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Abstract Much research focuses on how the basal ganglia (BG) and dopamine (DA) contribute8

to reward-driven behavior. But BG circuitry is notoriously complex, with two opponent pathways9

interacting via several disinhibitory mechanisms, which are in turn modulated by DA. Building on10

earlier models, we propose a new model, OpAL*, to assess the normative advantages of such11

circuitry in cost-benefit decision making. OpAL* dynamically modulates DA as a function of12

learned reward statistics, differentially amplifying the striatal pathway most specialized for the13

environment. OpAL* exhibits robust advantages over traditional and alternative BG models14

across a range of environments, particularly those with sparse reward. These advantages depend15

on opponent and nonlinear Hebbian plasticity mechanisms previously thought to be pathological.16

Finally, OpAL* captures patterns of risky choice arising from manipulations of DA and17

environmental richness across species, suggesting that such choice patterns result from a18

normative biological mechanism.19

20

Everybody wants the most they can possibly get21

For the least they can possibly do22

– Todd Snider, "Easy Money"23

Introduction24

Everyday choices involve integrating and comparing the subjective benefits and costs of potential25

actions. Moreover, the degree to which one prioritizes costs or benefits may vary between and26

even within individuals. For example, one may typically use food preference to guide their choice27

of restaurant, but be more likely to minimize costs (e.g., speed, distance, price) when only low28

quality options are available (only fast-food restaurants are open). In this paper, we evaluate the29

computational advantages of such context-dependent choice strategies and how they may arise30

from biological properties within the basal ganglia (BG) and dopamine (DA) system. We find that31

biological properties within this system – specifically, the presence of opponent striatal pathways,32

nonlinear Hebbian plasticity, and dynamic changes in dopamine as a function of reward history33

– confer decision making advantages relative to canonical reinforcement learning models lacking34

these properties.35

In neural network models of such circuitry, the cortex "proposes" candidate actions available36

for consideration, and the BG facilitates those that are most likely to maximize reward and min-37

imize cost (Frank, 2005; Ratcliff and Frank, 2012; Franklin and Frank, 2015; Gurney et al., 2015;38

Dunovan and Verstynen, 2016). These models are based on the BG architecture in which striatal39
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medium spiny neurons (MSNs) are subdivided into two major populations that respond in oppo-40

nent ways to DA (due to differential expression of D1 and D2 receptors; Gerfen (1992)). Phasic DA41

signals convey reward prediction errors (Montague et al., 1996; Schultz et al., 1997), amplifying42

both activity and synaptic learning in D1 neurons, thereby promoting action selection based on43

reward. Conversely, when DA levels drop, activity is amplified in D2 neurons, promoting learning44

and choice that minimizes disappointment (Frank, 2005; Iino et al., 2020).45

Empirically, the BG and DA have been strongly implicated in such motivated action selection46

and reinforcement learning across species. For example, in perceptual decisions, striatal D1 and47

D2 neurons combine information about veridical perceptual data with internal preferences based48

on potential reward, causally influencing choice toward the more rewarding options (Doi et al.,49

2020; Bolkan et al., 2022). Further, striatal DA manipulations influence reinforcement learning50

(Yttri and Dudman, 2016; Frank et al., 2004; Pessiglione et al., 2006a), motivational vigor (Niv et al.,51

2007; Beeler et al., 2012;Hamid et al., 2015), cost-benefit decisions about physical effort (Salamone52

et al., 2018) and risky decision making. Indeed, as striatal DA levels rise, humans and animals are53

more likely to select riskier options that offer greater potential payout than those with certain but54

smaller rewards (St Onge and Floresco, 2009; Zalocusky et al., 2016; Rutledge et al., 2015), an effect55

that has been causally linked to striatal D2 receptor-containing subpopulations (Zalocusky et al.,56

2016).57

However, for the large part, this literature has focused on the findings that DA has opponent58

effects on D1 and D2 populations and behavioral patterns, and not what the computational advan-59

tage of this scheme might be (i.e., why). For example, the Opponent Actor Learning (OpAL) model60

(Collins and Frank, 2014) summarizes the core functionality of the BG neural network models in61

algorithmic form, capturing a wide variety of findings of DA and D1 vs D2 manipulations across62

species (for review, Collins and Frank (2014); Maia and Frank (2017)). Two distinguishing features63

of OpAL (and its neural network inspiration), compared to more traditional RL models, are that (i)64

it relies on opponent D1/D2 representations rather than a single expected reward value for each65

action and (ii) learning in such populations is acquired through nonlinear dynamics, mimicking66

three-factor hebbian plasticity rules. This nonlinearity causes the two populations to evolve to67

specialize in discriminating between options of high or low reward value, respectively Collins and68

Frank (2014). It is also needed to explain pathological conditions such as learned Parkinsonism,69

whereby low DA states induce hyperexcitability in D2 MSNs, driving aberrant plasticity and in turn,70

progression of symptoms (Wiecki et al., 2009; Beeler et al., 2012).71

But why would the brain develop this nonlinear opponent mechanism for action selection and72

learning, and how could (healthy) DA levels be adapted to capitalize on it? A clue to this question lies73

in the observation that standard (non-biological) RLmodels typically performworse at selecting the74

optimal action in "lean environments"with sparse rewards than they do in "rich environments"with75

plentiful rewards (Collins and Frank, 2014). This asymmetry results fromadifference in exploration76

/ exploitation tradeoffs across such environments. In rich environments, an agent can benefit77

from overall higher levels of exploitation: once the optimal action is discovered, an agent can stop78

sampling alternative actions as it is not important to know their precise values. In contrast, in lean79

environments, choosing the optimal action typically lowers its value (due to sparse rewards), to the80

point that it can drop below those of even more suboptimal actions. Higher levels of exploration81

are therefore needed to accurately learn the value of the worse options in order to avoid them82

more reliably in the long run. Moreover, while in computer science applications one might be able83

to simply tune hyperparameters of an RL model for a given environment, ecologically, an agent84

cannot know whether it is in a rich or lean environment in advance.85

In this paper, we investigate the utility of nonlinear basal ganglia opponency for adaptive behav-86

ior in rich and lean environments. We propose a new model, OpAL*, which (as observed empiri-87

cally; Hamid et al. (2015)) dynamically adapts its dopaminergic state online as a function of learned88

reinforcement statistics of the environment. Specifically, OpAL*modulates its dopaminergic states89

in proportion to its estimates of "environmental richness", leading to dynamically evolving high DA90
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motivational states in rich environments and lower DA states in lean environments with sparse91

rewards. This dynamic modulation amplifies the D1 or D2 actor most well suited to discriminate92

amongst benefits or costs of choice options for the given environment, akin to an efficient coding93

strategy. We compared the performance of OpAL* to several baseline models (including alterna-94

tive formulations of striatal opponency;Möller and Bogacz (2019)), to specifically test the need for95

the biological mechanisms in support of adaptive behavior. We find that OpAL* optimizes action96

selection across a range of environments with varying reward rates and complexity levels, and97

across a wide range of parameter settings. This advantage depends on opponency, nonlinearity,98

and adaptive DA modulation and is most prominent in lean environments, an ecologically prob-99

able environment which requires more adaptive navigation of explore-exploit as outlined above.100

OpAL* also addresses limitations of the original OpAL model highlighted by Möller and Bogacz101

(2019), while retaining key properties needed to capture a range of empirical data and afford the102

normative advantages. Finally, we apply OpAL* to capture a range of empirical data across species,103

including how risk preference changes as a function of D2 MSN activity and manipulations that104

are not explainable by monolithic RL systems even when made sensitive to risk (Zalocusky et al.,105

2016). In humans, we show that OpAL* can reproduce patterns in which dopaminergic drug ad-106

ministration selectively increases risky choices for gambles with potential gains (Rutledge et al.,107

2015). Moreover, we show that even in absence of biological manipulations, OpAL* also accounts108

for recently described economic choice patterns as a function of environmental richness. In par-109

ticular, we simulate data showing that when offered the very same safe and risky choice option,110

humans are more likely to gamble when that offer had been presented in a the context of a richer111

reward distribution (Frydman and Jin, 2021). Taken together, our simulations provide a clue as to112

the normative function of the biology of RL which differs from that assumed by standard models113

and gives rise to variations in risky decision making.114

OpAL overview115

Before introducing OpAL*, we first provide an overview of the original OpAL model (Collins and116

Frank, 2014), an algorithmic model of the basal ganglia whose dynamics mimic the differential117

effects of dopamine in the D1/D2 pathways described above. OpAL is a modified "actor-critic"118

architecture (Sutton and Barto, 2018). In the standard actor-critic, the critic learns the expected119

value of an action from rewards and punishments and reinforces the actor to select those actions120

that maximize rewards. Specifically, after selecting an action (𝑎), the agent experiences a reward121

prediction error (𝛿) signaling the difference between the reward received (𝑅) and the critic’s learned122

expected value of the action (𝑉𝑡(𝑎)) at time 𝑡:123

𝛿𝑡 = 𝑅𝑡 − 𝑉𝑡(𝑎) (1)
𝑉𝑡+1(𝑎) = 𝑉𝑡(𝑎) + 𝛼 × 𝛿𝑡, (2)

where 𝛼 is a learning rate. The actor then selects actions based on their relative action propen-124

sities, using a softmax decision rule:125

𝑝(𝑎) = 𝑒𝐴𝑐𝑡𝑡(𝑎)
∑

𝑖∈𝐴 𝑒𝐴𝑐𝑡𝑡(𝑖)
, (3)

where 𝐴𝑐𝑡 values are updated as a function of reward prediction errors in the critic, such that126

the agent selects those actions that yield the most frequent positive RPEs. OpAL is distinguished127

from a standard actor-critic in two critical ways, motivated by the biology summarized above. First,128

it has two separate opponent actors: one promoting selection ("Go") of an action 𝑎 in proportion129

to its relative benefit over alternatives, and the other suppressing selection of that action ("NoGo")130
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in proportion to its relative cost (or disappointment). 1 Second, the update rule in each of these131

actors contains a three-factor Hebbian rule such that weight updating is proportional not only to132

learning rates and RPEs (as in standard RL) but is also scaled by𝐺𝑡 and𝑁𝑡 themselves. In particular,133

positive RPEs conveyed by phasic DA bursts strengthen the 𝐺 (D1) actor and weaken the 𝑁 (D2)134

actor, whereas negative RPEs weaken the D1 actor and strengthen the D2 actor.135

𝐺𝑡+1(𝑎) = 𝐺𝑡(𝑎) + 𝛼𝐺𝐺𝑡(𝑎) × 𝛿𝑡 (4)
𝑁𝑡+1(𝑎) = 𝑁𝑡(𝑎) + 𝛼𝑁𝑁𝑡(𝑎) × −𝛿𝑡 (5)

where 𝛼𝐺 and 𝛼𝑁 are learning rates controlling the degree to which D1 and D2 neurons adjust their136

synaptic weights with each RPE. We will refer to these 𝐺𝑡 and𝑁𝑡 terms that multiply the RPE in the137

update as the "Hebbian term", because weight changes grow with activity in the corresponding 𝐺138

and𝑁 units. As such, the𝐺weights grow to represent the benefits of candidate actions (those that139

yield positive RPEs more often, thereby making them yet more eligible for learning), whereas the140

𝑁 weights grow to represent the costs or likelihood of disappointment (those that yield negative141

RPEs more often).142

The resulting nonlinear dynamics capture biological plasticity rules in neural networks, where143

learning depends on dopamine (𝛿𝑡), presynaptic activation in the cortex (the proposed action 𝑎 is se-144

lectively updated), and postsynaptic activation in the striatum (𝐺𝑡 or𝑁𝑡) (Frank, 2005;Wiecki et al.,145

2009; Beeler et al., 2012; Gurney et al., 2015; Frémaux and Gerstner, 2016; Reynolds and Wickens,146

2002). Incorporation of this Hebbian term prevents redundancy in the D1 vs D2 actors and confers147

additional flexibility, as described in the next section. It is also necessary for capturing a variety148

of behavioral data, including those associated with pathological aberrant learning in DA-elevated149

and depleted states, whereby heightened striatal activity in either pathway amplifies learning that150

escalates over experience (Wiecki et al., 2009; Beeler et al., 2012; Collins and Frank, 2014).151

For action selection (decision-making), OpAL combines together 𝐺𝑡(𝑎) and 𝑁𝑡(𝑎) into a single152

action value, 𝐴𝑐𝑡(𝑎), but where the contributions of each opponent actor are weighted by corre-153

sponding gains 𝛽𝑔 and 𝛽𝑛.154

𝐴𝑐𝑡𝑡(𝑎) = 𝛽𝑔𝐺𝑡(𝑎) − 𝛽𝑛𝑁𝑡(𝑎) (6)
𝛽𝑔 = 𝛽(1 + 𝜌) (7)
𝛽𝑛 = 𝛽(1 − 𝜌) (8)

(9)

Here, 𝜌 reflects the (dopaminergic state) controlling the relative weighting of 𝛽𝑔 and 𝛽𝑛, and 𝛽 is155

the overall softmax temperature. Higher 𝛽 values correspond to higher exploration, while 𝛽 = 0156

would generate random choice independent of learned values. When 𝜌 = 0, the dopaminergic157

state is "balanced" and the two actors 𝐺 and𝑁 (and hence, learned benefits and costs) are equally158

weighted during choice. If 𝜌 > 0, benefits are weighted more than costs, and vice-versa if 𝜌 < 0.159

While the original OpAL model assumed a fixed, static 𝜌 per simulated agent to capture individual160

differences or pharmacologicalmanipulations, belowwe augmented it to include the contributions161

of dynamic changes in dopaminergic state, so that 𝜌 can evolve over the course of learning to162

optimize choice.163

Nonlinear OpAL dynamics support amplification of action-value differences164

After learning, 𝐺 and 𝑁 weights correlate positively and negatively with expected reward, with ap-165

propriate rankings of each action preserved in the combined action value 𝐴𝑐𝑡 (Collins and Frank,166

1For clarity, "benefits" and "costs" are evaluations relative to the critic’s expectation. The exact numeric value is not inter-
pretable. Rather, high benefits (𝐺) convey that an action is better than expected more often; high costs (𝑁 ) convey that an
action more often disappoints relative to the critic’s expectations.
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2014). Nevertheless, the Hebbian term induces nonlinear dynamics in the two actors such that167

they are not redundant and instead specialize in discriminating between different reward proba-168

bility ranges (Figure 1). While the𝐺 actor shows greater discrimination among frequently rewarded169

actions, the𝑁 actor learns greater sensitivity among actions with sparse reward. Note that if𝐺 and170

𝑁 actors are weighted equally in the choice function (𝜌 = 0), the resultant choice preference is in-171

variant to translations across levels of reward, exhibiting identical discrimination between a 90%172

and 80% option as it would between a 80% and 70% option. This "balanced" OpAL model there-173

fore effectively reduces to a standard non-opponent RL model, but as such, fails to capitalize on174

the underlying specialization of the actors (𝐺 and𝑁 ) in ongoing learning. We considered the possi-175

bility that such specialization could be leveraged dynamically to amplify a given actor’s contribution176

when it is most sensitive, akin to an "efficient coding" strategy (Frydman and Jin, 2021).177

OpAL*178

Given the differential specialization of 𝐺 vs 𝑁 actors, we considered whether the critic’s online179

estimation of environmental richness (reward rate) could be used to control dopaminergic states180

(as seen empirically; (Hamid et al., 2015; Mohebi et al., 2019)). Due to its opponent effects on181

D1 vs D2 populations, such a mechanism would differentially and adaptively weight 𝐺 vs 𝑁 actor182

contributions to the choice policy. To formalize this hypothesis, we constructed OpAL*, which uses183

an online estimation of environment richness to dynamically amplify the contribution of the actor184

theoretically best specialized for the environment type.185

To provide a robust estimate of reward probability in a given environment, OpAL* first replaces186

the standard critic with a Bayesian critic (so that value estimates are updated in proportion to un-187

certainty; see Franklin and Frank (2015) for possible striatal implementations of Bayesian learning188

via cholinergic interactions with dopamine in spiny cells). As such, the probability of reward for189

a given action �̂�(𝑟, 𝑎) is represented by a beta distribution rather than a point estimate. The critic190

then generates a prediction error as the obtained reward relative to the expected value of an ac-191

tion using the mean of the beta distribution, �̂�𝑡(𝑟, 𝑎), multiplied by the magnitude of reward 𝑅𝑚𝑎𝑔192

and loss 𝐿𝑚𝑎𝑔 . Unless otherwise noted, simulations in this paper use 𝑅𝑚𝑎𝑔 = 1 and 𝐿𝑚𝑎𝑔 = 0.193

𝛼𝑐
𝑡+1(𝑎) = 𝛼𝑐

𝑡 (𝑎) + 𝑅𝑡 (10)
𝛽𝑐
𝑡+1(𝑎) = 𝛽𝑐

𝑡 (𝑎) + (1 −𝑅𝑡) (11)
𝑋 ∼ Beta(𝛼𝑐

𝑡 (𝑎), 𝛽
𝑐
𝑡 (𝑎)) (12)

�̂�𝑡(𝑟, 𝑎) = 𝐸[𝑋] (13)
𝑉𝑡(𝑎) = 𝑅𝑚𝑎𝑔 × �̂�𝑡(𝑟, 𝑎) + 𝐿𝑚𝑎𝑔 × (1 − �̂�𝑡(𝑟, 𝑎)), (14)

where 𝛼𝑐 and 𝛽𝑐 are hyperparameters of the beta distribution. This prediction error is then194

used to train the 𝐺 and𝑁 actors, as noted above. OpAL* also uses a beta distribution to estimate195

�̂�𝑡(𝑟) for the environment as a whole (i.e., over all actions), or "state-value", by combining the alpha196

and betas from each action. The dopaminergic state 𝜌 is then increased when �̂�𝑡(𝑟) > .5 (rich en-197

vironment), and decreased when �̂�𝑡(𝑟) < .5 (lean environment). To ensure that dopaminergic states198

accurately reflect environmental richness, we apply a conservative rule to modulate 𝜌 only when199

the critic is sufficiently "confident" that the reward rates are above or below 0.5, that is, we take200

into account not only the mean but also the variance of the beta distribution, parameterized by201

𝜙 (Equation 16). This process is akin to performing inference over the most likely environmental202

state to guide DA.2 Lastly, a constant 𝑘 controls the strength of the modulation (Equation 17)203

2One can adjust DA without the conservative inference process but there is a cost to misestimation of environmental rich-
ness that can arise due to stochasticity in any given environment, which can lead to reliance on the wrong actor; see Appendix.
Although we focus on the Bayesian implementation here, other heuristics for achieving the same desideratum can be applied,
for example waiting a fixed number of trials before changing the dopaminergic state using a standard RL critic. However, us-
ing a beta distribution (whose mean implicitly incorporates uncertainty) and explicitly adapting according to the distributions’
standard deviation isolates whether any differences in performance between OpAL* and a baselinemodel with fixed dopamin-
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(a) Schematic of OpAL dynamics with three-factor Hebbian term. Nonlinear weight updates due to Hebbian factor leads to
increasing discrimination between high reward probability options in the 𝐺 actor and between low reward probability
options in the 𝑁 actor. For intermediate dopamine states (𝐺 and 𝑁 actors are balanced), there is equally sensitive to
differences in reward probability across the range of rich and lean environments. For high dopamine states (𝛽𝑔 > 𝛽𝑛), the
action policy emphasizes differences in benefits (as represented in the D1/"G" weights), whereas in low dopamine states
(𝛽𝑔 < 𝛽𝑛), the action policy emphasizes differences in costs (as represented in the D2/"N" weights).

(b) Schematic of OpAL dynamics without three-factor Hebbian term. Removing nonlinear term in OpAL confers redundancy
in G/N weights, which are anticorrelated and thus cannot be leveraged to promote specialization in different ranges.

Figure 1. Changes in dopaminergic state (represented by the purple indicators) affect the policy of OpAL due
to its nonlinear and opponent dynamics. OpAL* hypothesizes that modulating dopaminergic state by
environmental richness is a normative mechanism for flexible weighting of these representations.
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𝑌 ∼ Beta(𝛼state𝑡 , 𝛽state𝑡 ) (15)

𝑆 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if E[Y] - 𝜙 std(Y) > .5
1 if E[Y] + 𝜙 std(Y) < .5
0 otherwise

(16)

𝜌𝑡 = 𝑆(𝐸[𝑌 ] − .5)𝑘, 𝑘 ≥ 0 (17)

Choice To accommodate varying levels of 𝑘 and to maintain biological plausibility, the contri-204

bution of each actor is lower-bounded by zero – that is, 𝐺 and 𝑁 actors can be suppressed but205

cannot be inverted (firing rates cannot go below zero), while still allowing graded amplification of206

the other subpopulation.207

𝐴𝑐𝑡𝑡(𝑎) = 𝛽𝑔𝐺𝑡(𝑎) − 𝛽𝑛𝑁𝑡(𝑎) (18)
𝛽𝑔 = 𝛽max(0, 1 + 𝜌𝑡) (19)
𝛽𝑛 = 𝛽max(0, 1 − 𝜌𝑡) (20)

Normalization and annealing The original three-factor Hebbian rule presented in Collins and208

Frank (2014) approximates the learning dynamics in the neural circuit models needed to capture209

the associated data and also confers flexibility as described above. However, it is also susceptible210

to instabilities under particular circumstances, as highlighted byMöller and Bogacz (2019). Specifi-211

cally, because weight updating scales with the 𝐺 and 𝑁 values themselves, one can engineer a se-212

ries of outcomes that can cause the weights to decay rapidly toward 0 (see Appendix). To address213

this issue, OpAL* introduces two additional modifications based on both functional and biological214

considerations. Firstly, we apply a transformation to the actor prediction errors such that they215

are normalized by the range of available reward values (see Tobler et al. (2005) for evidence of216

such normalization in dopaminergic signals). Secondly, the actor learning rate is annealed across217

time (see Franklin and Frank (2015) for a plausible circuit mechanism allowing striatal learning to218

stabilize across time, while remaining flexible to change points). These modifications improve the219

robustness of OpAL* and ensure that the actor weights are well-behaved, while preserving the key220

Hebbian features of OpAL (which, as shown below, are needed for its normative advantages). For221

a full discussion on these modifications, see Appendix.222

𝐺𝑡+1(𝑎) = 𝐺𝑡(𝑎) + 𝛼(𝑡)𝐺𝑡(𝑎)𝑓 (𝛿𝑡) (21)
𝑁𝑡+1(𝑎) = 𝑁𝑡(𝑎) + 𝛼(𝑡)𝑁𝑡(𝑎)𝑓 (−𝛿𝑡) (22)

𝛼(𝑡) = 𝛼
1 + 𝑡∕𝑇

(23)

𝑓 (𝑥) =
𝛿𝑡

𝑅𝑚𝑎𝑔 − 𝐿𝑚𝑎𝑔
(24)

Results223

Robust advantages of adaptively modulated dopamine states224

We hypothesized that OpAL* confers adaptive flexibility especially when an agent does not have225

information about the statistics of a novel environment and thus the agent cannot choose its hy-226

perparameters accordingly. In this section, we therefore characterize the robustness of OpAL* ad-227

vantages across a large range of parameter settings. We then explore how such advantages scale228

ergic states were a result of dopamine modulation rather than an ineffective use of the critic (e.g., waiting too few trials) or a
suboptimal critic (e.g., poorly tuned learning rate).
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[DynamicDA, Hebb] 

[StaticDA,Hebb] 

[DynamicDA,NoHebb] 
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Figure 2. Biological mechanisms incorporated in OpAL* support robust advantages over control models
across parameter settings in a reward rich environment (80% vs 70% two-armed bandit) and a lean, sparse
reward environment (30% vs 20% two-armed bandit). Advantages over balanced OpAL model indicate need
for dynamic dopamine modulation. Advantages over No Hebb model indicate the need for the nonlinear
three-factor Hebbian rule (found in Equations 21 and 22). Together, advantages over both control models
also indicate need for opponency, particularly given redundancy in G and N weights in the NoHebb model
(see text, Figs 1 and 6, and additional comparisons to Q learner below). Figure shows area-under-the-curve
(AUC) histograms of average learning curves for all parameters in a grid sweep. Black dots (left figure) indicate
example AUC values which correspond to the shaded region under the respective learning curve (average
softmax probability of selecting the best option, 30%) for each respective model. See Parameter grid search
for more details.
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with complexity in environments with increasing number of choice alternatives. In the subsequent229

section, we illustrate the mechanisms of such effects.230

To specifically assess the benefit of adaptive dopaminergic state modulation, we first consid-231

ered rich (80% vs. 70%) and lean (30% vs. 20%) 2-armed bandit environments. We compared232

OpAL* to two control models to establish the utility of the adaptive dopamine modulation (which233

was not a feature of the original OpALmodel), and to test its dependence on nonlinear Hebbian up-234

dates. More specifically, the OpAL model equally weights benefits and costs throughout learning235

("𝜌 = 0"); as such, any OpAL* improvement would indicate an advantage for dynamic dopaminergic236

modulation. 3 The No Hebbmodel reinstates the dynamic dopaminergic modulation but omits the237

Hebbian term in the three factor learning rule (Equations 21, 22). This model therefore serves as238

a test as to whether any OpAL* improvements depend on the underlying nonlinear actor weights239

produced by the three-factor Hebbian rule. The No Hebb model also serves to compare OpAL*240

to more standard single-actor RL models; removable of the Hebbian term renders each actor re-241

dundant, effectively a single-actor model (See Section Mechanism for more detail). Improvement242

of OpAL* relative to the No Hebb model would therefore suggest an advantage of OpAL* over243

standard actor-critic models (we also test OpAL* against a standard Q-learner below). Importantly,244

models were equated for computational complexity, with modulation hyperparameters (𝜙 and 𝑘)245

of dynamic DA models (OpAL* and No Hebb) held constant (see Methods).246

Following an initial comparison in the simplest two choice learning situation, we tested whether247

OpAL* advantages may be further amplified in more complex environments with multiple choice248

alternatives. We introduced additional complexity into the task by adding varying numbers of alter-249

native suboptimal actions (e.g., an environment with four actions with probability of reward 80%,250

70%, 70%, and 70%). Results were similar for average learning curves and average reward curves;251

we focus on average learning curves as they are a more refined, asymptotically sound measure of252

normative behavior.253

We begin with the results of the two-choice paradigm (80%/70% or 30%/20%). For each param-254

eter combination, we calculated the area under the curve (AUC) of the learning curves and then255

plotted histograms of these AUCs across all parameter sets (Figure 2). The first result that is appar-256

ent is that OpAL* outperforms its balanced OpAL control (𝜌 = 0) especially in the lean (sparse re-257

ward) environment. The mean of the OpAL* distribution is shifted higher and the shape is skewed258

rightward, due to selective improvement ofmoderate performingmodels (Figure 3a). The improve-259

ment is less dramatic in the rich environment, but is still evident and the distributions and more260

condensed around the peak, indicating robustness. Moreover, note that these improvements over261

balanced OpAL provide a lower bound estimate on the advantages of adaptive modulation, given262

that using any other fixed 𝜌 ≠ 0 would perform worse across environments: models with 𝜌 > 0263

perform very poorly in lean environments and those with 𝜌 < 0 perform very poorly in rich envi-264

ronments (see Appendix). Finally, the non-Hebbianmodel performs dramatically worse in the lean265

environment in comparison to both OpAL* and the OpAL model, suggesting that OpAL* advan-266

tages require nonlinear Hebbian updates. Furthermore, we see here that OpAL* outperforms the267

best performing control within each environment alone.268

Overall, these results show an advantage for dynamic dopaminergic states as formulated in269

OpAL* when reward statistics of the environment are unknown. This advantage is particularly270

prominent in the lean (sparse reward) environment, which is computationally more challenging271

and ecologically more realistic than the rich environment. Crucially, dynamic dopaminergic state272

leverages the full potential of opponencyONLYwhen combinedwith three-factor Hebbian learning273

rules, as demonstrated by OpAL*’s advantage over the No Hebb model.274

To statistically investigate where dopaminergic modulation was most advantageous, we per-275

3In our simulations, the OpAL model includes the annealing and normalization additions as discussed in Section OpAL*.
While these featureswere not present in the original version presented in Collins and Frank (2014), we found they are necessary
to address pathological behavior as discussed in Section OpAL* and in the Appendix. The crucial distinction we emphasize
between OpAL and OpAL* is the non-dynamic versus dynamic adaptation of DA, respectively.
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(a) OpAL* improves upon a control model which lacks dynamic modulation (OpAL, 𝜌 = 0), with largest improvement for
moderately performing parameters. Left, Each point represents a single parameter combination and its difference in learning
curve AUCs in OpAL* compared to the OpAL model. Center, average learning curves of the parameter setting which
demonstrates the best improvement of OpAL* over the OpAL model (indicated by the red dot) and the parameter setting
with the best OpAL model performance (indicated by the blue dot). Right, Histogram of the difference in average learning
curve AUCs of the two models with equated parameters. All results also correspond to Figure 2.

(b) Dynamic DA modulation is insufficient to induce performance advantage without three-factor Hebbian learning (No
Hebb). Comparison descriptions analogous to the above. All results also correspond to Figure 2.

Figure 3. Parameter level comparison of OpAL* to a OpAL model and OpAL* to the No Hebb model across a
range of plausible parameterss. Results of two-armed bandit environments – rich (80% vs. 70%) or lean (30%
vs. 20%) – for 100 trials. See Parameter grid search for further details of methods.
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(a) AUC Histogram of average learning curve for various parameter settings in high complexity.

(b) Parameter level comparison of OpAL* to control models in high complexity.

Figure 4. OpAL* robustly outperforms control models in high complexity environments, with lean
environments showing the greatest advantage. Models completed a 6-armed bandit task (with only one
optimal action) for 100 trials. See Parameter grid search for detailed analysis methods.

formed one sample t-tests where the null was zero on the difference between the AUC of OpAL*276

and each control model for every parameter combination over several time horizons (50, 100, 250,277

and 500 trial; see Appendix for details). OpAL* outperformed its OpAL (𝜌 = 0) control and the non-278

Hebbian version across all time horizons (𝑝′𝑠 < 1.0𝑒−47). We can visualize these statistics plotted279

according to the AUC of the controlmodel as well as the frequency of the AUC differences (Figure 3).280

Interestingly, OpAL* advantages over the OpAL model show an inverted-U relationship, whereby281

improvements are most prominent for mid-performing parameter combinations. In contrast, im-282

provements relative to the No Hebb model (Figure 3b) are most prominent for high performing283

baseline parameter combinations.284

OpAL* advantages grow with environmental complexity285

We next explored these effects in progressively more complex environments by increasing the286

number of available choice alternatives, across several time horizons (50, 100, 250, and 500 trials).287

Each complexity level introduced an additional suboptimal action to the rich or lean environment.288

For example, a complexity level of 4 for the lean environment consisted of four options: a higher289
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Figure 5. Advantage of dynamic dopaminergic modulation of OpAL* grows with complexity. Complexity
corresponds to the number of bandits available in the environment (e.g. a 2-armed bandit, which data point
corresponds to Figures 2 and 3, or a 6-armed bandit, which data point corresponds to Figure 4). Values
reported are the average percentage increase of OpAL* learning curve AUC when compared to a OpAL model
with equated parameters. That is, we computed the difference in AUC of OpAL* and OpAL model learning
curves for a fixed parameter normalized by the AUC of the balanced OpAL model. We then averaged this
percentage increase over all parameters in the grid search. Results are shown for 100 trials of learning.

rewarding option (30% probability of reward) and three equivalent lower rewarding options (20%290

probability of reward each).291

OpAL* outperformed the OpAL model (differences in AUCs, 𝑝′𝑠 < 2.0𝑒−60) across all time hori-292

zons and complexity levels. OpAL* also outperformed the non-Hebbian version (𝑝′𝑠 < 1.0𝑒−4), ex-293

cept for the highest complexity rich environments (5 or 6 options) after 500 trials (𝑝′𝑠 > 0.1; OpAL*294

advantages were still significant for lower trial counts).295

We can again visualize these results as AUC histograms for each model (Figure 4a) and as the296

AUC differences between matched parameters (Figure 4b). We visualize the highest complexity297

here for simplicity. As in the two-option results, the benefits of OpAL* are most evident in the298

lean environment (Figure 4a, left). OpAL* shows better performance across a range of parameters299

than control models. OpAL* is also the only model to achieve roughly equivalent performance in300

rich and lean environments in this parameter range. As noted in the introduction, standard RL301

models typically suffer in lean environments due to greater demands on exploration (see below302

for comparisons to more traditional RL models); these simulations show that OpAL* overcomes303

this robustness limitation and that its control models do not. OpAL* also shows less prominent,304

but nevertheless significant, advantages in the rich environment compared to the No-Hebb variant305

(Figure 4a, right), which can be visualized by the histogram of AUC differences between matched306

parameters (Figure 4b, bottom right). In lean environments, OpAL* improvements over the OpAL307

model were most evident for high performing parameter sets (positive trend in the scatter plot).308

Finally, to assess the advantage of dynamic dopamine modulation, we quantified the OpAL*309

improvement over the balanced OpAL model as a function of complexity levels. Notably, OpAL*310

advantages grows monotonically with complexity, roughly doubling from low to high complexity311

levels (Figure 5).312

Mechanism313

How does OpAL* confer such an advantage across environments? To illustrate the mechanism314

underlying this improvement, we considered two inter-related issues. The first issue concerns the315

dynamic leveraging of the nonlinearity in actor weights, and the second addresses theway in which316

the opponentmechanismnavigates a particularly pernicious exploration/exploitation tradeoff that317

arises in lean environments.318

To observe the impact of nonlinearity, we plotted how𝐴𝑐𝑡 values change as a function of reward319

probability and for different DA levels (represented as different colors, Figure 6a). While 𝐴𝑐𝑡 values320

increase monotonically with reward probability, the convexity in the underlying 𝐺 and 𝑁 weights321

(Fig 1a) gives rise to stronger𝐴𝑐𝑡 discrimination betweenmore rewarding options (e.g., 80% vs 70%)322
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(a) OpAL* capitalizes on convexity in actor weights in different environments. Left, Nonlinearity in OpAL* update rule induces
convexity in 𝐴𝑐𝑡 values as a function of reward probability (due to stronger contributions of 𝐺 weights with higher rewards,
and stronger contributions of 𝑁 weights with sparse reward). OpAL* dynamically adjusts its dopaminergic state over the
course of learning as a function of its estimate of environmental richness (indicated by elongated, purple bars), allowing it to
traverse different Act curves (high DA in green emphasises the 𝐺 actor, low DA in orange emphasises the 𝑁 actor). As such,
OpAL* can differentially leverage convexity in 𝐺 or 𝑁 weights, outperforming a "balanced" OpAL model (in yellow) which
equally weighs the two actors (due to static DA). Vertical bars show discrimination between 80% and 70% actions is enhanced
with high dopamine state, whereas discrimination between 20% and 30% actions is amplified for low dopamine. Right, Due to
redundancy in the No Hebb representations, policies are largely invariant to dopaminergic modulation during the course of
learning. 𝐴𝑐𝑡 values are generated by presenting each model with a bandit using a fixed reward probability for 100 trials;
curves are averaged over 5000 simulations.

(b) Linear weight updating (without Hebbian term) induces prolonged policy fluctuations in lean environments, which (after
initial exploration) is overcome by OpAL*. See main text for explanation. Example curves from optimized parameters from
Figure 7 using same random seeds across models.

(c) OpAL* demonstrates reduced policy fluctuations in early learning in sparse reward environments, as indexed by the sign
of the difference between the probability of selecting the optimal action (30%) and the suboptimal action (20%). Higher
standard deviation of this metric indicates more fluctuations in policy. Here we show the histogram of standard deviations of
these signs across 5000 simulations (which correspond to Figure 7), illustrating higher exploration rates in the No Hebb
model.

Figure 6. Overview of OpAL* mechanisms contributing to performance improvement relative to balanced
OpAL and No Hebb variants.
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with higher dopamine levels, and between less rewarding options (e.g., 30% vs 20%) with lower323

dopamine Levels. As the critic converges on an estimate of environmental richness, OpAL* can324

adapt its policy to dynamically emphasize themost discriminative actor (Figure 6a, left). In contrast,325

due the lack of nonlinearity, the No Hebb variant induces redundancy in the 𝐺 and𝑁 weights and326

thus essentially reduces to a standard actor critic agent. As such, dopamine modulation does not327

change its discrimination performance across environments (Figure 6a, right).328

If enhancing discrimination between action values improves performance, why could this not329

be achieved by simply increasing overall exploitation (e.g., softmax gain)? Note that the smooth330

𝐴𝑐𝑡 curves discussed above depend on agents having already been exposed to reward probabilities331

(i.e., they were generated after learning). But as highlighted in the introduction, sparse reward envi-332

ronments typically require higher levels of exploration to accurately estimate action values. Indeed,333

in lean environments, repeated selection of the optimal action often leads to its value decreasing334

below that of suboptimal actions during early learning, causing the agent to switch to those subop-335

timal actions again until they becomeworse, and so on. This effect is evident in the NoHebbmodel,336

which is susceptible to substantial fluctuations in its policy in lean environments (Figures 6b and337

6c). OpAL* overcomes this issue in two ways. First, opponency allows the non-dominant (here, 𝐺)338

actor to contribute early during learning (before 𝑁 weights accumulate), thereby flattening initial339

discrimination and enhancing exploration. Second, the Hebbian nonlinearity ensures that nega-340

tive experiences induce disproportional distortions in 𝑁 weights for the most suboptimal actions341

after they have been explored (Figure 6a), thereby allowing the agent to more robustly avoid them342

(Figures 6b and 6c). By adapting its policy by environmental richness, OpAL* can dynamically lever-343

age this specialization. In sum, OpAL* maintains specialized representations but can dynamically344

modulate when to use them to solve an explore-exploit tradeoff that is especially predominant in345

lean environments.346

We conclude this section by considering whether the above discussion implies OpAL* might347

simply induce a more efficient change from exploration to exploitation across learning, as is some-348

times considered in variants of standard RL. To diagnose whether dynamically modifying the soft-349

max temperature alone is sufficient to improve robustness, we simulated a control variant in which350

both 𝐺 and 𝑁 were dynamically increased together, independent of the sign of 𝜌 (Modulationmodel,351

see Appendix). Importantly, OpAL* outperformed the best-performing Modulation model across352

environments, and demonstrated notable improvement in lean environments. These simulations353

show that while dynamic changes in softmax temperature may be sufficient to improve perfor-354

mance in rich environments, the dynamic shift from one actor to another is integral to flexibility355

across both environments and especially for addressing the limitations of single actor models in356

lean environments. It is plausible that combining approaches (dynamic changes in both 𝛽 modula-357

tion and 𝜌modulation) would show additional improvement. However, our focus is to investigate358

why dopaminergic modulation may be normatively useful and therefore such investigation is be-359

yond the scope of this paper.360

OpAL* outperforms alternative models with optimized parameters361

The above simulations highlighted robustness of OpAL* advantages across large ranges of parame-362

ters using comparisonmodels that are identical in every other respect. We next set out to compare363

OpAL* performance to other alternatives in the literature. For example, while the non-Hebbian364

model was the best control given every other aspect of it was identical to OpAL*, it still comprises365

an actor critic. Any claims that OpAL* confers an advantage should also be compared to the most366

common model-free RL agent, a Q-learner, which also maintains a single expected value across367

options. We also compared OpAL* to an alternative model of D1/D2 opponency Möller and Bo-368

gacz (2019). Given that we are now comparing models of different forms altogether, we optimized369

parameters in each case using gradient descent, thereby allowing each model to exhibit its best370

possible performance. Importantly, to equate degrees of freedom between OpAL and a standard371

Q-learner, DAmodulation (𝜙, k) and annealing (T) parameters of OpAL* variants were held constant372
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during optimization procedures (see Methods).373

To begin, we considered a standard Q learner by optimizing its learning rate and softmax tem-374

peratures, and optimized OpAL* over these same parameters, with both models tested across375

reward rich (80% vs. 70%) and lean (30% vs. 20%) 2-armed bandit environments (Figure 7). Be-376

cause dopaminergic modulation may be most useful when the environment reward statistics are377

unknown, we optimized the parameters across both environments rather than optimized for each378

environment individually.379

We first confirmed that OpAL* exhibits performance improvements over the Q learner in re-380

ward lean environments, and exhibits comparable performance in reward rich environments (see381

also Collins and Frank (2014)). Note that because only the learning rate and softmax temperature382

were optimized in OpAL*4, these simulations provide a lower bound on the potential improvement383

for OpAL*.384

To more specifically assess the benefit of adaptive dopaminergic modulation, we further com-385

pared OpAL* to three additional control models, where each model had its parameters optimized.386

The first model is an alternative to OpAL (but still opponent G/N model) proposed by Möller and387

Bogacz (2019). This model does not include the Hebbian term, but does include a different non-388

linearity which (under some constraints) allows the 𝐺 and 𝑁 weights to converge to the mean389

expected payoffs and costs in the environment. This normative property serves as a useful com-390

parison: once costs and benefits are known, an agent should be able to choose its policy to maxi-391

mize reward. However, in actuality, the convergence to expected payoffs and costs in this model392

depends on having a constrained relationship between parameters optimized by a priori access to393

the distributions of rewards in the environment. Thus we hypothesized that OpAL* could more ro-394

bustly optimize performance across environments with unknown statistics. Moreover, this control395

model serves as another test for the utility of the Hebbian term and the convexity of OpAL* G/N396

weights, as compared to the concave weights in Möller and Bogacz (2019). For completeness, we397

also include the other two OpAL control models from the previous section: the "balanced" (𝜌 = 0)398

OpAL model which lacks dynamic DA and the "No Hebb" OpAL model which omits the Hebbian399

term in the weight update. Because of the redundancy in 𝐺 / 𝑁 weights, the non-Hebbian model400

also serves as another baseline comparison for standard RL models, like Q learning, but with all401

other aspects of the model equated.402

OpAL* outperformed all control models when each of them were optimized (Figure 7). Rela-403

tive to the OpAL model, OpAL* adaptively modulated its choice policy to increase dopamine levels404

(𝜌 > 0) in rich environments, but to decrease dopamine levels (𝜌 < 0) in lean environments (See405

Figure 6a.) Indeed, performance advantages are especially apparent in reward lean environments,406

providing a computational advantage for low dopamine levels that can accentuate differences be-407

tween sparsely rewarded options. Notably, performance advantages in lean environments de-408

pended on the Hebbian term. While other models (including "standard" RL) make qualitative pre-409

dictions that performance should be significantly lower for lean than rich environments, OpAL*410

shows substantially improved performance in lean environments. In line with these qualitative411

patterns of OpAL*, rodents showed equally robust learning in rich environments (90% vs. 50 %412

bandit task) compared to lean environments (50% vs. 10% bandit task) Hamid et al. (2015) (see413

Figure 1d of that paper).414

Finally, the model inMöller and Bogacz (2019) demonstrated poor across-environment perfor-415

mance, performing only slightly above chance in the rich environment. Results are not shown for416

this model as it was not intended to be optimized across diverse environments. (Indeed, as noted417

above, it can perform quite well in any given environment if its parameters are chosen carefully,418

Möller and Bogacz (2019)). We further compared a grid search for the Möller and Bogacz (2019)419

model and again found a detriment in performance relative to OpAL*, with sensitivity to small de-420

viations from its optimal parameter settings in a particular environment. This sensitivity worsened421

4Other parameters were only moderately hand-tuned for reasonable performance. Optimizing only the learning rate and
softmax temperature for both models ensured that the searched parameter space for the models was well-matched.
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Figure 7. Comparison of OpAL* and various control models, each optimized for performance across rich and
lean environments. Each curve is the mean softmax probability of selecting the best action over 5,000
simulations using the optimized parameters. Error bars are standard error of the mean. See Section
Optimized Models in Materials and Methods for details on parameters and optimization procedure.

with complexity, and the model significantly underperformed relative to OpAL* across both envi-422

ronments. Thus, opponency itself is insufficient to capture the proposed advantages of OpAL*.423

OpAL* adaptively modulates risk taking424

Although the above analyses focused on learning effects, the adaptive advantages conferred by425

dopaminergic contribution were mediated by changes in the choice function (weighting of learned426

benefits vs costs), rather than learning parameters per se. We thus next sought to examinewhether427

the same adaptive mechanism could also be leveraged for inferring when it is advantageous to428

make risky choices.429

Models selected between a sure reward and a gamble of twice the value with unknown but430

stationary probability. The sure thing (ST) was considered the default reference point (Kahneman431

and Tversky, 1979), and gamble reward was encoded relative to that; that is, 𝑅mag = +1 if gamble432

was won (gamble received an additional point relative to taking ST) or 𝐿mag = -1 (loss of the ST). In433

high probability gamble states, the probability of reward was drawn uniformly above 50%; in low434

probability gamble states, probability of reward was drawn uniformly below 50%. Models were pre-435

sented with the same gamble for 40 trials. The critic tracked the �̂�(𝑟) of the gamble and modulated436

𝜌 by its estimated expected value, as in Equations 15 through 17. G/N actors then tracked the ac-437

tion value of selecting the gamble. The probability of accepting the gamble was selected using the438

softmax choice function, such that accepting the gamble is more likely as the benefits (G) exceed439

the costs (N). 𝐴𝑐𝑡 definition can be found in Equation 18.440

𝑝(𝑔𝑎𝑚𝑏𝑙𝑒) = 1
1 + 𝑒−𝐴𝑐𝑡(𝑎)

As expected, OpAL*dynamically updated its probability of gambling and improvedperformance441

in comparison to the balanced OpAL, non-modulated model (Figure 8). In states with high prob-442

ability (> 50%), value modulation helped the model infer that the gamble was advantageous. In443

low probability gambles (< 50%), value modulation aided in avoiding the gamble, which was unfa-444

vorable in the limit. Similar results were also obtained using a simpler (non-Bayesian) critic which445

learned only through a TD update rule.446
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Figure 8. Dynamic dopamine modulation by estimated reward probability helps OpAL* decide when it is
beneficial to gamble or to accept a sure reward. 𝛼𝑎 = 1.0, 𝛽 = 1.5, annealing parameter 𝑇 = 10, and modulation
parameters 𝑘 = 20 and 𝜙 = 0. Results were averaged over 5,000 simulated states. Error bars are standard
error of the mean. To limit variance, paired OpAL* and OpAL models were again given the same initial
random seed.

OpAL* captures alterations in risky choice patterns across species447

While all analyses thus far focused on normative advantages, the OpAL* model was motivated by448

biological data regarding the role of dopamine in modulating striatal contributions to cost/benefit449

decision making. We thus sought to examine whether empirical effects of DA and environmental450

richness on risky choice could be captured by OpAL* and thereby viewed as a byproduct of an451

adaptive mechanism. We focused on qualitative phenomena in empirical data sets that are diag-452

nostic of OpAL* properties (and which should not be overly specific to parameter settings) and453

that could not be explained individually or holistically by other models. In particular, we consider454

impacts of optogenetic and drug manipulations of dopamine and stiratal circuitry in rodents and455

humans. We further show that OpAL* can capture economic choice patterns involving manipula-456

tion of environmental reward statistics rather than DA.457

Striatal D2 MSN activity and reward history alters risky choice in rodents458

Perhaps the most germane empirical study to OpAL since the original model was developed is459

that of (Zalocusky et al., 2016), who studied rodent risky choice as it is altered by reward his-460

tory, dopamine manipulation, and striatal activity. Rats repeatedly chose between a certain op-461

tion with a small reward or a gamble for larger reward whose expected value matched that of the462

certain option. Following unsuccessful gambles, they observed increased activity in D2-expressing463

medium spiny neurons (MSNs) in ventral striatum during subsequent decision periods. Recall that464

in OpAL*, reward history alters DA levels which in turn modulate activity in striatal MSNs and ac-465

cordingly cost/benefit choice. In this case, a reduced recent reward history should reduce striatal466

DA, elevate D2 MSN activity, and thus promote choices that avoid costs. Indeed, Zalocusky et al.467

observed that animals were more likely to make a "safe" choice when D2 MSNs were stimulated468

during the choice period, and that endogenously, such safe choices were related to increased D2469

activity and enhanced following unfavorable outcomes. Together, these results suggests an trial-470

to-trial adaptation of choice (rather than learning) driven by changes in D2 activity, akin to OpAL*471

mechanisms. Furthermore, such optogenetic stimulation effects were only seen in animals with a472

baseline preference for risk-seeking; risk-averse animals exhibited no change in behavior with the473

phasic manipulation.474

Note first that these patterns of results are inconsistent with classical models in which striatal475

D2 activity is related only to motor suppression; here the impact of D2 activity is not to suppress476

actions altogether but instead to bias choices toward safe options. Instead, these results are con-477

sistent with OpAL* in which D2 activity is related to promoting actions with lowest perceived cost.478

Indeed, we found that this pattern of results align with the predictions of OpAL* but not alternative479

risk-sensitive models (see below).480

As in previous sections, we encode gamble outcomes relative to the certain option: 𝑅mag = +1481
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Figure 9. Striatal D2 MSN activity and reward history alters risky choice in rodents. Rodents repeatedly selected
between a certain option with low magnitude of reward and a gamble with higher payout when
successful.Left column: Modified figures from Zalocusky et al. (2016). Right column: Model simulations with
OpAL* and Risk-sensitive RL (RSRL). A,B. Both risk-averse and risk-seeking animals are more likely to avoid a
gamble after a gamble "loss" (failure to obtain the large reward). Both OpAL* and RSRL, a standard Q-learner
with different learning rates for positive and negative prediction errors, can capture this trend, via changes in
either choice function (D1 vs D2 MSN contributions) or learning rates, respectively. C,D. D2 MSN activity,
measured via photometry, is larger after a gamble loss (red) than a gamble win (green) during the
subsequent decision period. This pattern is reproduced in OpAL*, whereby D2 MSN activity is influenced by
the product of the 𝑁 weights and the adaptive 𝛽𝑛, which amplifies D2 MSN activity when dopamine levels are
low. The simulation peak represents the average of this product after a loss or after a win, which is carried
over to subsequent choices; error bars reflect SEM across simulations and dynamics before and after peak
were generated by convolving the signal with a sinusoidal kernel for illustrative purposes. E,F. Optogenetic
stimulation of D2 MSNs during the choice period induces risk-aversion selectively in risk-seeking rats. OpAL*
captures this preferential effect by magnifying the effective D2 MSN activity and inducing avoidance primarily
in risk-seeking agents. In contrast, RSRL predicts opposite patterns in risk-seeking and risk-averse animals.
Parameters OpAL*: 𝛽 = 1.5, 𝛼 = 1., 𝑇 = 20, 𝑘 = 1.1, 𝑝ℎ𝑖 = 1.0. Baseline 𝜌 risk-seeking (0.85) and risk-averse (-0.75).
Parameters RSRL: Risk-seeking 𝛼+ = 0.3, 𝛼− = 0.1; Risk-averse 𝛼+ = 0.1, 𝛼− = 0.3, 𝛽 = 1.5). Since optogenetic
effects were evident primarily during the choice period, we modeled this by changing the choice function in
both models: in OpAL, trial-wise 𝜌 values were decreased by 1.0 to mimic increased D2 MSN activity /
decreased DA. In RSRL the choice function was altered by reducing 𝛽 (to 0.01), leading to opposite directional
effects in risk-seeking and risk-averse agents. Agents selected between a certain option and a 50/50 gamble
with twice the payout for 100 trials.
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if gamble was won or 𝐿mag = -1. For OpAL*, the critic and actors operated as in section OpAL*482

adaptively modulates risk taking. G/N actors then tracked the value of selecting the gamble using483

the prediction error generated by the critic. As before, the probability of accepting the gamble was484

selected using the softmax choice function.485

To simulate risk-seeking and risk-averse rats, we modified the baseline DA levels (𝜌), holding all486

other parameters constant. Risk-seeking rats were modeled by higher levels of baseline 𝜌 relative487

to those of simulations for risk-averse rats. Tomodel phasic optogenetic stimulation, 𝜌 values were488

decreased by a constant amount from this baseline.489

We contrasted OpAL* to alternative models in which risky choice could be adapted. A popular490

model of dynamics in risky choice is called "risk-sensitive RL", in which an agent learns at different491

rates from positive and negative prediction errors:492

𝑄(𝑡 + 1) = 𝑄(𝑡) + 𝛼+ ∗ 𝑃𝐸, if 𝑃𝐸 >= 0,

𝑄(𝑡 + 1) = 𝑄(𝑡) + 𝛼+ ∗ 𝑃𝐸, if 𝑃𝐸 < 0

,493

where actions are selected using softmax function over Q values. If 𝛼+ < 𝛼−, an agent is more494

sensitive to risks in its environment. This formulation has been useful for characterizing asymmet-495

ric impacts of dopamine bursts and dips Frank et al. (2007a); Niv et al. (2012a), but focuses on496

learning rather than changes in choice functions. Because the effective manipulations on risky497

choice were made during the choice period rather than outcome, learning rate manipulations498

alone could not capture the effects. However, it is possible that DA or D2 manipulations can affect499

choice in simple RL models via simple changes to the overall softmax temperature, as assumed by500

many models (FitzGerald et al., 2015; Cinotti et al., 2019; Eisenegger et al., 2014; Lee et al., 2015;501

Humphries et al., 2012). We thus allowed the RSRL model to exhibit changes in risky choice by502

manipulating softmax gain accordingly, whereby D2 stimulation would mimic low DA levels and503

hence lower gain.504

We found that both OpAL* and RSRL accounted for the decrease in gamble choices after gam-505

ble losses relative to wins, but generated opposing predictions for decision-period manipulation506

of D2-expressing neurons. While OpAL* predicts a decrease in riskiness in both risk-seeking and507

risk-averse rats (but more strongly in risk-seeking rats), RSRL predicts a decrease in riskiness in508

risk-seeking rats but an increase in riskiness in risk-averse rats. The reason for this effect is simply509

that a change in softmax gain leads to reduced exploitation, and thus drives both groups toward510

random selection. Thus the pattern of choice data is aligned with OpAL* but not with RSRL, or511

with classical models in which D2 activity inhibits choice altogether. These opposing predictions512

result from the architecture of OpAL* inspired by the biology– including opponency, Hebbian learn-513

ing, and dynamic DA – rather than specific parameter values. Furthermore, OpAL* also captures514

the predicted relative activation of D2-expressing cells during the choice period following losses,515

due to changing DA levels (𝛽𝑛(𝑡)) and the learned cost of the gamble (𝑁(𝑡)), in line with Zalocusky’s516

photometry data.517

DA drug effects on risky decision-making and individual differences therein518

We next focus on a human risky decisionmaking paradigmmanipulating DA levels (Rutledge et al.,519

2015). Participants were presented with interleaving trials of gain gambles (certain gain vs. po-520

tential greater gain or 0), loss gambles (certain loss vs. potential greater loss or 0), and mixed521

gambles (certain no reward vs. potential gain or potential loss). All gambles were successful with522

50% probability. The study tested the effects of levodopa (L-DOPA), a drug which boosts dopamine523

release, on risky decision-making. The main impact of L-DOPA was to selectively amplify gambling524

on gain (but not loss or mixed) trials (Figure 10 A, left). This study also found that individual differ-525

ences in this impact of drug on gambling correlated with effective drug dosage (Figure 10 B, left).526
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Figure 10. A,B. DA drug effects on risky decision-making and individual differences therein. OpAL* captures
behavioral risk patterns of healthy participants on and off L-DOPA, a drug which boosts presynaptic DA. A.
L-DOPA administration selectively increased risky choice in gain trials, where choice was between a sure
reward and a 50% gamble for a larger reward, as compared to loss trials (sure loss vs gamble to avoid loss) or
mix trials (in which gambles could result in gains or losses). B. These effects were larger for subjects with
higher effective drug doses, Spearman’s 𝜌 = 0.47, 𝑝 < 0.01. Left: Modified figures from Rutledge et al. (2015).
Right: OpAL* simulations reproduce these selective effects. Spearman’s 𝜌 = .50, 𝑝 < .01 To model individual
differences in effective drug levels, for each pair of model on and off drug, 𝑑 was drawn from a normal
distribution centered at .5 with variance. .25. Parameters: 𝛽 = 1.5, 𝑘 = 1.. C-D. Risky decisions are sensitive to
environmental richness In contrast to other empirical results discussed where dopamine pathways were
directly manipulated, Frydman and Jin (2021) manipulated reward statistics of the payoffs in the environment,
as in our normative simulations. Participants chose between a certain reward and a 50% gamble over two
blocks. The distribution of payoffs in each block was either Rich (higher frequency of large magnitudes) or
Lean (higher frequency of small magnitudes). Crucially, each block contained predetermined "common trials"
where the payoff of both the gamble and certain option were fixed (e.g., an offer 50% $7.13 vs. 100% $2.70
was presented in both the Rich and Lean block). The key finding was that participants were more likely to
gamble on these common trials when presented in the Rich context. OpAL* reproduces this pattern, due to
adaptive 𝜌 increasing DA levels and risk-tasking in the Rich block. Parameters:
𝛼 = 1., 𝑇 = 10, 𝛽 = 0.5, 𝜙 = 1.0, 𝑘 = 0.09

20 of 36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483879doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483879
http://creativecommons.org/licenses/by/4.0/


Manuscript submitted to elife

The authors reported that the risk-seeking behavior with DA drugs was best described in terms of527

changes in a Pavlovian approach parameter. Here, we wished to see if themechanisms introduced528

above within OpAL* with endogenous changes in dopaminergic state could replicate the pattern529

of results, thereby providing a normative interpretation.530

We simulated 300 trials (100 gain gambles, 100 loss gambles, and 100 mixed gambles, ran-531

domly interleaved, as described in Rutledge et al. (2015)). Probability of gambling was determined532

as described above in the normative risky choice section, with gambles accepted as the benefits533

outweigh the costs relative to the ST. 𝐺 and 𝑁 actor values were explicitly set on each trial ac-534

cording to the instructed gamble and encoded relative to the certain option as in Section OpAL*535

adaptively modulates risk taking. This reduced the free parameters of OpAL* (no annealing or ac-536

tor learning rate needed) while retaining its core features of DA reweighting the contributions of537

opponent representations during choice according to context.538

While values and probabilities were explicitly instructed in the experiment, subjects neverthe-539

less experienced the outcomes of each gamble. TheOpAL*model assumes that they thus track the540

average value of offers across trials, such that a gain trial would elicit a positive dopamine deflec-541

tion, given that its expected value is larger than that for mixed and loss trials. (As the authors note542

in discussing their findings, "in this task design, even the worst gain trial is better than the average543

trial and so likely inspires dopamine release.") We thus modeled the relative DA-state 𝜌 propor-544

tional to the expected value of the current gamble offer, approximating how "rich" or "lean" the545

current offer was relative to all offers in the game. 5 (We formulate 𝜌 proportional to value here,546

to be consistent with simulations in the above sections, but very similar results were obtained in a547

separate set of simulations in which 𝜌 was modulated by RPE).548

𝜌(𝑡) = .5 × (certain outcome) + .5 × 𝐸𝑉 (gamble) (25)

Tomodel L-DOPA,wehypothesized that it would boost positive RPEs via enhancement of evoked549

(phasic) DA release, as observed in vivo across species (Voon et al., 2010; Pessiglione et al., 2006a;550

Qi et al., 2016; Harun et al., 2016). We assumed that L-DOPA amplified endogenous phasic re-551

lease, which occurs when offers are better than usual (positive RPE). The effect dosage level was552

represented by 𝑑 when the gamble had a positive value, as shown below.553

𝜌′(𝑡) = 𝜌(𝑡)(1 + 𝑑) (26)
𝑑 ≥ 0 (27)

As hypothesized, OpAL* captured the selective effects of L-DOPA on gambling in gain trials. It554

also captured the overall proportion of gambles chosen for different trial types (Figure 10 A), as555

well as the correlation between effective dosage and difference in gambling on and off drug (Figure556

10 B).6 Furthermore, the Pavlovian model presented in Rutledge et al. (2015) would predict that557

gambling would occur for positive-RPEs even if the potential benefit of the gamble was not as high558

5As gamble offers were explicit, removing uncertainty in trial richness, we omitted the parameter 𝑝ℎ𝑖 which modulated DA
levels by degree of certainty in environmental richness, further reducing model complexity. OpAL*’s ability to capture shifting
patterns of risky choice should thus be viewed as a byproduct of interacting opponent, nonlinear, and dynamic DAmechanisms
rather than a result of high degrees of freedom.

6For clarification, Rutledge et al. (2015) highlighted that the drug effects appear "value-independent", whereas here we
explicitly are changing risk sensitivity according to the interaction betweendrug andoffer value. It is important to note, however,
that their definition of value differs than that used to modulate dopaminergic state in these simulations. In Rutledge et al.
(2015), value is defined as the advantage of the gamble, i.e., the difference between the expected value of the gamble and the
sure reward. Here, we considered value to be the combined overall value of the offer presented, such that positive RPEs exist
when values are greater than expected, and are in turn was modified by drug dosage. It is this component that captures the
selective increase in gambling in gain trials. Note that themodel does predict that such gambles would be yet more likely when
the potential benefit of gambling is larger (i.e., when gains are particularly large) – but that this effect would also be present
off drug. It is also possible that the value-independence in Rutledge et al. (2015) resulted from a ceiling effect for gambling in
higher gain trials.
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as the sure thing; OpAL* would only predict increased gambling if the benefits are greater than559

the sure thing.560

Here, we have extended OpAL to account for risky decision-making by dynamically changing561

dopamine levels at choice proportional to the value of the current state/gamble offer. This ac-562

counted for findings of increase attractiveness of high-value risky options with the administration563

of L-DOPA (Figures 10 A). The model also accounted for individual differences of risk due to ef-564

fective L-DOPA dosages (Figures 10 B). As highlighted in the previous section, these effects can565

normatively be explained as behavioral changes reflecting changes of inferred richness of current566

state. These results also suggest that individual differences in risk preference and sensitivity may567

be due to learned statistics of the world, casting these individual differences as deriving from an568

adaptive mechanism to an animal’s or human’s experience niche.569

Risky decisions are sensitive to environmental richness: concordance with effi-570

cient coding models of economic choice571

Thus far we have focused on data that are informative about the biological mechanisms (striatal572

opponency and DA modulation thereof) by which OpAL* supports adaptive behavior. But OpAL*573

also makes straightforward economic choice predictions that do not require biological manipula-574

tions. In particular, one way of conceptualizing OpAL* is that it serves as an efficient coding mech-575

anism, by amplifying the actor that maximally discriminates between reward values in the current576

environment. If choice patterns concord with this scheme, one should be able to manipulate the577

environment and influence choice patterns. For example, consider a gamble in which the benefits578

outweighs the costs. OpAL* predicts that decision makers should more consistently opt to take579

this gamble when it is presented in the context of a rich environment. Indeed, this is precisely580

what was found by economist researchers, who also considered such patterns to be indicative of581

efficient coding (Frydman and Jin, 2021).582

In this study, participants were presented with a series of trials where they selected between a583

gamble with a varying magnitude X with 50% probability and a certain option with varying magni-584

tude C. The task featured two conditions, which we refer to as Rich and Lean. The range (minimum585

and maximum) of X’s and C’s were equated across the two conditions, but high magnitude Xs and586

Cs were more frequent in the Rich environment, whereas lowmagnitude Xs and Cs were more fre-587

quent in the Lean environment. The distribution of C was set to 0.5*X so that the expected value of588

the risky lottery and certain option were on average equated. Critically, there were a few carefully589

selected "common trials" that repeated the exact same high payoff gambles (with identical X and C)590

across blocks. The authors reported that participants weremore likely to gamble on common trials591

in Rich environments than Lean environments. This is in line with their economic efficient-coding592

model, which predicts subjects allocatemore resources to accurately perceive higher payoffs in the593

Rich condition where higher payoffs are more frequent (and therefore gamble more on common594

trials which are high payoff).595

To simulate this dataset with OpAL*, we assumed that the critic state value would reflect the596

statistics of the environment. We first set the baseline expectation to reflect the expected value597

of a uniform prior over the gamble magnitudes and certain magnitudes in the experiment, which598

serves as a prior for environment richness. 𝜌 was modulated by the learned average gamble offer599

in the environment relative to this baseline. 7 As in our earlier risky choice simulations, gambles600

7This reference-dependentmodulation is analogous to our learning experiments, in which the implicit baseline used amean
reward probability of 50%, and where environments with higher estimated reward probabilities were considered "rich" and
those below 50% were considered "lean".
One could more generally apply the terms "rich" and "lean" to any values which deviate from a determined baseline, where

�̄� represents the estimated richness of the current environment and 𝐵 represents the mean of an uninformative prior over
the expected outcomes, 𝜌(𝑡) ∝ ̄𝑅(𝑡) − 𝐵. 𝜌 ≥ 0 would be considered "rich"; 𝜌 < 0 would be considered "lean". Indeed, previous
work has suggested that of a single environment may be encoded by tonic levels of dopamine, inducing changes in vigor of
actions (Niv et al., 2007), but does not model changes in the choices themselves as we do here. A similar approach is used in
average reward reinforcement learning. Rather than maximizing the total cumulative reward, average reward RL additionally
optimizes the average reward per timestep. Reward prediction errors are therefore computed relative to the long-termaverage
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were encoded relative to the certain option and G/N values were explicitly set according to the601

instructed gamble, omitting the need again for annealing and actor learning rate while preserving602

the core dynamics of the full OpAL*. As found empirically and in the authors’ efficient codingmodel603

Frydman and Jin (2021), OpAL* predicts increased gambling on common trials in the Rich block rel-604

ative to the Lean block. According to OpAL*, this result reflects adaptively modulated DA levels in605

the Rich environment which emphasized the benefits of the gamble during decision-making. As606

will be discussed below, OpAL*’s amplification of one striatal subpopulation over another itself can607

be considered a form of efficient coding, offering a direct mechanistic explanation for recent find-608

ings in economic theory. Finally, note that such findings could not be captured by an alternative609

model in which risky choice is driven by surprise or novelty. Note that for both rich and lean blocks,610

common trials had larger than usual magnitudes of payoffs. While these payoffs deviated from ex-611

pectation to a larger degree in the lean block, this should produce a larger RPE (and presumably612

phasic dopamine signal). Given that increased DA in traditional RL models promotes exploitation613

(Humphries et al., 2012), this account (like the RSRL model above) would predict the opposite pat-614

tern than that seen empirically, in this case driving more risky choices in the lean block.615

Discussion616

Taken together, our simulations provide a normative account for opponency within the basal gan-617

glia and its modulation by DA. In particular, we suggest that nonlinear Hebbian mechanisms give618

rise to convexity in the learned D1 and D2 actor weights at different ends of the reward spectrum,619

which can be differentially leveraged to adapt decisionmaking. To do so, OpAL* alters its dopamin-620

ergic state as a function of environmetal richness, so as to best discern between the costs or ben-621

efits of available options. Conjecturing that such a mechanism is most profitable when the reward622

statistics of the environment are unknown, we posited and found that the online adaptation ro-623

bustly outperforms traditional RL and alternative BGmodels across environment types when sam-624

pling across a wide range of plausible parameters. These advantages growmonotonically with the625

complexity of the environment (number of alternative actions to choose from). Morever, the unity626

of all three key features of OpAL* (opponency, three-factor Hebbian nonlinearity, and dynamic DA627

modulation) offered particularly unique advantages in sparse reward environments, mitigating628

against a particularly pernicious explore exploit dilemma that arises in such environments. Finally,629

we showed how such a mechanism can adapt risky decision making according to environmental630

richness, capturing the impact of DA manipulations and individual differences thereof.631

This paper intersects with theoretical (Niv et al., 2007) and empirical work (Hamid et al., 2015;632

Mohebi et al., 2019) investigating how changes in dopaminergic state reflecting reward expecta-633

tions impact motivation and vigor. However, this body of literature does not consider how in-634

creases or decreases of dopamine affect the decision itself, only its latency or speed. Instead,635

OpAL/OpAL* can capture both shifts in vigor and cost-benefit choice as seen empirically with drug636

manipulations across species (Cousins et al., 1996; Salamone et al., 2005; Treadway et al., 2012;637

Westbrook et al., 2020) and more precise optogenetic manipulations of DA and activity of D1 and638

D2 MSNs (Doi et al., 2020; Bolkan et al., 2022; Zalocusky et al., 2016; Tai et al., 2012; Yartsev639

et al., 2018). Notably, OpAL* suggests that in sparse reward environments, it is adaptive to lower640

dopaminergic levels and not merely avoiding action altogether (as in classical notions of the direct641

indirect pathways). Rather, lower dopamine helps to choose actions thatminimize cost (by discrim-642

inating between D2MSN populations). In physical effort decision tasks, DA depletion does not sim-643

ply induce more noise or reduced effort overall, but selectively promotes actions that minimize ef-644

fort when the benefits of exerting effort are relatively low (Cousins et al., 1996). For example, while645

a healthy rat will choose to climb a barrier to obtain four pellets instead of selecting two pellets646

that do not require physical effort, a dopamine depleted animal will opt for the two pellet-option.647

reward per time step (�̄�), resulting in 𝛿(𝑡) = 𝑟(𝑡) − �̄� − 𝑉 (𝑡). 𝜌 as operationalized in OpAL* resembles a prediction error at the
task/environment level, though may additionally be influenced by trial-by-trial prediction errors when trials are sufficiently
distinct as in the interleaved gambles in Rutledge et al. (2015).
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However, in the absence of the two pellet option, both healthy and dopamine depleted animals will648

select to climb the barrier to collect their reward. While OpAL* naturally accounts for such findings,649

other models often suggest that lowered DA levels would simply produce more randomness and650

imprecision, as captured by a reduced softmax gain (FitzGerald et al., 2015; Cinotti et al., 2019;651

Eisenegger et al., 2014; Lee et al., 2015). Importantly, empirical evidence for this reduced gain ac-652

count in lowDA situations focused exclusively on reward rich situations (i.e., available options were653

likely to be rewarding); in these cases OpAL* also predicts more noise. But as noted above, low654

dopaminergic states may not always be maladaptive. Indeed, they may be useful in environments655

with sparse rewards, allowing an agent to adaptively navigate exploration and exploitation and to656

avoid the most costly options.657

The work described here builds off a preliminary suggestion in Collins and Frank (2014) that658

opponency in OpAL confers advantages over standard RL models across rich environments and659

lean environments. In particular, when parameters were optimized for each model, the optimal660

parameters for standard RL diverged across environments, whereas OpAL could maximize re-661

wards across environments with a single set of parameters; biological agents have indeed demon-662

strated similar learning speeds between lean and rich environments, demonstrating such cross-663

environment flexibility (Hamid et al., 2015). However, this previous work applied to a balanced664

OpAL model and did not consider how an agent might adaptively modulate dopaminergic state to665

differentially weigh costs vs benefits of alternative decisions. In this paper, we showed that such666

advantages are robust across a wide range of parameters (not just optimal ones), that they are667

amplified in OpAL*, and that such advantages grow with the complexity of the environment (num-668

ber of alternative actions). Importantly, such benefits of OpAL* capitalize on the nonlinear and669

opponency convexity induced by Hebbian plasticity within D1 and D2 pathways (Figure 6a).670

These findings contrast with other theoretical models of striatal opponency which omit the671

Hebbian term but leverage alternate nonlinearities so that, under certain parameter settings, D1672

and D2 weights converge to the veridical benefits and costs of an action (Möller and Bogacz, 2019).673

However, for this convergence to occur requires assumptions about some knowledge of the re-674

ward distributions of the environment in advance. Our approach here is to consider how a model675

might optimize performance across variable environmentswith no fore knowledge; as such, OpAL*676

showed robust advantages over these alternative formulations. Such advantages depended on the677

nonlinear Hebbian mechanism. While the Hebbian term was originally motivated by the biology of678

three-factor plasticity as implemented in the neural network version, it is also needed to capture679

findings inwhichD2MSNsbecome increasingly potentiated as a result of pathological DAdepletion680

or DA blockade, leading to aberrant behavioral learning and progression of Parkinsonism (Wiecki681

et al., 2009; Beeler et al., 2012). Ironically, it is this same Hebbian-induced nonlinearity that affords682

adaptive performance in OpAL* when DA is not depleted or manipulated exogenously.8 Finally,683

this adaptive role for activity-dependent Hebbian plasticity beyond standard learning algorithms684

is complementary to recent observations that such mechanisms can be leveraged to improve be-685

yond gradient descent in neural networks (Scott and Frank, 2021). While the computations are686

leveraged for different purposes (roughly, choice vs. credit assignment) and in different architec-687

tures, both findings accord with the notion that mechanisms typically thought to merely approxi-688

mate adaptive functions inspired by artificial intelligence may in fact confer benefits for biological689

agents.690

Lastly, whilemany studies have documented thatDAmanipulations affect risky and effort based691

decision making across species, our results offer a normative explanation for such findings. In this692

perspective, the brain treats increases or decreases in dopamine as signaling presence in a richer693

or leaner state. Changes in behavior reflect an adaption to this perceived, artificial environmental694

change. Hence, a dopamine depleted animal (or increased activity of D2 MSNs in Zalocusky et al.695

(2016)) would focus on costs of actions, whereas dopamine increaseswould increase attractiveness696

8While (Möller and Bogacz, 2019) identified situations in which this mechanism can produce pathological behavior even
without DA depletion, OpAL* rescues this behavior via normalization and annealing (see Appendix).
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of risky actions (Rutledge et al., 2015). We reasoned that the well known impact of exogenous DA697

modulation on risky decision making (St Onge and Floresco, 2009; Zalocusky et al., 2016; Rutledge698

et al., 2015) may be a byproduct of this endogenous adaptive mechanism, showing that OpAL*699

can be used to modulate appropriately when it is worth taking a risk (Figure 8). We then demon-700

strated how behavioral effects of D2-receptor activity and manipulation (Zalocusky et al., 2016)701

reflect unique predictions of OpAL*, including outcome-dependent risk-avoidance paired with in-702

crease of D2-activity following a loss (Figure 9 A-D). In conjunction, optogenetic stimulation of D2-703

expressing neurons induced decrease in risky choice in risk-seeking rodents in line with OpAL*704

predictions (Figure 9 E-F). Furthermore, we showed that OpAL* can be used to capture changes705

in risk taking by dopamine-enhancing medication in healthy human participants (Figure 10, A-B).706

Our simulations highlighted how individual changes in risk preference may emerge from OpAL*’s707

adaptive mechanism. While some studies have shown that in unique circumstances increased708

dopamine may result in preference for a low-risk but low-reward option (Mikhael and Gershman,709

2021; St. Onge et al., 2010), these results rely on sequential effects but nonetheless they may be710

explainable by OpAL*’s sensitivity to environmental reward statistics. Furthermore, we focused711

on adaptive decision-making on the time scale of a single task in this paper, and it is plausible712

that such an adaptive mechanismmay account for larger individual differences across longer time713

horizons. For example, increased risk-taking has been well documented in adolescents and some714

evidence suggests that dopaminergic levels may peak during adolescents, attributing to this trend715

(see (Wahlstrom et al., 2010a) for a full review). Speculatively, this may itself be an adaptive mech-716

anism, where higher DA may allow more emphasis on potential benefits of risky but developmen-717

tally beneficial actions, such as exploring outside of parent’s home to find a mate.718

OpAL*’s separation and selective amplification of𝐺 and𝑁 actors also is reminiscent of efficient719

coding principles in sensory processing, which theorizes that neurons maximize information ca-720

pacity by minimizing redundancy in neural representations (Barlow, 2012; Laughlin, 1981a; Chalk721

et al., 2018). Efficient coding also suggests that resources should be reallocated according to fea-722

tures in an environment which occur more frequently (Simoncelli and Olshausen, 2001). In the723

case of OpAL*, positive prediction errors are more abundant than negative in reward rich envi-724

ronments and the 𝐺 actor strengthens disproportionately as this asymmetry grows. Conversely,725

negative prediction errors are more frequent in reward lean environments and the 𝑁 actor spe-726

cializes in this asymmetry. Changes in dopaminergic state, which modifies the contribution of 𝐺727

and𝑁 actors, therefore reallocates decision making resources according to the relative frequency728

of positive and negative prediction errors in the environment. Recent behavioral work has applied729

an efficient coding framework to risky choice paradigms, showing participants are riskier in en-730

vironments which have an increased frequency of large gamble payoffs (Frydman and Jin, 2021).731

Our model provides a mechanistic account of such findings that generalizes to broader behavioral732

implications. Moreover, while the authors did not test this pattern, OpAL* predicts that if com-733

mon trials were administered to include unfavorable gambles (gambles whose expected values734

are less than a certain option), people would more reliably select the certain outcome in the lean735

environment.736

Limitations and future directions737

A limitation of the DA modulation mechanism is that its performance advantages depend on rela-738

tively accurate estimates of environmental richness. Indeed, performance can suffer with incorrect739

estimation of the environment richness (Appendix, Figure 11). Thus it is essential in OpAL* that DA740

modulation is dynamic across trials so as to reflect sufficient reward history before modulating op-741

ponency. As such, while we systematically characterized the advantage of dynamic DAmodulation742

in OpAL* over the balanced OpAL model (𝜌 = 0) across environments, this advantage should hold743

over any OpAL model with a fixed asymmetry (see Figure 6a). For robust advantages, the critic744

estimation of environmental richness must be relatively confident before modulating DA. In the745

simulations presented, we utilized a Bayesian critic to explicitly track such uncertainty, and only746
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increasing or decreasing DA when the estimate was sufficiently confident. Interestingly, this mech-747

anism provides an intermediate strategy between directed and random exploration (Wilson et al.,748

2014), but at the level of actor (rather than action) selection. In OpAL*, such a strategy amounts to749

random exploration across both actors until the critic uncertainty is sufficiently reduced, at which750

point OpAL* exploits the actor most specialized to the task. Future directions will investigate how751

this strategy may itself be adapted as a function of the environment statistics andmay offer poten-752

tial predictions for understanding individual differences and/or clinical conditions. For example,753

given inappropriate dopaminergic state is most detrimental to sparse reward environments, an754

agent which prioritizes avoidance of costs such as those prevalent in sparse reward environments755

(such as in OCD or in early life stress) may benefit frommore caution before changing dopaminer-756

gic state (i.e., have a higher threshold for DA modulation and exploiting knowledge) or take longer757

to integrate information to increase precision of estimates (i.e., lower learning rate).758

There are several future directions to this work. For example, while OpAL* optimizes a single DA759

signal toward the actor most specialized to rich or lean environments, recent work also suggests760

that DA signals are not uniform across striatum (Hamid et al., 2021). Indeed, this work showed761

that DA signals can be tailored to striatal subregions specialized for a given task, keeping with a762

"mixture of experts" model to support credit assignment. Future work should thus consider how763

the DA signals can be simultaneously adapted to the benefits and costs of alternative actionswithin764

subregions that are most suited to govern behavior. Moreover, while we addressed the impact765

of complexity within the action space, an alternative notion of complexity and sparsity yet to be766

explored is the length of sequential actions needed to achieve reward. Increasing the distance from767

initial choice to reward, a problem faced by modern deep RL algorithms (Hare, 2019), may also768

benefit from integrating OpAL*-like opponency and choice modulation into larger architectures.769

Finally, while our work focuses on asymmetries afforded in the choice function, DA manipulations770

can also induce asymmetries in learning rates from positive and negative RPEs (Frank et al., 2007a;771

Niv et al., 2012a; Collins and Frank, 2014), which can, under some circumstances, be dissociated772

from choice effects (Collins and Frank, 2014). However, it is certainly possible that asymmetries in773

learning rates can also be optimized as a function of the environment. Indeed, larger learning rates774

for positive than negative RPEs are beneficial in lean environments (and vice-versa), by amplifying775

the less frequent signal (Cazé and van derMeer, 2013). Such effects are notmutually exclusive with776

those described here, but note that they do not address the issue highlighted abovewith respect to777

exploration exploitation dilemmas that arise in lean environments, and do not capture the various778

findings (reviewed above) in which DAmanipulations affect performance and choice in absence of779

outcomes.780

Materials and Methods781

Parameter grid search782

We ran a grid sweep over a parameter space with 𝛼𝑎 ∈ [.1, 1] with step size of .1 and 𝛽 ∈ [1, 5]783

with step size of 0.5. To equate the model complexity, the annealing parameter (𝑇 = 10), the784

strength of modulation (𝑘 = 20), and the confidence needed before modulation (𝜙 = 1.0) were785

fixed to the specified values acrossmodels. Thesewere determined by coarser grid searches of the786

parameter space for reasonable performance of control models. For each parameter combination,787

we matched the starting random seed for three models – OpAL*, OpAL* with 𝜌 = 0, and OpAL*788

with no three-factor hebbian term (No Hebb). For each parameter setting for each model type, we789

calculated the average softmax probability of selecting the best option (80% in rich environments790

or 30% in lean environments) across 5,000 simulations for 500 trials. We then took the area under791

the curve (AUC) of this averaged learning curve for different time horizons (50, 100, 250, 500 trials)792

and took the difference between the AUCs of OpAL* and OpAL* with 𝜌 = 0 or OpAL* No Hebb of793

matched parameters. We conducted a one sample t-test on these differences, where a difference794

of zero was the null hypothesis.795
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We conducted the same set of analyses with the learning curves for the actual rewards received796

and received mirror results. We therefore only report the analysis according to the probability of797

selecting an action which is a finer grain measure of average performance.798

Moller and Bogacz 2019 model799

The Moller and Bogacz model (Möller and Bogacz, 2019) offers another computational account of800

how benefits and costs may be encoded in the D1/D2 striatal sub-populations. First note that this801

model defines benefits and costs as the absolute magnitude of positive and negative outcome for802

each action. In contrast, benefits and costs as represented in OpAL/OpAL* are relativemetrics that803

relate to the proportion of positive and negative prediction errors in an environment (accordingly,804

for gamble simulations, an outcome of 0 is encoded as a cost relative to the sure thing, similar to805

other models of reference dependence). Second, both OpAL and Moller and Bogacz’s model have806

nonlinearities in the learning rule (otherwise, as seen in our balanced OpAL model, the two path-807

ways are redundant). However, rather than use Hebbian plasticity, Moller and Bogacz transform808

the prediction error itself (such that the impact of negative prediction errors is smaller in the G809

actor, and vice versa, parametrized by 𝜖), and impose a weak decay (𝜆), as expressed below.810

Δ𝐺(𝑠, 𝑎) = 𝛼𝑓𝜖(𝛿) − 𝜆𝐺(𝑠, 𝑎) (28)
Δ𝑁(𝑠, 𝑎) = 𝛼𝑓−𝜖(𝛿) − 𝜆𝑁(𝑠, 𝑎) (29)

𝑓𝜖 =

⎧

⎪

⎨

⎪

⎩

𝛿 for 𝛿 > 0

𝜖𝛿 for 𝛿 < 0
(30)

Under certain assumptions about reward distributions and associated parameters, this learn-811

ing rule allows the G and N weights to converge to the expected payoffs and costs of alternative812

actions. However, as noted above, we are interested here in the general case where reward statis-813

tics are not known in advance, and as such we simulated behavior from this model across a range814

of parameters, as we did for the other agents, but we also optimized its parameters (see below).815

To select between actions, we used a softmax policy. WhileMöller and Bogacz (2019) explicitly816

do not use a softmax function in their simulations, they did so only because they were simulating817

behaviors in which an action may not be selected at all (i.e., they did not subject their agent to818

choose between different actions). In contrast, for all of our experiments, our agents must select819

an action each trial. We therefore generate a choice as follows using the softmax function by using820

the value of the action, 𝑉 (𝑎).821

𝑉 (𝑎) = 1
2
(𝐺 −𝑁) (31)

𝑝(𝑎) = 𝑒𝛽𝑉 (𝑎)
∑

𝑖∈𝐴 𝑒𝛽𝑉 (𝑖)
(32)

Optimized Models822

For each model and for a given set of parameters, the average softmax probability of selecting the823

best option for 100 trials was calculated over 1000 simulations in each environment. The mean824

performance in rich and lean were then also averaged. Parameters which maximized this final av-825

erage were found using SciPy’s differential_evolution routine. For plotting, 1000 random seeds were826

generated and preserved across all models to start each simulation tominimizemodel differences827

due to noise.828

For the standardQ-learner, the two free parameters – the learning rate (𝛼) and the softmax tem-829

perature (𝛽) – were optimized. Learning rates were bounded between 0 and 1. Softmax tempera-830

tures could range between 1 and 50. Optimized parameters were found to be 𝛼 = 0.16, 𝛽 = 46.86.831
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For each version of OpAL* optimized – OpAL*, OpAL* with 𝜌 = 0, OpAL* with no hebbian term832

– only the learning rate (𝛼) and the softmax temperature (𝛽) were optimized. As in the grid search833

analyses, the annealing parameter (𝑇 = 10), the strength of modulation (𝑘 = 20), and the confi-834

dence needed before modulation (𝜙 = 1.0) were fixed to equate model complexity and to speed835

convergence of the optimization routine. The softmax temperature was also bounded in the op-836

timization routine between 1 and 5 to ensure model stability. After optimized values were found,837

small deviations in 𝑇 , 𝑘 and 𝜙were run to ensure results did not rely on the selection of these exact838

parameters. Optimized parameters were as follows: OpAL*, 𝛼 = .84, 𝛽 = 2.43. OpAL* with 𝜌 = 0,839

𝛼 = 0.96, 𝛽 = 4.13. OpAL* with no Hebbian term, 𝛼 = .88, 𝛽 = 2.90.840

The Moller et al. model was optimized over all four free parameters. See Moller and Bogacz841

2019 model for an overview of the model. In order for the model to converge to expected payoffs842

and costs, the decay parameter (𝜆) must be close to 0 and smaller than the learning rate and the843

nonlinearity parameter (𝜖) must be approximately 1. The authors offer a practical way to determine844

these constraints by first defining 𝑐𝑞 ≈ 1 and 𝑐𝑠 = 1, where 𝑐𝑞 and 𝑐𝑠 derive from the equilibrium845

equations for the mean spread 𝑠 and the mean 𝑞 of rewards in the environment if G and N are846

to converge to expected payoffs and costs. By first selecting 𝑐𝑞 and 𝑐𝑠 close to one and selecting a847

learning rate 𝛼, 𝜖 and 𝜆 can be calculated as follow:848

𝜖 =
1 − 𝑐𝑠(1∕𝑐𝑞 − 1)
1 + 𝑐𝑠(1∕𝑐𝑞 − 1)

(33)

𝜆 =
𝛼(1 − 𝜖)

2𝑐𝑠
(34)

In order to optimize Moller et al., 𝑐𝑞 and 𝑐𝑠 were bounded between 0.7 and 1 and 𝛼 ranged849

between 0 and 1. The above equations were then used to calculate 𝜖 and 𝜆 during the optimization850

procedure. Like the standard Q-learner, the softmax temperature was bounded between 1 and 50.851

Optimized parameters: 𝛼 = .07, 𝜖 = .91, 𝜆 = .004, 𝛽 = 30 using 𝑐𝑞 = .95 and 𝑐𝑠 = .88.852
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Appendix1070

Incorrect modulation impairs performance1071

As noted in the main text, it is important that the critic estimate of environmental richness is rea-1072

sonably accurate (on the correct side of 0.5) for OpAL* to confer advantages. Indeed, pathological1073

behavior arises if DA states are altered in opposing direction to environmental richness. In Ap-1074

pendix Figure 11 we see the effect of flipping the sign of OpAL*’s calculation of dopaminergic state1075

(Equation 17). For this demonstration, if the critic of OpAL* estimated that it was in a rich envi-1076

ronment (positive value of 𝑟ℎ𝑜, high dopaminergic state), it would emphasize the N instead of G1077

actor (as if it were in a lean environment). We see that the lean environment shows high sensitiv-1078

ity to incorrect modulation. The rich environment shows greater robustness but nonetheless has1079

decreased performance in comparison to the standard simulations. This result confirms that the1080

direction of modulation in OpAL* is important, and moreover that it is particularly important to1081

have lower DA in lean environments.1082

Appendix 0 Figure 11. Effects of dopaminergic states which inaccurately reflect environmental richness.
Parameters for OpAL* as outlined in the section Optimized Models were used for these simulations.

Comparison to softmax temperature modulation1083

As noted in the main text, OpAL* confers larger benefits in lean environments, in part by mitigat-1084

ing against an exploration/exploitation dilemma. In particular, during early learning, OpAL* relies1085

on both actors equally and thereby distributes its policy more randomly, but after it estimates1086

the richness of the environment, it exploits the more specialized actor. To evaluate whether sim-1087

ilar benefits could be mimicked by simply increasing softmax gain over trials (transitioning from1088

exploration to exploitation), we considered an OpAL* variant which symmetrically increased the1089

softmax temperature according equally across the G and the N actor. As the richness (or lean-1090

ness) of the environment grew, the agent would progressively exploit both actors equally, using1091

the same Bayesian critic as in OpAL*.1092

𝛽𝑔 = 𝛽max(0, 1 + |𝜌𝑡|) (35)
𝛽𝑛 = 𝛽max(0, 1 + |𝜌𝑡|) (36)

Given the difference in exploration-exploitation demands across rich and lean environments,1093

we compared the average AUCs of OpAL* and Beta-modulation (B-Mod). Overall we found that1094

OpAL* exhibited improvedmaximal cross-environment robustness and specifically improvedmax-1095

imal performance in the lean environment. Thus, global changes in explore-exploit the softmax1096

temperature alone are insufficient to capture the full performance benefit in lean environments1097

induced by dopaminergic modulation in OpAL*, which capitalizes on specialized learned represen-1098

tations across actors.1099
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(a) 2-option environments (b) 6-option environments

(c) Lean 2-option environment (d) Lean 6-option environment

(e) Rich 2-option environment (f) Rich 6-option environment

Appendix 0 Figure 12. Comparison of OpAL* to dynamic modulation of softmax temperature (bmod). Figure
shows average AUCs of models for fixed parameter in both lean and rich environments for varying
complexity.Top: AUCs averaged across both rich and lean environments for a given parameter. Green -
OpAL*, Grey - BMod. Middle/Bottom: AUC histograms for different environments and varying complexity
levels. Purple - OpAL*, Grey - BMod.
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Nonlinear dynamics forego veridicality for flexibility1100

AddressingMöller and Bogacz (2019)1101

We incorporated normalization and weight decay for the actors to address weaknesses of the orig-1102

inal OpAL model raised by Möller and Bogacz (2019). The (valid) critique outlined by Möller and1103

Bogacz (2019) is that its three-factor hebbian update, in carefully constructed situations, gives rise1104

to unstable actor dynamics. They demonstrated that when OpAL is sequentially presented with1105

a reward of 2 followed by a cost of -1, the dynamics of G and N rapidly converge to 0 (Figure 13,1106

left). As described in their text (Equations 39-41), stable oscillations in reward prediction errors1107

cause G and N values to converge towards zero. This is indeed a characteristic of the OpAL model,1108

especially once the critic begins to converge.9.1109

The rapid decay evident in Figure 13, left, was constructed to highlight a particularly pernicious1110

example of this issue. The following simulations suggest that the introduction of larger reward1111

magnitudes, rather than the oscillating PEs, have driven such instability. Larger reward magni-1112

tudes yield larger reward prediction error signals, that in turn yield larger G/N values as evident1113

by Equations 4 and 5, which, through the Hebbian positive feedback cycle, further increase learn-1114

ing rate. One simple correction is to simply rescale and shrink the magnitudes by some constant1115

(0 < 𝑐 < 1); this slows decay in this example (simulations not shown).1116

We introduced two modifications in OpAL* to address these concerns. First, prediction errors1117

used to update G and N actors (Equations 21 and 22) are normalized by the range of known reward1118

magnitudes in the environment (Equation 24). Importantly, OpAL* is not provided any reward1119

statistics beyond the range of reward feedback, and in theory this value could be adjusted as the1120

agent learns, reflecting how dopamine neurons rapidly adapt to the range of reward values in the1121

environment Tobler et al. (2005).1122

Figure 13, center, shows the effect of normalization for the example in question. We see that1123

the rapid decay is substantially decreased, and simulating into a farther time horizon of 100 trials1124

shows a trend toward, but not final convergence at, zero (Figure 13, right). (Note OpAL* behaves1125

well for several hundred trials in the experiments we simulated in this paper). While there remains1126

a general decay over time, as previously stated, the behavior is reminiscent of advantage learning1127

curves, which have the positive feature that such decay can encourage the agent to explore after1128

many trials in the event the world has changed. Furthermore, it is plausible that other learning1129

mechanisms, such as more habitual stimulus-response learning, also contribute to choice after1130

many learning trials (Frank and Claus, 2006). Thus striatal weight decay, which has been docu-1131

mented empirically (Yttri and Dudman, 2016), may not be detrimental for procedural performance.1132

Normalizing, therefore, addresses the valid concerns of Möller and Bogacz (2019) while still pre-1133

serving core OpAL dynamics, which allow it to capture a range of biological phenomenon as well1134

as hypotheses for advantages of dopaminergic states presented in this paper.1135

Secondly, to address the original issue raised by Möller and Bogacz (2019) that OpAL weights1136

decay with oscillating prediction errors, we introduced annealing of the actor learning rate. This is1137

a common addition to reinforcement learning algorithms where the learning rate is large in early1138

stages of learning to avoid local minimums and slowly decreases with time to protect values in1139

later stages of learning from rapid updating. (To allow for change points in reward statistics, other1140

mechanisms capturing the effects of cholinergic interneurons have been shown to be useful in BG1141

networks and OpAL variants, Franklin and Frank (2015)). Figure 13, right, shows that while actor1142

weights still decrease with the addition of annealing, they no longer converge to zero and lose all1143

prior learning as demonstrated inMöller and Bogacz (2019).1144

9Arguably, this decay could be akin to an advantage-learning action value curve, such that once the critic begins to converge,
the "advantage" of the option (difference between the action value and the average value of the environment) decreases
overtime (Dayan and Balleine, 2002). In neural network versions of our BG model, striatal action selection is only required
for early learning; once a policy is repeated sufficiently, the cortex can directly select an action in a stimulus-response fashion
Frank and Claus (2006)
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Appendix 0 Figure 13. 𝛼𝑐 = .3, 𝛼𝑎 = .3. Middle, Left figure: 𝑇 = 50, normalization = 3

36 of 36

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2022. ; https://doi.org/10.1101/2022.03.10.483879doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.10.483879
http://creativecommons.org/licenses/by/4.0/

