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Abstract  11 

Local field potential (LFP) deflections and oscillations define hippocampal sharp-wave 12 

ripples (SWR), one of the most synchronous events of the brain. SWR reflect firing and 13 

synaptic current sequences emerging from cognitively relevant neuronal ensembles. 14 

Current spectral methods fail to capture their mechanistic complexity, thus limiting 15 

progress. Here, we show how one-dimensional convolutional networks operating over 16 

high-density LFP hippocampal recordings allowed for automatic identification of SWR. 17 

When applied to ultra-dense hippocampus-wide recordings, we discovered 18 

physiologically relevant processes associated to the emergence of SWR, prompting for 19 

novel classification criteria. To gain interpretability, we developed a method to 20 

interrogate the operation of the artificial network. We found it relied in feature-based 21 

specialization, which permit identification of spatially segregated oscillations and 22 

deflections, as well as synchronous population firing. Thus, using deep learning based 23 

approaches may change the current heuristic for a better mechanistic interpretation of 24 

these relevant neurophysiological events. 25 

 26 
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Introduction 29 

Interpreting brain signals is essential to understand cognition and behavior. Biologically 30 

relevant oscillations are considered reliable markers of brain operation (Buzsáki et al., 31 

2012; Friston et al., 2015). Thus, analysis of either surface electroencephalography 32 

(EEG) or intracranial LFP is typically based on spectral methods relying on gold-33 

standard definitions (Niedermeyer and Lopes da Silva, 2005). However, other features 34 

of EEG/LFP signals such as the slope, polarity and latency to events are equally 35 

important (Modi and Sahin, 2017). While interpreting neurophysiological signals is 36 

strongly influenced by this heuristics, methodological issues limit further advances.  37 

During memory consolidation and retrieval, the hippocampal system releases short 38 

memory traces in the form of neuronal sequences (Hannah R Joo and Frank, 2018; 39 

Pfeiffer, 2017; Pfeiffer and Foster, 2015). Such activity comes often in tandem with 40 

spatially segregated oscillations (100-250 Hz) and LFP deflections dubbed sharp-wave 41 

ripples (Buzsáki, 2015). They result from active recruitment of dedicated cell-type 42 

specific microcircuits (de la Prida, 2020; Stark et al., 2014; Valero et al., 2015). SWR-43 

associated sequences can either replay previous experience or preplay internal 44 

representations (Foster, 2017; Hannah R. Joo and Frank, 2018), making their 45 

automatic detection crucial to understand memory function. However, while spectral-46 

based filters have permitted real-time SWR-related interventions (Fernández-Ruiz et 47 

al., 2019; Girardeau et al., 2009; Jadhav et al., 2012), these methods fail to 48 

disambiguate the underlying variability of a wealth of events. Moreover, with the advent 49 

of ultra-dense recordings, the need for automatic identification is pressing. In spite of 50 

recent advances (Dutta et al., 2019; Hagen et al., 2021), current solutions still fall short 51 

in capturing the complexity of SWR events across hippocampal layers.    52 

Here, we exploit the extraordinary capability of Convolutional Neural Networks (CNN) 53 

for real-time recognition to identify SWR (Bai et al., 2018). Instead of adopting standard 54 

approaches used for temporal data such as in speech recognition, we chose to rely on 55 

unfiltered LFP profiles across hippocampal strata as individual data points making up 56 

an image. The one-dimensional object is equivalent to a clip of one-row pixels with as 57 

many colors as LFP channels. We show how one-dimensional CNN operating over 58 

high-density LFP hippocampal signals overcome spectral methods in detecting SWR. 59 

Moreover, we develop a strategy to decode and explain CNN operation. In doing so, 60 

we discovered some features of SWR that permit their detection at distant layers when 61 

applied to Neuropixels recordings (Jun et al., 2017). Using these tools allow for a more 62 

comprehensive interpretation of SWR signatures across the entire hippocampal 63 

system. 64 

 65 

Results 66 

Artificial neural network architecture and operation 67 

Inspired by You-Only-Look-Once (YOLO) networks for real-time object recognition 68 

(Redmon et al., 2015), we adapted a CNN architecture to search for SWR in the dorsal 69 

hippocampus of awake head-fixed mice. LFP signals acquired with high-density 8-70 

channel silicon probes provide detailed information about the underlying CA1 71 

microcircuit (Fig.1A) (Mizuseki et al., 2011; Navas-Olive et al., 2020). The goal of the 72 

artificial network operating over 8-channel input signals (downsampled at 1250 Hz) was 73 

to provide a single-output probability for the occurrence of a SWR event in a given 74 

temporal window (Fig.1A, bottom trace). Therefore, the input “object” is equivalent to a 75 

stream of pixels (1 x number of data samples) with 8-channels instead of colors. 76 
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Convolutional layers search for particular features in the input data by using kernels. 77 

The kernels of the first layer (L1) have dimensions of 8-channels x length, with length 78 

reflecting the number of data samples. They advance along the temporal axis moving 79 

forward a similar number of non-overlapping samples defined by the stride (Fig.1B). 80 

The result of this operation is the kernel activation signal, which reflects the presence 81 

of some input features. L1 kernel length should be defined by considering the desired 82 

output resolution of the network. To ease subsequent online applications, we chose 83 

either 32 ms (CNN32, L1 kernel length 5) or 12.8 ms resolution (CNN12, L1 kernel 84 

length 2).  85 

 86 

Fig.1. CNN definition and operation. A, Example of a SWR event recorded with 8-channel silicon probes 87 
in the dorsal CA1 hippocampus of head-fixed awake mice. Vertical lines mark the analysis window (32 88 
ms). The probability of SWR event is shown at bottom. B, Example of L1 kernel operation and calculation 89 
of the kernel activation (KA) signal. C, Network architecture consists of 7 blocks of one Convolutional layer 90 
+ one BatchNorm layer + one Leaky ReLU layer each (Layers 1 to 21). Dense Layer 22 provides the CNN 91 
output as the SWR probability. D, Examples of kernel activations for layers 1 to 4 resulting from the SWR 92 
event shown in A. Note how the 8-channel LFP input is progressively transformed to capture different 93 
features of the event. E, Example of the CNN output (i.e. kernel activation of layer 22) at 32 ms resolution. 94 
A probability threshold can be used to identify SWR events. Note some events can be predicted well in 95 
advance. F, Offline P-R curve (mean is dark; sessions are light) (left), and F1 score as a function of 96 
normalized thresholds for the CNN at 32 and 12.8 ms resolution as compared with the Butterworth filter 97 
(right). Data reported as mean ± 95% confidence interval for sessions (n=15 sessions; n=5 mice). H, 98 
Online detection performance of CNN12 as compared with the Butterworth filter (n=6 sessions, n=3 mice; 99 
p=0.033). I, Mean and per session P-R curve (left), and F1 score as a function of the optimized threshold 100 
for online sessions, as analyzed post-hoc (right). Data from n=6 sessions from 3 mice.  101 

 102 

Our CNN operates by receiving the 8-channels input into each of the four kernels of L1 103 

(Fig.1C). Kernels process the LFP and output a kernel activation signal (Fig.1D). 104 

Therefore, after passing through L1, the 8-channels are transformed into 4-channels, 105 

one per kernel (e.g. L1K1, L1K2, etc.). L1 output is then transformed by a Batch Norm 106 

layer (L2), and a Leaky ReLU layer (L3), before entering the next block (L4-L5-L6 and 107 

so on; Fig.1C). The size of subsequent kernels is defined by the input data from the 108 
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convolutional layers of the previous block (see Methods). Inspired by YOLO, we 109 

staggered blocks with kernels of large and short length to allow for alternate 110 

convolution of the temporal and channel axes. As data are processed along these 111 

blocks, resolution decreases and hence the kernel length becomes progressively 112 

shorter.  113 

We defined a suitable number of blocks that optimized the input (8 channels) and 114 

output features (1 channel output at 32 ms or 12.8 resolution), resulting in 7 blocks for 115 

a total of 21 layers (Fig.1C). The final layer (L22) is a Dense Layer with a sigmoidal 116 

activation function, so that the CNN output (between 0 and 1) can be interpreted as the 117 

SWR probability. A SWR event can be detected using an adjustable probability 118 

threshold (Fig.1E). Note that our CNN network operates along all streamed LFP data 119 

without any specification of the ongoing oscillatory state (i.e. theta or non-theta 120 

segments accompanying running and immobility periods, respectively).  121 

 122 

CNN performance offline and online 123 

Having defined the main network architecture, we used a dataset manually tagged by 124 

an expert for training and initial validation (1794 events, 2 sessions from 2 mice; 125 

Sup.Table.1). An important decision we made was manually annotating the start and 126 

the end of the SWR event so that the CNN could learn recognizing them early from the 127 

onset. 128 

Given the large number of parameter combinations, we run two optimization rounds 129 

using training and test chunks from the previous dataset. We first tested a subset of 130 

hyper-parameters to look for the 10-best networks (Fig.S1A, green shaded), and chose 131 

the one with the lower and more stable learning curve (Fig.S1B, arrowhead). 132 

Stabilization of the loss function error for the training and test subsets along epochs 133 

excluded potential overfitting (Fig.S1B, inset). A subsequent hyper-parameter search 134 

(781 combinations) confirmed that the trained model was in the top-30 group 135 

(Fig.S1C). The trained model is accessible at the Github repository: 136 

https://github.com/RoyVII/cnn-ripple. Code visualization and detection is shown in an 137 

interactive notebook https://colab.research.google.com/github/RoyVII/cnn-138 

ripple/blob/main/src/notebooks/cnn-example.ipynb  139 

We assessed the offline performance of the chosen CNN, as compared to a 140 

Butterworth filter as the gold-standard, using additional tagged sessions never used for 141 

training (5695 events from n=15 sessions from 5 mice; Sup.Table.1). Performance was 142 

evaluated by calculating the precision (P, proportion of correct predictions over all 143 

predictions), recall (R, proportion of correct predictions over ground truth events, also 144 

known as sensitivity) and F1 values (harmonic mean of precision and recall). The P-R 145 

curve depicted better offline operation of both the CNN12 and CNN32 as compared 146 

with the Butterworth filter (Fig.1F, left). When we considered the relationship between 147 

performance and the detection threshold, we found that the CNN exhibited a more 148 

robust performance as well (Fig.1F, right). To make the CNN and the filter thresholds 149 

comparable, we normalized their values by the best threshold performance. Of note, 150 

this offline analysis was possible because the ground truth was already known. In a 151 

real case scenario, the experimenter has to rely in relatively arbitrary threshold 152 

settings. 153 

To evaluate this further, we performed a new set of experiments for real-time detection 154 

in the Open Ephys (OE) environment (Siegle et al., 2017) (6 sessions from 3 mice). To 155 

this purpose, we developed a plugin designed to incorporate TensorFlow, an open-156 
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source library for machine learning applications, into the OE graphic user interface 157 

(Fig.S1D,E; Sup.Table.1). To be consistent with detection standards (Fernández-Ruiz 158 

et al., 2019), the online filter was applied to the channel with maximal ripple power and 159 

an additional non-ripple channel was used to veto detection of common artifacts. We 160 

found better online performance of the CNN at 12.8 ms resolution as compared with 161 

the filter (Fig.1H; p<0.033). When it came to the ability to anticipate SWR events 162 

online, the CNN slightly overtook the Butterworth filter (time-to-SWR-peak for CNN12: -163 

6.6 ± 1.9 ms; Butterworth filter: -4.2 ± 2.3 ms; Mann-Whitney U test, p<0.00001). A post 164 

hoc evaluation of online sessions confirmed a better performance of the CNN versus 165 

the filter, for all normalized thresholds (Fig.1I).  166 

 167 

Fig.S1. Network definition and parameters. A, Preliminary evaluation of two different architectures, CNN 168 
and long short-term memory (LSTM) networks, as well as different learning rates, number of kernels factor 169 
and batch sizes. The resulting 10-best networks exhibited performance F1>0.65 (green scale) at 32 ms 170 
resolution. Arrowheads indicate CNN32. Worst performance networks are shown in gray. B, Evolution of 171 
the loss value during training of the 10-best networks shown in A. CNN32 exhibited the lower and more 172 
stable learning curve (arrowhead). The inset shows evolution of the loss function error across epochs for 173 
the training and test subsets, excluding overfitting issues. C, Extended hyper-parameter search for 174 
different optimization algorithms (Adam and AMSGrad), regularizing strategies and the learning rate decay 175 
(781 parameter combinations). F1 values of the 30-best networks are shown (green values). Worst 176 
performance networks are in gray. Arrowheads indicate the trained model.  D, Scheme of the experimental 177 
setup for online detection. CNN operated in real time at the interface between the Intan recording system 178 
and the controller of an opto-electrode probe. A SWR event (right) illustrates detection over threshold. 179 
Detection was implemented using a plugin designed to incorporate TensorFlow into the OE GUI  180 
https://github.com/RoyVII/CNNRippleDetectorOEPlugin E, Example of an online closed-loop intervention 181 
(blue shadow) in a PV-cre mouse injected with AAV-DIO-ChR2 to optogenetically modulate SWR. 182 

 183 

Detection limits of SWR and CNN operation 184 

Are there any practical detection limit for SWR? How good is CNN performance and 185 

how much is it determined by the expert heuristics? First, we sought to compare CNN 186 
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and the filter at its maximal capability using data from all sessions (21 sessions from 8 187 

mice). To this purpose, we equated the methods using the best possible detection 188 

threshold for each session (the one that optimized F1) and found roughly similar values 189 

(Fig.2A; CNN12: F1=0.68 ± 0.06; CNN32: F1=0.63 ± 0.05; Butterworth filter: F1=0.65 ± 190 

0.11). Remarkably, the filter exhibited larger variability across sessions. Our CNN 191 

performed similar to a filter-based optimized algorithm (F1=0.66 ± 0.11) (Dutta et al., 192 

2019), but significantly better than RippleNET, a recurrent network designed to detect 193 

SWR mostly during periods of immobility (F1=0.31 ± 0.21; p<0.00001 one-way ANOVA 194 

for comparisons with both CNN12 and CNN32) (Hagen et al., 2021). This supports 195 

similar operation of CNN as compared with the gold standard in conditions when 196 

optimized detection was possible.  197 

The use of supervised learning for training and posterior validation requires using 198 

datasets annotated by experts. However, the expert’s opinion may be influenced by the 199 

recording method, the experimental goal and the existing knowledge. To evaluate the 200 

impact of these potential biases, we used the ground truth from a second expert in the 201 

lab (2798 events, n=11 sessions, 5 mice). While results were overall comparable, there 202 

were some natural differences between experts in a session-by-session basis (Fig.2B). 203 

Interestingly, when we confronted the network detection with the consolidated ground 204 

truth, we noted that the CNN could be actually detecting many more SWR events than 205 

initially accounted by each individual expert (one-way ANOVA, CNN12: F(2)=4.75, 206 

p=0.016; CNN32: F(2)=4.22, p=0.024). In contrast, the filter failed to exhibit such an 207 

improvement (Fig.2B). Notably, an expert acting as a classifier of the other expert’s 208 

ground truth provided a mean reference of best performance at 0.69 ± 0.14 (Fig.2C).  209 

  210 

Fig.2. Effects of different experts’ ground truth on CNN performance. A, Comparison between the 211 
CNN and Butterworth filter using thresholds that optimized F1 per session (21 recordings sessions from 8 212 
mice). Note this optimization process can only be implemented when the ground truth is known. B, A 213 
subset of data annotated independently by two experts was used to evaluate the ability of each method to 214 
identify events beyond the individual ground-truth. The original expert provided data for training and 215 
validation of the CNN. The new expert tagged events independently in a subset of sessions (11 sessions 216 
from 5 mice). The performance of CNN, but not that of the filter, was significantly better when confronted 217 
with the consolidated ground truth. Significantly as tested with one-way ANOVA for each method; Paired t-218 
tests **, p<0.01; ***, p<0.001. C, Performance obtained from the experts’ ground truth when acting as a 219 
mutual classifier (n=11 sessions). Note this provides an estimation of the maximal performance level. D, 220 
We used the hc-11 dataset (Grosmark and Buzsáki, 2016) at the CRCNS public repository 221 
(https://crcns.org/data-sets/hc/hc-11/about-hc-11) to evaluate the effect of the definition of the ground 222 
truth. The data consisted in 10-channel high-density recordings from the CA1 region of freely moving rats. 223 
We randomly selected 8-channels to cope with inputs dimension of our CNN, which was not retrained. The 224 
dataset comes with annotated SWR events (dark shadow) defined by stringent criteria (coincidence of 225 
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both population synchrony and SWR). CNN False Positives defined by this partially annotated ground truth 226 
were re-reviewed and validated (light shadow). E, Performance of the original CNN, without retraining, at 227 
both temporal resolutions over the originally annotated (dark colors) and after False Positives validation 228 
(light colors). Performance of the Butterworth filter is also shown. Data from 3 sessions, 2 rats. See 229 
Supp.Table 1.  230 

 231 

To evaluate this point further, and to test the capability of the CNN to generalize 232 

beyond its original training using head-fixed mice data, we used an externally 233 

annotated dataset of SWR recorded with high-density silicon probes from freely moving 234 

rats (Grosmark and Buzsáki, 2016) (Fig.2D; 1056 events; 3 sessions from 2 rats; 235 

Sup.Table.1). In that work, SWR detection was conditioned on the coincidence of both 236 

population synchrony and LFP definition thus providing a “partial ground truth”. 237 

Consistently, the network recalled most of the annotated events (R=0.80 ± 0.18), but 238 

precision was apparently low (P=0.42 ± 0.18) (Fig.2E). Hence, we evaluated all False 239 

Positive predictions and found that many of them were actually unannotated SWR (839 240 

events), meaning that precision was actually higher (P=0.72 ± 0.12 for CNN32, P=0.83 241 

± 0.10; for CNN12, both at p<0.05 for paired t-test; Fig.2E). As above, the filter failed to 242 

improve performance (Fig.2E). Importantly, a CNN trained in data from head-fixed mice 243 

was able to generalize to freely moving rats.  244 

Altogether, this analysis indicates that detection limits of SWR may be determined by 245 

the expert’s criteria. CNN performance improves when confronted with the extended 246 

ground truth, suggesting that it learns to generalize beyond existing data.    247 

 248 

Unveiling SWR latent features 249 

Interpretability is a major issue in modern machine learning (Mahendran and Vedaldi, 250 

2014; Richards et al., 2019). To better understand and validate CNN operation, we 251 

looked for methods to visualize the kernel features that had better explained the 252 

network ability to recognize SWR events. We exploited a standard procedure from 253 

CNN image recognition (Simonyan et al., 2013) consisting on maximizing the kernel 254 

activation using gradient ascent in the input space (Fig.3A, top). To this purpose, a 255 

noisy LFP input is progressively updated until the kernel activation is maximal, using 256 

different initialization values (Fig.3A, bottom). The resulting signal is equivalent to a 257 

saliency map reflecting the latent preferred features by each CNN kernel. This 258 

approach is similar to infer visual receptive fields using noise stimulation.  259 

Similar as 2-dimensional CNN layers specialize in detecting edges, shapes and 260 

textures of an image, we found the kernels focused in detecting distinct LFP features. 261 

Consistently with data above, kernels from the first layers specialized in detecting 262 

rhythmic and periodic patterns (e.g. L1K1 and L1K2), while later layers seem to focus 263 

in identifying these patterns along time (e.g. L19K18; Fig.3B). By computing the 264 

pattern-matching function between saliency maps and the 8-channels LFP, we 265 

evaluated how the kernels accounted for different features of True Positive events, i.e. 266 

SWR (Fig.3C). For example, L1K1 was maximally activated at the peak of ripple 267 

oscillations, while L1K2 and L19K18 were maximal at the onset, supporting the network 268 

ability to anticipate SWR. Pattern-matching between true SWR events and the saliency 269 

map of the output layer L22 provided an idea of what the CNN recognized as an ideal 270 

“object”. In contrast, pattern-matching values in the absence of SWR events (True 271 

Negative events) were typically lower as compared with those obtained from the 272 

ground truth (Fig.3D). 273 
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 274 

Fig.3. Analysis of the CNN kernel saliency maps. A, Schematic illustration of the method to calculate 275 
the kernel saliency maps using gradient ascent. Note that different initializations converge to the same 276 
solution. B, Examples of saliency maps from some representative kernels. Note ripple-like preferred 277 
features of L1 kernels and temporally specific features of L19 and L22 kernels. C, Pattern-matching 278 
between saliency maps shown in B and LFP inputs of the example SWR event (120 ms window). D, Same 279 
as in C for a True Negative example event. E, Mean template-matching signal (top) and maximal values 280 
(bottom) from all detected events classified by CNN32 as True Positive (4385 events), False Positives 281 
(2468 events), False Negatives (3055 events) and True Negatives (4902 events). One-way ANOVA, 282 
F(3)=1517, p<0.0001; ***, p<0.001 after correction by Bonferroni. F, Examples of False Positive 283 
detections. Note some of them are sharp waves without ripples and population firing synchrony. Also note 284 
artifacts superimposed to LFP deflections and many unclassified events reflecting different oscillatory 285 
components. G, Distribution of False Positive Events per categories. 286 

 287 

To quantify these observations, we evaluated how much of the output L22K1 saliency 288 

maps matched to different input events, using data from the training and offline 289 

validation sessions (17 sessions, 7 mice). Consistent with the examples, pattern-290 

matching was maximal for True Positive and minimal for True Negative events (one-291 

way ANOVA, F(3)=1517, p<0.0001). Pattern-matching values were higher for False 292 

Positives than for False Negatives (Fig.3E), meaning that the network may be 293 

identifying some latent features. A closer examination of False Positive predictions 294 

suggested that about 20% of them could be reclassified. From these, about one third 295 

were sharp waves without clear associated ripples (SW no ripples), while others were 296 

actually SWR events, synchronous population firing and artifacts (Fig.3F,G). Strikingly, 297 

many of the unclassified events resembled spatially widespread network oscillations 298 

coupled to LFP deflections (Fig.3F, rightmost), suggesting they may represent different 299 

types of sub-threshold network activities (de la Prida et al., 2006). Finally, False 300 

Negative events were essentially SWR with different polarities and deflection trends 301 

(output probability 0.42 ± 0.44).  302 

This analysis confirms that the CNN has the ability to identify SWR events by relying on 303 

feature-based kernel operation. Moreover, some predictions not consistent with the 304 

current definition of SWR may identify different forms of population firing and oscillatory 305 

activities associated to sharp-waves, supporting the network ability to generalize 306 

beyond the expert ground truth.    307 

 308 
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Interpreting and explaining CNN operation 309 

As shown above, the CNN ability relies on feature extraction by the different kernels. 310 

To gain explanatory power on how this applies to SWR detection, we sought to 311 

visualize and quantify the CNN kernel operation.  312 

First, we examined the weights of the first layer kernels, which act directly over high-313 

density LFP inputs. We noted that their profiles were especially suited for assessing 314 

critical LFP features, such as the laminar organization of activity. For example, L1K1 315 

seemed to act along the spatial scale by differentially weighting LFP channels along the 316 

somatodendritic axis and deep-superficial layers (Fig.4A), consistent with the saliency 317 

map shown above. In contrast, weights from L1K2 likely operated in the temporal scale 318 

with major differences along the kernel length (Fig.4A). In this case, by positively 319 

weighting upper channels at later samples this filter may help to anticipate some SWR 320 

motifs as shown before (see Fig.3C). Interestingly, there were opposing trends 321 

between top and bottom channels, suggesting some spatial effect as well. L1K3 and 322 

L1K4 provided less obvious integration across the spatial and temporal scales. In spite 323 

of the complexity of the resulting convolution along the entire event, visualization of 324 

their activation traces reflects detection of ripples as well as the slow and fast 325 

deflections of the associated sharp wave (see L1 outputs in Fig.1D for CNN32; 326 

Fig.S2A,B for CNN12).   327 

  328 

Fig.4. Feature map analysis of CNN32 operation. A, Examples of kernel weights from different layers of 329 
CNN32. Note different distribution of positive and negative weights. In layer 1, the four different kernels act 330 
to transform the 8-channels input into a single channel output by differently weighting contribution across 331 
the spatial (upper and lower LFP channels; vertical arrows in L1K1 and L1K2) and temporal scales 332 
(horizontal arrow in L1K2). See the resulting kernel activation for the example SWR event in Fig.1D. B, 333 
Feature map from the example SWR event (100 ms window; gray) built by concatenating the kernel 334 
activation signals from all layers into a single vector. The feature map of a randomly selected LFP epoch 335 
without annotated SWR is shown at bottom (black). C, Two-dimensional reduced visualization of CNN32 336 
feature maps using UMAP shows clear segregation between similar number of SWRs (ground truth, GT) 337 
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and randomly chosen LFP epochs (Rand) (7491 events, sampled from 17 sessions, 7 mice). Note 338 
distribution of SWR probability at right consistent with the ground truth. D, Distribution of True Positive, 339 
True Negative, False Positive and False Negative events in the UMAP cloud. E, Distribution of the False 340 
Positive events previously validated in Fig.2G. Note they all lay over the ground truth region.     341 

 342 

The same reasoning applies to the next layers. However, since CNN acts to transform 343 

an LFP ‘object’ into a probability value, the spatial and temporal features of SWR 344 

events become increasingly abstract. Notwithstanding, their main features are still 345 

recognized. For example, L4K1 and L4K2 outputs likely reflected the spatiotemporal 346 

organization of the input SWR event, in particular the slower components and uneven 347 

distribution of ripples (see Fig.1D and Fig.S2A).  348 

To quantify these observations we evaluated how the different kernels were activated 349 

by a similar number of LFP events centered at either the ground truth or at a random 350 

timing (Fig.4B, 7491 events in each category; data from both the training and test 351 

offline sessions). For each window, we concatenated the resulting kernel activations 352 

from all layers in a single vector, dubbed feature map (Fig.4B; length 1329 for CNN32, 353 

3991 for CNN12). Since each layer generates a characteristic activity in response to 354 

input data, we reasoned that features maps should carry information on the network 355 

representation of a particular LFP event.  356 

We used Uniform Manifold Approximation and Projection (UMAP), a computationally 357 

efficient dimensionality reduction and visualization tool, to explore feature maps. UMAP 358 

successfully segregated feature maps of LFP events according to their detection 359 

probability in a 2-dimensional cloud (Fig.4C; Fig.S2C), supporting that the entire CNN 360 

is coding for different features of SWR across layers (Fig.S2D). 361 

 362 

Fig.S2. Feature map analysis of CNN12 operation. A, Examples of CNN12 kernel activations for layers 363 
1 to 4 resulting from the example SWR event. Note how the 8-channel LFP input is progressively 364 
transformed to capture different features of the event at a higher resolution as compared with CNN32 (see 365 
Fig.1D). B, Examples of CNN12 kernel weights. As for CNN32 (Fig.4A), note different distribution of 366 
positive and negative weights across the spatial and temporal scales. C, UMAP plot of the CNN12 feature 367 
maps shows clear segregation between similar number of SWRs (ground-truth, GT) and randomly chosen 368 
LFP epochs (Rand) (7491 events from 17 sessions, 7 mice). The distribution of SWR probability is shown 369 
next, as well as the distribution of all detected events by categories. D, Performance (F1) evaluated for 370 
each CNN layer at both temporal resolutions (data from 17 sessions, 7 mice). 371 

 372 
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We labeled each LFP event in UMAP coordinates as True Positive (detected ground 373 

truth events), False Positive (Rand events detected as SWR), False Negative 374 

(undetected ground truth) and True Negative (unannotated and undetected events). 375 

We found striking segregation across the UMAP cloud with True Positive and True 376 

Negative events falling apart (Fig.4D; Fig.S2C). False Negatives were mostly located at 377 

the intermediate region, suggesting they could be detected with less conservative 378 

thresholds. Interestingly, False Positive predictions were scattered all around the cloud, 379 

supporting the idea that they reflect heterogeneous events as seen above. Mapping all 380 

the previously validated False Positive events (see Fig.3F,G) over the UMAP cloud 381 

confirmed that those corresponding to population synchrony and sharp-waves without 382 

ripples distributed over the ground truth, while those corresponding to artifacts mostly 383 

fell apart (Fig.4E). 384 

Altogether, these analyses permitted us to understand how the one-dimensional CNN 385 

operates to detect SWR events. Our study suggests that a CNN relying on feature-386 

based detection allows to capture a wider diversity of SWR events, in contrast to 387 

spectral filtering. The new method could potentially facilitate discovery and 388 

interpretation of the complex neurophysiological processes underlying SWR. 389 

 390 

Leveraging CNN capabilities to interpret SWR dynamics  391 

Equipped with this tool we sought to understand the dynamics of SWR across the 392 

entire hippocampus. To this purpose, we obtained Neuropixels recordings from different 393 

rostro-caudal penetrations in head-fixed mice (Fig.5A; n=4 sessions, 4 mice; 394 

Sup.Table.1). Detailed post-hoc histological analysis validated the probe tracks passing 395 

through a diversity of brain regions, including several thalamic nuclei as well as the 396 

dorsal and ventral hippocampus (Fig.5B, Fig.S3A).  397 

By exploiting the ultra-dense configuration of Neuropixels, we simulated consecutive 398 

penetrations with 8-channel high-density probes covering the entire dorsoventral axis 399 

(Fig.5A). We run offline detection using eight neighboring Neuropixels channels as the 400 

inputs, then move four channels downward/upward and repeat detection again, up to 401 

the end of the probe.  We used the original CNN32 without retraining, the Butterworth 402 

filter and RippleNET to evaluate detection performance against the ground truth.  403 

Consistent with data above, we found successful detection of SWR events from the 404 

dorsal CA1 region (Fig.5A). While detection was optimal at the CA1 cell layer (stratum 405 

pyramidale; SP), we noted many events were actually identified from SWR-associated 406 

LFP signatures at the radiatum (SR) and lacunosum-moleculare (SLM) layers (Fig.5C; 407 

Fig.S3B). When evaluated per layer, detection of SWR was better at the dorsal than at 408 

the ventral hippocampus, except for SR and SLM (Fig.5D, left). We found no major 409 

differences except for precision, when all layers were pooled together (Fig.5D, right).  410 

In spite that only a subset of SWR could be identified from recordings at SR and SLM 411 

(i.e. R-values were low), precision was very high (i.e. over 80% of predictions were 412 

consistent with the ground truth). A close examination of the morphology of these 413 

events confirmed they exhibited LFP and oscillatory features consistent with the kernel 414 

saliency maps (Fig.5E, Fig.S3C). Remarkably, both the Butterworth filter and 415 

RippleNET failed to identify SWR associated signatures beyond the dorsal SP 416 

(Fig.S3D,E).  417 

 418 
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 419 

Fig.5 Hippocampus-wide SWR dynamics through the lenses of CNN. A, Neuropixels probes were 420 
used to obtain ultra-dense LFP recordings across the entire hippocampus. Offline detection was applied 421 
over continuous simulated penetrations (8-channels). Detection performance is evaluated across brain 422 
regions and hippocampal layers using the CNN trained with a different electrode type. B, Histological 423 
validation of one of the experiments shown in A (red arrowhead). C, Performance of CNN32 across 424 
hippocampal layers (96 dorsal simulated penetrations, 4 mice). The results of an independent one-way 425 
ANOVA for P, R and F1 is shown separately. ***, p<0.001. D, Dorsoventral differences of CNN32 426 
performance across layers. P, R and F1 values from dorsal and ventral detection were compared pairwise 427 
(55 dorsal and 55 ventral simulated penetrations, 4 mice). *, p<0.05; ** p<0.01; ***p<0.001. E, Example of 428 
a SWR detected across several layers (black arrowhead). Note ripple oscillations all along the SR and 429 
SLM. A SWR event which was only detected at SP dorsal and ventral is shown at right (open arrowhead). 430 
F, Mean LFP and CSD signals from the events detected at different layers of the dorsal hippocampus of 431 
mouse Npx-Thy160620 (top). Bottom plots show the SWR-triggered average responses of pyramidal cells 432 
and interneurons. Cells are sorted by their timing during SWR events detected at SP. G, Quantification of 433 
the magnitude of the SR sink and SLM source for events detected at SO, SR and SLM, as compared 434 
against SP detection. One-way ANOVA SR CSD: F(2)=9.13, p=0.0004; SLM CSD: F(2)=9.64, p=0.0003; 435 
**, p<0.01; ***, p<0.001. H, Quantification of changes of firing rate and timing of pyramidal cells during 436 
SWR detected at different layers. Firing rate: F(3) = 28.68, p<0.0001; *, p<0.05; ***, p<0.001. Timing: F(2) 437 
= 10.18, p<0.0001; ***, p<0.0001.  438 

 439 

To gain insights into the underlying physiology and to discard for potential volume 440 

conduction effects, we simulated linear penetrations through the dorsal hippocampus 441 

and estimated the associated current-source density (CSD) signals of events detected 442 

at different layers (Fig.5F, top). We found larger sinks and sources for SWR that can be 443 

detected at SLM and SR versus those detected at SP only (Fig.5G). We also exploited 444 
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Neuropixels to isolate activity from putative pyramidal cells (n=99) and interneurons 445 

(n=29, all penetrations) during the different SWR event types (Fig.5F, bottom). For 446 

pyramidal cells, we found striking reorganization of the firing rate and timing during 447 

SWR detected at SO, SR and SLM versus those detected only at SP (Fig.5H). 448 

Interneurons exhibited similar variability (Fig.S3E). Timing and rate differences of 449 

pyramidal cell and interneuronal firing with respect to SWR events detected at different 450 

layers support the idea that they reflect activation of different hippocampal ensembles. 451 

Our CNN thus provide unique opportunities to study the so far elusive dynamics 452 

accompanying SWR responses.    453 

 454 

Fig.S3 CNN detection of SWR from ultra-dense Neuropixels recordings. A, Detailed post-hoc 455 
histological analysis with SHARP-Track (Shamash et al., 2018) allowed identifying a diversity of brain 456 
regions pierced by the Neuropixels probe. The different brain regions were annotated and confronted with 457 
the Paxinos atlas. B, Distribution of True Positive events detected by CNN32 across layers and regions of 458 
the 4 different mice. C, Mean LFP of True Positive events detected by CNN32 at SO, SR and SLM of the 459 
example shown in Fig.4F. Note sharp waves and ripples are differentially visible at these layers.  D, 460 
Detection performance of the Butterworth filter across hippocampal layers for mouse Npx-Cal280720. See 461 
the same session analyzed by CNN32 at the rightmost plot of Fig.4A. E, Detection performance of 462 
RippleNET across hippocampal layers for mouse Npx-Cal280720. Same session as in D and at the 463 
rightmost plot of Fig.4A. F, Quantification of changes of the firing rate and timing of putative GABAergic 464 
interneurons during SWR detected at different layers. Firing rate: F(3) = 3.89, p = 0.011; *, p<0.05. Timing: 465 
not significant. 466 

 467 

Discussion 468 

Here, we report how one-dimensional convolutional networks operating over high-469 

density LFP recordings allows for unprecedented detection and interpretation of 470 

hippocampal SWR events. While the network was trained in a subset of LFP data 471 

recorded around the dorsal CA1 cell layer of head-fixed mice, detection generalized 472 

across strata, brain locations (e.g. ventral hippocampus), preparations (i.e. freely 473 

moving) and species (i.e. rats). Our CNN exhibited a much higher stability, less 474 
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threshold-dependent sensitivity and overall higher performance as compared with the 475 

spectral filter and RippleNET, a recurrent neural network solution. This unique 476 

capability of our CNN relies on feature-based analysis of LFP signals, which provide 477 

similar explanatory power as standard LFP profiling. Such a developmental potential of 478 

convolutional neural networks permits challenging the interpretation of brain signals 479 

(Frey et al., 2021), and SWR in particular (this study). 480 

From a physiological perspective, studying brain function relies in understanding 481 

activity in relation to behavior and cognition (Cohen, 2017; Friston et al., 2015). 482 

Inspired by the tradition to observe and categorize, neuroscientists require classifying 483 

EEG/LFP signals into patterns, which presumably should gain mechanistic significance 484 

at the neuronal and microcircuit levels (Buzsáki and Draguhn, 2004; G et al., 1999; 485 

Niedermeyer and Lopes da Silva, 2005). Yet, some of the most widely used 486 

classification schemes still generate debate. For instance, contributors to gamma 487 

oscillations (40-100 Hz) include fluctuating synaptic potentials reflecting inhibition, 488 

excitation or both in interaction with phase-locking firing from subsets of cells (Atallah 489 

and Scanziani, 2009; Bartos et al., 2007). The specific contribution of the different 490 

factors at the resulting dominant oscillatory frequency band is not trivial (Buzsáki and 491 

Schomburg, 2015). In addition, relying on spectral definitions to analyze EEG/LFP data 492 

has to cope with the nonstationary nature of brain activity, while the demarcation of 493 

frequency bands does not necessarily fit to unambiguous basic mechanisms. Whether 494 

this reflects the elusive emergent behavior of brain activity or methodological limitations 495 

is arguable.   496 

We aimed exploiting machine-learning tools to transform the study of hippocampal 497 

SWR, a major neurophysiological event underlying memory trace consolidation and 498 

recall (Buzsáki, 2015). While SWR presumably entail coordinated activity of pyramidal 499 

cells and GABAergic interneurons in a mnemonically relevant sequence-specific 500 

manner (Diba and Buzsáki, 2007; Gridchyn et al., 2020; Ólafsdóttir et al., 2018; Stark 501 

et al., 2015), their physiological definition seems constrained (Buzsáki, 2015). The 502 

organization of SWR sequence firing reveals to be specific of memory demands 503 

(Foster, 2017; Hannah R Joo and Frank, 2018; van de Ven et al., 2016). Moreover, the 504 

replay content and order unfold neuronal representations in a myriad of combinations 505 

in the service for cognitive agency and flexibility (Pfeiffer, 2017). The potentially 506 

different mechanisms underlying such a representational complexity are not yet 507 

integrated into the existing heuristics (de la Prida, 2020). 508 

When coupled to ultra-dense Neuropixels, our CNN identified subsets of SWR across 509 

different strata of the dorsal and ventral hippocampus. The ability to detect events 510 

across layers seemed to rely in a combination of features with strength and visibility of 511 

the associated current sources having major contributions. This calls for the existence 512 

of subthreshold buildup of population activities emerging from interaction between 513 

different input pathways and local microcircuits (de la Prida et al., 2006). For instance, 514 

recent data suggest pivotal role of entorhinal inputs in modulating and elongating the 515 

dynamics of locally generated SWRs (Fernández-Ruiz et al., 2019; Oliva et al., 2018; 516 

Yamamoto and Tonegawa, 2017). Similarly, SWR events disproportionally weighted by 517 

downstream inputs along the CA3 to CA2 axis differentially modulate consolidation of 518 

recognition memory at the social and nonsocial domains (Nakashiba et al., 2009; Oliva 519 

et al., 2020, 2016). Consistently, some ripples can be actually detected at SO, SR and 520 

SLM strata independently on their alleged local generation at the CA1 cell layer.  521 

The configuration of the current sinks and sources associated to independently 522 

detected SWR events suggest that the weighted interaction between fluctuating input 523 

pathways may entail contribution by different factors across behavioral states (Buzsáki, 524 
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2015). For instance, different subcircuits may contribute to sleep and awake SWR with 525 

different cognitive roles (Roumis and Frank, 2015). The ability to detect ripple 526 

oscillations at different layers also indicate a role for dendritic potentials, such as 527 

complex spikes and dendritic bursts (Bittner et al., 2015; Kamondi et al., 1998). Finally, 528 

while attention is traditionally focused on parvalbumin (PV) and cholecystokinin (CCK) 529 

GABAergic basket cells providing perisomatic innervation (Klausberger et al., 2005), 530 

other GABAergic cells and terminals located at the border between SR and SLM may 531 

equally contribute (Basu et al., 2016; Kitamura et al., 2015; Klausberger and Somogyi, 532 

2008). This is supported by larger current sources associated with SWR events 533 

detected at SLM layers.  534 

Our data suggest that only one part of the dorsal SWR dynamics can be explained 535 

locally, consistent with complex interaction along the septotemporal axis (Patel et al., 536 

2013). Instead, the CNN identify different types of SWR events detected at distant 537 

strata suggesting major role of input pathways. A segregated role for dorsal and ventral 538 

SWR events suggest that brain-wide subcircuits inherit the different representational 539 

dynamics of a variety of replays (Sosa et al., 2020). The detection unfolding of CNN 540 

thus permit an unbiased categorization without relying on more elusive spectral criteria. 541 

Critically, both the filter and RippleNET failed to capture SWR diversity across strata 542 

further confirming the suitability of CNN to capture critical LFP features accompanying 543 

a wealth of events.  544 

Our method also identified events beyond the expert ground truth. Careful examination 545 

of those False Positives reveal sharp-waves associated to population synchronous 546 

firing without ripples, as well as other unclassified forms of oscillatory activities. While 547 

there is no specific report of these events, the ability of CA3 inputs to bring about 548 

gamma oscillations and multi-unit firing associated with sharp-waves is already 549 

recognized (Sullivan et al., 2011), and variability of the ripple power can be related with 550 

different cortical subnetworks (Abadchi et al., 2020; Ramirez-Villegas et al., 2015). 551 

Since the power spectral level operationally defines the detection of SWR, part of this 552 

microcircuit intrinsic variability may be escaping analysis when using spectral filters.      553 

Understanding how the brain encodes for memory is challenging. Recent data suggest 554 

that replay emerging from SWR is more complex than originally thought (Hannah R Joo 555 

and Frank, 2018). Cell-type specific subcircuits operating over a variety of 556 

interneuronal classes and under the influence of different input pathways, provide 557 

mechanistic support for a wealth of SWR events (de la Prida, 2020). Yet, SWR 558 

detected by gold standard spectral methods fail to reflect the necessary statistical 559 

variance that allows for identifying specific trends. Relying on unbiased feature-based 560 

methods hopefully can change the game. 561 
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Material and Methods 753 
 754 
Animals 755 
All protocols and procedures were performed according to the Spanish legislation (R.D. 756 
1201/2005 and L.32/2007) and the European Communities Council Directive 2003 757 
(2003/65/CE). Experiments were approved by the Ethics Committee of the Instituto 758 
Cajal and the Spanish Research Council.  759 
 760 
In this work, we used different mouse lines aimed to target different cell-type specific 761 
populations for optogenetic and imaging experiments. Experiments included in this 762 
paper follow the principle of reduction, to minimize the number of animals used and this 763 
is the reason why we obtained data from different mouse lines. Animals and sessions 764 
used are summarized in Supplementary Table 1. Animals were maintained in a 12 h 765 
light–dark cycle (7 a.m. to 7 p.m.) with access to food and drink ad libitum. 766 
 767 
Head-fixed preparation 768 
Animals were implanted with fixation bars under isoflurane (1.5–2%; 30% oxygen) 769 
anesthesia. Bars and ground/reference screws (over the cerebellum) were fixed with ith 770 
light-curing acrylic resins (OptiBond and UNIFAST LC). After surgery, mice were 771 
treated with buprenorphine during 2 days. For optogenetic experiments, mice from 772 
different promotor-specific Cre lines were previously injected with AAV5-DIO-EF1a-773 
hChR2-EYFP (1 µL; titer 4.5 × 1012 vg/ml; provided by UNC Vector core, Deisseroth 774 
lab) targeting the dorsal CA1 region (−1.9 mm AP; 1.25 mm ML and 1 mm depth). 775 
Transgenic Thy1-ChR2-YFP mice were directly implanted with fixation bars.  776 
 777 

Two days after surgery, mice were habituated to head-fixed conditions (10-14 days of 778 
training). The apparatus consisted on a wheel (40 cm diameter) hosting different 779 
somatosensory cues and equipped with a Hall sensor (HAMLIN 55300; Littelfuse Inc) 780 
to track for position analogically. Animals were water rewarded just after each training 781 
session (2-4 sessions × day). After several days, mice were able to stay comfortable in 782 
the apparatus with periods of running, grooming and immobility.  783 

 784 
Once habituated, mice were anesthetized with isoflurane and a craniotomy was 785 
practiced for electrophysiological recordings (antero-posterior: −3.9 to −6 mm from 786 
Bregma; medio-lateral: 2–5 mm). The craniotomy was sealed with Kwik-Cast silicone 787 
elastomer and mice returned to their home cage. Recording sessions started the day 788 
after craniotomy. 789 

 790 
Electrophysiological recordings 791 
LFP recordings were obtained with integrated µLED optoelectrodes (32 channels, 4 792 
shanks of 8-channels and 3 µLED each) originally provided by Euisik Yoon under the 793 
NSF-funded NeuroNex project and later purchased from NeuroLight Technologies, 794 
LLC, N1-A0-036/18 and Plexon. Wideband (1 Hz–5 KHz) LFP signals were recorded at 795 
30 KHz sampling rate with an RHD2000 Intan USB Board running under Open Ephys. 796 
Optoelectrode recordings targeted the dorsal CA1 region, using characteristic features 797 
such as the laminar profile of theta and sharp-wave ripples, as well as unit activity to 798 
infer position within the hippocampus.  799 
 800 
Ultra-dense recordings were obtained with Neuropixels 1.0 probes and acquired with 801 
the PXIe acquisition module mounted in the PXI-Express chassis (National 802 
Instruments). Neuropixels probes consist of up to 966 recording sites (70 x 20 µm) 803 
organized in a checkerboard pattern, from which 384 can be selected for recording. 804 
Recordings were made in external reference mode with LFP gain set at 250 and at 805 
2500 Hz sampling rate, using the SpikeGLX software. Only LFP channels were used 806 
for analysis. The probe targeted the dorsal-to-ventral hippocampus at different anterior-807 
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to-posterior positions in 4 different mice (Sup.Table.1). To recover the penetrating track 808 
precisely, the back of the Neuropixels probe was coated with DiI (Invitrogen).  809 
 810 
After completing experiments, mice were perfused with 4% paraformaldehyde and 15% 811 
saturated picric acid in 0.1 M (pH 7.4) phosphate-buffered saline (PBS). Brains were 812 
post-fixed overnight, washed in PBS, and serially cut in 70 µm coronal sections (Leica 813 
VT 1000S vibratome). Sections containing the Neuropixels probe tracks were identified 814 
with a stereomicroscope (S8APO, Leica) and mounted on glass slides in Mowiol (17% 815 
polyvinyl alcohol 4–88, 33% glycerin and 2% thimerosal in PBS). 816 
 817 
Sections from Neuropixels recording were analyzed with SHARP-Track, a tool to 818 
localize regions going through electrode tracks (Shamash et al., 2018) 819 
(https://github.com/petersaj/AP_histology)  . Acronyms in Fig.5A correspond to the 820 
following: Corpus Callosum (cc); Primary Visual Cortex (V1); Stratum Oriens (SO); 821 
Stratum Piramidale (SP); Stratum Radiatum (SR); Stratum Lacunosum Moleculare 822 
(SLM); Molecular Layer Dentate Gyrus (ML); Granular Layer Dentate Gyrus (GCL); 823 
Hilus (HIL); Hippocampal Fissure (fiss); Basolateral Amygdala  (BLA); 824 
Amygdalopiriform transition area (APir); Lateral Posterior Medial Rostral Thalamus  825 
(LPMR); Posterior Thalamus (Po); Ventro Posterior Medial Thalamus (VPM); Ventro 826 
Posterior Lateral Thalamus (VPL); Lemniscus (Lemn); Ventro Medial Thalamus  (VM); 827 
Zona Incerta, Dorsal Part (ZID); Zona Incerta, Ventral Part (ZIV). 828 
 829 
 830 
Neural Network specifications 831 
We used Python 3.7.9 with libraries Numpy 1.18.5, Scipy 1.5.4, Pandas 1.1.4 and 832 
H5Py 2.10.0 for programming different routines. To build, train and test the network, we 833 
use the Tensorflow 2.3.1 library, with its built-in Keras 2.4.0 application programming 834 
interface (API). Training and offline validation of the CNN was performed over the 835 
Artemisa high performance computing infrastructure 836 
(https://artemisa.ific.uv.es/web/content/nvidia-tesla-volta-v100-sxm2). It consisted in 23 837 
machines equipped with 4 NVIDIA Volta V100 GPUs. Analyses were conducted on 838 
personal computers (Intel Xeon E3 v5 processor with 64GB RAM and Ubuntu v.20.04). 839 
 840 
The CNN architecture was designed as a sequence of blocks integrated by one 1D-841 
Convolutional Layer (Cun et al., 1990) followed by one Batch Normalization Layer (Ioffe 842 
and Szegedy, 2015) and one Leaky ReLU Activation Layer (Maas et al., 2013). There 843 
were 7 of these blocks (21 layers) and a final Dense Layer (Rosenblatt, 1958) (layer 844 
22) (Fig.1C). 845 
 846 
One-dimensional Convolutional layers (tf.keras.layers.Conv1D) were in charge of 847 
processing data and looking for characteristic features. These layers have a 848 
determined number of kernels, which was determined in the parameter search. A 849 
kernel is a matrix of weights acting to apply a convolution operation over data. The 850 
result of this operation is known as the kernel activation signal. A Convolutional layer 851 
generates as many kernel activations as the number of kernels it has. Batch 852 
Normalization layers (tf.keras.layers.BatchNormalization) perform a normalization of 853 
the Convolutional layer kernel activations, fixing its means and variances and providing 854 
stability and robustness to the whole network. Leaky ReLU layer 855 
(tf.keras.layers.LeakyReLU) has a similar purpose to the BatchNorm layer, making the 856 
network more stable by transforming negative input values into numbers very close to 857 
0. The final Dense layer (tf.keras.layers.Dense) was fit to the dimension of the output 858 
space (i.e. probability values).. 859 
 860 
Batch Normalization layers parameters were all left as their default values defined in 861 
the Tensorflow 2.3.1 library. The Leaky ReLU layer alpha parameter was set to 0.1. For 862 
Convolutional layers, the kernel size and stride were set to the same value so that the 863 
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network operates similarly offline an online. The kernel size and stride determined the 864 
duration of the input window, so they were tuned in order to fit either a 32ms window 865 
(CNN32) or a 12.8ms window (CNN12). Values of kernel size and stride for 866 
Convolutional layers 1, 4, 7, 10, 13, 16 and 19 of CNN32 were: 5, 1, 2, 1, 2, 1, 2, 867 
respectively. For CNN12, the values were 2, 1, 2, 1, 2, 1 and 2. Since max-pooling 868 
layers can be replaced by Convolutional layers with increased stride, we chose not 869 
using max-pooling layers to avoid issues with the input window size (Springenberg et 870 
al., 2014). 871 
 872 
The number of kernels and kernel regularizers were selected after performing an initial 873 
parametric search (initial learning rate, number of kernels factor and batch size; 874 
Fig.S1A). For the Dense layer we used a sigmoid activation function operating over 1 875 
unit to produce 1 channel output. All the other parameters for the Convolutional layers, 876 
as well as for the Dense layer, were set initially at default values. Additionally, we also 877 
tested whether adding two LSTM layers before the final Dense layer improved 878 
performance in the preliminary parameter tests. 879 
 880 
We selected our CNN32 as that with the lower and more stable training evolution (see 881 
below) from the 10-best networks in the initial parameter search (out of 107; Fig S1B). 882 
CNN32+LSTM networks exhibited similar performance, but took substantially more 883 
time for training. A more thorough parametric search was conducted over a larger set of 884 
parameters (initial learning rate, number of kernels factor, batch size, optimizer, 885 
optimizer epsilon, regularizer, regularizer value and decay; Fig.S1C) for both types of 886 
architectures. The initially selected CNN32 was amongst the 30-best networks of the 887 
extended parameter search, also exhibiting fast training and high loss evolution stability 888 
(out of 781). Based on parametric searches, we chose the Adam algorithm as the 889 
optimizer (Kingma and Ba, 2015) with an initial learning rate of 0.001, beta_1 = 0.9, 890 
beta_2 = 0.999 and epsilon = 1e-07. Batch size was set at 16 and the number of 891 
kernels for Convolutional layers 1, 4, 7, 10, 13, 16 and 19 was set at 4, 2, 8, 4, 16, 8 892 
and 32, respectively. A L2 regularization method (Tikhonov and Arsenin, 1977) with a 893 
0.0005 value was employed to avoid overfitting. No additional learning rate decay was 894 
used. 895 
 896 
Ground truth and data annotation 897 
A MATLAB R2019b tool was designed to annotate and validate data by an expert 898 
electrophysiologist (original expert). All data was visually inspected and SWR events 899 
annotated. An important decision we made was to manually annotate the start and the 900 
end of SWR events so that the network could learn anticipating events in advance. The 901 
start of the event was defined at the first ripple or the sharp-wave onset. The end of the 902 
event was defined at the latest ripple or when sharp-wave resumed. While there was 903 
some level of ambiguity on these definitions, we opted for including these marks in 904 
order to facilitate transition to ground truth detection. An additional expert (new expert) 905 
tagged SWR independently using a subset of sessions, to allow for comparisons 906 
between experts in the same lab. 907 
 908 
Data preparation 909 
Datasets used for training and development of the CNN were created by loading a 910 
number of experimental sessions and storing them in two different 3-dimensional 911 
matrices, Y and Y.  912 
 913 
Matrix X stored several chunks of 8-channels LFP recordings. From each session, LFP 914 
data from all probe shanks displaying any SWR were loaded, unless specific shanks 915 
were selected. If a shank had more than 8 channels, then they were randomly selected 916 
while giving priority to those located at the stratum pyramidale of CA1. All LFP signals 917 
were down-sampled to 1250 Hz and normalized using z-score. LFP signals were sliced 918 
into chunks of 57.6 seconds, which is exactly divisible by 0.032s and 0.0128s, in order 919 
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to keep a consistent matrix shape even when various sessions of different durations 920 
were used. This chunk size maintains the properties of long duration signals, which is 921 
essential for the CNN to reach a high performance score when fed with continuous 922 
data. Chunks with no SWR events would be discarded, but that was an extremely rare 923 
case. At the end of this process the result is a matrix X with dimension (n, 72000, 8), 924 
where n is the number of chunks of 72000 samples (57.6 seconds sampled at 1250 925 
Hz) for each of the 8 LFP channels. 926 
 927 
Matrix Y contained the annotated labels for each temporal window (32 or 12.8 ms) 928 
stored in X. 929 
To create Y, each chunk was separated in windows of 32 or 12.8 ms and then assigned 930 
a label, a number between 0 and 1, depending on the percentage of the window 931 
occupied by a SWR event. Therefore, dimension of matrix Y was (n, 1800, 1) for 932 
CNN32, since there are 1800 32ms windows in a chunk of 57.6s, and (n, 4500, 1) for 933 
CNN12, with 4500 windows of size 12.8ms for each chunk. 934 
 935 
Finally, the whole dataset (both X and Y matrices) was separated into the training set, 936 
used to fit the model, and the development set, used to evaluate the performance of 937 
the trained model with different data than those used for training while still tuning the 938 
network hyper-parameters. Train set took 70% of the data and development set the 939 
remaining 30%. 940 
 941 
CNN training, development and testing 942 
Two sessions from 2 different mice were used as the training set (Sup.Table1). Training 943 
was run for 3000 epochs using the Binary Cross-Entropy as loss function: 944 
 945 

𝐻𝑝(𝑞) = −
1

𝑁
∑ 𝑦𝑖
𝑁
𝑖=1 ⋅ 𝑙𝑜𝑔(𝑝(𝑦𝑖)) + (1 − 𝑦𝑖) ⋅ 𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))  946 

 947 
where N is the number of windows, yi is the label of window I, and p(yi) is the 948 
probability predicted for window i. 949 
 950 
In order to evaluate the network performance, two different datasets were used: the 951 
training set described above, and the validation set, consisting of 15 sessions from 5 952 
different animals that were not used for training or development (Sup.Table.1).  953 
 954 
To detect SWR event, we set a probability threshold to identify windows with positive 955 
and negative predictions. Accordingly, predictions were classified in four categories: 956 
True Positive (TP) when the prediction was positive and the ground truth window did 957 
contain a SWR event; False Positive (FP) when the prediction was positive in a window 958 
that did not contain any SWR; False Negative (FN) when the prediction is negative but 959 
the window contained a SWR; and True Negative (TN) when the prediction was 960 
negative and the window did not contain any SWR event.  961 
 962 
Intersection over Union (IOU) methodology was employed to classify predictions into 963 
those four categories. It was calculated by dividing the intersection (overlapping) of two 964 
windows by the union of them:  965 
 966 

𝐼𝑜𝑈 =
𝑤𝑖𝑛𝑑𝑜𝑤1 ∩ 𝑤𝑖𝑛𝑑𝑜𝑤2

𝑤𝑖𝑛𝑑𝑜𝑤1 ∪ 𝑤𝑖𝑛𝑑𝑜𝑤2
 

 967 
Two windows were considered to match if their IOU was equal or greater than 0.1. If a 968 
positive prediction had a match with any window containing a ripple it was considered a 969 
TP, or it was classified as FP otherwise. All true events that did not have any matching 970 
positive prediction were considered FN. Negative predictions with no matching true 971 
events windows were TN. 972 
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 973 
With predicted and true events classified into those four categories there are three 974 
measures than can be used to evaluate the performance of the model. Precision (P), 975 
which was computed as the total number of TPs divided by TPs and FPs, represents 976 
the percentage of predictions that were correct.  977 
 978 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 979 
Recall (R), which was calculated as TPs divided by TPs and FNs, represents thet 980 
percentage of true events that were correctly predicted.  981 
 982 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 983 
 984 
Finally, the F1 score, calculated as the harmonic mean of Precision and Recall, 985 
represents the network performance. 986 
 987 

𝐹1 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 988 
As mentioned before, a prediction was considered positive when its probability 989 
surpassed a specified threshold. During offline validation, when a prediction was 990 
positive, a second lower threshold was also used to determine the boundaries of the 991 
event more precisely. In order to select the best thresholds for offline validation, all 992 
combinations were compared and the one that yielded the best F1 score was chosen. 993 
Possible values for the first threshold were 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 994 
0.45, 0.40, 0.35, 0.30, 0.25, 0.20, 0.15 and 0.10, while for the second threshold were 995 
0.80, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20 and 0.10. For online validation only the first 996 
threshold can be used and it was adjusted manually at the beginning of the experiment 997 
based on the expert criteria. 998 
 999 
To estimate delay between prediction and SWR events, the temporal relation between 1000 
correct predictions and their matching true events was measured. SWR ripple peaks 1001 
were defined after filtering the relevant LFP channel using a third-order Butterworth 1002 
bandpass filter between 70 and 250 Hz. The resulting signal was subsequently filtered 1003 
with a four-order Savitzky-Golay filter and smoothed twice with windows of 3 and 6.5 1004 
ms to obtain the SWR envelope. The maximal value of the envelope signal was defined 1005 
as the SWR ripple peak. The internal between the initial prediction time and the SWR 1006 
ripple peak was defined as the time to peak.  1007 
 1008 
The trained model is accessible at the Github repository: https://github.com/RoyVII/cnn-1009 
ripple. Code visualization and detection is shown in an interactive notebook 1010 
https://colab.research.google.com/github/RoyVII/cnn-1011 
ripple/blob/main/src/notebooks/cnn-example.ipynb  1012 
 1013 
Offline detection of SWR events with Butter filters 1014 
Standard ripple detection tools are based on spectral filters. In order to compare online 1015 
and offline performance, we adopted the Open Ephys bandpass (100-300 Hz 1016 
passband) second-order Butterworth filter as the gold standard. Offline filter detection 1017 
was computed in MATLAB R2019b, using the butter filter (100-300 Hz passband) and a 1018 
non-casual filter filtfilt to avoid phase lags. In order to compute the envelope, the 1019 
filtered signal was amplified twice, filtered by a fourth-order Savitzky-Golay filter, and 1020 
then smoothed by two consecutive movmean sliding windows (2.3 and 6.7 ms). A 1021 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.11.483905doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.11.483905
http://creativecommons.org/licenses/by/4.0/


25 
 

detection had to fulfill two conditions: the envelope had to surpass a first threshold, 1022 
which will define the ripple beginning and end, and a second threshold to be 1023 
considered a detection. Detections closer than 15ms were merged. Performance of 1024 
ripple-detection methods is very sensitive to the chosen threshold. To look for the 1025 
fairest comparison, we made predictions for all possible combinations of the first 1026 
threshold being 1, 1.5, 2, 2.5 times the envelope standard deviation, and the second 1027 
threshold being 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10 times the envelope 1028 
standard deviation (giving a total of 60 threshold combinations). We then chose the one 1029 
that scored the maximum F1. This was done separately for each session. 1030 

 1031 

Online detections were defined whenever the filtered signal was above a single 1032 
threshold (see next section). To exclude for artifacts and to cope with detection 1033 
standards (Fernández-Ruiz et al., 2019), an additional non-ripple channel was used to 1034 
veto high-frequency noise detections. 1035 

 1036 

Open Ephys custom plugins for online detection 1037 
Two custom plugins were developed using Open Ephys GUI 0.4.6 software in a 1038 
personal computer. The first plugin was designed to detect when a signal crossed a 1039 
determined amplitude threshold, defined as the signal standard deviation multiplied by 1040 
some number. It was used in combination with the Bandpass Filter plugin, which 1041 
implements a Butterworth filter, so the input for the crossing detector was a filtered 1042 
signal. In order to avoid artifacts, we use a second input channel from a separate 1043 
region defined by the experimenter. Events detected in both channels were discarded. 1044 
 1045 
The second plugin was developed to operate the CNN and it used the Tensorflow 2.3.0 1046 
API for C (https://www.tensorflow.org/install/lang_c). Since the network was trained to 1047 
work with data sampled at 1250 Hz, the plugin down-sampled the input channels. It 1048 
also separated data into windows of 12.8 ms and 8-channels to feed into the CNN 1049 
every 6.4 ms. Detection threshold was defined as a probability between 0 and 1, and it 1050 
was manually adjusted by the experimenter. 1051 
 1052 
Both plugins normalized the input data using z-score normalization. They required a 1053 
short calibration time (about one minute) to calculate the mean and standard deviation 1054 
of the signals. The user could establish the detection threshold for both of them and 1055 
when an event was found they would send a signal through a selected output channel. 1056 
Simulated Open Ephys experiments used the same setup but the data was read from a 1057 
file instead of streamed directly from the experiment. Detection plugin: 1058 
https://github.com/RoyVII/CNNRippleDetectorOEPlugin 1059 
 1060 
Closed-loop optogenetic experiments 1061 
For closed-loop experiments, the output channel from the Open Ephys pluging was fed 1062 
into an Arduino board (Nano ATmega328) using an USB 3.0 connection. Optogenetic 1063 
stimulation was performed with integrated µLED optoelectrodes using the OSC1Lite 1064 
driver from NeuroLight Technologies controlled by the Arduino. Microwatt blue light 1065 
stimulation at 10–20 microW was used to activate cell-type specific ChR2. Specificity of 1066 
viral expression and localization of probe tracks were histologically assessed after 1067 
experiments.  1068 
 1069 
Computing the kernel saliency maps  1070 
During training, kernels weights are updated so each of them specializes in detecting a 1071 
particular feature of SWR input data. In order to interpret these features, we adapted a 1072 
methodology used in 2-dimensional CNNs for image processing (Simonyan et al., 1073 
2013). First, we created an input 8x40 LFP signal with random values (standard normal 1074 
distribution, with zero mean and 0.01 standard deviation). Then, for each kernel we 1075 
updated this input signal applying a stochastic gradient descent optimizer 1076 
(tf.keras.optimizers.SGD) with a learning rate of 0.1, momentum 0.1, and a loss 1077 
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function equal to minus the normalized kernel activation that produced such input 1078 
(therefore making it gradient ascent). We repeated this optimization process until the 1079 
mean squared error between the previous input and the optimized input was less than 1080 
10-9, or after 2000 iterations, whatever came first. The resulting input signal would be 1081 
one that the chosen kernel is maximally responsive to. Code example for this process 1082 
applied to the ResNet50V2 model of the ImageNet dataset (https://www.image-1083 
net.org/) can be found at the Keras documentation: 1084 
https://keras.io/examples/vision/visualizing_what_convnets_learn/ 1085 

 1086 

Uniform Manifold Approximation and Projection (UMAP) 1087 
UMAP is a dimension reduction technique commonly used for visualization of multi-1088 
dimensional data in a 2- or 3-dimensional embedding (McInnes et al., 2018). The 1089 
embedding is found by searching a low dimensional projection with the closest 1090 
equivalent fuzzy topological structure to that of the hyper-dimensional input data. We 1091 
rum UMAP version 0.5.1 (https://umap-learn.readthedocs.io/en/latest/) in Python 3.7 1092 
Anaconda.  1093 
 1094 
We applied UMAP to decode CNN operation using the network feature maps in 1095 
response to a diversity of LFP inputs. Feature maps were built by concatenating the 1096 
resulting kernel activation from all the Convolutional layers resulting in a 1329-1097 
dimensional vector. The goal was to compute the reduced 2-dimensional UMAP 1098 
embedding from a large number of LFP events.  1099 
 1100 
First, we computed the UMAP embedding of the feature map of the CNN using 7491 1101 
SWR events and 7491 Random events and projected them in a color scale reflecting 1102 
the different labels. Next, we used UMAP to account for the evolution of segregation 1103 
between SWR and Random events in 20 log-distribution periods along CNN training 1104 
epochs. To this purpose, we compute the embedding of the last epoch and fit the 1105 
others epochs’ feature maps to it, in order to make distances comparable. To quantify 1106 
segregation, we estimated the Euclidean distance between the centroids of SWR and 1107 
random clouds. 2D-UMAP embeddings were evaluated for different parameter 1108 
combinations of the number of neighbors and the minimal distance. After noticing no 1109 
major differences, we choose their default values. 1110 
 1111 
Pattern matching 1112 
Pattern matching between saliency maps from the different kernels and the LFP 1113 
windows was computed using matchTemplate from CV2 package (version 4.5.1), 1114 
OpenCV library for python, with the TM_CCORR template matching operation. It slides 1115 
a template (saliency map) along the whole signal (LFP window) and outputs a measure 1116 
on their similarity for each slide. LFP windows provided were 100ms 8-channel (8x125) 1117 
z-scored windows around all true positive events, same number of true negative events 1118 
and all true positive and false positive events for both the training and validations sets. 1119 
Windows were centered on the LFP minimum of the pyramidal channel closest to the 1120 
maximum of the SWR envelope within a 10ms window (envelope computed as 1121 
described above).  1122 

 1123 

Simulated penetrations along Neuropixels probe 1124 
Simulated penetrations were obtained choosing Neuropixel electrodes with a relative 1125 
distance similar to the μLED optoelectrode probe. To this purpose, we chose 1126 
Neuropixel external electrodes (64μm horizontal separation vs 70μm for the μLED 1127 
probe), alternating left and right for each row, so the vertical distance was 20μm (same 1128 
as in μLED probes). Therefore, a simulated penetration always consisted of eight 1129 
neighboring electrodes (e.g. [1 4 5 8 9 12 13 16]). To evaluate changes across layers 1130 
and regions, the simulated penetration was moved all along the Neuropixels probe in 1131 
93 steps (downward/upward) thus providing a continuous mapping of LFP signals. For 1132 
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example, the following penetration sequence spanned along the brain: [1 4 5 8 9 12 13 1133 
16], [5 8 9 12 13 16 17 20], [9 12 13 16 17 20 21 24] and so on. 1134 
 1135 
For CSD analysis we proceeded similarly, but choosing LFP channels every 100 µm to 1136 
mimic a 16-channel silicon probe. CSD signals were calculated from the second spatial 1137 
derivative. Smoothing was applied to CSD signals for visualization purposes only. 1138 
Tissue conductivity was considered isotropic across layers. 1139 
 1140 
Quantification and statistical analysis 1141 
Statistical analysis was performed with Python 3.8.5 and/or MATLAB R2019b. No 1142 
statistical method was used to predetermine sample sizes, which were similar to those 1143 
reported elsewhere. Normality and homoscedasticity were confirmed with the 1144 
Kolmogorov-Smirnov and Levene’s tests, respectively. The number of replications is 1145 
detailed in the text and figures. 1146 
 1147 
Several ways ANOVAs were applied for group analysis. Post hoc comparisons were 1148 
evaluated with the Tukey-Kramer test and whenever required Bonferroni correction was 1149 
applied. For paired comparisons the Student t-test was used. Correlation between 1150 
variables was evaluated with the Pearson product-moment correlation coefficient, 1151 
which was tested against 0 (i.e., no correlation was the null hypothesis) at p < 0.05 1152 
(two sided). In most cases values were z-scored (value – mean divided by the SD) to 1153 
make data comparable between animals or across layers.  1154 
 1155 
 1156 
Data and code availability 1157 
Data is deposited in the Figshare repository https://figshare.com/projects/cnn-ripple-1158 
data/117897. The code and trained model is accessible at the Github repository: 1159 
https://github.com/RoyVII/cnn-ripple. Code visualization and detection is shown in an 1160 
interactive notebook https://colab.research.google.com/github/RoyVII/cnn-1161 
ripple/blob/main/src/notebooks/cnn-example.ipynb. The online detection Open Ephys 1162 
plugin is accessible at the Github repository: 1163 
https://github.com/RoyVII/CNNRippleDetectorOEPlugin 1164 
 1165 
 1166 
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