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Abstract  
Summary: To facilitate the biological interpretation of omics data, we developed a general omics data 

visualization platform termed omicsViewer, enabling interactive visualization of statistical results and 

performing downstream analyses directly in response to features and samples selected. Multiple 

hypotheses and parameters can be evaluated in a few clicks. In addition, users can share the platform 

and statistical results with collaborators and the public in different ways.  

Availability and Implementation:  

The project page is https://github.com/mengchen18/omicsViewer  

Contact: chen.meng@tum.de 

Introduction 
Thanks to the development of high throughput technologies such as next-generation sequencing and 

mass spectrometry, biology has transformed into a data-driven science exploiting the richness of omics 

data. The experimental design in the field has evolved from the simple "single-contrast" design to more 

complex designs, e.g., "multi-contrast" designs where multiple factors and their interactions are of 

interest. Some studies do not even have a clear pre-defined contrast, such as the Cancer Genome Atlas 

(TCGA)(“The Cancer Genome Atlas Program,” n.d.) and Clinical Proteomic Tumor Analysis Consortium 

(CPTAC)(Ellis et al. 2013). Usually, researchers measure multiple omics data over a large number of 

samples and use a wide range of phenotypic/clinical variables for data interpretation. The overall aim of 

these studies is to define cancer subtypes and elucidate biomarkers associated with clinical factors, such 

as responses to therapies, prognosis, etc. The biological interpretation of such omics data requires 

advanced statistical methods with fine-tuned parameters. However, thorough exploration of statistical 

results and evaluation of analysis parameters is often hampered by the high dimensionality of omics and 

phenotypic data. This process is even more challenging in projects with a highly collaborative 

environment where scientists from different backgrounds cooperate closely. Recently, the importance 

of interactive visualization of omics data was well recognized and several interactive tools have been 

developed, for example, the iSEE package (Rue-Albrecht et al. 2018) for the quick check of single or 

multiple omics data, MatrixQCvis (Naake and Huber 2021) for evaluating data quality and normalization 

methods, or VolcaNoseR (Goedhart and Luijsterburg 2020) for exploring volcano plots. In this work, we 

developed a general omics data visualization platform called "omicsViewer". It is featured as interactive 

visualizations of advanced statistical results, links expression with phenotypic data, and performs 

downstream analyses on the fly in response to the selection of features and samples.  

Design concept 
 SummarizedExperiment-centric. omicsViewer visualizes Bioconductor S4 class 

SummarizedExperiment (or ExpressionSet), which usually consists of three matrix-like objects: i) 
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an expression matrix resulting from an omics study; ii) meta information of samples (referred to 

as phenotypic data); iii) meta information of features (referred to as feature data) of the 

expression matrix. The statistical results are usually stored in the phenotypic and feature data 

and will be visualized upon the selection by users. 

 Calculated in R and visualized in Shiny. The object to be visualized by omicsViewer is prepared 

in R statistical environment (Computing and Others 2013). This guarantees maximum flexibility 

in the statistical analysis. Additionally, the package provides convenience functions for the most 

frequently used statistical methods in omics data analysis: t-test, correlation test, PCA, gene set 

annotation, and outlier analysis. Once the object is prepared, the visualization is powered by 

Shiny and Plotly, and no coding is needed. Therefore, users can easily explore statistical results 

interactively. For example, p-values and fold changes could be calculated and stored in the 

feature data. The shinyapp users can visualize features using the two variables in a volcano plot. 

Users may cluster samples and later use the cluster assignment to annotate or sort columns of a 

heatmap.  

 On-the-fly downstream analysis. In omicsViewer different types of downstream analysis can be 

performed according to the selected samples (or features) and phenotypic variables. For more 

information, see "The user interface" section. 

 Extendable. Advanced users can customize or create new analyses and visualizations to be 

integrated into the current scheme. Therefore, it is possible to include extra analyses for in-

depth analysis of a particular field of omics studies, such as multi-omics integration, single-cell 

omics experiment, or post-translation modification experiments. 

 The flexibility of result delivery. omicsViewer can be started inside an R environment, hosted 

on a shiny server to be accessed by the public or internal users, or be included in a standalone 

data package to be shared with collaborators or submitted to journals as supplementary data. 

The user interface 
The layout of omicsViewer comprises two parts. The left panel versatile visualizes the expression matrix 

and meta information of features and samples, and it serves as a "feature/sample selector". A subset of 

features and samples can be selected interactively and passed to the right panel. Then different types of 

downstream analysis, such as survival analysis and gene set analysis, can be performed based on the 

selected features or samples. Therefore, any variables useful for prioritizing features or samples should 

be stored in the feature and phenotypic data. The left panel uses four types of visualizations: 

 A Scatter Plot is used when two quantitative variables are selected. For example, two principal 

components could be selected to visualize the similarity of samples from a given data set. In the 

two groups comparison, features can be visualized using a volcano plot, where fold changes are 

on the x-axis and logarithm transformed p-values on the y-axis (Figure 1A and B). 

 Beeswarm Plot (Wilkinson 1999) is used to visualize a quantitative variable versus a categorical 

variable, e.g., group tumor samples according to the subtypes. Beeswarm plot, rather than 

boxplot, is used to guarantee that users can select every individual sample or feature. 

 Heatmap is used to visualize the expression matrix. Here the rows are features and columns are 

samples. The interactive heatmap allows users to add annotation variables on the rows and 

columns as color bars or barplot, reorder rows and columns according to external variables, and 

zoom in on a specific area in the plot (Figure 1C). 
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 Interactive Tables are used to show all data within omicsViewer. Tables are automatically 

updated upon the selection of features or samples.  

The analyses performed on the right panel when features are selected: 

 Significance test of mean expression in two groups: If a single feature and a categorical 

phenotypic variable are selected, users can perform a Student t-test and Wilcox-test to test 

whether the mean expression of the feature is significantly different between any two groups in 

the phenotypic variable (Figure 1D).  

 Test of linear correlation: If a single feature and a quantitative phenotypic variable are selected, 

the correlation of feature expression and the selected variable will be shown as a scatter plot. 

The significance test is performed using the correlation test (Figure 1E). 

 Over-representation analysis: If users annotated features with gene set information, an over-

representation analysis can be performed using Fisher's exact test upon the selection of multiple 

features. The selected features are s the "feature of interest", e.g., features most differentially 

expressed in two-conditions experimental design. All identified features are the background. In 

addition, annotations will be listed in a separate table for reference. 

 Fast Gene Set Enrichment Analysis (fGSEA): This analysis does not depend on the feature 

selection on the left panel. Instead, the fGSEA algorithm (Korotkevich et al. 2016) requires a 

ranking statistic, e.g., a principal component or fold-change comparison between two groups, to 

be specified on the right panel (Figure 1F). 

 Protein-Protein Interaction Networks: Multiple selected features can be used to query the 

STRING database (Szklarczyk et al. 2021) for protein interaction analysis (Figure 1G). This 

function requires that features annotated with IDs acceptable for a STRING database query, e.g. 

gene symbol or UniProt IDs. 

 Geneshot: Geneshot is a service that associates genes with biomedical terms (Lachmann et al. 

2019) (Figure 1H). But unlike enrichment analysis, it allows free term searches. The associations 

between genes and terms are ranked, thus, it is sometimes more helpful to prioritize interesting 

candidate features. 

 Sequence logo: If features are annotated with amino acid sequences and the base sequences of 

nucleic acids, a seqLogo (Wagih 2017) can be displayed based on the selected features (Figure 

1I). 

Analyses to be performed when a subset of samples are selected: 

 When users select a categorical phenotypic variable, its association with the selected or 

unselected samples is tested using the Chi-square test and Fisher’s exact test (Figure 1J). 

 When a quantitative phenotypic variable is selected, t-test and Wilcox-test are performed to 

examine whether the mean of the selected variable is significantly different between the 

selected and unselected samples (Figure 1K). 

 When a variable for survival analysis is selected, Kaplan-Maier (KM) curves stratified by the 

selection of samples are shown. A log-rank test is used to test whether the selected and 

unselected samples have significantly different survival expectations (Figure 1L). 
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Figure 1 – Example visualizations in omicsViewer. (A-C) Visualization used in the left panel. (A) 

Visualizing features in a volcano plot; (B) Visualizing samples using the first two principal components; 

(C) Heatmap shows the expression matrix. (D-I) Visualizations used in the right panel when features are 

selected. (D) Beeswarm plot shows the gene expression (x-axis) separated by a categorical variable (y-

axis); (E) Scatter plot shows the correlation of two quantitative variables; (F) Visualization of fGSEA 

results: the rank statistic is sorted and shown as the solid curve, vertical gray bars shows genes 

annotated with a gene set term, red vertical lines mark the leading edge genes; (G) Example network 

returned by STRING database query; (H) Scatter plot shows the result returned by geneshot: points are 

genes, the x-axis shows the number of publication associated with a gene, and the y-axis shows the 

proportion of these publications also associated with the searched term. The most interesting genes are 

the ones on the top right corner. (I) An example sequence logo generated based on selected features. (J-

L) Visualizations used in the right panel when samples are selected.  (J) Examples tables show the results 

of chi-square and Fisher’s exact tests. (K) Beeswarm plot shows how a quantitative phenotypic variable 

differs between selected and unselected samples. (L) An example KM curve shows how the survival time 

is different between selected and unselected samples. 
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