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Cortical networks exhibit complex stimulus-response patterns. Previous work has identified

the balance between excitatory and inhibitory currents as a central component of cortical com-

putations, but has not considered how the required synaptic connectivity emerges from bio-

logically plausible plasticity rules. Using theory and modeling, we demonstrate how a wide

range of cortical response properties can arise from Hebbian learning that is stabilized by the

synapse-type-specific competition for synaptic resources. In fully plastic recurrent circuits,

this competition enables the development and decorrelation of inhibition-balanced receptive

fields. Networks develop an assembly structure with stronger connections between similarly

tuned neurons and exhibit response normalization and surround suppression. These results

demonstrate how neurons can self-organize into functional circuits and provide a foundational

understanding of plasticity in recurrent networks.
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Figure 1: Synapse-type-specific competitive Hebbian learning enables the development of stimulus selectivity and inhibitory

balance. (A) Feedforward input to a pyramidal neuron consists of direct excitation and disynaptic inhibition. Plastic synapses are

marked by *. (B) A single post-synaptic pyramidal neuron, targeted by excitatory (E) and inhibitory (I) synapses. (C) Excitatory and in-

hibitory input neurons are equally tuned to the orientation of a stimulus grating (bottom, tuning curve of neurons tuned to 60◦ highlighted
in dark gray) and exhibit a Gaussian-shaped population response when a single grating of 30◦ is presented (orange plate, dashed line).

(D) Hebbian potentiation of a synapse (**) is bounded due to a limited amount of synaptic resources, here reflected by a fixed number

of synaptic channels. (E) Weight convergence of synapses where inhibitory weights are plastic according to synapse-type-specific

competitive Hebbian learning. (F) Final synaptic weight strength, after training, as a function of the tuning peak of the pre-synaptic

neurons. (G) & (H) Same as (E) and (F), but for classic inhibitory plasticity.
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C
omputation in neural circuits is based on

the interactions between recurrently con-

nected excitatory (E) and inhibitory (I) neu-

rons.1–4 In sensory cortices, response normal-

ization, surround and gain modulation, predictive

processing, and attention all critically involve in-

hibitory neurons.5–10 Theoretical work has high-

lighted the experimentally observed balance of

stimulus selective excitatory and inhibitory input

currents as a critical requirement for many neural

computations.11–16 For example, recent models

based on balanced E-I networks have explained

a wide range of cortical phenomena, such as

cross-orientation and surround suppression,17,18

as well as stimulus-induced neural variability.19,20

A major caveat of these models is that the net-

work connectivity is usually static and designed

by hand. How recurrent synaptic weights self-

organize in a biologically plausible manner to

generate the non-linear response properties ob-

served experimentally is unknown. Earlier theo-

retical work on inhibitory plasticity has focused

on the balance of excitation and inhibition in sin-

gle neurons,21–23 but has not been able to ex-

plain the development of inhibition balanced re-

ceptive fields when excitatory and inhibitory in-

puts are both plastic. In more recent recurrent

network models, only a fraction of excitatory and

inhibitory synapse-types are modeled as plastic,

and neural responses exhibit a narrow subset of

the different response patterns recorded in exper-

iments.14,24–29

Here we present a Hebbian learning frame-

work with minimal assumptions that explains a

wide range of experimental observations. In

our framework, synaptic strengths evolve accord-

ing to a Hebbian plasticity rule that is stabi-

lized by the competition for a limited supply of

synaptic resources.30–32 Motivated by the unique

protein composition of excitatory and inhibitory

synapses, our key assumption is that different

synapse-types compete for separate resource

pools, which enables the self-organization into

functional recurrent networks.

To understand plasticity in recurrently con-

nected E-I networks, we considered simplified

circuits of increasing complexity. We first asked

how E-I balance and stimulus selectivity can si-

multaneously develop in a single neuron. The

neuron receives input from an upstream popu-

lation of excitatory neurons, and disynaptic in-

hibitory input from a population of laterally con-

nected inhibitory neurons that themselves re-

ceive input from the same upstream population

(Fig. 1A). We studied the self-organization of ex-

citatory and inhibitory synapses that project onto

the single post-synaptic neuron (Fig. 1B), as-

suming that input synapses that project onto in-

hibitory neurons remained fixed (Fig. 1A). Follow-

ing experimental results,33–36 we assumed that

inhibitory and excitatory input neurons are equally

selective for the orientation of a stimulus grating

(Fig. 1C, bottom). We presented uniformly dis-

tributed oriented stimuli to the network in ran-

dom order. Stimuli elicited a Gaussian-shaped

response in the population of input neurons

(Fig. 1C, top) and thus drove the post-synaptic

neuron (see Supplementary Material (SM) Sec. 1

for method details). Synapses are plastic accord-

ing to a basic Hebbian rule:

∆wA ∝ yAr, A ∈ {E, I}, (1)

where r is the post-synaptic firing rate, and yA is

a vector that holds the pre-synaptic firing rates

of excitatory (A = E) and inhibitory (A = I) neu-

rons. Experimental results have shown that after

the induction of long-term plasticity neither the

total excitatory nor the total inhibitory synaptic

area change.31 This suggests that a synapse can

only grow at the expense of another synapse – a

competitive mechanism potentially mediated by

the limited supply of synaptic proteins (Fig. 1D).32

Motivated by these results, we adopted a com-

petitive normalization rule for both excitatory and

inhibitory synapses:

wA ←WA
wA + ∆wA

‖wA + ∆wA ‖
, (2)

where A ∈ {E, I}, and WE , WI are the main-

tained total excitatory and inhibitory synaptic

weight, respectively. Shortly after random ini-

tialization, excitatory and inhibitory weights stabi-

lize (Fig. 1E) and form aligned, Gaussian-shaped

tuning curves (Fig. 1F) that reflect the shape of

the input stimuli (Fig. 1C). As a result, neural re-

sponses become orientation selective while in-

hibitory and excitatory inputs are equally tuned,

which demonstrates the joint development of

stimulus selectivity and E-I balance.

To uncover the principles of synapse-type-

specific competitive Hebbian learning, we ana-

lyzed the feedforward model analytically. It is well

established that in the absence of inhibition, com-

petitive Hebbian learning rules generate stimu-

lus selective excitatory receptive fields.30,37 In the

case of a linear activation function, f(u) ∝ u, the

expected total synaptic efficacy changes can be

expressed as30 (SM Sec. 2):

〈 ÛwE 〉 ∝ CwE − γwE , (3)

were C = 〈yEyE
ᵀ
〉 is the input covariance matrix,

with 〈·〉 being the temporal average, and γ is a

scalar normalization factor that regulates Hebbian

growth. Then, fixed points, for which 〈 ÛwE 〉 = 0,

are eigenvectors of the covariance matrix, i.e.,

the neuron becomes selective to the first princi-

pal component of its input data.30,37 For a non-

linear activation function f(u), neurons become

selective for higher-order correlations in their in-

puts.38–40 In the following, we call the fixed points

of such pure feedforward circuits ‘input modes’.
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Figure 2: Feedforward tunings are affected by lateral input

in microcircuit motifs. (A) In addition to feedforward input from

a population of orientation tuned excitatory cells (blue circle), a

neuron receives lateral input from an excitatory neuron with fixed

feedforward tuning (light blue). * indicates plastic synapses. Feed-

forward tuning curves of the two neurons are shown before (cen-

ter) and after (right) training. (B) Same as in (A), for lateral input

from multiple inhibitory neurons. (C) Same as in (A), including re-

current excitation and self-excitation, and all synaptic connections

being plastic. (D) Same as in (C), for inhibitory neurons.
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Figure 3: Tuning curve decorrelation in plastic recurrent networks. (A) Top: A population of recurrently connected excitatory and

inhibitory neurons receives input from a set of input neurons that are tuned to different stimulus orientations (compare Fig. 1B, bottom).

Every 200ms a different orientation is presented to the network (vertical gray lines). At the same time, all synapses exhibit plasticity

according to a synapse-type-specific Hebbian rule (see Appendix 1 for details). Bottom: Exemplary firing rate activity of one excitatory

and one inhibitory neuron before and after training. (B) Feedforward tuning curves of NE = 10 excitatory neurons before (top), during

(center), and after (bottom) training. (C) Connectivity matrices for NE = 80 excitatory (blue) and NI = 20 inhibitory (red) neurons after

training. Neurons are sorted according to their preferred orientation θ̂. wAB
max is the largest synaptic weight between population A and

B; A,B ∈ {E, I}. (D) Normalized (norm.) recurrent weight strengths as a function of the difference between preferred orientations of

pre- and post-synaptic neurons, ∆θ̂ = θ̂post − θ̂pre, averaged over all neuron pairs. (E) Average firing rate response of inhibitory and

excitatory neurons to a stimulus orientation θ, relative to their preferred orientation, ∆θ = θ̂ − θ, averaged over all neurons. (F) Same as

(E) for excitatory and inhibitory inputs to excitatory neurons. (G) Inhibitory input to an excitatory neuron with preferred orientation close

to 90◦. Each curve corresponds to the input from one pre-synaptic inhibitory neuron.
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We next examined how inhibitory plasticity

affects the development of stimulus selectiv-

ity. Previous work has suggested that inhibitory

synaptic plasticity in the cortex is Hebbian41,42

and imposes a target firing rate r0 on the post-

synaptic neuron:22

ÛwI ∝ yI (r − r0) . (4)

When excitatory synaptic weights remain fixed,

this ‘classic’ inhibitory plasticity leads to balanced

excitatory and inhibitory input currents.22 How-

ever, when excitatory synaptic weights are also

plastic, neurons develop no stimulus selectiv-

ity:23 Classic inhibitory plasticity must act on a

faster timescale than excitatory plasticity to main-

tain stability.23 Then the post-synaptic target fir-

ing rate is consistently met and average excita-

tory synaptic weight changes only differ amongst

each other due to different average pre-synaptic

firing rates, which prevents the development of

stimulus selectivity (Fig. 1G, and H) (SM Sec. 2.2).

Synapse-type-specific competitive Hebbian

learning (Eq. 1, and 2) can solve this problem. As

in Eq. 3, we incorporated the normalization step

(Eq. 2) into the update rule (Eq. 1) and consid-

ered the simpler case of a linear activation func-

tion f(u) ∝ u (SM Sec. 3):

〈 Ûw〉 ∝ Cw − γ

(
wE

0

)
− ρ

(
0

wI

)
, (5)

w =

(
wE

wI

)
, C ≡

〈(
yEyE

ᵀ
−yEyI

ᵀ

yIyE
ᵀ

−yIyI
ᵀ

) 〉
, (6)

where γ and ρ are scalars that ensure normal-

ization, and we defined the modified covariance

matrix C. Now the fixed points of the weight

dynamics are multiples of the excitatory and the

inhibitory part of the eigenvectors of the modi-

fied covariance matrix C. When excitatory and

inhibitory inputs are equally stimulus selective,

such that one can approximate yE ∝ yI, the modi-

fied covariancematrixC is composed of multiples

of the original covariance matrix C. This implies

that excitatory and inhibitory synaptic weights

eventually have identical shape, wE ∝ wI, equal

to a multiple of an eigenvector of C. Neurons be-

come selective for activity along one particular in-

put direction, while excitatory and inhibitory neu-

ral inputs are balanced, which explains the joint

development of stimulus selectivity and E-I bal-

ance in feedforward circuits, in agreement with

our numerical simulations (Fig. 1).

We next investigated the effect of synapse-

type-specific competitive Hebbian learning in re-

current networks. In a first step, we consid-

ered how lateral input from an excitatory neuron

with fixed selectivity for a specific feedforward

input mode affects synaptic weight dynamics in

a microcircuit motif (Fig. 2A, left). We observed

that a downstream neuron becomes preferentially

tuned to the feedforward input mode of the lat-

eral projecting neuron (Fig. 2A, right)(compare SM

Sec. 4). Similarly, laterally projecting inhibitory

neurons repel downstream neurons from their in-

put modes (Fig. 2B). However, when two excita-

tory neurons are reciprocally connected, they pull

each other towards their respective input modes,

and their tuning curves and activities become

correlated (Fig. 2C). This contradicts experimen-

tal observations that brain activity decorrelates

over development.43,44 Recent experimental re-

sults have suggested that inhibitory neurons drive

decorrelation of neural activities.45,46 In line with

these results, in our model, interconnected in-

hibitory neurons repel each other and their tuning

curves decorrelate (Fig. 2D).

Hence, we asked whether the interaction

between excitatory and inhibitory neurons can

also decorrelate excitatory neural activities. To

address this question we explored the conse-

quences of synapse-type-specific competitive

Hebbian learning in a network of recurrently con-

nected excitatory and inhibitory neurons (Fig. 3A,

top). We presented different oriented gratings

in random order in a network where all feedfor-

ward and recurrent synapses are plastic. We ob-

served a sharp increase in response selectivity

(Fig. 3A, bottom) that is reflected in the reconfig-

uration of feedforward synaptic weights. Shortly

after random initialization (Fig. 3B, top), excita-

tory neurons predominantly connect to a subset

of input neurons with similar stimulus selectivities

(Fig. 3B, center). Different from circuits without

inhibition (compare Fig. 2C), tuning curves of ex-

citatory as well as inhibitory neurons decorrelate

and cover the whole stimulus space with minimal

overlap (Fig. 3B, bottom). After training, synaptic

connections become organized in an assembly-

like structure, according to their tuning similar-

ity (Fig. 3C, and D) as is observed experimen-

tally.47–57 We found that inhibitory neurons be-

come as selective for stimulus orientations as

excitatory neurons33–36 (Fig. 3E), while wider in-

hibitory input (Fig. 3F) from multiple overlap-

ping inhibitory neurons (Fig. 3G) increases neu-

rons’ tuning selectivities, in agreement with ex-

perimental results.12,58–61 In summary, synapse-

type-specific competitive Hebbian learning in fully

plastic recurrent networks can decorrelate neu-

ral activities and leads to preferential connectivity

between similarly tuned neurons, as observed in

cortical circuits.

To uncover how recurrent inhibition can pre-

vent all neurons to become selective for a sin-

gle input mode, we investigated the fundamen-

tal principles of synapse-type-specific competi-

tive Hebbian learning in recurrent networks ana-

lytically (SM Sec. 6). To prevent the collapse of

all tuning curves onto the same dominant input

mode (compare Fig. 2A, and C), we find that its

effective attraction has to decrease with the num-

ber of neurons that are tuned to that mode (SM

Sec. 6.3). In the simplified case of linear activation

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.483899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483899
http://creativecommons.org/licenses/by-nc/4.0/


Ei
ge

nc
irc

ui
t a

ttr
ac

tio
n

EC1

A B

C

-1 -1 +2 -1

EC2 EC3 EC4

+
-

-

2

1

0

-1

Figure 4: Eigencircuit decomposition and attraction. (A)

Synaptic weight vectors wa, wb of two neurons that are tuned to

two different principle components (top, purple and green) of the

input data (each dark blue dot represents one pre-synaptic firing

pattern). (B) Synaptic weights between differently tuned neurons

wab decay to zero, while neurons tuned to the same eigenvec-

tor form an eigencircuit with recurrent connectivity (purple). (C)

A recurrent network with four eigencircuits (EC). Each excitatory

neuron contributes plus one (+), each inhibitory neuron minus one

(-) to the total eigencircuit attraction. Due to synaptic plasticity,

neurons are pulled towards the most attractive eigencircuit (gray

dashed arrows). When all neurons are part of the same eigencir-

cuit (EC3), its attraction becomes negative (bottom).
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Figure 5: Cross-orientation and surround suppression in a trained neural network. (A) A plastic network of excitatory and inhibitory

neurons (top) receives input according to fixed tuning curves (bottom). Amplitude corresponds to stimulus contrast. Tuning curve of

neurons with preferred orientation of 90◦ highlighted in dark gray. (B) Response of 80 excitatory neurons to a test grating (orange, 45◦ )
and a mask grating (green, 135◦ ) of different contrast levels (inset). Gratings are presented separately (orange & green) or together

(dark blue). Each circle corresponds to the response of one excitatory neuron. (C) Contrast response curve of a single excitatory neuron

(preferred orientation θ̂ = 45◦ ) to the test and mask gratings in (B). Different mask contrasts are indicated by color. Circles correspond

to contrast levels in (B). (D) Center and surround receptive fields with different oriented stimuli. (E) Feedforward inputs for two example

stimuli (one solid, one transparent) when center and surround are correlated (top) or stimulated separately (bottom). (F) Response of

one excitatory neuron to center and surround stimulation after training. A center stimulus of preferred orientation was presented at

constant contrast while the contrast of a cross- or iso-oriented surround stimulus changed. Colors as in (E). (G) Input to excitatory

neurons during stimulation (stim.) of the surround region.
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functions, input modes are eigenvectors of the

input covariance matrix (compare Eq.3). Since

these eigenvectors are orthogonal by definition,

the activities of neurons that are tuned to different

eigenvectors are uncorrelated, and their recip-

rocal connections decay to zero under Hebbian

plasticity (Fig. 4A). Then, neurons that are tuned

to the same eigenvector form recurrent ‘eigencir-

cuits’ that are otherwise separated from the rest

of the network (SM Sec. 5). Crucially, this decom-

position of the network into eigencircuits allows

us to write the effective attraction λ̂ of an input

mode as the sum of a feedforward component λ
and the variances of the neurons that reside in the

eigencircuit (Fig. 4B):

λ̂ = λ + λeig = λ +
∑
i

σ2
E,i −

∑
j

σ2
I,j, (7)

where we defined the eigencircuit attraction λeig,

and variances σ2 depend on the total synaptic

weights, and the number of excitatory neurons

and inhibitory neurons in the eigencircuit. This

reveals that the attractive and repulsive effects

of excitatory and inhibitory neurons balance each

other. In a simplified example, we assumed that

all feedforward input modes have equal attrac-

tion λ, while each excitatory neuron contributes

plus one and each inhibitory neuron minus one

to the total attraction (Fig. 4C). Then the eigen-

circuit attraction becomes λeig = nE − nI. All

neurons become attracted to the same eigencir-

cuit, which suggests that all tuning curves will

eventually collapse onto the same input mode.

However, when all neurons become selective to

the most attractive input mode, that mode be-

comes repulsive (Fig. 4C, bottom, dashed line),

as each increase in attraction due to additional

excitatory neurons is balanced by a decrease in

attraction due to additional inhibitory neurons.

Consequently, the resulting eigencircuit becomes

unstable and neurons become attracted to non-

repulsive input modes. This prevents the collapse

of tuning curves onto a single input mode, and

demonstrates how neurons decorrelate due to re-

current inhibitory interactions.

Our results thus far reveal how synapse-type-

specific competitive Hebbian learning can explain

the development of structured recurrent connec-

tivity. We next asked whether synapse-type-

specific competitive Hebbian learning can also

explain the emergence of network computations.

For example, neurons in the visual cortex re-

spond to multiple overlayed oriented gratings in

a non-linear fashion.62,63 After training our net-

work with single grating stimuli (Fig. 5A), we found

that neural responses to a cross-oriented mask

grating that is presented in addition to a regular

test grating are normalized, i.e., the response to

the combined stimulus is weaker than the sum of

the responses to the individual gratings (Fig. 5B,

left). When the contrast of the mask grating

is lower than the test grating’s, the network re-

sponds in a winner-takes-all fashion: The higher-

contrast test grating dominates activities while

the lower-contrast mask grating is suppressed

(Fig. 5B, right). As observed experimentally,62,63

we found that suppression is divisive and shifts

the log-scale contrast-response function to the

right (Fig. 5C).

We next investigated how the stimulus statis-

tics during training affect receptive field proper-

ties. We considered a plastic network where neu-

rons receive tuned input from either a center or a

surround region of the visual field (Fig. 5D). During

training, we presented either the same oriented

grating in both regions (Fig. 5E, top), or a single

grating in just one region (Fig. 5E, bottom). We

found that after training, the response of a center-

tuned neuron exhibits feature-specific surround

suppression, reflecting the stimulus statistics dur-

ing training. When the center and the sur-

round are stimulated separately during training,

iso- and cross-oriented stimuli in the surround

elicit minimal suppression (Fig. 5F, pink). In

case of correlated stimulation of center and sur-

round, suppression is stronger for iso- compared

to cross-orientations (Fig. 5F, purple), as has

been reported experimentally.64–66 Co-tuned ex-

citatory and inhibitory inputs mediate suppres-

sion from the surround to the center region

(Fig. 5G). Such a balance of excitatory and in-

hibitory lateral inputs has previously been ob-

served in experiments.67 Together this demon-

strates that synapse-type-specific Hebbian learn-

ing produces extra-classical receptive fields that

modulate feedforward responses via recurrent in-

teractions in accordance with experimental re-

sults.

Competitive interactions between synapses

have been observed in many different prepara-

tions and have been attributed to various mecha-

nisms.31,68–76 The local competition for a limited

supply of synaptic building blocks is a biologi-

cally plausible normalization mechanism.32,77,78

Many synaptic proteins are specific to inhibitory

or excitatory synapses and reside in one synapse-

type, but not the other.79 Therefore, in this work

we assumed a synapse-type specific competi-

tion for different synaptic resource pools and im-

plemented separate normalization constants for

inhibitory and excitatory synapses. On a finer

scale, synapses of different excitatory and in-

hibitory neuron subtypes also differ in their pro-

tein composition.80–82 In principle, this allows for

the precise regulation of different input pathways

via the adjustment of subtype-specific resource

pools.83–89 We anticipate such pathway-specific

competition to be crucial for the functional devel-

opment of any network with multiple neuron sub-

types.

In the brain, total synaptic strengths are

dynamic and homeostatically regulated on a

timescale of hours to days.90–92 In addition to

maintaining average firing rates in response to

network-scale perturbations, a prominent frame-

work puts forward homeostatic scaling of synap-

tic strengths as a stabilizing mechanism of Heb-

bian growth.93 However, theoretical models sug-

gest that homeostatic scaling is too slow to bal-

ance rapid synaptic plasticity.94 In our networks,

Hebbian growth is instead thought to be stabi-

lized by the rapid competition for a limited pool

of synapse-type specific resources, while total

synaptic strengths remain fixed. In line with
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these results, we suggest that scaling of synaptic

strengths may not be required for immediate net-

work stability but instead controls the operating

regime of the network.16,95,96

Our results suggest that synapse-type-

specific competitive Hebbian learning is the

key mechanism that enables the formation of

functional recurrent networks. Rather than

hand-tuning connectivity to selectively explain

experimental data, our networks emerge from

unsupervised, biologically plausible learning

rules. In a single framework, they readily explain

multiple experimental observations, including the

development of stimulus selectivity, excitation-

inhibition balance, decorrelated neural activity,

assembly structures, response normalization,

and orientation-specific surround suppression.

Our results demonstrate how the connectivity

of inhibition balanced networks is shaped by

their input statistics and explain the experience-

dependent formation of extra-classical receptive

fields.97–101 In our model, circuit formation

depends only on the statistical regularities be-

tween input streams and is agnostic to their

origin. Therefore, we expect our approach to

extend beyond sensory cortices and to provide a

fundamental framework for plasticity in recurrent

neural networks.
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1 Methods & simulation parameters

We consider networks of rate coding excitatory (E) and inhibitory (I) neurons that receive input from themselves and

a population of feedforward input neurons (F). Membrane potential vectors u evolve according to

τA ÛuA = −uA +
∑
B

WABrB −WAIrI, A ∈ {E, I}, B ∈ {E, I, F} (1)

where τA is the activity timescale,WAB are matrices that hold synaptic weights between the pre-synaptic population

B and the post-synaptic population A. All dynamics were numerically integrated using the Euler method in timesteps

of ∆t. Entries of weight matrices were drawn from a half-normal distribution with its peak at zero, and normalized

before the start of a simulation (see below). Firing rate vectors rA are given as a function f(uA) of the membrane

potential uA:

rA = f(uA), f(uA) = a[uA − b]
n
+, A ∈ {E, I} (2)

with [·]+ = max(0, ·) and scalar constants a, b, and n.

Plasticity and Normalization

Plastic weights evolve according to a Hebbian plasticity rule

ÛWAB = εABrA � rB, A ∈ {E, I}, B ∈ {E, I, F} (3)

where εAB is a scalar learning rate, and � indicates the outer product. After each plasticity step, synaptic weights

are normalized such that the total excitatory and inhibitory post-synaptic weights are maintainted:

w
(ij)

AB
←WAE

w
(ij)

AB∑
j w
(ij)

AE
+

∑
k w
(ik)

AF

, w
(ij)

AI
←WAI

w
(ij)

AI∑
j w
(ij)

AI

, A ∈ {E, I}, B ∈ {E, F}, (4)

where WAE,WAI are the total excitatory and inhibitory synaptic weights.

In Fig. 1, we set the activity of the inhibitory input neurons equal to the activity of the excitatory input neurons,

i.e., rI = rF . For panels E & F of Fig. 1, inhibitory weights evolved according to the classic inhibitory plasticity rule1

without normalization:

ÛwEI = εEI(rE − r0)rI, (5)

where r0 is a target firing rate.

Input model

The activity of feedforward input neurons depend on the orientation θ and contrast c of an input grating:

rF = cAF exp

(
|θ, θF |

2

2σ2
F

)
, (6)

where the vector θF holds the preferred orientations of the input neurons that are evenly distributioned between 0

and 180◦, | ·, ·| is the angular distance, σF is the tuning width, and AF the maximum firing rate. During training, single

gratings, sampled from a uniform distribution between 0◦ and 180◦, were presented to the network for 200ms, before

the next stimulus was selected.

In Fig. 5 network stimulation is realized via static feedforward weights. Neuron were assigned a preferred orien-

tation θ̂, evenly distributed between 0◦ and 180◦. Static feedforward weights were initialized as

WAF = exp
©«
��θ̂, θF ��2
2σ2

W

ª®¬. (7)

Feedforward weights are normalized toWAF and are not taken into account when normalizing recurrent weights. The

activity of input neurons rF was determined as described above. Parameters were selected to result in stimulation

patterns as inRubin et al..2 Weight norms WAB were also adapted from Rubin et al.2

See Table S1 for an overview of used simulation parameters. Python code will be made available after journal

publication.
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Figure 1 E,F 1 G,H 4 A,B 4 C,D,E,F,G 5 A,B,C 5 D,E,F,G

NE 1 1 10 80 80 80 × 2

NI 10 10 10 20 20 20 × 2

NF 10 10 40 80 80 80 × 2

a 1 1 0.04 0.04 0.04 0.04

b 0.25 0.25 0 0 0 0

n 2 2 2 2 2 2

WEE 10 10 2 0.6 3.51 3.51

WIE - - 2 0.85 3.35 3.35

WEI - 5 0.8 0.3 1.84 1.84

WII - - 0.5 0.35 1.44 1.44

WEF - - - - 1.4 1.4

WIF - - - - 1.4 1.4

c 1 1 1 1 0.5 0.5

AF 1 1 35 140 80 80

σF 20◦ 20◦ 12◦ 12◦ 30◦/
√
2 30◦/

√
2

σA - - - - 30◦/
√
2 30◦/

√
2

∆t 200ms 200ms 10ms 10ms 10ms 10ms

τE 200ms 200ms 20ms 20ms 25ms 25ms

τI - - 17ms 17ms 12.5ms 12.5ms

εEE - - 2 × 10−9ms−1 1.0 × 10−10ms−1 1.0 × 10−9ms−1 1.0 × 10−9ms−1

εIE - - 3 × 10−9ms−1 1.5 × 10−10ms−1 1.5 × 10−9ms−1 1.5 × 10−9ms−1

εEI 4 × 10−4ms−1 4 × 10−4ms−1 4 × 10−9ms−1 2.0 × 10−10ms−1 2.0 × 10−9ms−1 2.0 × 10−9ms−1

εII - - 5 × 10−9ms−1 2.5 × 10−10ms−1 2.5 × 10−9ms−1 2.5 × 10−9ms−1

εEF 2 × 10−4ms−1 2 × 10−4ms−1 εEE εEE - -

εIF - - εIE εIE - -

r0 0.25 - - - - -

Table S1: Simulation parameters

2 Linear competitive Hebbian learning finds principal compo-

nents

Before considering inhibitory plasticity, we recapitulate how linear Hebbian learning finds the principal eigenvector

of a neuron’s inputs. Although first described by Oja,3 we will mostly follow the derivation by Miller and MacKay4

that we will later extend to inhibitory neurons.

2.1 Hebbian plasticity without normalization is unstable

We consider a single neuron that receives input from a set of excitatory neurons (Fig. S1A). Its output firing rate r is

a weighted sum of the firing rates of its presynaptic inputs y. One can conveniently write this as a dot product:

τ Ûr = −r +
∑
i

wiyi = −r +w
ᵀ
y, (8)

where w is a vector that holds the synaptic weights, and τ defines the timescale at which the activity changes. The

transpose is denoted by
ᵀ
. In the following, lowercase letters in bold indicate vectors and uppercase letters in bold
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matrices or tensors. Following Hebb’s principle, synaptic weight changes depend on the pre- and postsynaptic

firing rates. In vector notation:

τw Ûw = yr (9)

where the constant τw sets the timescale. Assuming that synaptic weights change on a much slower timescale than

firing rates, τ � τw, we make the simplifying assumption that r reaches its fixed point instantaneously, r = w
ᵀ
y.

Then, the average change of the synaptic weights can be expressed as a linear transformation of the original weight

vector:

〈 Ûw〉 = 〈yr〉 = 〈yyTw〉 = Cw, C ≡ 〈yy
ᵀ
〉, (10)

where 〈·〉 is a temporal average and C is the covariance matrix of the synaptic inputs y, assuming inputs have zero

mean, 〈y〉 = 0. In the following, we only consider the average weight changes and omit the angled notation for

convenience. For better readability, we set τw = 1. To solve this differential equation, one can express the weight

change in the eigenvector basis of the covariance matrix C, which is symmetric and, therefore, has a complete set

of orthonormal eigenvectors.

Ûwv ≡V
ᵀ
Ûw = V

ᵀ
CVV
ᵀ
w = Λwv, (11)

⇒ wv = wv(t0) exp(Λt). (12)

Here, each column of V holds an eigenvector, and Λ is the diagonal eigenvalue matrix. Each eigenvector component

grows exponentially with the rate given by the respective eigenvalue. To constrain this unlimited growth, one can

modify the Hebbian learning rule such that it maintains the total synaptic weight.

A B

C

Figure S1: (A) A postsynaptic neuron with output firing rate r receives synapses w from a set excitatory neurons with firing rates yE . (B) The

normalization operation constrains synaptic weight changes Ûw to a hyperplane that is perpendicular to the constraint vector c by substracting a

multiple γ of the weightvector w. See text for details. Figure adapted from Miller and MacKay.4 (C) A postsynaptic neuron with output firing rate r

receives excitatory synapses wE from a set of excitatory neurons with firing rates yE , and inhibitory synapses wI from a set of inhibitory neurons

with firing rates yI.

2.2 Weight constraints stabilize unlimited Hebbian growth

Hebbian plasticity and weight normalization can be considered as two discrete steps. First, growing weights ac-

cording to the Hebbian rule. Second, normalizing to maintain the total synaptic weight. In this section, we will follow

Miller and MacKay4 and show how one can integrate these two discrete steps into one and derive the effective

weight change Ûw. One can write the two steps as

w̃ = w(t) +Cw∆t, w(t + ∆t) =
W

cT w̃
w̃, W ≡ c

ᵀ
w(t). (13)

This update rule maintains the projection of w onto the constraint vector c by multiplicatively scaling the weight

vector after the Hebbian learning step, i.e., w̃. Alternatively, if we letW be a constant, the projection onto c would be

constrained to be equal to that constant. In the following, we instead assume that the weights are already properly

normalized and set the projection value as it was before the plasticity timestep, i.e., equal to W as defined above.

w(t + ∆t) = β [w(t) +Cw(t)∆t], β (w(t),∆t) =
c
ᵀ
w(t)

cT [Cw(t)∆t +w(t)]
, (14)

4
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where β describes the multiplicative normalization that depends on the size of the timestep ∆t and the previous

weight w(t). It is straightforward to check that the projection of the weight vector onto the constraint vector c does

not change, i.e.,

c
ᵀ
w(t + ∆t) = c

ᵀ
w(t). (15)

Then, the effective weight change Ûw is given as

Ûw = lim
∆t→0

w(t + ∆t) −w(t)

∆t
= lim

∆t→0

[
Cw(t) −

1 − β

β∆t
w(t + ∆t)

]
, (16)

After taking the limit, one gets

lim
∆t→0

1 − β

β∆t
=
c
ᵀ
Cw

cT w
. (17)

And finally (compare Fig. S1B)

⇒ Ûw = Cw − γw, γ ≡
c
ᵀ
Cw

cT w
. (18)

Here, γ is a scalar normalization factor that depends on the current weight w. An alternative way to derive Ûw is to

guess the shape of the multiplicative normalization term in Eq. 18 and require that the change along the constraint

vector is zero, i.e.,

d

dt

(
c
ᵀ
w

)
= c
ᵀ
Ûw = c

ᵀ
Cw − γc

ᵀ
w

!
= 0, ⇒ γ =

c
ᵀ
Cw

cT w
. (19)

Note that for c being a constant vector of ones, the L1-norm of the weight vector is maintained. However, c does not

have to be constant. For example, for c = w the L2-norm is maintained. Also note that one can analogously derive

effective plasticitiy rules when weights are constrained via subtractive normalization with the ansatz Ûw = Cw − ζk,
where k is a vector of ones.4

Fixed points

From Eq. 18 it is clear that multiples of eigenvectors v of C are fixed points w∗, for which Ûw∗ = 0. Explicitely, for a

scalar constant a and w∗ = av one gets:

Ûw∗ = aCv −
c
ᵀ
Cv

cT v
av = aλv −

c
ᵀ
λv

cT v
av = 0. (20)

Note that this is independent of the choice of the constraint vector c.

Stability analysis

Multiplicative normalization constrains the norm of the weight vector and therefore prevents the otherwise unlimited

growth of Hebbian plasticity. However, in theory, it is still possible that the system is unstable and never settles into

a fixed point. Following Miller and MacKay,4 we will now explorer under what conditions fixed points are stable.

Formally, a fixed point in a linear system is stable when the largest eigenvalue of the Jacobian is negative, or

marginally stable when it is equal to zero.5 The weight dynamics around a fixed point w∗ can be approximated with

its Taylor expansion

Ûw ≈ Ûw∗ +
∑
i

d Ûw

dwi

����
∗

(wi −w
∗
i ), (21)

=
d Ûw

dw

����
∗

(w −w∗), (22)

= J∗(w −w∗). (23)

where Ûw∗ is zero, by definition, and J∗ is the Jacobian evaluated at the fixed point. The Jacobian is defined as

J∗ ≡

©«

d Ûw1

dw1

���
∗
... d Ûw1

dwN

���
∗

...
...

d ÛwN

dw1

���
∗
... d ÛwN

dwN

���
∗

ª®®®®®®®¬
≡

d Ûw

dw

����
∗

. (24)

5
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A fixed point is stable if small perturbations away from the fixed point, ∆w = w −w∗, decay to zero, i.e.,

d

dt
∆w = Ûw − Ûw∗ = Ûw ≈ J∗∆w, (25)

where we approximated Ûw with its Taylor expansion, since the perturbation is small, i.e.,w is close to the fixed point.

The result is a linear differential equation that one can solve as

∆w(t) = ∆w(t0) exp
(
J∗t

)
, (26)

where all vector components decay to zero if all eigenvalues of J∗ are negative1. As we will see later, it is useful to

rewrite the weight dynamics (Eq. 18) as

Ûw = Cw −wγ, (27)

= Cw −
wc
ᵀ
Cw

cT w
, (28)

=

[
1 −

wc
ᵀ

cT w

]
Cw. (29)

It follows2:

d Ûw

dw

����
∗

=

[
1 −

v∗c
ᵀ

cT v∗

]
C +

[
−
1c
ᵀ

cT v∗
+
v∗c
ᵀ
c
ᵀ

(cT v∗)2

]
Cv∗, (30)

=

[
1 −

v∗c
ᵀ

cT v∗

]
[C − λ∗1] , (31)

where w
��
∗
= w∗ = av∗ is the fixed point with v∗ being an eigenvector of C. The scalar a is the length of the fixed

point weight vectorw∗ (which cancels) and λ∗ is the eigenvalue to v∗. To find the eigenvalues of the Jacobian, λJ, we
diagonalize J by switching to the eigenbasis of C. When V is the matrix that holds the eigenvectors of C as columns

one gets

V
ᵀ d Ûw

dw

����
∗

V =

[
1 − V

ᵀ v∗c
ᵀ

cT v∗
V

] [
V
ᵀ
CV − λ∗1

]
, (32)

=

[
1 − e∗

c
ᵀ
V

cT v∗

]
[Λ − λ∗1] , (33)

where Λ is a diagonal matrix that holds the eigenvalues of C. Without loss of generality, we can assume that the first

column of V is equal to v∗. Then e∗ = V
ᵀ
v∗ is a column vector of zeros, except for the first entry, that is equal to one.

Then, the first bracket becomes an upper triangular matrix with ones on the diagonal, except for the first diagonal

entry, which is zero. From this, it follows3 that the eigenvalues of the Jacobian are

λJ = λ − λ∗. (34)

If λ∗ is the largest eigenvalue, i.e., w∗ is a multiple of the principal eigenvector of C, then all λJ are negative, or zero
and the fixed point is marginally stable. If there exists a λ > λ∗, the corresponding λJ is negative and the fixed

point is unstable. In summary, linear Hebbian learning combined with multiplicative normalization finds the principal

eigenvector of the input covariance matrix and thus performs principal component analysis (PCA).

Classic Inhibitory plasticity prevents stimulus selectivity

Previous work suggested a homeostatic inhibitory synaptic plasticity rule1 that enforced a post-synaptic target firing

rate r0:

ÛwI ∝ yI (r − r0) . (35)

However, when combined with excitatory plasticity, this classic rule prevents the development of stimulus selectiv-

ity.6 For completeness, we briefly recapitulate this result presented in Clopath et al.:6 Classic inhibitory plasticity is

1This can be seen by formulating the system in the eigenbasis of J∗. Then, the matrix exponential becomes: V−1 exp
(
J∗

)
V = exp(ΛJ), where

V holds eigenvectors and ΛJ is a diagonal matrix that holds the eigenvalues of J∗.
2To make sense of the vector notation, it helps to first consider the b’th column of d Ûw

dw
which is equal to d Ûw

dwb
, where wb is the b’th vector

component of w.
3Because the eigenvalues of a product of two triangular matrices is equal to the product of their eigenvalues.
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required to act faster than excitatory plasticity to enable stable weight dynamics.6 For much faster inhibitory plastic-

ity, the dynamics of excitatory and inhibitory weights decouples and fixed points of the inhibitory weights w∗
I
can be

considered separately from the fixed points of excitatory weights. When excitatory and inhibitory inputs are equally

stimulus selective, the fast dynamics of inhibitory weights ensures that the target firing rate is consistently met, i.e.,

the post-synaptic neuron always responds with the same firing rate r∗.

Ûw∗I = 0 ⇒ r∗ = r0 ⇒ ÛwE ∝ yEr0 − normalization (36)

When all pre-synaptic neurons have similar average firing rates, 〈yE〉i ≈ y0, and weights change on a slower timescale

than activities as is the case biologically, the average excitatory synaptic weight change becomes

〈 ÛwE〉 ∝ cy0r0 − normalization, (37)

where c is a vector of ones. The average synaptic weight change is identical across synapses, which prevents the

development of stimulus selectivity (Fig. 1E & F). Therefore, classic inhibitory plasticity that enforces a target firing

rate cannot explain the joint development of stimulus selectivity and inhibitory balance.

3 Subtype-specific normalization balances E-I receptive fields

We generalize the approach outlined above to the case of simultaneous excitatory and inhibitory normalization. We

consider a simplified case of one postsynaptic neuron with firing rate r that receives input from a set of excitatory

and inhibitory neurons with firing rates yE and yI, respectively (Fig. S1C). Again, we assume fast activity dynamics

and write the activity fixed point as

r = yE
ᵀ
wE−yI

ᵀ
wI
ᵀ
≡ y
ᵀ
(
1 0

0 −1

)
w, (38)

w =

(
wE

wI

)
, y =

(
yE

yI

)
, (39)

where 1 is the unit matrix with appropriate dimension, and we defined the modified weight and input vectors, w and

y. Then one can write the Hebbian part of the time-averaged weight dynamics as

τ 〈 Ûw〉 = 〈yr〉 =
〈
yy
ᵀ〉 (

1 0

0 −1

)
w, (40)

=

〈(
yEyE
ᵀ
−yEyI

ᵀ

yIyE
ᵀ
−yIyI
ᵀ

) 〉
w ≡ Cw, (41)

where we defined the modified covariance matrix C. The matrix τ holds the timescales of excitatory plasticity, τE ,
and inhibitory plasticity, τI, as diagonal entries and is zero otherwise. In the following, we drop the bracket notation

〈·〉 for better readability. As in the case of only excitatory input, we can implement multiplicative normalization by

additional constraint terms. Now also for inhibitory weights (compare Eq. 18):

τ Ûw = Cw − γw◦E − ρw
◦
I , (42)

w◦E =

(
wE

0

)
, w◦I =

(
0

wI

)
, (43)

where 0 are vectors of zeros of appropriate dimension. The constraint factors γ and ρ follow from the requirement

that the weight vector does not grow along the direction of the constraint vectors c◦
E
and c◦

I
. Here we choose them

such that the sums over the excitatory and inhibitory weights remain constant, i.e., the L1-norm of the excitatory

and inhibitory part of the weight vector is maintained1:

c◦E
ᵀ
Ûw

!
= 0, c◦I

ᵀ
Ûw

!
= 0, (44)

c◦E
ᵀ
≡

(
1, ... , 1, 0, ... , 0

)
, c◦I

ᵀ
≡

(
0, ... , 0, 1, ... , 1

)
. (45)

⇒ γ =
c◦
E

ᵀ
Cw

c◦
E

ᵀ
w◦

E

, ρ =
c◦
I

ᵀ
Cw

c◦
I

ᵀ
w◦

I

. (46)

1The choice of the L1-norm is motivated by the synaptic competition for a fixed amount of resources, where, in the simplest case, each unit

of resource linearly increases synaptic strengths. Higher-order L-norms do not affect results in the feedforward learning. However in recurrent

networks they can lead to instabilities (see Section 5.3).

7

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.483899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483899
http://creativecommons.org/licenses/by-nc/4.0/


where the number of non-zero entries in c◦
E
and c◦

I
is equal to the number of excitatory and inhibitory neurons,

respectively. Finally, we can write the weight dynamics as

⇒ τ Ûw =

[
1 −

w◦
E
c◦
E

ᵀ

c◦
E

ᵀ
w◦

E

−
w◦

I
c◦
I

ᵀ

c◦
I

ᵀ
w◦

I

]
Cw . (47)

3.1 Fixed points are multiples of eigenvector components

For the fixpoints we have to find weight vectors w∗ for which the time derivative Ûw∗ is equal to zero:

Ûw∗ = Cw − γw∗◦E − ρw
∗◦
I (48)

= Cw −
c◦
E

ᵀ
Cw∗

c◦
E

ᵀ
w∗◦

E

w∗◦E −
c◦
I

ᵀ
Cw∗

c◦
I

ᵀ
w∗◦

I

w∗◦I
!
= 0. (49)

This equation holds if w∗ solves

Cw∗
!
= λEw

∗◦
E + λIw

∗◦
I , (50)

where λE and λI are any scalars. It is straight forward to check that multiples of eigenvectors v of the modified

covariance matrix C are fixed points.

Cv = λv◦E + λv◦I
!
= λEv

◦
E + λIv

◦
I ⇒ λE = λI = λ. (51)

In general, the fixed points depend non-trivially on the tuning of the two populations (compare Section 4, Eq. 99).

However, when the inhibitory neurons are tuned tomultiples of eigenvectors of the excitatory population’s covariance

matrix, multiples of the excitatory and inhibitory part of the eigenvectors of the modified covariance matrix C are

fixed points. This is what one would expect when the postsynaptic excitatory neuron and the inhibitory population

both receive excitatory input from the same external brain region (compare Fig. 1A) and synapses from the external

population onto inhibitory neurons are plastic according to a Hebbian rule with multiplicative normalization. In that

sense, we assume that inhibitory neurons are as sharply tuned as excitatory neurons. In this scenario, we can

express the firing rates of inhibitory neurons as

yI = Q
ᵀ
yE = A

ᵀ
V
ᵀ
yE, (52)

where each column of Q = VA can be thought of as the feedforward weight vector of an inhibitory neuron which is

equal to a multiple of an eigenvector v of the excitatory covariance matrix C = 〈yEyE
ᵀ
〉. Then V holds all eigenvectors

as columns, and A is a matrix where each multiple is the only non-zero element per column, such that AA
ᵀ
is a

diagonal matrix.

Eigenvectors and eigenvalues of the modified covariance matrix

When inhibitory neurons are tuned to eigenvectors of the excitatory covariance matrix, the modified covariance

matrix becomes

C =

〈©«
yEyE
ᵀ
−yEyI

ᵀ

yIyE
ᵀ
−yIyI
ᵀ

ª®¬
〉
=

©«
C −CVA

A
ᵀ
V
ᵀ
C −A

ᵀ
V
ᵀ
CVA

ª®¬ =
©«

C −VΛA

A
ᵀ
ΛV
ᵀ
−A
ᵀ
ΛA

ª®¬. (53)

Then a full set of linearly independent eigenvectors V and their inverse V−1 is given as

V =
©«
V V

A
ᵀ

A−1

ª®¬, V−1 =
©«
(1 − AA

ᵀ
)−1 0

0 (1 − AA
ᵀ
)−1

ª®¬©«
V
ᵀ

−A

−AA
ᵀ
V
ᵀ

A

ª®¬, (54)

where each column of V is an non-normalized eigenvector and A−1 = A
ᵀ
(AA
ᵀ
)−1. For weight vectors in the right

matrix column of V in Eq. 54, the excitatory and inhibitory components of the membrane potential exactly cancel,

and no plasticity is induced. For multiple postsynaptic neurons with firing rates r, where each neuron is tuned to one

of these eigenvectors, one gets

r = y
ᵀ
(
1 0

0 −1

)
W, W =

(
V

A−1

)
, y =

(
yE

yI

)
, yI = A

ᵀ
V
ᵀ
yE, (55)

⇒ r =
(
yE
ᵀ
, yE
ᵀ
VA

) (
V

A−1

)
= 0. (56)
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Since the postsynaptic firing rate is zero for these eigenvectors, we call them “null eigenvectors” or “null fixed points”.

For usual choices for the excitatory and inhibitory weight norms where excitation is larger than inhibition, this set of

fixed point solutions is irrelevant. Finally, the eigenvalue spectrum is

CV ≡ VΛ, Λ =

(
Λ(1 − AA

ᵀ
) 0

0 0

)
. (57)

Note that null-eigenvectors define the null-space of the C matrix.

Non-eigenvector fixed points

We first consider eigenvectors that result in non-zero postsynaptic activity and show that they meet the condition.

We make the ansatz that the matrix of fixed point vectorsW∗ has the shape

W∗ =

(
VKE

A
ᵀ
KI

)
, CW∗ =

(
W∗EΛE

W∗I ΛI

)
, (58)

where KE and KI and are diagonal scaling matrices of arbitrary constants and the second equation follows from the

fixed point condition in Eq. 50. We now show that for any KE , KI we can find diagonal matrices ΛE , ΛI that fulfill

this condition. Note that for KE = 1 and KI = (AA
ᵀ
)−1 columns of W∗ are null-eigenvectors. Therefore, if true, the

theorem holds for regular as well as null-eigenvectors. We write explicitly

⇒ CW∗ =

(
C −VΛA

A
ᵀ
ΛV
ᵀ
−A
ᵀ
ΛA

) (
VKE

A
ᵀ
KI

)
=

(
VKEΛE

A
ᵀ
KIΛI

)
(59)

CVKE − VΛAA
ᵀ
KI = VKEΛE, (60)

A
ᵀ
ΛV
ᵀ
VKE − A

ᵀ
ΛAA
ᵀ
KI = A

ᵀ
KIΛI . (61)

VKEΛ − VKIAA
ᵀ
Λ = VKEΛE, (62)

A
ᵀ
KEΛ − A

ᵀ
KIΛAA

ᵀ
= A
ᵀ
KIΛI, (63)

where we made use of the fact that independent of their subscript, the K, Λ, and AA
ᵀ
matrices are diagonal and

commute. By comparing the left and right sides of the equations, we find

ΛE = Λ
(
1 − K−1E KIAA

ᵀ)
, (64)

ΛI = Λ
(
K−1I KE − AA

ᵀ)
, (65)

which are diagonal matrices, as required.

3.2 Stability analysis

We first consider the stability of fixed point eigenvectors of the modified covariance matrix and discuss the general

case afterwards. With Eq. 47, for the Jacobian J it follows (compare Eq. 31)

τ J

����
∗

= τ
d Ûw

dw

����
∗

=

[
1 −

v∗◦
E
c◦
E

ᵀ

c◦
E

ᵀ
v∗◦
E

−
v∗◦
I
c◦
I

ᵀ

c◦
I

ᵀ
v∗◦
I

] [
C − λ∗1

]
, (66)

where v∗
E
and v∗

E
are the excitatory and the inhibitory part of the eigenvector fixed point v with eigenvalue λ∗ and

the superscript “◦” indicates an additional set of zeros to reach the correct dimensionality of the vector (compare

Eq. 43). To find the eigenvalues λJ of the Jacobian, we switch to the eigenbasis of the modified covariance matrix1:

⇒ V−1 J

����
∗

V = V−1τ−1VV−1

[
1 −

v∗◦
E
c◦
E

ᵀ

c◦
E

ᵀ
v∗◦
E

−
v∗◦
I
c◦
I

ᵀ

c◦
I

ᵀ
v∗◦
I

]
V

[
Λ − λ∗1

]
, (67)

where we inserted VV−1 ≡ 1. The result is a block diagonal matrix where each block corresponds to one regular

eigenvector and its null-eigenvector, i.e., all eigenvectors with the same excitatory component. To better see this,

1Note that we must make use of the inverse instead of the transpose since, in general, the eigenvector matrix V is not orthonormal.
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we define ε ≡ τ−1 and write.

V−1τ−1V =
©«
(1 − AA

ᵀ
)−1 0

0 (1 − AA
ᵀ
)−1

ª®¬©«
V
ᵀ

−A

−AA
ᵀ
V
ᵀ

A

ª®¬©«
εE 0

0 εI

ª®¬©«
V V

A
ᵀ

A−1

ª®¬ (68)

=
©«
(1 − AA

ᵀ
)−1 0

0 (1 − AA
ᵀ
)−1

ª®¬
(

εE − εIAA
ᵀ

εE − εI

(−εE + εI)AA
ᵀ
−εEAA

ᵀ
+ εI

)
. (69)

As one would expect, for εE = εI, this is equal to the identity matrix. When we switch columns and rows such

that pairs of regular and corresponding null-eigenvectors form blocks, this becomes a block diagonal matrix. Note

that this does not change the determinant or the eigenvalues of the matrix as for each row switch, there is a corre-

sponding column switch that maintains the characteristic polynomial. Alternatively, we can assume that the matrix

of eigenvectors V and its inverse V−1 are appropriately sorted. Without loss of generality, we assume that the first

two columns of V are the fixed point’s eigenvector v∗ and its corresponding null-eigenvector and write

V−1τ−1V =
©«
(1 − a∗2)−1 0

0 (1 − a∗2)−1
0

0
. . .

ª®®®¬
©«

εE − εIa
∗2 εE − εI

(−εE + εI)a
∗2 −εEa

∗2 + εI
0

0
. . .

ª®®®¬, (70)

where a∗2 is the first element on the diagonal of AA
ᵀ
which corresponds to the fixed point eigenvector and 0 are

matrices of zeros and appropriate dimensionality. Similarly, we can write the second part of Eq. 67 as a block

triangular matrix. Before sorting, we write

V−1

[
v∗◦
E
c◦
E

ᵀ

c◦
E

ᵀ
v∗◦
E

+
v∗◦
I
c◦
I

ᵀ

c◦
I

ᵀ
v∗◦
I

]
V ≡ V−1

[
v∗◦E dE

ᵀ
+ v∗◦I dI

ᵀ]
= V−1

©«
v∗
E
dE
ᵀ

v∗
I
dI
ᵀ

ª®¬, (71)

dE
ᵀ
=

c◦
E

ᵀ
V

c◦
E

ᵀ
v∗◦
E

= c
ᵀ
, dI

ᵀ
=

c◦
I

ᵀ
V

c◦
I

ᵀ
v∗◦
I

, (72)

where dI
ᵀ
holds the L1-norm of all eigenvectors’ inhibitory part as a fraction of the L1-norm of the fixed point eigen-

vector’s inhibitory part. For the excitatory part, this fraction is always one, and dE
ᵀ
is equal to c

ᵀ
, a column vector

of ones.

V−1
©«
v∗
E
dE
ᵀ

v∗
I
dI
ᵀ

ª®¬ =N
©«

V
ᵀ

−A

−AA
ᵀ
V
ᵀ

A

ª®¬©«
v∗
E
c
ᵀ

v∗
I
dI
ᵀ
ª®¬, v∗E = Ve∗, v∗I = A

ᵀ
e∗, (73)

=N
©«

V
ᵀ
Ve∗c
ᵀ
− AA

ᵀ
e∗dI
ᵀ

−AA
ᵀ
V
ᵀ
Ve∗c
ᵀ
+ AA

ᵀ
e∗dI
ᵀ
ª®¬, (74)

=N
©«

e∗c
ᵀ
− a∗2e∗dI

ᵀ

−a∗2e∗c
ᵀ
+ a∗2e∗dI

ᵀ
ª®¬, (75)

where we defined the normalization matrix N of the inverse eigenvector matrix V−1 (compare Eq. 54). The vector e∗

is zero except for one entry, equal to one, which corresponds to the fixed point eigenvector, such that the equations

above hold. Note that the matrix above holds non-zero values in only two columns corresponding to the fixed point

eigenvector and its null-eigenvector. After rearranging, we get

V−1

[
v∗◦
E
c◦
E

ᵀ

c◦
E

ᵀ
v∗◦
E

+
v∗◦
I
c◦
I

ᵀ

c◦
I

ᵀ
v∗◦
I

]
V = N

©«
1 − a∗2d∗

I
1 − a∗2d~

I

−a∗2 + a∗2d∗
I
−a∗2 + a∗2d~

I

...

0 0

ª®®®¬ =

(
1 ...

0 0

)
. (76)

where d∗
I
and d~

I
are the first and second entries of dI

ᵀ
and correspond to the fixed point eigenvector and its null-

eigenvector. The last equality holds because d∗
I
= 1 and d~

I
= 1/a∗2: Before rearranging rows and columns, we can

write

dI
ᵀ
=

c◦
I

ᵀ
V

c◦
I

ᵀ
v∗◦
I

=
1

a∗

(
cI
ᵀ
A
ᵀ
, cI
ᵀ
A−1

)
, (77)
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Remembering that A−1 = A
ᵀ
(AA
ᵀ
)−1 we rearrange and get

dI
ᵀ
=

(
d∗I ,d

~
I
, ...

)
=

1

a∗

(
a∗,

a∗

a∗2
, ...

)
=

(
1,

1

a∗2
, ...

)
. (78)

from which the equality follows.

In summary, we find that after rearrangement Eq. 67 is a block triangular matrix.

⇒ V−1 J

����
∗

V = V−1τ−1V

(
0 ...

0 1

) [
Λ − λ∗1

]
, (79)

Therefore, to find the eigenvalues, we consider each diagonal block separately. The first block corresponds to

disturbances in the direction of the fixed point eigenvector or its null-eigenvector. From the matrix product above,

we see immediately that their corresponding eigenvalues must be zero. For disturbances in the direction of a non-

fixed point eigenvector v† or its null-eigenvector we consider an exemplary block matrix:

J†∗ ≡ V
†−1 J

����
∗

V† =
1

1 − a†2

(
εE − εIa

†2 εE − εI

(−εE + εI)a
†2 −εEa

†2 + εI

) (
λ† − λ∗ 0

0 −λ∗

)
, (80)

where V† is a two-column matrix that holds v† and its null-eigenvector. The eigenvalues of this matrix are negative

under two conditions. First, its determinant must be positive, and second, its trace must be negative. After some

algebra, these two conditions read

det(J†∗)
!
> 0 ⇒ −

(
λ† − λ∗

)
λ∗εEεI

!
> 0, (81)

tr(J†∗)
!
< 0 ⇒ (λ† − λ∗) −

εI
εE

(
a†2λ† + λ∗

)
!
< 0. (82)

Principal component analysis in inhibitory modified input spaces

First, we assume that excitatory and inhibitory plasticity are equally fast, i.e., εI = εE . Then the first stability condition
above states that the fixed point v∗ with the largest eigenvalue, λ∗ > λ†, [λ†, is stable, provided that it is not repulsive1,
i.e., provided that its eigenvalue is larger than zero: λ∗ > 0. For εI = εE , the second condition reduces to λ† −2λ∗ < 0
which holds if the first condition is met. Therefore, the neuron finds the principal component of the modified input

space while it takes the tuning of the inhibitory input population into account.

Fast inhibition increases stability

Unlike many other inhibitory plasticity rules, we do not require that inhibitory plasticity is faster than excitatory plastic-

ity. In the extreme case of static inhibition, εE = 0, the second condition is still satisfied if the fixed point attraction λ∗

is larger than the excitatory attraction λ† of any other eigenvector alone2. For growing εI > 0, the repulsive influence
of the inhibitory part of competing eigenvectors increases until they become overamplified, and the second condition

is always fulfilled. In practice, fast inhibition helps to stabilize the system and otherwise does not crucially affect the

dynamics. Therefore, we consider slightly faster inhibitory than excitatory plasticity for numerical simulations.

Stability of non-eigenvector fixed points

In principle, we can choose the total synaptic excitatory and inhibitory weights maintained during plasticity. Until

now, we assumed that fixed points w∗ are multiples of eigenvectors v of the modified covariance matrix C, which

puts a strong constraint on our choice for the weight norms3. As shown before, the general shape of a fixed point

w∗ is

w∗ =

(
kEvE

kIvI

)
=

(
1kE 0

0 1kI

)
v ≡

(
kE 0

0 kI

)
v ≡ Kv, (83)

where kE and kI are scalar constants. We recapitulate the general weight dynamics as given in Eq. 42:

τ Ûw = Cw−γw◦E − ρw
◦
I . (84)

1An eigenvector can become repulsive if inhibition is sufficiently strong, i.e., if λ∗ = λ∗(1 − a∗2) < 0 ⇒ a∗2 > 1.
2Remember that the total attraction is a combination of the excitatory attraction λ∗ minus the inhibitory repulsion a∗2λ∗. When inhibitory weights

are static, they remain tuned to the fixed point. Then, only the excitatory attractions of competing eigenvectors λ† are relevant for stability.
3More precisely this constraints the ratio between the weight norms, as an additional scalar factor does not change the dynamics.

11

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.483899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483899
http://creativecommons.org/licenses/by-nc/4.0/


Instead of evaluating the Jacobian in a general fixed point, we switch to a new coordinate system in which the fixed

point is an eigenvector of the modified covariance matrix. We define:

w ≡ K
1/2ŵ, (85)

from which the weight dynamics becomes

τ̂ Û̂w = Ĉŵ − γ̂ŵ◦E − ρ̂ŵ
◦
I , (86)

τ̂ = τK, Ĉ = K
1/2CK

1/2 =

〈(
k
1/2

E
yE

k
1/2

I
yI

) (
k
1/2

E
yE
ᵀ
, k

1/2

I
yI
ᵀ
)ᵀ〉
, (87)

γ̂ = K
1/2
c◦
E

ᵀ
CK

1/2ŵ

c◦
E

ᵀ
K

1/2ŵ
◦
E

K
1/2 =

c◦
E

ᵀ
Ĉŵ

c◦
E

ᵀ
ŵ
◦
E

, ρ̂ =
c◦
I

ᵀ
Ĉŵ

c◦
I

ᵀ
ŵ
◦
I

. (88)

In this coordinate system, we are interested in the general fixed point, which becomes

ŵ
∗ = K−

1/2w∗ = K−
1/2Kv = K

1/2v. (89)

It is straight forward to proof that ŵ∗ is an eigenvector of Ĉ with eigenvalue λ̂∗ = (kE − kIa
∗2)λ∗. In principle, we can

now proceed in finding the eigenvalues of the Jacobian, as explained before. However, we would have to employ

the eigenvector basis in the new coordinates V̂ = K−
1/2V for triangularization. As before, one finds that stability is

largely determined by the eigenvalues λ̂.

Effective timescales and attraction landscapes

Apart from providing a way to determine if a general fixed point is stable, the change of variables approach provides

additional insight: Let’s assume the total synaptic inhibitory weight of a neuron is very small, much smaller than

any eigenvector of C would suggest, i.e., kI � 1, while the excitatory weight norm is equal to one, which implies

kE = 1. As one would expect intuitively, the neuron does not exhibit much of the inhibitory attraction landscape

(compare Ĉ in Eq. 87), and its stability would be primarily determined by the excitatory attraction of the different

eigenvector modes, i.e., λ̂ ≈ λ. In the extreme case, when the inhibitory weight norm is zero, i.e., kI = 0, only the

activity of the excitatory population is relevant. Another important aspect is that the effective timescale τ̂ = τK
depends on the magnitude of the weight norms. For example, when the inhibitory weight norm kI decreases while

the excitatory weight norm kE remains fixed, the effective inhibitory plasticity becomes faster, since τ̂I = τIkI. This
can be interpreted as a fiercer competition of the same number of presynaptic neurons for fewer synaptic resources,

which leads to faster dynamics. Note that one can achieve the same effect of faster effective plasticity by increasing

the number of competitors while maintaining the number of available resources.

4 Lateral input warps attraction landscape

As a first step towards fully recurrent plastic networks, we consider a model of two neurons that receive feedforward

input from a population of input neurons. Additionally, the first neuron projects laterally onto the second neuron

without receiving any lateral input itself (Fig. S2A &B). Since there is no recurrence, this is effectively still a feedforward

circuit, similar to the case considered in Section 3, where instead of an additional excitatory neuron, we considered

additional inhibitory neurons that are tuned to eigenvectors of the excitatory population.

Let the first neuron have a fixed set of feedforward weights q. We are interested in the system’s fixed points, i.e.,

how the second neuron adapts its feedforward weights and its lateral weight under a linear Hebbian plasticity rule.

From the perspective of the second neuron, the input space is increased by one dimension due to the additional

lateral input. We denote the new input vector as

y =
(
y
ᵀ
,q
ᵀ
y
)ᵀ
, (90)

and the input weights onto the second neuron as

w =
(
w
ᵀ
,wq

)ᵀ
. (91)

Effectively this is still a feedforward network without feedback, and the covariance matrix C of the new inputs y fully

determines the synaptic weight dynamics:

C =
〈
yy
ᵀ〉

=

〈(
yy
ᵀ

yy
ᵀ
q

q
ᵀ
yy
ᵀ

q
ᵀ
yy
ᵀ
q

) 〉
=

(
C Cq

q
ᵀ
C q

ᵀ
Cq

)
, (92)

12

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.03.11.483899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483899
http://creativecommons.org/licenses/by-nc/4.0/


A B C

Figure S2: Input space warping due to lateral connectivity. (A) Top: a single neuron with firing rate r receives synaptic inputs w from a

population of excitatory neurons y. Bottom: input distribution projected onto the first two input dimensions. Each dot represents the firing rates

of the first two neurons during one input pattern. (Contour lines in light gray). Under a linear Hebbian learning rule, the neuron becomes selective

for the direction of maximum variance, the first principal component (see Section 2). (B) Top: Same as (A) for a neuron that receives input from a

laterally projecting excitatory neuron which is tuned to an eigenvector q of the original input covariance matrix. Bottom: the effective input space

yeff of the target neuron (dark blue triangle) is warped such that the variance along the eigenvector q (blue arrow) is stretched in proportion to the

absolute value of the weight vector q. The contour lines of the original input distribution from (A) are shown in light gray for reference. (C) Top:

Same as (B) for a laterally projecting inhibitory neuron. Bottom: Now, the effective input space is compressed. See text for details.

where C is the covariance matrix of the original input y. As before, assuming multiplicative normalization, the eigen-

vectors v of the modified covariance matrix C are fixed points w∗ (compare Section 3.1):

w∗ = v ≡
(
w∗T ,w∗q

)ᵀ
, Cv = λv, (93)

where w∗q and w
∗ are the lateral input weight and the feedforward input weight in the fixed point, respectively. We

solve for eigenvalues λ and eigenvectors v:

Cv =

(
C Cq

q
ᵀ
C q

ᵀ
Cq

) (
w

wq

)
= λ

(
w

wq

)
. (94)

Cw +Cqwq = λw, (95)

q
ᵀ
Cw + q

ᵀ
Cqwq = λwq. (96)

C
(
w + qwq

)
= λw, (97)

q
ᵀ
C

(
w + qwq

)
= λwq. (98)

Inserting the first into the second expression gives wq = q
ᵀ
w which, when inserted into the first expression, results

in:

C
(
1 + qq

ᵀ)
w = λw. (99)

The solution to this equation gives the feedforward weight vector. For general q, the solution is not straightforward:

When we consider the equation in the input eigenspace, where Eq. 99 becomes

Λ
(
1 + qvqv

ᵀ)
wv = λwv, (100)

with Λ being the diagonal matrix of eigenvalues and the subscript (·)v indicates a vector in the eigenbasis ofC. In this

basis, eigenvectors of C are unit vectors, i.e., vv = ev, where ev is a vector of zeros with one entry equal to one that

corresponds to the respective eigenvector. When q contains components of more than one eigenvector, the matrix

qvqv
ᵀ
is no longer diagonal and eigenvectors of C, wv = ev, do not solve the equation. However, when we assume

that the first neuron has plastic feedforward input, we know that it will converge to a multiple of an eigenvector of the

feedforward input q ∝ vi, where Cvi = λivi. Then multiples of eigenvectors of C solve Eq. 99. To find the eigenvalues
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λ, which determine fixed point stability (compare Section 3.2), we distinguish two cases: First,wmay be proportional

to a different eigenvector than q:

w ∝ vj , vi ∝ q ⇒ q
ᵀ
w ∝ vi

ᵀ
vj = 0, ⇒ λ j = λj = σ2

j . (101)

Therefore, input modes that are orthogonal to the tuning of a laterally projecting neuron maintain their attraction.

Second, w may be proportional to the same eigenvector as q:

w ∝ v ∝ q ⇒ q
ᵀ
w ∝ v

ᵀ
v = 1, ⇒ λ = λ + λa2q = σ2 + σ2

q , (102)

where aq is equal to ‖q‖ , the L2-norm of q. Input modes aligned with the tuning of the laterally projecting neuron

increase their attraction by the variance of that neuron. Together this can be interpreted as a stretching of the original

input space in the direction of the laterally projecting neuron’s feedforward weight vector q (Fig. S2B). Then fixed

points are of the following general shape:

w∗ = v, q = aqv, (103)

⇒ w∗ =

(
w∗

w∗q

)
= k

(
w∗

q
ᵀ
w∗

)
= k

(
v

aq

)
, (104)

where k is a scalar constant. Similarly, when the laterally projecting neuron is inhibitory, the modified covari-

ance matrix becomes C′ =
(

C −Cq

qT C −qT Cq

)
(compare Eq. 53) and it follows that the effective input space is com-

pressed1(Fig. S2C):

λ = λ − λa2q = σ2 − σ2
q , (105)

This can be generalized to multiple excitatory and inhibitory neurons such that the total attraction towards a feed-

forward eigenvector becomes

λ = λ
(
1 + ‖aE ‖

2 − ‖aI‖
2
)
, (106)

⇒ λ = σ2 + ‖σE ‖
2 − ‖σI‖

2 , (107)

where aE , aI hold the vector norms of the laterally projecting neurons and σE , σI hold their standard deviations. In

this general case, one can write the fixed points as

w∗ = K
©«
v

aE

aI

ª®®¬ = K′
©«
σv

σE

σI

ª®®¬ , (108)

where K and K′ are diagonal matrices that scale the inhibitory and excitatory part of the vector (compare Eq. 83)

and the second equality holds for K = σK′. This means that the total synaptic weight distributes among synapses

in proportion to the standard deviation of their postsynaptic activities.

Note that these results are independent of what causes the laterally projecting neurons’ tuning. For example,

in addition to feedforward input, a neuron can be integrated into a recurrent circuit of neurons that are all tuned to

the same eigenvector. Then σ2
E
results from recurrent interaction in addition to the norm of the feedforward weight

vector ‖q‖ . We will consider such circuits in the following sections.2

5 Eigencircuits

We assume that the activity in a recurrent network with linear activation functions is dominated by feedforward

activity such that neurons become selective for different eigenvectors of the feedforward input covariance matrix

C = 〈yyT 〉. Then the average Hebbian growth of a synapse that connects two neurons that are tuned to different

1For sufficiently large vector norms ‖q‖ the eigenvector mode becomes repulsive. Then the transformation of the input space can no longer

be visualized as intuitively as in Fig. S2.
2Another example is neurons that project from outside the local circuit, e.g., from another brain area that is higher up in the processing

hierarchy.
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eigenvectors is:

〈 Ûwij〉 ∝ 〈rirj〉 (109)

= 〈vi
ᵀ
yy
ᵀ
vj〉 (110)

= vi
ᵀ
Cvj (111)

= vi
ᵀ
λjvj = λjvi

ᵀ
vj (112)

= 0. (113)

Due to the competition for synaptic resources, the synapse loses out to the non-zero growth of other synapses and

decays to zero over time. In its steady state, the circuit is separated into sub-circuits with recurrent connections

within but not between them. Since there is one sub-circuit per eigenvector of the covariance matrix, we call these

decoupled circuits ‘eigencircuits’.

5.1 Variance propagation

To compute the effective attraction of an input mode when synaptic weights have converged, it is sufficient to know

the variances of all neurons that are tuned to that mode (compare section 4). As a first step, we investigate how

variances propagate through the network, i.e., our goal is to express the standard deviation σr of a neuron as a

function of the standard deviations of its presynaptic inputs. In general, the postsynaptic firing rate r is given as

r = w
ᵀ
y +wE

ᵀ
yE −wI

ᵀ
yI . (114)

In an eigencircuit, all presynaptic inputs with non-zero synaptic weight are tuned to the same eigenvector v. We only

consider these non-zero entries and write

yE = aE(v
ᵀ
y), yI = aI(v

ᵀ
y), (115)

where the vectors aE and aI set the vectors’ responsemagnitudes which are proportional to their standard deviations.

For the weight vector, we require that the excitatory and inhibitory parts are normalized to maintain the total amount

of inhibitory and excitatory synaptic resources.(
w

wE

)
= WE

vE

‖vE ‖p
, wI = WI

vI

| |vI | |p
, (116)

vE =

(
v

aE

)
, vI = aE, (117)

where WE , WI are scalar weight norms and vE , vE are the excitatory and inhibtory part of the modified covariance

matrix that we obtain from Eq. 108. The p-norm, ‖ ·‖p, is maintained due to competition for synaptic resources. For

the postsynaptic firing rate, it follows

r =

(
1 + ‖aE ‖

2

‖vE ‖p
WE −

‖aI‖
2

‖vI‖p
WI

)
(v
ᵀ
y). (118)

The first bracket is a scalar pre-factor which makes it straightforward to compute the standard deviation:

σr =

(
1 + ‖aE ‖

2

‖vE ‖p
WE −

‖aI‖
2

‖vI‖p
WI

)
σ =

1 + ‖aE ‖
2σ2

‖vE ‖pσ
WE −

‖aI‖
2σ2

‖vI‖pσ
WI, (119)

⇒ σr =

σE
2σE

p

WE −

σI
2σI

p

WI , (120)

σE =
(
σ,σE

ᵀ)ᵀ
, σI = σI, (121)

where we no longer distinguish between feedforward and recurrent input. For a network in the steady state, i.e.,

when synaptic weights converged, this provides the standard deviation of the postsynaptic neuron as a function of

the standard deviations of its inputs. In the next section, we will use this relation to find the total attraction of an

eigencircuit.
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5.2 Consitency conditions provide eigencircuit firing rate variances

In its steady state, an eigencircuit with nE excitatory and nI inhibitory neurons has to fulfil the variance propagation

equation (Eq. 120). In the fully connected eigencircuit, each condition depends on the variances of all neurons, and

all neurons have the same presynaptic inputs. This provides N = nE + nI consistency conditions for the N unknown

standard deviations. The condition for a single excitatory neuron i reads

σ i
E = W i

EE

(
σ2 + ‖σE ‖

2

σ + ‖σE ‖1

)
−W i

EI

(
‖σI‖

2

‖σI‖1

)
, (122)

where we chose the L1-norm, p = 1, for normalization (but see section 5.3). We make the simplifying assumption

that all neurons have similar weight norms, i.e.,W i
AB
≈WAB, [i and A,B ∈ {E, I}. Then, also their standard deviations

are similar, and we can approximate:

‖σ‖2 =
∑
i

(σ i)2 ≈ nσ2, if σ i ≈ σ [i. (123)

⇒
σ2 + ‖σE ‖

2

σ + ‖σE ‖1
≈

σ2 + nEσ
2
E

σ + nEσE
, if σ i

E ≈ σE [i. (124)

The standard deviations of excitatory and inhibitory neurons become

σE = WEE

(
σ2 + nEσ

2
E

σ + nEσE

)
−WEI

(
nIσ

2
I

nIσI

)
, (125)

σI = WIE

(
σ2 + nEσ

2
E

σ + nEσE

)
−WII

(
nIσ

2
I

nIσI

)
. (126)

After some algebra, this yields the standard deviations of single excitatory and inhibitory neurons as a function of

the number of neurons in the eigencircuit, nE , nI, their weight norms WAB, and the standard deviation, σ, of the
feedforward input along the corresponding eigenvector:

σI =
WIE

1 +WII

1

Φ
σE , Φ ≡

[
WEE −

WEIWIE

1 +WII

]
, (127)

⇒ σE =
1

2 (1 − Φ)nE

(
−1 ±

√
1 + 4Φ (1 − Φ)nE

)
σ . (128)

Note that for Φ < 1 there exists a real solution for σE , independent of nE .

5.3 A note on the choice of weight norm

The choice of the weight norm that is maintained via multiplicative normalization is non-trivial. Biologically we moti-

vated normalization by the competition for a limited amount of synaptic resources. We assumed the simplest case,

where the L1-norm is maintained, and each resource unit translates to one unit of synaptic strength. An alternative

choice would be to maintain the L2-norm. In the variance propagation equation (Eq. 120) this corresponds to p = 2

which becomes

σr =
σE

WE −

σI
WI . (129)

For a single inhibitory neuron the eigencircuit consistency condition becomes (compare Eq. 122):

σI =
WIE

1 +WII

(
σ2 + ‖σE ‖

2
) 1

2
, (130)

where we once more assumed that all neurons have similar weight norms, W i
AB
≈ WAB, [i. For the variance of an

excitatory neuron, it follows

σ2
E = Φ2

(
σ2 + ‖σE ‖

2
)
= Φ2

(
σ2 + nEσ

2
E

)
, (131)

⇒ σ2
E =

Φ2

1 − Φ2nE
σ2 . (132)
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Figure S3: When considering the stability of a neuron in an eigencircuit with respect to a perturbation towards another eigencircuit (left, dashed

lines), the other eigencircuit contributes as an effectively feedforward input (center). Then one can consider an equivalent circuit (right) where the

attraction of the competing input mode (green) is increased by the attraction of its former eigencircuit (see text for details).

For an increasing number of excitatory neurons nE , the variance of a single excitatory neuron grows and diverges

for Φ2nE = 1. For even larger nE , variances would have to be negative to fulfill the consistency condition, which is

not possible. It follows that for sufficiently large nE there exist no fixed points. This is not unique to the L2-norm but

holds for any p > 1. Such norms allow for a larger total synaptic weight (in terms of its L1-norm) when distributed

across multiple synapses. Additional neurons provide additional recurrent synapses, which leads to the growth of

the effective recurrent excitation until activities can no longer be stabilized by recurrent inhibition. For a suitable

choice of the weight norms, Φ can, in principle, become small enough to balance the number of excitatory neurons

in any eigencircuit to maintain positive variances. However, this requires additional fine-tuning and fails when nE
becomes unexpectedly large.

6 Fully plastic recurrent E-I networks

In the following, we consider the stability of eigencircuits in a network of recurrently connected excitatory and in-

hibitory neurons. Specifically, we would like to know when a neuron from one eigencircuit becomes attracted to

another eigencircuit. First, we make some simplifying assumptions. Since each neuron can potentially be bidirec-

tionally connected to all other neurons, the system’s dimensionality grows quadratically with the number of neurons.

We are only interested in the general principles and consider two eigencircuits, each with one excitatory and one

inhibitory neuron.

Similar to the feedforward case, we find the following general form for the Jacobian (compare Eq. 66)

τ
d Ûw

dw

����
∗

= [1 − ...]

(
Ĉ
∗
− λ̂∗1 +

dĈ

dw

�����
∗

w∗

)
, (133)

where the last term takes into account that the modified covariance matrix is no longer fixed but depends on the

weights themself: In general, when a synaptic weight is perturbed, the postsynaptic neuron’s variance changes,

which affects the presynaptic neuron’s variance via recurrent connections.

We consider infinitesimal perturbations of fixed points where the circuit is separated into unconnected eigencir-

cuits (see Section 5). When a neuron in eigencircuit A is perturbed towards a different eigencircuit B, it changes its

variance (Fig. 3, left). However, neurons in eigencircuit B are unaffected because there are no recurrent connections

between eigencircuit A and B. When assessing stability, it is, therefore, sufficient to consider the recurrence within a

single eigencircuit. Input from other eigencircuits can be treated as feedforward input to that circuit (Fig. 3, center).

For that reason, we consider an equivalent circuit where the original attraction of the feedforward input mode λ is

increased by the eigencircuit attraction, λ ← λ̂ = λ + λeig (Fig. S3, right). In this circuit, firing rates are given by

(compare section 3)

yE = wEF
ᵀ
y +wEEyE −wEIyI, (134)

yI = wIF
ᵀ
y +wIEyE −wIIyI, (135)

yE =
1

1 −wEE +
wEIwIE

1 +wII

(
wEF
ᵀ
−
wEIwIF

ᵀ

1 +wII

)
y ≡ aE

ᵀ
y, (136)

yI =
1

1 +wII +
wIEwEI

1 −wEE

(
wIF
ᵀ
+
wIEwEF

ᵀ

1 −wEE

)
y ≡ aI

ᵀ
y. (137)

The weight dynamics is

τ Ûw =

©«
ÛwEF

ÛwEE

ÛwEI

...

ª®®®®®¬
=

©«
yy
ᵀ

yyE −yyI

yEy
ᵀ

yEyE −yEyI

yIy
ᵀ

yIyE −yIyI

0

0
. . .

ª®®®®®¬
©«
wEF

wEE

wEI

...

ª®®®®®¬
−

©«
γE 0 0

0 γE 0

0 0 ρE

0

0
. . .

ª®®®®®¬
©«
wEF

wEE

wEI

...

ª®®®®®¬
, (138)
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where ellipsis indicate similar terms for afferent weights of the inhibitory neuron. We define the modified covariance

matrix

Ĉ =

©«

〈
yy
ᵀ〉

〈yyE〉 − 〈yyI〉〈
yEy
ᵀ〉

〈yEyE〉 − 〈yEyI〉〈
yIy
ᵀ〉

〈yIyE〉 − 〈yIyI〉

0

0
. . .

ª®®®®®®¬
=

©«

C CaE −CaI

aE
ᵀ
C aE

ᵀ
CaE −aE

ᵀ
CaI

aI
ᵀ
C aI

ᵀ
CaE −aI

ᵀ
CaI

0

0
. . .

ª®®®®®®¬
, (139)

and write the average synaptic change as

⇒ τ 〈 Ûw〉 ≡ Ĉw − Γw, (140)

where Γ is a diagonal matrix that holds the scalar constraint factors (compare Eq. 42). Note that this is a non-

linear dynamical system since the modified covariance matrix depends on plastic synaptic weights. We make the

simplifying assumption that the plasticity of excitatory and inhibitory synapses is equally fast, τE = τI. Then τ = τ1,
which does not affect the fixed points or the stability of the system1. Therefore, we set τ = 1.

6.1 Fixed points

Fixed points w∗ must fulfill the following condition

Ĉ
∗
w∗ − Γ∗w∗

!
= 0. (141)

where Ĉ
∗
is the modified covariance matrix evaluated in the fixed point. We consider a fixed point where all neurons

form a single eigencircuit and are tuned to the same input mode v∗. Then we can write the excitatory and inhibitory

firing rates as

y∗E = a∗E
ᵀ
y = y

ᵀ
a∗E, a∗E = a∗Ev

∗, (142)

y∗I = a∗I
ᵀ
y = y

ᵀ
a∗I , a∗I = a∗I v

∗, (143)

Note that the superscript ‘∗’ indicates a value in the fixed point of the weight dynamics and not a fixed point of the

firing rate activity. Different input patterns y still result in different neural activities y∗
E
. The modified covariance matrix

in the fixed point becomes

Ĉ
∗
=

©«
C Cv∗a∗

E
−Cv∗a∗

I

a∗
E
v∗T C a∗

E
v∗T Cv∗a∗

E
−a∗

E
v∗T Cv∗a∗

I

a∗
I
v∗T C a∗

I
v∗T Cv∗a∗

E
−a∗

I
v∗T Cv∗a∗

I

0

0
. . .

ª®®®®®¬
(144)

=

©«
C λ∗a∗

E
v∗ −λ∗a∗

I
v∗

λ∗a∗
E
v∗T λ∗a∗2

E
−λ∗a∗

E
a∗
I

λ∗a∗
I
v∗T λ∗a∗

I
a∗
E
−λ∗a∗2

I

0

0
. . .

ª®®®®®¬
. (145)

which can be diagonalized by the eigenvector matrix V̂
∗
and its inverse:

V̂
∗
=

©«

V\∗ v∗ v∗a∗
E

v∗a∗
I

0 a∗
E
−1 0

0 a∗
I

0 1

0

0
. . .

ª®®®®®®¬
, V̂

∗−1
= N−1

©«

N V\∗
ᵀ

0 0

v∗T a∗
E

−a∗
I

aEv
∗T −(1 − a∗2

I
) −a∗

E
a∗
I

−aIv
∗T −a∗

I
a∗
E

1 + a∗2
E

0

0
. . .

ª®®®®®®®®®¬
, (146)

N ≡ 1 + a∗2E − a
∗2
I , (147)

where the subscript (·)\∗ indicates that a matrix does not contain an entry that corresponds to the input mode v∗. The

first set of eigenvectors has eigenvalues Λ\∗, which are eigenvalues of the feedforward covariance matrix C, since

1It does not affect the sign of the eigenvalues of the Jacobian, since τ is always positive. In principle, however, different timescales for

excitatory and inhibitory weights can affect stability (compare Section 3.2)
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there are no neurons in the recurrent circuit1 that are tuned to these input modes. The last two eigenvectors in the

first block are null-eigenvectors with eigenvalue zero. Their excitatory feedforward component is balanced by either

an inhibitory component or a negative recurrent excitatory component2. The remaining eigenvector has eigenvalue

1 + a∗2
E
− a∗2

I
. Similar to the feedforward case (compare section 3.1), arbitrary multiples of the separately normalized

parts of eigenvectors of Ĉ
∗
are fixed points3. Inserting these fixed points into Eq. 136 and 137, provides conditions

to determine a∗
E
and a∗

I
. We consider the simplest case of an eigenvector of the following shape:

v̂
∗ =

©«

v∗

a∗
E

a∗
I

v∗

a∗
E

a∗
I

ª®®®®®®®®®¬
, λ̂∗ = λ∗

(
1 + a∗2E − a

∗2
I

)
, (148)

6.2 Stability analysis

When are neurons stable, and when do they destabilize and become attracted to a different input mode? To answer

this question, we consider a small fixed point perturbations ∆w, where the excitatory neuron shifts its tuning in the

direction of a different input mode v†:

∆w ∝

(
v†

0

)
. (149)

Then, the neuron is stable with respect to the perturbation if the perturbation decays to zero. To check this, we solve

the following differential equation that holds for small perturbations (compare section 2.2)

d

dt
(∆w) = J∗(∆w). (150)

We will consider the dynamics in the non-orthogonal eigenbasis V̂
∗
of the modified covariance matrix Ĉ. In this basis,

the perturbation is defined as

∆w = V̂
∗
∆wv . (151)

and its dynamics becomes

d

dt
(∆wv) =

d

dt

(
V̂
∗−1

∆w
)
= V̂

∗−1
J∗V̂

∗
V̂
∗−1
(∆w) = V̂

∗−1
J∗V̂

∗
e†, (152)

where e† is a vector of zeros with a single non-zero entry that corresponds to the perturbation mode v†. Without

loss of generality, we assume that eigenvectors in V̂
∗
are sorted such that the first entry of e† is non-zero. Note

that for perturbations ∆w′ that do not shift a neuron away from its fixed point input mode v∗, the first entries of

the perturbation vector expressed in the eigenbasis (V̂
∗
∆w′) are zero. Such perturbations have no component in

the direction of other input modes V\∗ (compare Eq. 146). In the following, we will derive the transformed Jacobian

V̂
∗−1

J∗V̂
∗
.

The transformed Jacobian

First we consider the regular Jacobian J∗. We rewrite the dynamics in Eq. 140 as

Ûw =

[
1 −
(w◦

EF
+w◦

EE
)c◦

EE

ᵀ

c◦
EE

ᵀ
(w◦

EF
+w◦

EE
)
− ...

]
Ĉw (153)

where the second term in the bracket corresponds to the normalization of all excitatory synapses onto the

excitatory neuron, and additional normalization terms are indicated by ellipsis (compare Eq. 47). Then the

1No neurons that are not input neurons.
2In our simulations, we constrain synaptic weights to be positive. When a null-eigenvector is added to a regular eigenvector, the net synaptic

inputs remain unchanged. For example, a decrease in recurrent excitation due to a negative excitatory component of the null eigenvector is

balanced by an increase in feedforward excitation.
3The only exception is the rightmost null-eigenvector. There, the inhibitory and the excitatory weights are aligned such that the postsynaptic

activity is zero, which does not allow for arbitrary scaling of the weight norms.
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Jacobian has the following shape (compare Eq. 31)

J∗ =
d Ûw

dw

����
∗

=

[
1 −
(v̂
∗◦
EF + v̂∗◦EE)c

◦
EE

ᵀ

c◦
EE

ᵀ
(v̂
∗◦
EF + v̂∗◦EE)

− ...

] (
Ĉ
∗
− λ̂∗1 +

dĈ

dw

�����
∗

w∗

)
, (154)

where we accounted for the weight dependence of the modified covariance matrix Ĉ which results in the

tensor dĈ
dw

. To find the transformed Jacobian V̂
∗−1

J∗V̂
∗
, we consider the first bracket:

V̂
∗−1

[
1 −
(v̂
∗◦
EF + v̂∗◦EE)c

◦
EE

ᵀ

c◦
EE

ᵀ
(v̂
∗◦
EF + v̂∗◦EE)

− ...

]
V̂
∗

(155)

= V̂
∗−1

[
1 −
(v̂
∗◦
EF + v̂∗◦EE)c

◦
EE

ᵀ

c◦
EE

ᵀ
(v̂
∗◦
EF + v̂∗◦EE)

− ...

] ©«

V\∗ v∗ v∗a∗
E

v∗a∗
I

0 a∗
E
−1 0

0 a∗
I

0 1

0

0
. . .

ª®®®®®®¬
(156)

=
[
1 − V̂

∗−1
Hv̂
∗
]
, Hi ≡

©«

1h(i)
EE

h
(i)

EE

h
(i)

EI

1h(i)
IE

h
(i)

IE

h
(i)

II

ª®®®®®®®®®®¬i
, (157)

where H is a tensor such that H1v̂
∗ is the first column of Hv̂∗ and

h
(i)

EE
≡

c◦
EE

ᵀ

c◦
EE

ᵀ
(v̂
∗◦
EF + v̂∗◦EE)

V̂
∗

i , (158)

where V̂
∗

i is the ith column of V̂
∗
. Then

V̂
∗−1

Hv̂
∗ = N−1

©«

N V\∗
ᵀ

0 0

v∗T a∗
E

−a∗
I

aEv
∗T −(1 − a∗2

I
) −a∗

E
a∗
I

−aIv
∗T −a∗

I
a∗
E

1 + a∗2
E

0

0
. . .

ª®®®®®®®®®¬
Hv̂
∗ =

©«
0 0 0 0

...
...
...
...

0

0
. . .

ª®®®®¬
(159)

⇒ V̂
∗−1

[
1 −
(v̂
∗◦
EF + v̂∗◦EE)c

◦
EE

ᵀ

c◦
EE

ᵀ
(v̂
∗◦
EF + v̂∗◦EE)

− ...

]
V̂
∗
=

©«
1 0 0 0

...
...
...
...

0

0
. . .

ª®®®®¬
(160)

where ellipsis indicate potentially non-zero entries. After transformation, the second bracket of Eq. 154 be-

comes

V̂
∗−1

(
Ĉ
∗
− λ̂∗1 +

dĈ

dw

�����
∗

w∗

)
V̂
∗
=

(
Λ̂
∗
− λ̂∗1 + V̂

∗−1 dĈ

dw

�����
∗

w∗V̂
∗

)
. (161)
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We next consider the first columns of dĈ
dw

���
∗
w∗, for which we compute the matrix dĈ

dwb
EF

, where wb
EF

is the bth

feedforward weight onto the excitatory neuron.

dĈ

dwb
EF

�����
∗

=
d

dwb
EF

©«

C CaE −CaI

aE
ᵀ
C aE

ᵀ
CaE −aE

ᵀ
CaI

aI
ᵀ
C aI

ᵀ
CaE −aI

ᵀ
CaI

0

0
. . .

ª®®®®®®¬

�����������
∗

(162)

=

©«

0 C
daE
dwb

EF

����
∗

−C
daI
dwb

EF

����
∗

daE
ᵀ

dwb
EF

����
∗

C

(
daE
ᵀ

dwb
EF

����
∗

Ca∗
E
+ a∗

E

ᵀ
C

daE
dwb

EF

����
∗

)
−

(
daE
ᵀ

dwb
EF

����
∗

Ca∗
I
+ a∗

E

ᵀ
C

daI
dwb

EF

����
∗

)
daI
ᵀ

dwb
EF

����
∗

C

(
daI
ᵀ

dwb
EF

����
∗

Ca∗
E
+ a∗

I

ᵀ
C

daE
dwb

EF

����
∗

)
−

(
daI
ᵀ

dwb
EF

����
∗

Ca∗
I
+ a∗

I

ᵀ
C

daI
dwb

EF

����
∗

) 0

0
. . .

ª®®®®®®®®®®®¬
, (163)

where we used the definition of Ĉ from Eq. 139. The vectors aE and aI are defined in Eq. 136 & 137. It follows:

daE

dwb
EF

�����
∗

=
1

1 −w∗
EE

+
w∗
EI
w∗
IE

1 +w∗
II

eb ≡ µEeb, (164)

daI

dwb
EF

�����
∗

=
1

1 +w∗
II
+

w∗
IE
w∗
EI

1 −w∗
EE

wIE

1 −wEE

eb ≡ µIeb, (165)

Ca∗E = λ∗a∗Ev
∗, Ca∗E = λ∗a∗I v

∗, (166)

⇒
dĈ

dwb
EF

�����
∗

=

©«

0 µECeb −µICeb

µEeb
ᵀ
C 2λ∗a∗

E
µEv

∗T eb −λ∗(µEa
∗
E
+ µIa

∗
E
)v∗T eb

µIeb
ᵀ
C λ∗(µIa

∗
E
+ µEa

∗
I
)v∗T eb 2λ∗a∗

I
µIebv

∗T

0

0
. . .

ª®®®®®®®®¬
, (167)

⇒
dĈ

dwb
EF

�����
∗

w∗ =

©«
βECeb

g1v
∗T eb

g2v
∗T eb

0

ª®®®®¬
, w∗ =

©«
v∗

w∗
EE

w∗
EI
...

ª®®®®®¬
, βE = µEw

∗
EE − µIw

∗
EI . (168)

⇒
dĈ

dwEF

�����
∗

w∗ =

©«
βEC

g1v
∗T

g2v
∗T

0

ª®®®®¬
. (169)

We find other columns in a similar fashion and write

⇒
dĈ

dw

�����
∗

w∗ =

©«
βEC g3v

∗ g6v
∗

g1v
∗T g4 g7

g2v
∗T g5 g8

0

0
. . .

ª®®®®®¬
, (170)
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where g(·) are scalars. After applying the transformation, we get

V̂
∗−1 dĈ

dw

�����
∗

w∗V̂
∗

(171)

= V̂
∗−1

©«
βEC g3v

∗ g6v
∗

g1v
∗T g4 g7

g2v
∗T g5 g8

0

0
. . .

ª®®®®®¬
©«

V\∗ v∗ v∗a∗
E

v∗a∗
I

0 a∗
E
−1 0

0 a∗
I

0 1

0

0
. . .

ª®®®®®®¬
(172)

= V̂
∗−1

©«

βECV\∗ g9v
∗ g12v

∗ g15v
∗

0 g10 g13 g16

0 g11 g14 g17

0

0
. . .

ª®®®®®®¬
(173)

= N−1

©«

N V\∗
ᵀ

0 0

v∗T a∗
E

−a∗
I

aEv
∗T −(1 − a∗2

I
) −a∗

E
a∗
I

−aIv
∗T −a∗

I
a∗
E

1 + a∗2
E

0

0
. . .

ª®®®®®®®®®¬

©«

βEV\∗Λ\∗ g9v
∗ g12v

∗ g15v
∗

0 g10 g13 g16

0 g11 g14 g17

0

0
. . .

ª®®®®®®¬
(174)

=

©«

βEΛ\∗ 0 0 0

0 g18 g21 g24

0 g19 g22 g25

0 g20 g23 g26

0

0
. . .

ª®®®®®®®®®¬
. (175)

The fully transformed Jacobian becomes (compare Eq. 161)

V̂
∗−1

J∗V̂
∗
= V̂

∗−1

[
1 −
(v̂
∗◦
EF + v̂∗◦EE)c

◦
EE

ᵀ

c◦
EE

ᵀ
(v̂
∗◦
EF + v̂∗◦EE)

− ...

]
V̂
∗−1

(
Λ̂
∗
− λ̂∗1 + V̂

∗−1 dĈ

dw

�����
∗

w∗V̂
∗

)
(176)

Finally, by inserting Eq. 160 and 175 we get

V̂
∗−1

J∗V̂
∗
=

©«
1 0 0 0

...
...
...
...

0

0
. . .

ª®®®®¬
©«
Λ̂
∗
− λ̂∗1 +

©«

βEΛ\∗ 0 0 0

0 g18 g21 g24

0 g19 g22 g25

0 g20 g23 g26

0

0
. . .

ª®®®®®®®®®¬

ª®®®®®®®®®¬
. (177)

⇒ V̂
∗−1

J∗V̂
∗
=

©«
(
Λ\∗ − 1λ̂

∗ + βEΛ\∗

)
0 0 0

...
...
...
...

0

0
. . .

ª®®®®¬
. (178)
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Stability conditions

The dynamics of a fixed point perturbation ∆wv is

d

dt
(∆wv) =

©«
(
Λ\∗ − 1λ̂

∗ + βEΛ\∗

)
0 0

...
...
...

0

0
. . .

ª®®®®¬
∆wv . (179)

It follows that perturbations∆w′ that do not shift a neuron’s tuning in the direction of a different inputmode do also not

induce such a shift in their later dynamics, i.e., the first vector entries of such perturbations remain zero. In contrast,

perturbations in the direction of a different input mode ∆wv = e† induce perturbations within the original eigencircuit:

A decrease in feedforward and recurrent excitatory synaptic weights within the eigencircuit balances the increase of

feedforward excitation synaptic weights due to the perturbation tomaintain the weight norm1. However, as explained

above, these second-order perturbations are contained within the eigencircuit, i.e., they can not induce perturbations

in the direction of non-eigencircuit input modes. To answer the question when neurons switch eigencircuits, we

therefore only consider the dynamics along the direction of the original perturbation by projecting the dynamics onto

the perturbation vector at time zero e†
0
= (v†T , 0

ᵀ
)
ᵀ
:

d

dt

(
e
†

0

ᵀ
e†

)
=

(
λ† − λ̂∗ + βEλ

†
)
(e
†

0

ᵀ
e†). (180)

which provides the general stability condition for the excitatory neuron(
λ̂† − λ̂∗ + βEλ̂

†
)
< 0 , (181)

where λ̂† = λ† + λ†
eig
. In the circuit considered here, we integrated the eigencircuit attraction into the feedforward

input, i.e., λ†
eig

is zero. For βE we find

βE =
1

1 −w∗
EE

+
w∗
EI
w∗
IE

1 +w∗
II

w∗EE −
1

1 +w∗
II
+

w∗
IE
w∗
EI

1 −w∗
EE

(
w∗
EI
w∗
IE

1 −w∗
EE

)
, (182)

=
dyE

d(wEF
ᵀ
y)

����
∗

w∗EE −
dyI

d(wEF
ᵀ
y)

����
∗

w∗EI, (183)

=
dyE

d(wEF
ᵀ
y)

����
∗

[
w∗EE −

w∗
EI
w∗
IE

1 +w∗
II

]
, (184)

⇒ βE =
dyE

d(wEF
ᵀ
y)

����
∗

− 1 , (185)

where Eq. 183 follows from Eq. 164. This can be seen readily from Eq. 136, i.e.,

dyE

d(wEF
ᵀ
y)

����
∗

=
1

1 −w∗
EE

+
w∗
EI
w∗
IE

1 +w∗
II

, (186)

dyI

d(wIF
ᵀ
y)

����
∗

=
1

1 +w∗
II
+

w∗
IE
w∗
EI

1 −w∗
EE

. (187)

Following the same framework, we find the stability condition when perturbing the inhibitory neuron:(
λ̂† − λ̂∗ + βIλ̂

†
)
< 0 , (188)

βI =
1

1 −w∗
EE

+
w∗
EI
w∗
IE

1 +w∗
II

(
−w∗

EI
w∗
IE

1 +w∗
II

)
−

1

1 +w∗
II
+

w∗
IE
w∗
EI

1 −w∗
EE

w∗II, (189)

=
dyE

d(wIF
ᵀ
y)

����
∗

w∗IE −
dyI

d(wIF
ᵀ
y)

����
∗

w∗II, (190)

=
dyI

d(wIF
ᵀ
y)

����
∗

[
−
w∗
EI
w∗
IE

1 −w∗
EE

−w∗II

]
. (191)

1Compare Eq. 158: h
(i)

EE
, 0.
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⇒ βI =
dyI

d(wIF
ᵀ
y)

����
∗

− 1 , (192)

6.3 Decorrelation condition

How can neurons self-organize to represent all parts of their input space instead of clustering all their tuning curves

around a dominant input mode? To answer this question, we consider the stability of eigencircuits (Eq. 181 & 188).

In particular, we consider the case when contributions from recurrent excitatory and inhibitory connectivity motives

balance each other, such that βE and βI are negative but close to zero1. This can be achieved by a suitable choice

of weight norms (see Section 6.4 for a discussion of the case βE/I > 0). Then, the network is stable when all input

modes are equally attractive, i.e.,

λ̂a = λa + λa
eig

!
= λ̂b, [a,b. (193)

For homogeneous input spaces, where λa = λb = λ, [a,b, the only other stable configuration is when all neurons are
tuned to the same input mode. Such a configuration does not reflect neural tunings in the healthy brain, where all

parts of the stimulus space are represented. To prevent such a global clustering of neural tunings, we require that

the corresponding eigencircuit is unstable. This is the case when the total attraction of the eigencircuit’s input mode

λ̂∗ is smaller than the attraction of an unoccupied input mode λ†:

λ̂∗ < λ†, (194)

⇒
∑
i

σ2
E,i −

∑
I

σ2
I,j + λ < λ, (195)

⇒ NEσ
2
E − NIσ

2
I < 0, (196)

⇒ NEσ
2
E < NIσ

2
I , (197)

where σ2
E
, σ2

I
are the average variances of the population and NE , NI are the total number of inhibitory and excitatory

neurons.

In general, we want the total attraction of an input mode to decrease when additional neurons join an eigencircuit.

Such a decrease prevents the self-reinforcing feedback loop where an attractive input mode becomes even more

attractive when additional neurons become tuned to that mode which attracts even more neurons and so forth.

One can not prevent this feedback loop if the network only contains excitatory neurons because the total attraction

would strictly increase with the number of neurons in an eigencircuit. However, this is not the case in networks

that also contain inhibitory neurons. When the repulsive contribution of inhibitory neurons exceeds the contribution

of excitatory neurons, the total attraction is decreased. Then, assuming a sufficient amount of available neurons,

differences in input mode feedforward attractions will be equalized, which prevents clustering of tuning curves. For

every excitatory neuron, there are NI/NE many inhibitory neurons that become attracted to an eigencircuit2. Then

the change in total attraction is

∆λ̂ = λ̂(nE + 1, nI +
NI

NE

) − λ̂(nE, nI), (198)

where nE , nI are the original number of excitatory and inhibitory neurons in the eigencircuit. As before, we assume

that neurons have similar weight norms, such that their variances are also similar (compare Eq. 123), and write the

total attraction of the input mode as (making use of Eq. 127)

λ̂(nE, nI) = λ + nEσE(nE, nI) − nIσI(nE, nI), (199)

= λ +
(
nE − η

2nI

)
σE(nE, nI), η ≡

WIE

1 +WII

1

Φ
. (200)

The variance σE does not depend on nI and strictly decreases with nE (compare Eq. 128)3. Then, an upper bound

for the change in total attraction is4

∆λ̂ <

(
1 − η2

NI

NE

)
σE(nE + 1, nI

NI

NE

)
!
< 0, (201)

1If β· < 0, while |β· | is sufficiently large, eigencircuits that correspond to relatively weakly attractive input modes can nonetheless be stable.

Small |β· | ensure that modes with relatively weaker attraction remain unstable. Vice versa, when β· is positive, more attractive eigencircuits are

unstable due to their recurrent internal interactions. However, they may appear more attractive for a neuron that is tuned to a different input

mode, which can lead to oscillatory dynamics.
2We assume that plasticity of synaptic weights onto inhibitory neurons is at least as fast as the plasticity of synaptic weights onto excitatory

neurons such that both types of neurons adjust their tunings almost simultaneously.
3For Φ < 1, which ensures real solutions to Eq. 128, independent of nE .
4Assuming that the original eigencircuit was attractive: nE − η

2nI > 0.
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Figure S4: Input space warping due to lateral connectivity. (A) Two excitatory neurons (triangles) are tuned to two different but equally

attractive input modes (circles, green and purple). Both neurons recurrently connect to themselves but not each other. (B) The same circuit as

in A, unfolded to highlight presynaptic partners. Both input modes are balanced in their attraction. (C) Perturbing the purple excitatory neuron

towards the green input mode (dashed lines) shifts its tuning (dark blue) such that it now response to both the green and the purple input modes.

(D) Unfolded circuit shown in C. Due to the perturbation, the green input mode is now more attractive, and the previously purple excitatory neuron

shifts its tuning. (E) Stabilizing (red) and destabilizing (blue) effect of different circuit patterns in case of a perturbation of a neuron in the direction

of an equally attractive input mode (dashed line). Recurrent excitation destabilizes (top, left) while monosynaptic recurrent inhibition stabilizes the

circuit (top right). Similarly, disynaptic recurrent inhibition has a stabilizing effect (center). In a fully recurrent E-I network (bottom), the net effect

results from recurrent excitatory and inhibitory connectivity motifs. The self-inhibition of a recurrently connected inhibitory neuron decreases the

stabilizing effect of the disynaptic recurrent inhibition pattern.

⇒ η2 >
NE

NI

⇔ NEσ
2
E < NIσ

2
I , (202)

which provides a sufficient condition to ensure that an increase of eigencircuit occupancy decreases the total at-

traction, and neurons become selective to all input modes. If the input space is inhomogeneous, i.e., different input

modes have different feedforward attractions, all neurons may still become selective to the most attractive mode

when their combined contribution does not sufficiently decrease the mode’s total attraction. However, one can al-

ways prevent this by increasing the total number of neurons in the network. Investigating this scenario in more detail

is left for future work.

6.4 Eigencircuits are stabilized by intra-eigencircuit inhibition and desta-

bilized by intra-eigencircuit excitation

When the number of excitatory and inhibitory neurons in all eigencircuits is the same such that input modes are

equally attractive, the network can still be unstable (compare Eq. 181 and Eq. 188 for λ̂∗ = λ̂†, and βE > 0, βI >
0). This is due to recurrent interactions that destabilize the circuit by amplifying small perturbations. Consider an

excitatory network where two neurons with equal weight norms are selective for two non-overlapping input modes of

equal attraction and are recurrently connected to themselves but not each other (Fig. S4A). The effective attraction

of an input mode is determined by the time-averaged activities of a neuron’s presynaptic inputs, where it does

not matter whether a connection is recurrent or not. In other words, a neuron can not distinguish if a synapse

is recurrent or feedforward. Therefore, we can unfold the recurrent network and observe that the effective mode

attraction is a combination of the feedforward input and the recurrent self-excitation (Fig. S4B). When one neuron is

perturbed towards the opposing input mode, the tuning of the perturbed neuron changes slightly in the direction of

that mode (Fig. S4C, dark blue). This tuning change leads to an attraction increase of the opposite mode, which is

nowmore attractive – the perturbation is unstable (Fig.S4D). Similarly, if the recurrent connection is inhibitory instead,

it decreases the attraction to the opposite input mode and thus stabilizes the network. In more complex networks,

the combined effects of inhibitory and excitatory recurrence determine the stability of the system (Fig. S4E). These

results are supported by our mathematical analysis above, where recurrent synaptic connections affect stability

(compare Eq. 181, 185 & 186 for λ̂† = λ̂∗).
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