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Abstract

Mathematical models of voltage-gated ion channels are used in basic research, indus-
trial and clinical settings. These models range in complexity, but typically contain
numerous variables representing the proportion of channels in a given state, and pa-
rameters describing the voltage-dependent rates of transition between states. An
open problem is selecting the appropriate degree of complexity and structure for an
ion channel model given data availability. Here, we simplify a model of the cardiac
human Ether-à-go-go Related Gene (hERG) potassium ion channel, which carries car-
diac IKr, using the manifold boundary approximation method (MBAM). The MBAM
approximates high-dimensional model-output manifolds by reduced models describ-
ing their boundaries, resulting in models with fewer parameters (and often variables).
We produced a series of models of reducing complexity starting from an established
5-state hERG model with 15 parameters. Models with up to 3 fewer states and 8
fewer parameters were shown to retain much of the predictive capability of the full
model and were validated using experimental hERG1a data collected in HEK293 cells
at 37◦C. The method provides a way to simplify complex models of ion channels that
improves parameter identifiability and will aid in future model development.
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1 Introduction

Mathematical models of ion channel currents have been used for a wide variety of ap-
plications in cardiac research and drug discovery, with an increasing focus on making
quantitative predictions for safety-critical applications [29]. However, these models
usually contain numerous parameters and variables, which makes understanding their
behaviour from the basic components challenging. The manifold boundary approxi-
mation method (MBAM) is a recently-developed method which constructs subman-
ifold approximations of high-dimensional model manifolds at their boundaries [36],
producing models with fewer parameters (and variables) whilst retaining much of the
predictive capability of the original model. This reduction in complexity can im-
prove parameter identifiability and offer greater insight into the connection between
a model’s components and its output. The development of reduced models that are
more practical to fit to experimental data may prove to be an important step towards
cell- and patient-specific modelling.

The MBAM has been applied to a wide variety of model classes [36, 37], as well
as action potential models within a cardiac modelling context [26, 17]. However,
we believe it has yet to be applied directly to cardiac ion channel models, which
may be another route to action potential model reduction. One disadvantage of
applying the MBAM directly to action potential models is that it can lead to the
complete removal of whole currents (such as IKr and IKs in [26]), which turns the
model from a biophysically-detailed one to a semi-phenomenological one. Applying
the MBAM to ion current models within action potential models offers the chance to
reduce model complexity (and increase parameter identifiability) without necessarily
sacrificing biophysical detail of a whole cell model.

Modelling the constituent ion channels/currents of the whole-cell cardiac electrical
response is an active area of research with a rich history [31, 41]. However, a previous
study revealed that the parameters in many models of cardiac ion channels are likely
to be unidentifiable [16], which means it is not possible to determine their values
uniquely by measuring model outputs. This is in conflict with the idea that a model’s
structure and parameters provide insights into the underlying biophysical processes.
The aim of this study was to create reduced models of the cardiac human Ether-à-
go-go Related Gene (hERG) ion channel, a critical determinant of action potential
repolarisation and focus of safety pharmacology [38], which retained the behaviour of
the full model whilst containing fewer parameters and dynamic variables.
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2 Materials and Methods

2.1 Manifold boundary approximation method

The manifold boundary approximation method (MBAM), first described in Transtrum
and Qiu [36], is a model reduction algorithm which exploits the fact that many model
outputs are bounded with a hierarchy of widths, a property which enables lower
dimensional model approximations to be made at these boundaries. The model man-
ifold, M, can be thought of as an N -dimensional parameter space (θ1, θ2, ..., θN)
manifold of a model embedded within an M -dimensional data space (the space of
model output observations). In the data space the coordinates of the model mani-
fold correspond to the system measurements (y1, y2, ..., yM), with the point along the
manifold closest to some desired data point representing the best model fit. In our
case we chose a cost function which represented the model fit to reference system
measurements of the full model, ŷm, the parameters of which were fit to our own
experimental data (see Section 2.4 for details), giving the cost function

C =
M∑
m=1

(ym − ŷm)2 . (1)

Many models in systems biology possess the property that certain parameters can
take a wide range of values without greatly affecting the model output, which has
been termed sloppiness [6, 40, 19]. The key to the MBAM lies in the fact that the
model output space manifold can be extremely narrow in directions that are very
sloppy, or in other words the model output does not change much even as you vary
parameters (or combinations of parameters) to their plausible limits. This feature
allows one to approximate the model with a manifold of reduced dimensionality by
removing or combining parameters along a manifold boundary. We seek to reduce
the dimensionality without greatly increasing the cost function value, and so from
our starting point on the parameter manifold travel in the ‘sloppiest’ direction and
then approximate the model along the boundary first encountered.

The MBAM proceeds as an iterative four-step algorithm with the following steps:

1. The sloppy directions along M are found by calculating the eigenvalues of an
N ×N matrix which has entries defined as

gi,j =
M∑
m=1

∂ym
∂θi

∂ym
∂θj

. (2)

The eigenvector of g with the smallest eigenvalue, v0, corresponds to the ‘slop-
piest’ direction in parameter space.
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2. In order to approach the manifold boundary, we use v0 as an initial direction
on M and solve numerically a geodesic equation to find a path θ(τ) through
parameter space:

d2θi
dτ 2

= −
N∑
j=1

M∑
m=1

(g−1)ij
∂ym
∂θj

Am(v), (3)

where v = dθ/dτ and Am(v) is the directional second derivative of ym in the
direction of the eigenvector v:

Am(v) = Am

(
dθ

dτ

)
=

N∑
i=1

N∑
j=1

dθi
dτ

dθj
dτ

∂2ym
∂θi∂θj

. (4)

When the calculated path θ(τ) approaches a boundary of M, the smallest
eigenvalue of g becomes small (much smaller than the next smallest) and ap-
proaches 0. This corresponds to a physically meaningful limit of the parameters
in which either a single parameter or combinations of parameters are removed
or combined to form new parameters.

For reasons of computational efficiency, we did not compute second order sen-
sitivities directly, rather estimating Am(v) using finite differences:

Am(v) =
ym(θ + hv)− 2ym(θ) + ym(θ − hv)

h2
+O(h2), (5)

where h is the step size.

3. Deduce the reduced form of the model (which now has one fewer parameter).
This model reduction step may be trivial, or may involve reformulation of model
equations and removal of state variables.

4. Calibrate the new model with reduced parameter vector, θ, to the full (original)
model output by minimising the cost function, C (Equation 1).

An example of steps one and two of this procedure is shown in Figure 1 for the model
we are going to introduce shortly (this example is the 4th iteration in Section 3.1
below, going from the r3 to r4 model). Although initially the ‘sloppiest’ eigenvector
had components in multiple parameter directions, after following the geodesic path
to a boundary the final eigenvector pointed exclusively in the direction of parameter
2 (Figure 1A), with the smallest eigenvalue approaching zero (Figure 1B). In a two-
dimensional slice of the parameter space, the geodesic can be seen to follow a canyon
of the cost contour (Figure 1C), indicating that this path through parameter space
incurs little to no change in model output. We note here that for steps 1 and 2 of the
MBAM, all parameters were log-transformed to guarantee positivity, as suggested in
[36, 37].
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Figure 1: (A) Eigenvector components of the initial (sloppiest) and final parameter
direction at the end of the geodesic path for an MBAM iteration (the 4th MBAM
iteration in the results section for revision r3→r4). (B) Eigenvalue spectra of g at the
start and end of the geodesic path. (C) A plot of the geodesic path (black line) in a
slice of log parameter space from the starting point denoted by a black circle. The
plot is coloured according to evaluations of the cost function given in Equation 1, such
that darker shades of blue represent worse agreement with the full model output.

We repeated this four-step process until the original model behaviour could not be
reproduced within a reasonable error, which we defined using a mixed root mean
square error [12], eMRMS, where

eMRMS =

√√√√ 1

T

T∑
t=1

(
ŷ(t, θ̂)− y(t,θ)

1 + |ŷ(t, θ̂)|

)2

, (6)

for an initial full model reference parameter vector θ̂ and T distinct time points
(spaced 1 ms apart along the whole current trace). We chose an eMRMS threshold
of 0.1 as the error beyond which a model could no longer satisfactorily reproduce the
full model output.

Software to perform the MBAM was adapted from available python code provided

5

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.03.11.483794doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483794
http://creativecommons.org/licenses/by/4.0/


by Dr Transtrum and colleagues (https://github.com/mktranstrum/MBAM); for a
visual explanation of how the MBAM works, the interested reader is referred to a
Michaelis Menten reaction kinetics toy model found in this repository and presented
in detail in the Supplementary Information (see Supplementary Results and Sup-
plementary Figure S1). In this work, python scripts were updated so that model
equations are written as symbolic expressions using SymPy/SymEngine. All simula-
tion codes and data pertaining to the MBAM and parameter inference described in
Section 2.4 are freely available at
https://github.com/CardiacModelling/model-reduction-manifold-boundaries.

2.2 Cardiac ion channel model

We used the well-established Wang model of hERG ion channel kinetics as our starting
model [39]. This model contains 5 state variables (3 closed states, 1 open state, and
1 inactivated state) and 15 parameters (14 kinetic parameters governing the state
transition rates and their voltage dependencies, and 1 conductance parameter). A
schematic of the model is shown in Figure 2A, marked as revision zero, ‘r0’. If

X =
(
C1, C2, C3, O, I

)T
is a vector of the state occupancies, the model is described

by the system

dX

dt
=


−αa0 βa0 0 0 0
αa0 −βa0 − kf kb 0 0
0 kf −kb − αa1 βa1 0
0 0 αa1 −βa1 − α1 β1
0 0 0 α1 −β1

X, (7)

where

αa0 = p11 exp{p12V },
βa0 = p13 exp{−p14V },
kf = p5,

kb = p6,

αa1 = p1 exp{p2V },
βa1 = p3 exp{−p4V },
α1 = p7 exp{p8V } and

β1 = p9 exp{−p10V }.

The current through the hERG channels is then given by

IKr = gKr[O](V − EKr). (8)

Here, p1, . . . , p14 represent kinetic parameters and gKr is the maximal conductance
parameter; all are positive. In practice, we solve just four of the five ODEs, using
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the fact the probabilities sum to one to give C1 = 1− (C2 +C3 +O + I). The initial

parameters, θ̂, were obtained by fitting the 15 parameters of the model to data from
our ‘staircase’ calibration protocol [23] at 37◦C (see Section 2.4 for more details). The
model output of interest (ym) used in Equations 1 and 2 was the current, IKr, at time
point m.

The input voltage protocol used for the MBAM procedure was a 5000 ms protocol
which explored in a rapid way a similar range of voltages and time scales as our
previously-published ‘staircase’ protocol [23], shown in Supplementary Figure S2.
System measurements were made at 37 equally-spaced points which captured the
main features of the current trace and appropriately weighted large, negative currents
during which the channel is close to maximally open. It should be noted that in
Equation 1 we used M = 37 for steps 1 and 2 of the MBAM algorithm and M = 5000
(1 ms spacing) when calibrating the model to the full model output in step 4.

Regarding the eigenvalue stopping criterion, a default value of 10−6 was used, which
was typically sufficient to identify the geodesic limit with ease. This value occasion-
ally required tuning as geodesic calculations can become very stiff when a boundary
is approached (furthermore, ODE solver errors may result from parameters approach-
ing infinity). Exact input settings including smallest eigenvalue thresholds used
to generate the data in this study can be found in the Github repository (https:
//github.com/CardiacModelling/model-reduction-manifold-boundaries).

2.3 Electrophysiology experiments at 37◦C

In order to test the predictive power of models reduced with the MBAM, we subse-
quently re-calibrated them to real experimental data. For parameter inference and
model validation in this context we used HEK293 wild-type hERG1a expression sys-
tem current traces at 37◦C, which represented typical recordings from a previous study
[22]. Briefly, HEK-293 cells cultured in DMEM supplemented with 10% FBS at 37◦C
with 5% CO2 were co-transfected with hERG1a in pcDNA3 and GFP in pcDNA3
using lipofectamine 3000 (Invitrogen). Cells were plated onto coverslips 14–16 h after
transfection and cells with green fluorescence were selected for recordings. Whole cell
patch clamp recordings were performed with an Axon Instruments 200B amplifier
and Digidata 1440 A/D interface. Signals were acquired at a sampling frequency of
10 kHz and were filtered using a 4 kHz low pass Bessel filter.

During recordings, cells were superfused at 2 ml/min with solution containing (in
mM): 140 NaCl, 4 KCl, 1.8 CaCl2, 1 MgCl2, 10 glucose, 10 HEPES (pH 7.4 with
NaOH). Patch electrodes formed from borosilicate glass (Sutter Instruments) using a
P-97 puller (Sutter Instruments) were filled with (in mM): 130 KCl, 1 MgCl2, 1 CaCl2,
10 EGTA, 10 HEPES, 5 Mg2+ATP (pH 7.2 with KOH). Electrodes had a resistance
of 3.7–4.5 MΩ and series resistance was compensated 60–70%, without online leak
subtraction, using the amplifier circuitry. The recording bath temperature was main-
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tained at 37◦C using a TC-344B Warner Instruments temperature controller unit
with bath chamber thermistor, heated platform, and inline perfusion heater. Upon
whole cell formation, hERG1a current was recorded during a 2 s step to +20 mV fol-
lowed by a step to −65 mV (holding potential −80 mV) applied repeatedly at 0.2 Hz.
Once peak tail current amplitude during the step to −65 mV stabilised, experimental
recordings were undertaken.

2.4 Parameter inference using real data

As described previously [22], maximum likelihood estimation was used to infer model
parameters from the experimental data, by constructing a likelihood function based
on independent and identically distributed Gaussian noise on each data point:

IdataKr = Imodel
Kr + ε, (9)

where ε ∼ N (0, σ2) [22]. Under this scheme, the log-likelihood of a given set of
parameters is proportional to

L ∝ −
∑(

Imodel
Kr − IdataKr

)2
, (10)

where we sum over the time points in the current trace for the calibration protocol
data. The most likely parameter set is thus identical to that given by a least-sum-of-
square-errors fit as used in our cost function C here, Equation 1.

All fitting used a Myokit [8] model in PINTS [10], using the CVODE solver [11] with
absolute and relative tolerances of 10−8 and maximum time step of 0.1 ms. We used
CMA-ES with 50 repeats from different initial guesses for optimisation to real data,
and as in Kemp et al. [22] the optimiser worked with log-transformed parameters for
those that are non–voltage-dependent in the transition rates [9, 41].

3 Results

3.1 A series of reduced models

A summary of model reductions at each iteration of the MBAM and the eMRMS of
the associated reduced model is given in Table 1. Figure 1 showed an example of
the progress of the algorithm from r3 to r4 as it establishes which parameters will
be reduced as the boundary is approached. The first 9 iterations only are shown
in Table 1, as after this the reduced model exceeded our eMRMS threshold. We can
see that 4/9 of the reductions involved a single parameter tending to 0, 4/9 of the
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reductions involved two parameters tending to infinity, the finite ratio of which formed
a new parameter, and 1 reduction involved one parameter tending to zero and another
tending to infinity, the finite product of which formed a new parameter. A detailed
breakdown of each MBAM iteration and the effect it had on model equations is given
in the Supplementary Information.

Figure 2A shows model structures for the full model and the series of models of
reduced complexity obtained with the MBAM. It should be noted that the Wang-r5
and Wang-r8 models have extra voltage-dependence in the expressions for the open
probability which cannot be represented in the Markov chain diagrams. In the case
of the Wang-r8 model, this corresponds to instantaneous inactivation, thus giving the
model more flexibility than suggested by the simple closed-open model structure. The
spread of eigenvalues of g (Equation 2) for selected models is presented in Figure 2B.
From this we can see that the eigenvalue spectrum of reduced models spanned fewer
orders of magnitude than the full model, with the spread decreasing with the level of
model reduction, signifying reduced sloppiness of the parameter sensitivities.

3.2 Model reduction with the MBAM improves parameter
identifiability

In order to demonstrate the advantage of performing model reduction, we next per-
formed an exercise in which the parameters of all reduced models were fit to our WT
hERG channel current trace at 37◦C (as was done to obtain the initial parameter set,

θ̂, in the full model). This process was repeated 50 times for each model, sampling
from the parameter search space each time to give a different initial guess. The best
30 parameter sets for the full model are plotted in Figure 3A. The results reveal that
many of the parameters could take on a wide range of values which spanned several
orders of magnitude whilst still giving a model output consistent with the experimen-
tal data. To illustrate this point further, Figure 3C shows two parameter sets with
huge differences in the values of many parameters which produce highly similar model
outputs in response to the same input (Figure 3D). This tells us that the parameters
in this model are practically unidentifiable for this particular experiment. It is impor-
tant to stress that practical identifiability is a property of both model and experiment
— given that the parameters of our full model are not a priori unidentifiable, we could
in theory design a new experiment which would enable us to determine uniquely the
values of all parameters (given structural identifiability) [16, 41]. Indeed, the original
Wang et al. [39] model developers did use different experimental data and carefully
considered a range of structures when motivating this choice of model [39].

Figure 3B shows the results of our repeated parameter fitting exercise for a model
which was reduced through 6 iterations of the MBAM (termed the Wang-r6 model).
We focus on this model as it is the first model with fully identifiable parameters from
the experiment (Supplementary Figure S3) whilst also being the most reduced model

9

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 16, 2022. ; https://doi.org/10.1101/2022.03.11.483794doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483794
http://creativecommons.org/licenses/by/4.0/


Figure 2: (A) Evolution of the Markov chain hERG model by Wang et al. [39] through
subsequent iterations of the MBAM. Each structure shows a dynamic model (starting
with the full model, r0) and the parameter changes which took place to get to the
next reduced model, as in Table 1, guided by a grey arrow showing the direction of
model reduction (from r0 to r8). As in Table 1, parameters highlighted blue→ 0 and
red→∞ in the next reduction. The O′ and O′′ states for the Wang-r5 and r8 models
relate to the actual open probability through the relations O = O′/(1+φ3 exp(−p4V ))
and O = O′′/(1+φ7 exp(p8V )), respectively. The dotted red line around the O′′ state
in the final reduction denotes that the maximal channel conductance →∞. (B) The
eigenvalue spectra of g for selected models (denoted by coloured stars) under the
shortened ‘staircase’ protocol described in Section 2.2.
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Figure 3: A practical assessment of model identifiability. Plotted are the inferred
parameter values in (A) the full Wang model [39] and (B) a reduced model (Wang-
r6) for 50 repeats of fitting from different initial guesses to experimental ‘staircase’
calibration protocol hERG channel currents at 37◦C [22]. The 30 best parameter sets
are shown in each case, from lowest (green) to highest (blue) likelihood. Note that
in panel (B) the 30 inferred parameter sets are overlapping. (C) Two parameter sets
of the full Wang model which show large divergence for many parameters but are
both consistent with the experimental data, giving highly similar model outputs in
response to the same input voltage protocol, as shown in (D).

with simple, biophysically-interpretable rates of the form A · exp(B · V ) on each of
the transitions. We can see in this case that we have convergence of our parameter
estimates — all of our inferred values in the best 30 parameter sets occupy a very
small (overlapping) region of parameter space. This tells us that the parameters in
our reduced model are practically identifiable for this particular experiment, putting
us in a stronger position to to draw conclusions about the underlying biophysical
processes.

3.3 Reduced models retain high predictive capability

As described in the previous section, after reducing the Wang model through sev-
eral iterations using the MBAM we fit the parameters of the new, reduced models
to ‘staircase’ calibration protocol experimental data (convergence of parameter esti-
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mates from different initial guesses is shown for the Wang-r6 model in Figure 3B and
for all models in Supplementary Figure S3). Focusing again on the Wang-r6 model
and also the Wang-r8 model (the most reduced model with acceptable error), the
close correspondence between model and experiment achieved in model calibration is
shown in Figure 4A. Furthermore, the calibrated reduced models excellently predicted
the response to a wealth of ‘unseen’ validation data collected in the same cell [22].
Specifically, the Wang-r6 and Wang-r8 reduced models predicted with quantitative
accuracy the response to a complex series of cardiac action potential waveforms (Fig-
ure 4B) [5] and shortened versions of traditional activation and inactivation voltage
protocols (Figure 4C) plus associated summary data (Figure 4D) with highly similar
model output to the full Wang model. The only very noticeable area of model dis-
crepancy was in the time constant of deactivation at higher voltages. This is due to
the fact that the structures of the Wang-r6 and Wang-r8 reduced models can only
produce one time course of deactivation (where at least two exist in the experimental
data). However, we can see from Figure 4B that this is not an important feature of the
model for making predictions of resurgent hERG currents in a physiologically-relevant
context-of-use.

Fits to the ‘staircase’ protocol for all models are shown in Supplementary Figure S4,
from which it can be seen that reducing the model through as many as 8 iterations of
the MBAM had only a very small effect on the ability of the models to fit the data.
Similarly, all reduced models were able to predict the response to a complex series
of cardiac action potential waveforms (Supplementary Figure S5) and shortened ver-
sions of traditional activation and inactivation protocols (Supplementary Figure S6)
with similar accuracy as the full model. The only noticeable exceptions were that
the Wang-r7 and Wang-r8 models underestimated the amplitude of hERG transient
currents under the complex action potential validation protocol (Supplementary Fig-
ure S5), and all models reduced beyond the Wang-r3 model exhibited appreciable
discrepancy in the time constant of deactivation (Supplementary Figure S6), which
we revisit in the Discussion.

4 Discussion

4.1 Main findings

Our study demonstrates that the MBAM is a viable approach to reducing cardiac ion
channel models. We reduced the established Wang et al. [39] model of the critically
important cardiac hERG channel from one with 15 parameters and 5 variables to a
series of reduced models with as few as 7 parameters and 2 variables which preserved
the predictive capability of the full model. This was demonstrated to improve prac-
tical identifiability of the parameters, as shown through convergence of parameter
estimates when fitting to experimental data from different initial guesses (Figure 3B
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Figure 4: (A) A comparison of the full Wang model and Wang-r6/Wang-r8 reduced
model fits to experimental data under the ‘staircase’ calibration protocol. (B) Predic-
tion of the full Wang model and Wang-r6/Wang-r8 reduced models under a complex
action potential waveform validation protocol. (C) Predictions of the full Wang model
and Wang-r6/Wang-r8 reduced models under shortened versions of traditional activa-
tion and inactivation protocols. (D) Comparisons of summary data between the full
Wang model and Wang-r6/Wang-r8 reduced models and experiment corresponding
to the data shown in (C). All experimental data were recorded in HEK293 cells at
37◦C [22] (see Section 2.3 for details).
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and Supplementary Figure S3). Another way of framing this is that we reduced the
‘sloppiness’ of the parameter sensitivities, as shown by the smaller spread of eigen-
values in Figure 2B. It has been suggested that sloppiness , in which well-constrained
predictions can arise from poorly-constrained parameters, is a “universal” property of
systems biology models [6, 40, 19]. However, others have pointed out that this slop-
piness is simply unidentifiability which can be rectified through novel experimental
design, i.e. by performing the ‘right’ experiments [3], whereas others have proposed
that sloppiness and lack of identifiability are not equivalent [7]. Using the definition
of a sloppy model provided by Chis et al. [7], i.e. that λmin/λmax . 10−3, our three
most reduced models (Wang-r6, Wang-r7 and Wang-r8) would be considered sloppy
yet identifiable. We demonstrated convergence of parameters from different initial
guesses for each of these models (Supplementary Figure S3), suggesting that the
model complexity and informativeness of the experiment are appropriately matched
— we would, therefore, favour identifiability criteria over those pertaining to sloppi-
ness, in line with the conclusions of that study [7].

Using previously-reported experimental data at 37◦C [22], we showed that models
reduced with the MBAM retained a large amount of flexibility and predictive power
of the full model (Supplementary Figures S5 and S6). Not only were the reduced
models able to fit the calibration data very well (this was partially by design, as the
calibration voltage protocol was highly similar to the voltage input protocol used to
generate the system measurements for the MBAM), they were also able to predict
a vast amount of independent, ‘unseen’ validation data recorded from the same cell
(e.g. see Wang-r6 and Wang-r8 model predictions in Figure 4). Especially impressive
is the fact that the reduced models were found to be highly predictive in the context
of a complex, physiologically-relevant series of cardiac action potential waveforms
which explores channel dynamics under both normal and abnormal action potential
morphologies, including delayed- and early-afterdepolarisations [5].

The most noticeable area of model discrepancy (or model mismatch — the interested
reader is referred to Table 1 in Lei et al. [24] for a list of equivalent terminologies
for inverse problem concepts) was in the time constant of deactivation (Figure 4D)
extracted from the inactivation protocol validation data (Figure 4C). Supplementary
Figure S6 highlights that the reduction which took place between the Wang-r3 and
Wang-r4 model in particular increased the divergence between model and experiment.
This step, illustrated in Figure 1, corresponded to the parameter p2 → 0, reducing
the model from one with two voltage-dependent deactivation transition rates to a
model with two deactivation transition rates, only one of which is voltage dependent.
Following this reduction the model was no longer able to deactivate following the bi-
exponential time course seen in the data, hence the greater discrepancy. Nonetheless,
models reduced past this point preserved the steady state channel kinetics well, and
this feature of the model was shown to be unimportant for making predictions of
resurgent hERG currents under physiologically-relevant AP waveforms (Figure 4B),
although the two most reduced models underestimated the amplitude of hERG tran-
sient currents (Supplementary Figure S5).
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Model selection for ion channel models remains a challenging and unresolved problem
[28, 35, 27]. Starting from an existing, established model in the literature, we showed
that ion channel model reduction by the MBAM can offer insights into the underlying
biophysical processes by reducing and refining the structure and parameters of a
model, thus aiding in the model selection process. Rather than trying to select from
a large range of available models in the literature, we demonstrated that the MBAM
can be used to distil the components of an existing model which are necessary to give
a predictive model. In our case, we demonstrated that removing two of the three
closed states present in the original model of hERG channel kinetics described by
Wang et al. [39] resulted in models which retained predictive accuracy. Whilst we are
not claiming that the structure of any of our reduced models (such as the Wang-r6
model) give a more accurate representation of the true underlying molecular reality
of the channel, we do suggest that these fundamental components of the system can
explain a lot of the channel dynamics at 37◦C and are thus sufficient to form the basis
of a predictive and well-parameterised mathematical model. Interestingly, Di Veroli
et al. [13] also settled on a simpler, single time constant of activation/deactivation
representation of hERG channel dynamics at 37◦C compared to their model at room
temperature, which could produce two time courses of activation/deactivation.

4.2 Relation to previous work and future outlook

The relationship between the MBAM and other reduction techniques has been dis-
cussed in detail previously [36, 37]. As outlined in this paper, cardiac ion channel
models typically contain large numbers of parameters relating to transition rates be-
tween numerous closed, open, and inactivated states, which may result in parameter
unidentifiability [16] and divergence in predictions between models of the same chan-
nel kinetics [5, 1]. Multiple plausible models also means it is difficult to understand
the relationship between model outputs and model parameters, suggesting there is
a need for ion channel models of reduced complexity. Whilst this problem is well-
known when it comes to models of the cardiac action potential [42, 20], with several
reduced/minimal models having been created already [2, 15, 30] (including through
use of the MBAM [26, 17]), considerably less has been done in terms of reducing their
constituent ion channel sub-models (more of a concern for Markov chain models than
simpler Hodgkin-Huxley formulations).

Reducing the ion channel sub-models within full cellular action potential models has
the advantage of preserving biophysical detail and therefore drug or mutation targets
whose effects we may wish to model. For example, within a 67 variable myocyte model
Ariful Islam et al. [4] reduced a 13-state sodium channel Markov model and 10-state
potassium channel Markov model to two-gate Hodgkin-Huxley (HH) models. That
work relied on using approximate bisimulation between the full Markov models and
two-state HH invariant manifold reductions of the Markov channel dynamics [21].
Other model reduction techniques which have been applied to ion channel models
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include combining states (‘lumping’) and fast/slow analysis to separate time scales
[18, 34, 33]. To decide which states to combine in lumping approaches, intuition of
the modelling problem may be used, or each possible choice may be evaluated as in
the ‘Proper Lumping’ technique [14]. In contrast, the MBAM seeks only to reduce the
number of parameters whilst having little impact on outputs. The MBAM may lump
states, as it did in r1→r2 and r4→r5 in our reductions. However, the MBAM is more
flexible in the sense that the resulting reduction in number of parameters may be
associated with model reductions that do not use lumping, as we saw above for most
of our hERG model reductions, and has the benefit of semi-automatically suggesting
the next reduction based on sensitivities rather than having to exhaustively try all
combinations of states.

Models of the cardiac hERG ion channel are frequently used in the simulation of
genetic mutations and drug effects, due to the medical and pharmaceutical relevance
of hERG-related abnormalities. Some additional consideration is therefore warranted
regarding how this method might be applied in these contexts. Regarding state-
specific drug block, the method allows one to choose which observations to use to
guide the model reduction. Accordingly, if we have a trusted complex model, it would
be possible to preserve both the open and inactivated state occupancies, which would
ensure the model remains relevant for use in conjunction with existing models of drug
kinetics, which for hERG typically include binding to only open and/or inactivated
states (e.g. [25]). As for genetic mutations, applying the MBAM separately for each
mutant would produce models which are able to shed light on how a mutation affects
the channel, with no requirements to be defined a priori.

An approach to parameter identification which circumvents the need for model re-
duction altogether is to fix the values of certain parameters based on experimental
estimates or inheritance from previous models, fitting only the remaining parameters
in the model [37]. This approach is relatively common not just in the field of cardiac
modelling, but also in the relatively new discipline of quantitative systems pharma-
cology. Whilst this does reduce the dimensionality of the parameter search space, it
does not make the model conceptually simpler or necessarily help to illuminate the
connection between model parameters and output, unlike model reduction methods
such as the MBAM. The MBAM may therefore also be of great utility in this con-
text, in which the desirability of models with identifiable parameters has begun to be
appreciated [32].

5 Conclusions

To conclude, we have demonstrated the viability of using the manifold boundary
approximation method to reduce models of ion channels whilst retaining a high level
of predictive power. This approach is a very promising way to simplify ion channel
models whilst improving parameter identifiability. It maintains a strong connection
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between the biophysically-based model parameters, states and outputs from complex
models and the same properties within algorithmically-derived simplified models.
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