a 335

capital letter and an ordinal number (e.g., A1, A2, T1). 336

The upper row shows examples of 2 projects (Bowtie and Bowtie2 ) with 4 different 337

contributors having each contributed at least 5.0 % of the total commits, and one 338

person contributing most of the commits after 2017. The lower left plot for Salmon has 339

only 2 frequent contributors. One of them is responsible for almost 60 % of the total 340

commits, the other made over 30 % of the commits. The lower right plot for MEGAHIT 341

shows another typical case where a single major contributor is responsible for the 342

magnitude of the commits. All of the displayed examples have only a small fraction of 343

commits made by minor contributors. The exact frequency of these four example 344

contribution patterns is recorded in Fig. 4. 345

Of the observed repositories 5, like MEGAHIT, have only a single major contributor. 346

Another 5 have two major contributors (where in most cases one of them is responsible 347

for the majority of commits) similarly to the example of Salmon while the remaining 348

4 repositories have 3 or 4 major contributors (Bowtie, Bowtie2, HISAT2, TopHat) and 349

never more than 4. Especially the projects with only 1 or 2 major contributors are very 350

dependent on the commitment of those contributors to the project. Losing those 351

contributors means essentially that there no longer is anyone to help users with their 352

issues. This is a significant risk that should be considered when choosing any tool. 353

Another interesting result in Table 8 are the number of commits, number of tags and 354

average commits per tag. Especially the number of tags has been decisive when 355

March 10, 2022 14/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


A1

44.9%

A2
27.6%

A3

16.7% A4
5.4% All others5.4%

Bowtie
N1

34.9%

N2 28.7%

N3

27.9%

All others
8.5%

Bowtie2

M1

56.2%

M2

29.9%
All others

13.8%

Salmon

T1 98.8% All others1.2%

MEGAHIT

Fig 3. Distribution of commits to contributors for example repositories
with different contribution patterns. All repositories have less than 5 main
contributors.

selecting projects for RQ2. To observe the evolution between versions, projects with 356

sufficient number of versions were necessary. Most of the projects have fewer than 357

8 tags that could be used for this and are therefore not suitable for RQ2. MEGAHIT, 358

STAR, Salmon, and Bowtie2 each have over 20 tags and therefore were candidates. To 359

visualise the timely distribution of commits and releases, we grouped commits and tags 360

for MEGAHIT and STAR by quarterly periods and plotted them in a bar chart with 361

dual axes. The results are shown in Fig. 5. 362

The data show more continuity in the work on STAR (Fig. 5b) than there is for 363

MEGAHIT (Fig. 5a) over the past 7 years (both projects have been on GitHub since 364

2014). For STAR there have been commits in all quarters since Q2 2014 paired with 365

sporadic peaks in both the coding activity and the number of tags released at those 366

times. Most work on MEGAHIT in contrast was done solely during two periods of 367

larger activity, peaking in the years 2015 and 2019. The increased number of tags 368

generally matches the phases of increased commits in both projects. 369

Despite these differences in the distribution of commits and releases, MEGAHIT 370

and STAR have a similar ratio of commits to tags with 19.9 and 25.2 commits per tag, 371

respectively. Salmon (20.3 commits/tag) is in that same range and Bowtie2 372

(59.8 commit/tag) has more than double the commits per tag. The numbers are still 373

fairly similar compared to the other mappers with fewer tags, which are way beyond 374

100 commits per tag (e.g. HISAT2 with 345.3) except for Bowtie. These projects with 375

few tags skew the mean and standard deviation of the series to very high values. The 376

difference between Bowtie2 and MEGAHIT is not necessarily meaningful as the 377

March 10, 2022 15/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


1 2 3 4
Number of major contributors

0

1

2

3

4

5

Fr
eq

ue
nc

y

Fig 4. Histogram of the number of major contributors in the analysed
projects (n=14).

granularity of commits (i.e. changes made in a single commit) is different for different 378

developers. 379

Looking at the remaining data about the issues tracked in the different projects, no 380

clear patterns are evident. In MEGAHIT (22.1 %) and STAR (28.8 %) the two projects 381

that had the highest maintainability also have low ratios of open issues. However 382

Bowtie (34.2 %) and mrsFAST (38.5 %) also have low percentages of open issues and in 383

the case of mrsFAST even the fastest average time to close issues once they have been 384

opened (14 d). In this average time to close there is also a significant difference between 385

MEGAHIT and STAR. For those issues that eventually were closed, it took an average 386

of 1.5 months in the former project and about half a year in the latter. That constitutes 387

a significantly longer wait for help when having issues with STAR. Interestingly this 388

observation is contrary to the general consistency of development observed for both 389

projects from Fig. 5. Despite the more frequent commits to STAR, issues take longer to 390

close. 391

RQ2.2: The observed open source projects for sequencing analysis mappers have
the following characteristics of their development activity:

• The projects are driven by few or even a single developer making major
contributions

• Many of the projects are not consistently tagging updates in the code base

• The projects that consistently utilise releases average about 20 to 60 commits
between consecutive releases

• Likelihood and expected time in which issues are resolved strongly vary
between projects

392

March 10, 2022 16/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


(a) MEGAHIT

Q2 Q3 Q4
20

15
 Q

1 Q2 Q3 Q4
20

16
 Q

1 Q2 Q3 Q4
20

17
 Q

1 Q2 Q3 Q4
20

18
 Q

1 Q2 Q3 Q4
20

19
 Q

1 Q2 Q3 Q4
20

20
 Q

1 Q2 Q3 Q4
20

21
 Q

1 Q2

0

25

50

75

100

125

150

Co
m

m
its

 p
er

 q
ua

rte
r

0

2

4

6

8

10

Ta
gs

 p
er

 q
ua

rte
r

(b) STAR
Q2 Q3 Q4

20
15

 Q
1 Q2 Q3 Q4

20
16

 Q
1 Q2 Q3 Q4

20
17

 Q
1 Q2 Q3 Q4

20
18

 Q
1 Q2 Q3 Q4

20
19

 Q
1 Q2 Q3 Q4

20
20

 Q
1 Q2 Q3 Q4

20
21

 Q
1 Q2

0

25

50

75

100

125

150

Co
m

m
its

 p
er

 q
ua

rte
r

0

2

4

6

8

10

Ta
gs

 p
er

 q
ua

rte
r

Fig 5. Barcharts of the quarterly commits and tags added to MEGAHIT
(a) and STAR (b). The figure colour-codes two separate y-axes for
commits (blue, left-side scale) and tags (orange, right-side scale). Note the
factor of 15 between the two scales.

Evolution of Maintainability 393

Since software releases and tags are a main condition for the planned study of evolving 394

maintainability, only the 4 projects with sufficient tags (# of tags ≥ 20) were candidates 395

for this part of the study. Seeing their low technical debt ratios (see Table 6) and 396

similarity in the observed process parameters (see Table 8), we decided to once more 397

analyse MEGAHIT, STAR, Bowtie2 and Salmon for this research question. However, 398

we encountered build issues during the data collection of Salmon, thus did not include it. 399

The results of the static code analysis of the differently tagged versions of these 400

3 projects are plotted in Fig. 6. For MEGAHIT there is a steady increase of the LOC 401

from the beginning to version v1.2.0-beta that is interrupted by 2 jumps: 402

(1) The first jump in LOC between version v0.2.1 and v0.3.0-beta is matched by a 403

jump increasing code smells as well as minor changes in the debt ratio. This jump 404

is caused by 127 commits being added in the course of 3 months (March 2015 to 405

June 2015). 406

(2) The second jump between version v1.1.4 and 1.2.0-beta is actually met by a 407

drop in the number of code smells and a significantly decreased debt ratio. This 408

second jump is caused by “heavy refactoring of the whole project” according to 409

the main contributor. According to the changelog these changes lead to a “faster 410

and more memory-efficient tool”. In addition to this performance boost, the 411

March 10, 2022 17/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


(a) MEGAHIT

v0
.1

.4
v0

.2
.0

v0
.2

.0
-a

v0
.2

.1
v0

.3
.0

-b
et

a
v0

.3
.0

-b
et

a2
v0

.3
.0

-b
et

a3
v0

.3
.2

-b
et

a
v0

.3
.3

v0
.3

.3
-a

v1
.0

.0
-b

et
a

v1
.0

.1
v1

.0
.2

v1
.0

.3
v1

.0
.4

-b
et

a
v1

.0
.5

v1
.0

.6
v1

.0
.6

.1
v1

.1
-b

et
a

v1
.1

.1
v1

.1
.2

v1
.1

.3
v1

.1
.4

v1
.2

.0
-b

et
a

v1
.2

.1
-b

et
a

v1
.2

.2
-b

et
a

v1
.2

.3
-b

et
a

v1
.2

.4
-b

et
a

v1
.2

.5
-b

et
a

v1
.2

.6
v1

.2
.7

v1
.2

.8
v1

.2
.9

0

5000

10000

15000

20000

25000

Lines of code

v0
.1

.4
v0

.2
.0

v0
.2

.0
-a

v0
.2

.1
v0

.3
.0

-b
et

a
v0

.3
.0

-b
et

a2
v0

.3
.0

-b
et

a3
v0

.3
.2

-b
et

a
v0

.3
.3

v0
.3

.3
-a

v1
.0

.0
-b

et
a

v1
.0

.1
v1

.0
.2

v1
.0

.3
v1

.0
.4

-b
et

a
v1

.0
.5

v1
.0

.6
v1

.0
.6

.1
v1

.1
-b

et
a

v1
.1

.1
v1

.1
.2

v1
.1

.3
v1

.1
.4

v1
.2

.0
-b

et
a

v1
.2

.1
-b

et
a

v1
.2

.2
-b

et
a

v1
.2

.3
-b

et
a

v1
.2

.4
-b

et
a

v1
.2

.5
-b

et
a

v1
.2

.6
v1

.2
.7

v1
.2

.8
v1

.2
.9

0

500

1000

1500

2000

Code smells

v0
.1

.4
v0

.2
.0

v0
.2

.0
-a

v0
.2

.1
v0

.3
.0

-b
et

a
v0

.3
.0

-b
et

a2
v0

.3
.0

-b
et

a3
v0

.3
.2

-b
et

a
v0

.3
.3

v0
.3

.3
-a

v1
.0

.0
-b

et
a

v1
.0

.1
v1

.0
.2

v1
.0

.3
v1

.0
.4

-b
et

a
v1

.0
.5

v1
.0

.6
v1

.0
.6

.1
v1

.1
-b

et
a

v1
.1

.1
v1

.1
.2

v1
.1

.3
v1

.1
.4

v1
.2

.0
-b

et
a

v1
.2

.1
-b

et
a

v1
.2

.2
-b

et
a

v1
.2

.3
-b

et
a

v1
.2

.4
-b

et
a

v1
.2

.5
-b

et
a

v1
.2

.6
v1

.2
.7

v1
.2

.8
v1

.2
.9

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Debt ratio

(b) STAR

ST
AR

_2
.4
.0
e

ST
AR

_2
.4
.0
f1

ST
AR

_2
.4
.0
g

ST
AR

_2
.4
.0
g1

ST
AR

_2
.4
.0
h

ST
AR

_2
.4
.0
j

ST
AR

_2
.4
.0
k

ST
AR

_2
.4
.1
a

ST
AR

_2
.4
.1
b

ST
AR

_2
.4
.1
c

ST
AR

_2
.4
.1
d

ST
AR

_2
.4
.2
a

ST
AR

_2
.5
.0
a

2.
5.
0b

2.
5.
0c

2.
5.
1a

2.
5.
1b

2.
5.
2a

2.
5.
2b

2.
5.
3a

2.
5.
4a

2.
5.
4b

2.
6.
0c

2.
6.
1a

2.
6.
1b

2.
6.
1c

2.
6.
1d

2.
7.
0e

2.
7.
0f

2.
7.
1a

2.
6.
1e

2.
7.
2a

2.
7.
2b

2.
7.
2c

2.
7.
2d

2.
7.
3a

2.
7.
4a

2.
7.
5a

2.
7.
5b

2.
7.
5c

2.
7.
6a

2.
7.
7a

2.
7.
8a

0

10000

20000

30000

40000

Lines of code

ST
AR

_2
.4

.0
e

ST
AR

_2
.4

.0
f1

ST
AR

_2
.4

.0
g

ST
AR

_2
.4

.0
g1

ST
AR

_2
.4

.0
h

ST
AR

_2
.4

.0
j

ST
AR

_2
.4

.0
k

ST
AR

_2
.4

.1
a

ST
AR

_2
.4

.1
b

ST
AR

_2
.4

.1
c

ST
AR

_2
.4

.1
d

ST
AR

_2
.4

.2
a

ST
AR

_2
.5

.0
a

2.
5.

0b
2.

5.
0c

2.
5.

1a
2.

5.
1b

2.
5.

2a
2.

5.
2b

2.
5.

3a
2.

5.
4a

2.
5.

4b
2.

6.
0c

2.
6.

1a
2.

6.
1b

2.
6.

1c
2.

6.
1d

2.
7.

0e
2.

7.
0f

2.
7.

1a
2.

6.
1e

2.
7.

2a
2.

7.
2b

2.
7.

2c
2.

7.
2d

2.
7.

3a
2.

7.
4a

2.
7.

5a
2.

7.
5b

2.
7.

5c
2.

7.
6a

2.
7.

7a
2.

7.
8a

0

1000

2000

3000

4000

5000

Code smells

ST
AR

_2
.4

.0
e

ST
AR

_2
.4

.0
f1

ST
AR

_2
.4

.0
g

ST
AR

_2
.4

.0
g1

ST
AR

_2
.4

.0
h

ST
AR

_2
.4

.0
j

ST
AR

_2
.4

.0
k

ST
AR

_2
.4

.1
a

ST
AR

_2
.4

.1
b

ST
AR

_2
.4

.1
c

ST
AR

_2
.4

.1
d

ST
AR

_2
.4

.2
a

ST
AR

_2
.5

.0
a

2.
5.

0b
2.

5.
0c

2.
5.

1a
2.

5.
1b

2.
5.

2a
2.

5.
2b

2.
5.

3a
2.

5.
4a

2.
5.

4b
2.

6.
0c

2.
6.

1a
2.

6.
1b

2.
6.

1c
2.

6.
1d

2.
7.

0e
2.

7.
0f

2.
7.

1a
2.

6.
1e

2.
7.

2a
2.

7.
2b

2.
7.

2c
2.

7.
2d

2.
7.

3a
2.

7.
4a

2.
7.

5a
2.

7.
5b

2.
7.

5c
2.

7.
6a

2.
7.

7a
2.

7.
8a

0.000

0.005

0.010

0.015

0.020

0.025
Debt ratio

(c) Bowtie2

v2
.2

.6
v2

.2
.7

v2
.2

.8
v2

.2
.9

v2
.3

.0
v2

.3
.2

v2
.3

.3
v2

.3
.3

.1
v2

.3
.4

-a
lp

ha
v2

.3
.4

v2
.3

.4
.1

v2
.3

.4
.2

-a
lp

ha
.2

v2
.3

.4
.2

v2
.3

.4
.3

v2
.3

.5
v2

.3
.5

.1
v2

.4
.0

-b
et

a
2.

4.
0-

be
ta

2
v2

.4
.0

_n
ew

v2
.4

.1
v2

.4
.2

0

10000

20000

30000

40000

50000

60000

Lines of code

v2
.2

.6
v2

.2
.7

v2
.2

.8
v2

.2
.9

v2
.3

.0
v2

.3
.2

v2
.3

.3
v2

.3
.3

.1
v2

.3
.4

-a
lp

ha
v2

.3
.4

v2
.3

.4
.1

v2
.3

.4
.2

-a
lp

ha
.2

v2
.3

.4
.2

v2
.3

.4
.3

v2
.3

.5
v2

.3
.5

.1
v2

.4
.0

-b
et

a
2.

4.
0-

be
ta

2
v2

.4
.0

_n
ew

v2
.4

.1
v2

.4
.2

0

1000

2000

3000

4000

5000

6000

7000

Code smells

v2
.2

.6
v2

.2
.7

v2
.2

.8
v2

.2
.9

v2
.3

.0
v2

.3
.2

v2
.3

.3
v2

.3
.3

.1
v2

.3
.4

-a
lp

ha
v2

.3
.4

v2
.3

.4
.1

v2
.3

.4
.2

-a
lp

ha
.2

v2
.3

.4
.2

v2
.3

.4
.3

v2
.3

.5
v2

.3
.5

.1
v2

.4
.0

-b
et

a
2.

4.
0-

be
ta

2
v2

.4
.0

_n
ew

v2
.4

.1
v2

.4
.2

0.00

0.01

0.02

0.03

0.04

Debt ratio

Fig 6. Barplots of the evolution of lines of code, code smells, and debt
ratio between releases of MEGAHIT (a), STAR (b) and Bowtie2 (c). Each
of them contains three separate bar plots: The plots on the left shows the
development of LOC, the central plots visualise the number of code smells,
and the debt ratio of each version is visualised to the right.

overall debt ratio of the project was significantly decreased with the changes. 412

In the remaining analysed releases the LOC were generally slightly reduced and so 413

were the code smells. The debt ratio has another small jump at version v1.2.4-beta 414

but was subsequently decreased again. 415

The plots for STAR do not show any special features. LOC, code smells, and debt 416

ratio all increase steadily over the 7 years and 43 tags that have been analysed. An 417

exception is the very low number of code smells and debt ratio in release STAR 2.4.1b. 418

There have only been 4 commits changing 13 files with 58 additions and 9 deletions 419

between STAR 2.4.1a and STAR 2.4.1b. The changes to the next version are also 420

minor so it can be assumed that there has been an error in the analysis of STAR 2.4.1b 421

that caused the drop and return in the code smells and debt ratio. 422

Finally, the plot for Bowtie2 (c) almost constant values for LOC, code smells, and 423

debt ratio. Checking the temporary drop in code smells and debt ratio for the 424

tags v2.3.4.1 to v2.3.5.1 (inclusive) lead to the assumption that the change is caused 425

by the addition (and removal in v2.4.0-beta) of a build flag specifying the use of 426

c++98. Differences to the rules for code smells in modern C++ probably caused the 427

pattern. 428

Overall these plots show that only for MEGAHIT there has been an effort to 429

consciously refactor and improve the source code. This impression is confirmed by the 430

changelogs of the three repositories: Only MEGAHIT mentions refactoring, the changes 431

March 10, 2022 18/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


in STAR and Bowtie2 appear only to be concerned with fixing issues and adding 432

functionality. A further observation from this series of analyses has been the way 433

versions have been named in all 3 projects. The version names found on the x-ticks in 434

Fig. 6 might sometimes follow the convention suggested by Preston-Werner [63] but 435

they do not adhere to indicating changes according to the Major.Minor.Patch 436

paradigm [63] most of the time. Changes in the build procedure and other breaking 437

changes between versions have been encountered between supposed patches. 438

RQ3: There is no single pattern in which the maintainability of mappers evolves.
We have observed a mapper that kept growing its code base and increased the
technical debt in the process in STAR. We have observed a mapper that has not
evolved much since the code is available on GitHub in Bowtie2. And we have
observed a mapper that increased its code base at distinct times and decreased
its technical debt through heavy refactoring later in the project in MEGAHIT.

439

Discussion 440

Software quality characteristics of selected tools used in HTS 441

workflows 442

We found that installation and dependency management of several bioinformatics tools 443

are poor, which should motivate the community for using conda [64] or other 444

dependency manager software solutions. Additionally, the usability of several tools is 445

hindered by poor error management, which can contribute to a steep learning curve 446

limiting the access to these tools. Poor error management can also result in more time 447

spent on a task by the end users, which hinders reaching the ultimate goal of the 448

research. We note, that the use of Galaxy [60] enables the usage of tools for biologists 449

who are not familiar with command line applications, thus investing in the integration 450

of novel tools to this platform can benefit the community. Furthermore, the ease of 451

integration of a tool into a workflow varies between tools. The challenges of integration 452

can be partially elevated by workflow management software such as Nextflow [57], 453

which also ensures the reproducibility of the results. 454

Based on these findings, we think the most effort should be focused on improving 455

the error management of the tools by integrating solutions for the most common issues 456

discussed on issue pages and independent forums. We also suggest improving the user 457

experience of documentation based on the guidelines of [12]. As, ultimately, the 458

learnability of these tools are hindered by these shortcomings, we suggest the inclusion 459

of bioinformatics students into the maintenance process in an iterative fashion. We 460

argue that more intuitive, easy-to-use tools with clear error messages will reduce the 461

development time of bioinformatics workflows, thus return the investment on a global 462

scale. 463

Maintainability of selected alignment tools 464

In our static code analysis, we found that even though the Sonar ratings suggest a very 465

good maintainability for most of the analysed projects, the listed technical debts are 466

considerable. The technical debt of 32 d for MEGAHIT may be low compared to some 467

of the other projects, but it still implies 96 full 8-hour working days being required to 468

resolve that technical debt. Given that there is currently a single developer working on 469

the project and that developer probably has further working commitments besides 470

MEGAHIT (seeing the gaps in activity shown in Figure 5a), this debt is more 471

March 10, 2022 19/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


significant than the 2.3 % debt ratio reveals. Additionally, with an effective bus count of 472

1, the project is fully dependent on that single developer and their continued support. 473

The discussion on the maintainability evolution is focused on the collected data and 474

therefore limited to versions available on GitHub. This means that only the evolution 475

happening after initial development (i.e. first running versions are available) according 476

to the software life cycle [65] can be assessed. Mostly minor new features are being 477

developed at this point. This is especially true for STAR (starting from version 478

STAR 2.4.0e, released 24th of October 2014) and Bowtie2 (starting from version 479

v2.2.6, released 30th of July 2015). Both these projects have prior development 480

released via legacy platforms (i.e. Google Code and SourceForge respectively). As we 481

are mainly interested in the maintenance phase of the software tools, this does not have 482

a major effect on our findings. 483

Comparing the evolution of the technical debt between MEGAHIT, STAR, and 484

Bowtie2 revealed that during normal development of these projects the size of the 485

projects (measured by LOC) only grows while the debt ratio either grows with it (in the 486

case of STAR) or remains constant (in the case of Bowtie2, MEGAHIT before 487

refactoring). Combining these two trends means that the absolute technical debt only 488

grows. Brown et al. explain in [48] why managing technical debt is important for the 489

long-term health of software projects: 490

• Technical debt is often hidden and not evident to new members of a project 491

• Unhandled technical debt with a project’s growth can lead to localised issues 492

becoming widespread 493

• Technical debt is not necessarily growing additively; this can lead to unexpectedly 494

reaching critical states 495

According to Freire et al. [66], there is a multitude of practices that are important to 496

prevent technical debt. This includes project design, definition of architectural choices, 497

project planning, creation of automated tests, and similar practices that should be 498

obvious in modern software development. In the discussion of Table 4, we already 499

encountered some of these as factors as they influence the maintainability of projects. 500

Some retrospective actions could be applied to help the analysed projects improve their 501

maintainability: 502

• Documenting the architectural choices that partly have been made years ago may 503

makes it a lot easier for new developers to explore the code base 504

• Keeping an up-to-date list of met and open requirements tells developers and 505

users what can be expected from a tool now and in the future 506

• A good test suite with high coverage makes it easier to verify the correctness of a 507

tool after changes 508

Most of the analysed mappers are not employing either of these practices. A few (e.g. 509

Salmon) have a test suite but the coverage is usually very limited. Especially the first 510

two bullet points can be achieved with little effort for the expected reward. However, the 511

one measure that our analysis shows to be very effective is refactoring. MEGAHIT is 512

the mapper with the lowest debt ratio in Table 6 and this is not due to its low debt ratio 513

throughout the development. This first place was achieved through extensive refactoring 514

between the two versions. Between these versions the technical was reduced by 6 days 515

while almost 9000 LOC were added. Had those 9000 lines been added without improved 516

debt ratio, the technical debt would have been 25 days higher than it actually was with 517

the refactoring. This shows that a dedicated refactoring effort – like the work done on 518

MEGAHIT over a period of 5 month – is realistic in bioinformatics tools and can have a 519

March 10, 2022 20/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


significant impact on the maintainability of a project. In their systematic review of 520

research on code smells and refactoring, Lacerda et al. also come to the conclusion that 521

refactoring should be the first measure when attempting to reduce technical debt [67]. 522

Improving the Development Process 523

The origin of the term “bus count” suggests that a high number of active developers 524

should be an ambition of any open source software tool. More active developers who are 525

familiar with the project does not only mean that a project can be continued even if one 526

of them stops to work on it. We also expect that projects with more active developers 527

should be faster in their response to the issues being reported. This assumption was 528

however not confirmed by the data. Neither the ratio of open issues nor the average 529

time to close them was found to generally be better for projects with 3 or 4 major 530

contributors compared to those with only 1 or 2. These values turned out to be different 531

on a case by case basis. 532

A further advantage of a larger number of involved contributors is that it allows for 533

the implementation of pull requests as a mean of peer reviewing code. According to 534

Silva et al. pull requests can be a means of reducing technical debt continuously 535

throughout the development process if used in the right way [68]. The low number of 536

major contributors combined with the additional effort required for proper code reviews, 537

however, makes this an unrealistic solution in the given scenario. An automated 538

approach without the human factor is recommended instead. We therefore recommend 539

adding the following tools and steps to the development process: 540

• A linter to enforce strict formatting and further programming rules. Research has 541

shown linters to be effective in reducing code smells and vulnerabilities [69] 542

• Proper use of semantic versioning [63] and a changelog [70] 543

• Projects with frequent changes and sufficient test coverage can also benefit 544

continuous integration 545

In information technology linters are tools used to detect issues in code. This 546

includes stylistic and semantic issues. Semantic versioning is the usage of the software 547

version number in the following way: MAJOR.MINOR.PATCH. MAJOR increments 548

when an incompatible API change is made, MINOR increments when a new feature is 549

added which is backward compatible to previous changes, and PATCH increments when 550

a bug is fixed in a backward compatible way. Continuous integration is the process of 551

iteratively adding new code to a working code base, while making sure that no new code 552

is causing breaking changes. 553

These are some easy steps that can be applied even to projects run by a single 554

developer. They will help reduce technical debt, keep the users and co-developers 555

updated about changes and compatibility between releases, and prevent publishing of 556

changes that break tests or build procedures. 557

Conclusion 558

The data collected in this research shows that bioinformatics mappers are generally at a 559

good software quality and maintainability level. However, code quality shows a trend of 560

degradation over time, which can be reversed with a conscious effort of refactoring. The 561

development of the investigated software is usually driven by very few major developers, 562

creating a strong dependency on those developers’ commitment to the projects. This 563

not only results in varying success of handling issues in the code base, but hinders 564

refactoring efforts too. We therefore recommend a set of practices that can easily be 565

March 10, 2022 21/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


implemented even in projects with a single major contributor and should help to 566

steadily and permanently improve the maintainability of open source mappers and other 567

tools for scientific computation. 568

With the continuous development of scientific software, we would like to see further 569

research into the implementation and effects of the recommended improvements. The 570

tooling we provide makes the collection of future data on the subject very easy and we 571

hope it can be used to assess the future development of the analysed mappers. 572

Acknowledgment 573

MD was supported by the Swedish Foundation for Strategic Research (RIF14 · ®0081) 574

References

1. Umarji M, Seaman C, Koru AG, Liu H. Software Engineering Education for
Bioinformatics. In: 2009 22nd Conference on Software Engineering Education
and Training; 2009. p. 216–223.

2. D’Antonio M, D’Onorio De Meo P, Pallocca M, Picardi E, D’Erchia AM,
Calogero RA, et al. RAP: RNA-Seq Analysis Pipeline, a new cloud-based NGS
web application. BMC Genomics. 2015;16(6):S3. doi:10.1186/1471-2164-16-S6-S3.

3. Kamali AH, Giannoulatou E, Chen TY, Charleston MA, McEwan AL, Ho JWK.
How to test bioinformatics software? Biophysical Reviews. 2015;7.
doi:10.1007/s12551-015-0177-3.

4. Mangul S, Mosqueiro T, Abdill RJ, Duong D, Mitchell K, Sarwal V, et al.
Challenges and recommendations to improve the installability and archival
stability of omics computational tools. PLOS Biology. 2019;17(6):e3000333.
doi:10.1371/journal.pbio.3000333.

5. Seemann T. Ten recommendations for creating usable bioinformatics command
line software. GigaScience. 2013;2(2047). doi:10.1186/2047-217X-2-15.

6. List M, Ebert P, Albrecht F. Ten Simple Rules for Developing Usable Software in
Computational Biology. PLOS Computational Biology. 2017;13(1):e1005265.
doi:10.1371/journal.pcbi.1005265.

7. Morrison-Smith S, Boucher C, Bunt A, Ruiz J. Elucidating the role and use of
bioinformatics software in life science research. In: Proceedings of the 2015
British HCI Conference on - British HCI ’15. ACM Press; 2015. p. 230–238.
Available from: http://dl.acm.org/citation.cfm?doid=2783446.2783581.

8. Gruening B, Sallou O, Moreno P, da Veiga Leprevost F, Ménager H, Søndergaard
D, et al. Recommendations for the packaging and containerizing of bioinformatics
software. F1000Research. 2019;7. doi:10.12688/f1000research.15140.2.

9. Leipzig J. A review of bioinformatic pipeline frameworks. Briefings in
Bioinformatics. 2016; p. bbw020. doi:10.1093/bib/bbw020.

10. Killcoyne S, Boyle J. Managing Chaos: Lessons Learned Developing Software in
the Life Sciences. Computing in science & engineering. 2009;11(6):20–29.
doi:10.1109/MCSE.2009.198.

March 10, 2022 22/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

http://dl.acm.org/citation.cfm?doid=2783446.2783581
https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


11. Behjati S, Tarpey PS. What is next generation sequencing? Archives of disease
in childhood - Education & practice edition. 2013;98(6):236–238.
doi:10.1136/archdischild-2013-304340.

12. Lee DB. Ten simple rules for documenting scientific software. PLoS
Computational Biology. 2018;14. doi:10.1371/journal.pcbi.1006561.

13. Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten Simple Rules for
Reproducible Computational Research. PLoS Computational Biology. 2013;9.
doi:10.1371/journal.pcbi.1003285.

14. Veretnik S, Fink JL, Bourne PE. Computational Biology Resources Lack
Persistence and Usability. PLoS Computational Biology. 2008;4(7):3.

15. Balaban G, Grytten I, Rand KD, Scheffer L, Sandve GK. Ten simple rules for
quick and dirty scientific programming. PLoS Computational Biology. 2021;17.
doi:10.1371/journal.pcbi.1008549.

16. Andrews S, Krueger F, Segonds-Pichon A, Biggins L, Krueger C, Wingett S.
FastQC; 2012. Babraham Institute.

17. Garćıa-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S,
et al. Qualimap: evaluating next-generation sequencing alignment data.
Bioinformatics. 2012;28(20):2678–2679. doi:10.1093/bioinformatics/bts503.

18. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments.
Bioinformatics. 2012;28(16):2184–2185. doi:10.1093/bioinformatics/bts356.

19. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis
results for multiple tools and samples in a single report. Bioinformatics.
2016;32(19):3047–3048. doi:10.1093/bioinformatics/btw354.

20. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
sequence data. Bioinformatics. 2014;30:2114–2120.
doi:10.1093/bioinformatics/btu170.

21. Martin M. Cutadapt removes adapter sequences from high-throughput
sequencing reads. EMBnetjournal. 2011;17(1):10–12. doi:10.14806/ej.17.1.200.

22. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic
datasets. Bioinformatics (Oxford, England). 2011;27:863–4.
doi:doi:10.1093/bioinformatics/btr026.

23. Krueger F, Frankie J, Ewels P, Afyounian E, Schuster-Boeckler B. A wrapper
around Cutadapt and FastQC to consistently apply adapter and quality trimming
to FastQ files, with extra functionality for RRBS data;. Available from:
https://github.com/FelixKrueger/TrimGalore.

24. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
ultrafast universal RNA-seq aligner. Bioinformatics. 2012;29(1):15–21.
doi:10.1093/bioinformatics/bts635.

25. TopHat2: accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome Biology. 2013;14.
doi:10.1186/gb-2013-14-4-r36.

26. Bowtie 2: fast and sensitive read alignment;. Available from:
http://bowtie-bio.sourceforge.net/bowtie2/news.shtml.

March 10, 2022 23/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://github.com/FelixKrueger/TrimGalore
http://bowtie-bio.sourceforge.net/bowtie2/news.shtml
https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


27. Langmead B. BenLangmead/bowtie2; 2021. Available from:
https://github.com/BenLangmead/bowtie2.

28. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics. 2010;26:589–95. doi:10.1093/bioinformatics/btp698.

29. Picard toolkit; 2018. http://broadinstitute.github.io/picard/.

30. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26(6):841–842.
doi:10.1093/bioinformatics/btq033.

31. Putri GH, Anders S, Pyl PT, Pimanda JE, Zanini F. Analysing high-throughput
sequencing data in Python with HTSeq 2.0; 2021.

32. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
Sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25(16):2078–2079. doi:10.1093/bioinformatics/btp352.

33. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A
framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nature Genetics. 2011;43(5):491–498. doi:10.1038/ng.806.

34. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Research.
2010;38(16):e164–e164. doi:10.1093/nar/gkq603.

35. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G,
et al. Integrative genomics viewer. Nature Biotechnology. 2011;29:24–26.
doi:/10.1038/nbt.1754.

36. Karimzadeh M, Hoffman MM. Top considerations for creating bioinformatics
software documentation. Briefings in Bioinformatics. 2018;19(4):693–699.
doi:10.1093/bib/bbw134.

37. Hatem A, Bozdag D, Toland AE, Catalyurek UV. Benchmarking short sequence
mapping tools. BMC Bioinformatics. 2013;14(1):184.
doi:10.1186/1471-2105-14-184.

38. Cashman MM, B Cohen M, Ranjan P, Cottingham RWO. Navigating the maze:
the impact of configurability in bioinformatics software; 2018. Available from:
https://www.osti.gov/biblio/1471835.

39. List of sequence alignment software; 2020. Available from:
https://en.wikipedia.org/w/index.php?title=List_of_sequence_

alignment_software&oldid=992887942.

40. Bourque P, Fairley RE. SWEBOK: guide to the software engineering body of
knowledge. IEEE Computer Society; 2014.

41. Riaz M, Mendes E, Tempero E. A systematic review of software maintainability
prediction and metrics. In: 2009 3rd International Symposium on Empirical
Software Engineering and Measurement; 2009. p. 367–377.

42. Chen C, Alfayez R, Srisopha K, Boehm B, Shi L. Why Is It Important to
Measure Maintainability and What Are the Best Ways to Do It? In: 2017
IEEE/ACM 39th International Conference on Software Engineering Companion
(ICSE-C); 2017. p. 377–378.

March 10, 2022 24/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://github.com/BenLangmead/bowtie2
http://broadinstitute.github.io/picard/
https://www.osti.gov/biblio/1471835
https://en.wikipedia.org/w/index.php?title=List_of_sequence_alignment_software&oldid=992887942
https://en.wikipedia.org/w/index.php?title=List_of_sequence_alignment_software&oldid=992887942
https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


43. Münch J, Armbrust O, Kowalczyk M, Soto M. Software Process Definition and
Management. The Fraunhofer IESE Series on Software and Systems Engineering.
Springer Berlin Heidelberg; 2012. Available from:
http://link.springer.com/10.1007/978-3-642-24291-5.

44. Singh B, Gautam S. The Impact of Software Development Process on Software
Quality: A Review. In: 2016 8th International Conference on Computational
Intelligence and Communication Networks (CICN). IEEE; 2016. p. 666–672.
Available from: https://ieeexplore.ieee.org/document/8082729/.

45. van Emden E, Moonen L. Java quality assurance by detecting code smells. In:
Ninth Working Conference on Reverse Engineering, 2002. Proceedings. IEEE
Comput. Soc; 2002. p. 97–106. Available from:
http://ieeexplore.ieee.org/document/1173068/.

46. Yamashita A, Moonen L. Do developers care about code smells? An exploratory
survey. In: 2013 20th Working Conference on Reverse Engineering (WCRE);
2013. p. 242–251.

47. Palomba F, Bavota G, Penta MD, Oliveto R, Poshyvanyk D, Lucia AD. Mining
Version Histories for Detecting Code Smells. IEEE Transactions on Software
Engineering. 2015;41(5):462–489. doi:10.1109/TSE.2014.2372760.

48. Brown N, Cai Y, Guo Y, Kazman R, Kim M, Kruchten P, et al. Managing
technical debt in software-reliant systems. In: Proceedings of the FSE/SDP
workshop on Future of software engineering research. FoSER ’10. Association for
Computing Machinery; 2010. p. 47–52. Available from:
https://doi.org/10.1145/1882362.1882373.

49. Kruchten P, Nord RL, Ozkaya I. Technical Debt: From Metaphor to Theory and
Practice. IEEE Software. 2012;29(6):18–21. doi:10.1109/MS.2012.167.

50. Saarimaki N, Baldassarre MT, Lenarduzzi V, Romano S. On the Accuracy of
SonarQube Technical Debt Remediation Time. In: 2019 45th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA); 2019. p.
317–324.

51. Marcilio D, Bonifácio R, Monteiro E, Canedo E, Luz W, Pinto G. Are Static
Analysis Violations Really Fixed? A Closer Look at Realistic Usage of
SonarQube. In: 2019 IEEE/ACM 27th International Conference on Program
Comprehension (ICPC); 2019. p. 209–219.

52. Lenarduzzi V, Lomio F, Huttunen H, Taibi D. Are SonarQube Rules Inducing
Bugs? In: 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER); 2020. p. 501–511.

53. Requests: HTTP for Humans;. Available from:
https://docs.python-requests.org/en/master/.

54. Almarimi N, Ouni A, Mkaouer MW. Learning to detect community smells in
open source software projects. Knowledge-Based Systems. 2020;204:106201.
doi:10.1016/j.knosys.2020.106201.

55. Tamburri DA, Palomba F, Kazman R. Exploring Community Smells in
Open-Source: An Automated Approach. IEEE Transactions on Software
Engineering. 2021;47(3):630–652. doi:10.1109/TSE.2019.2901490.

March 10, 2022 25/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

http://link.springer.com/10.1007/978-3-642-24291-5
https://ieeexplore.ieee.org/document/8082729/
http://ieeexplore.ieee.org/document/1173068/
https://doi.org/10.1145/1882362.1882373
https://docs.python-requests.org/en/master/
https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/


56. Mölder F, Jablonski KP, Letcher B, Hall MB, Tomkins-Tinch CH, Sochat V, et al.
Sustainable data analysis with Snakemake [version 2; peer review: 2 approved].
F1000Research. 2021;10. doi:https://doi.org/10.12688/f1000research.29032.2.

57. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C.
Nextflow enables reproducible computational workflows. Nature Biotechnology.
2017;35:316–319. doi:doi:10.1038/nbt.3820.

58. Bioinformatics Explained;. Available from: https://www.biostars.org/.

59. The world’s largest programming community;. Available from:
https://stackexchange.com/.

60. Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, et al. The
Galaxy platform for accessible, reproducible and collaborative biomedical
analyses: 2018 update. Nucleic Acids Research. 2018;46:W537–W544.
doi:doi:10.1093/nar/gky379.

61. Martin RC. Clean code: a handbook of agile software craftsmanship. Prentice
Hall; 2009.

62. design - What is the ideal length of a method for you?;. Available from:
https://softwareengineering.stackexchange.com/questions/133404/

what-is-the-ideal-length-of-a-method-for-you.

63. Preston-Werner T. Semantic Versioning 2.0.0;. Available from:
https://semver.org/.

64. Anaconda Software Distribution; 2020. Available from:
https://docs.anaconda.com/.

65. Rajlich VT, Bennett KH. A staged model for the software life cycle. Computer.
2000;33(7):66–71. doi:10.1109/2.869374.

66. Freire S, Rios N, Mendonça M, Falessi D, Seaman C, Izurieta C, et al. Actions
and impediments for technical debt prevention: results from a global family of
industrial surveys. In: Proceedings of the 35th Annual ACM Symposium on
Applied Computing. SAC ’20. Association for Computing Machinery; 2020. p.
1548–1555. Available from: https://doi.org/10.1145/3341105.3373912.

67. Lacerda G, Petrillo F, Pimenta M, Guéhéneuc YG. Code smells and refactoring:
A tertiary systematic review of challenges and observations. Journal of Systems
and Software. 2020;167:110610. doi:10.1016/j.jss.2020.110610.

68. Silva MCO, Valente MT, Terra R. Does Technical Debt Lead to the Rejection of
Pull Requests? arXiv:160401450 [cs]. 2016;.

69. Berg J, Gralen E. The Effects of Continuous Code Inspection on Code Quality.
Lund University, EDAN80 - Coaching of programming teams; p. 8.

70. Lacan O. Keep a Changelog;. Available from:
https://keepachangelog.com/en/1.0.0/.

March 10, 2022 26/26

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483804doi: bioRxiv preprint 

https://www.biostars.org/
https://stackexchange.com/
https://softwareengineering.stackexchange.com/questions/133404/what-is-the-ideal-length-of-a-method-for-you
https://softwareengineering.stackexchange.com/questions/133404/what-is-the-ideal-length-of-a-method-for-you
https://semver.org/
https://docs.anaconda.com/
https://doi.org/10.1145/3341105.3373912
https://keepachangelog.com/en/1.0.0/
https://doi.org/10.1101/2022.03.10.483804
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	Characterization of ngs tools
	Data collection for RQ2 and RQ3
	Static code analysis
	Development activity

	Results
	Characterisation of ngs tools
	Software and Process Quality of Mappers
	Software Maintainability
	Process Quality

	Evolution of Maintainability

	Discussion
	Software quality characteristics of selected tools used in HTS workflows
	Maintainability of selected alignment tools
	Improving the Development Process

	Conclusion

