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Summary

​ A limitation of pooled CRISPR-Cas9 viability screens is the high false-positive
rate in detecting essential genes arising from copy number-amplified (CNA) regions of
the genome. To solve this issue, we developed CRISPRcleanR: a computational
method implemented as R/python package and in a dockerized version.
CRISPRcleanR detects and corrects biased responses to CRISPR-Cas9 targeting in an
unsupervised fashion, accurately reducing false-positive signals, while maintaining
sensitivity in identifying relevant genetic dependencies. Here, we present
CRISPRcleanRWebApp, a web-based application enabling access to CRISPRcleanR
through an intuitive graphical web-interface. CRISPRcleanRWebApp removes the
complexity of low-level R/python-language user interactions; it provides a
user-friendly access to a complete analytical pipeline, not requiring any data
pre-processing, and generating gene-level summaries of essentiality with associated
statistical scores; it offers a range of interactively explorable plots, while supporting a
wider range of CRISPR guide RNAs’ libraries with respect to the original package.
CRISPRcleanRWebApp is freely available at: https://crisprcleanr-webapp.fht.org/.

Highlights

● CRISPR-Cas9 screens are widely used for the identification of cancer dependencies

● In such screens, false-positives arise from targeting copy number amplified genes

● CRISPRcleanR corrects this bias in an unsupervised fashion

● CRISPRcleanRWebApp is a web user-friendly front-end for CRISPRcleanR

Keywords
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Introduction

The last decade has seen the advent of genome editing methods based on the

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system, which has

revolutionised the way molecular biology is investigated and new therapeutic targets are

discovered and prioritised (Behan et al., 2019; Cong et al., 2013; Jinek et al., 2012; Mali et

al., 2013; Shalem et al., 2014). Particularly, in the last few years, the CRISPR-Cas9 system

has been increasingly employed in functional genetic recessive screens, and iteratively

optimised reaching unprecedented levels of efficacy, specificity and scalability, thus

becoming the state-of-the-art tool for gene inactivation experiments (Barrangou et al., 2015;

Evers et al., 2016; Smith et al., 2017). One of the main applications of this technology has

consisted in probing each gene’s potential in selectively reducing the viability of cancer cells

upon inactivation (Hart et al., 2015; Tzelepis et al., 2016; Wang et al., 2014, 2015), and large

panels of immortalised tumour cell lines have been CRISPR-screened with the aim of

identifying genomic-context-specific cancer vulnerabilities that might be exploited

therapeutically (Behan et al., 2019; Dempster et al., 2019b; Kurata et al., 2018;

Martinez-Lage et al., 2018; Tsherniak et al., 2017). Other important uses of such screens

have allowed to functionally characterise genes of interest (Shalem et al., 2015; Zhou et al.,

2014), to identify genes that are required for cellular survival invariantly across tissues and

conditions (Hart et al., 2015; Sharma et al., 2020; Vinceti et al., 2021), and to unveil novel

therapeutic targets (Yu et al., 2022; Zeng et al., 2022). Beyond identifying gene essentiality

and functions, CRISPR-Cas9 screens have also been used to dissect non-coding

sequences and characterise regulatory and enhancer elements (Korkmaz et al., 2016;

Rajagopal et al., 2016).

In a genome-wide CRISPR-Cas9 experiment, the screened models are engineered to

achieve a constitutive or transient expression of the Cas9 endonuclease, and they are then

transfected with a library of pooled single-guide RNAs (sgRNAs) targeting individual genes,

at a genome scale.

A typical library contains multiple sgRNAs - usually from 2 to 10 (Doench et al., 2016;

Gonçalves et al., 2021; Hart et al., 2015, 2017; Sanjana et al., 2014; Sanson et al., 2018;

Shalem et al., 2014; Tzelepis et al., 2016; Wang et al., 2014) - targeting the same gene in

different regions, in order to increase inactivation efficiency and reduce possible topological

biases (Haeussler et al., 2016). In addition, each sgRNA is co-delivered together with a

resistance gene to a drug-selectable marker, allowing selection of successfully transfected

cells, and a tag sequence allowing counting the number of cells to which an individual

sgRNA has been successfully delivered via next generation sequencing.
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After selection, expansion, and genome sequencing of the transfected pool of cells, gene

essentiality is usually quantified by differential representation analysis of the targeting

sgRNAs. The counts derived from the DNA harvested at the end of the assay are contrasted

against a control - for example, the counts derived from the transfected plasmidic DNA

(Doench, 2018; Imkeller et al., 2020) - and quantified through a depletion log fold-change

(logFC).

The efficiency of the CRISPR-Cas9 system originates from its mode-of-action: the induction

of DNA double strand breaks (DSBs) inflicted by the Cas9 enzyme on the genomic region

matched by a given sgRNA (Hsu et al., 2014). DSBs are repaired by non-homologous end

joining: an error prone mechanism causing small insertions and deletions, resulting in

premature stop codons, thus efficient gene silencing (Davis and Chen, 2013; Gomez and

Hergovich, 2016; Panier and Durocher, 2013; Rouet et al., 1994; Shen et al., 2018;

Symington and Gautier, 2011). One of the major downsides of this system is that, when used

to target genomic copy number (CN) amplified regions, the Cas9 enzyme may cause a large

number of DSBs. This results in a highly cytotoxic effect that is independent from the

targeted gene’s function or its expression, and leads to false positive essential gene calls

(Aguirre et al., 2016; Dempster et al., 2021; Gonçalves et al., 2019; Iorio et al., 2018; Meyers

et al., 2017; Munoz et al., 2016; Wang et al., 2015).

A number of computational methods have been proposed by us and others to address this

problem in-silico from the analysis of sgRNA counts and logFCs (Gonçalves et al., 2019;

Iorio et al., 2018; Meyers et al., 2017; de Weck et al., 2018). We developed CRISPRcleanR

(Iorio et al., 2018): the first tool working in an unsupervised way, that is without requiring in

input any information on the copy number-alteration profiles of the screened models, and not

making any initial assumption on the topological properties of the genome to which the

gene-independent responses to CRISPR-Cas9 targeting might be due. CRISPRcleanR is

implemented as an R (https://github.com/francescojm/CRISPRcleanR) and Python package

(https://github.com/cancerit/pyCRISPRcleanR) and it is available as an image for docker and

cloud environments

(https://dockstore.org/containers/quay.io/wtsicgp/dockstore-pycrisprcleanr). We have used

this tool in the past, upstream of bioinformatics pipelines for the identification of cancer

vulnerabilities, and to perform rigorous quality control assessments of screens and their

technical replicates (Behan et al., 2019; Dempster et al., 2019b). Once depletion logFCs are

corrected by CRISPRcleanR, they can be scaled (Meyers et al., 2017) or normalised

(Gonçalves et al., 2020) for the sake of interpretability and inter-screen comparability and/or

further processed with a set of tools like BAGEL (Hart and Moffat, 2016; Kim and Hart, 2021)

and MAGeCK (Li et al., 2014, 2015) to identify significantly essential genes.
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The core algorithm of CRISPRcleanR operates in two steps: it first identifies genomic

regions with biased sgRNA logFCs - using a circular segmentation method (Olshen et al.,

2004; Venkatraman and Olshen, 2007) - then it corrects the depletion logFCs of all the

sgRNAs whose targeted sequence falls in such regions. The effectiveness of

CRISPRcleanR, combined with its simplicity and easily interpretable output, have made it a

widely used tool (Allen et al., 2019; Chai et al., 2020; Dede et al., 2020; Gonçalves et al.,

2020; Kim and Hart, 2021; Lord et al., 2020; Picco et al., 2019). However, advanced use of

CRISPRcleanR in its current implementations requires solid computer programming skills:

this represents a limitation for the overall accessibility and effectiveness of this tool.

In order to widen the CRISPRcleanR user base, we have developed CRISPRcleanRWebApp: a

web-based, user-friendly, and interactive application that enables accessing all

CRISPRcleanR functionalities through an intuitive graphical user interface. This application

provides a wrapper around the native R package, avoiding all the low-level programming

language interactions, while providing the same capabilities in terms of processing and data

analysis as the original package, plus novel interactive data/result exploration modalities.

Finally, CRISPRcleanRWebApp and a recent release of CRISPRcleanR (v3.0.0) can both

process low level sequencing files in FASTQ / BAM format, natively supporting a larger set

of CRISPR sgRNA libraries than the original package, and encompassing six of the most

popular and widespread ones (Aguirre et al., 2016; Doench et al., 2016; Gonçalves et al.,

2021; Meyers et al., 2017; Ong et al., 2017; Sanjana et al., 2014; Tzelepis et al., 2016; Wang

et al., 2015).

Here we provide an overview of CRISPRcleanRWebApp functionalities and data exploration

modalities. Furthermore, we report results from a comparison of CRISPRcleanRWebApp

outcomes obtained by applying it to data derived from CRISPR-Cas9 screens of the same

cell line performed using our supported libraries. A high level of concordance across these

outcomes indicates excellent compatibility of CRISPRcleanRWebApp across all supported

libraries.

5

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted October 5, 2022. ; https://doi.org/10.1101/2022.03.11.483924doi: bioRxiv preprint 

https://paperpile.com/c/scU7CQ/v5ajL+nVmUt
https://paperpile.com/c/scU7CQ/v5ajL+nVmUt
https://paperpile.com/c/scU7CQ/Bj1p5+VAtBz+OZcfx+YszJm+aJGbZ+jgFtB+yUnO9
https://paperpile.com/c/scU7CQ/Bj1p5+VAtBz+OZcfx+YszJm+aJGbZ+jgFtB+yUnO9
https://paperpile.com/c/scU7CQ/4cgbV+Ew0c+FLI2m+gldJI+1O2Ss+uucuH+RpEq+Scv8z
https://paperpile.com/c/scU7CQ/4cgbV+Ew0c+FLI2m+gldJI+1O2Ss+uucuH+RpEq+Scv8z
https://paperpile.com/c/scU7CQ/4cgbV+Ew0c+FLI2m+gldJI+1O2Ss+uucuH+RpEq+Scv8z
https://doi.org/10.1101/2022.03.11.483924
http://creativecommons.org/licenses/by-nc-nd/4.0/


Design

Overview

CRISPRcleanRWebApp is a client-server web app (Fig. 1A), designed to use an

underlying recent release of the CRISPRcleanR R package - v3.0.0, with v0.5.0 originally

presented in (Iorio et al., 2018) - through a user-friendly interactive browser interface.

CRISPRcleanRWebApp provides a complete user experience offering the same analytical

possibilities of the native version of CRISPRcleanR in terms of workflows’ usage and

interactions, while enriching it with novel and interactive data exploration modalities, and the

possibility of processing low level sequencing files (in FASTQ / BAM format). It consists of a

web browser client Single Page Application (SPA) for user interaction, plus a backend

providing data storage and processing. It also includes a user authentication/authorization

mechanism, implemented through a login system, to protect submitted data and related

results, ensuring a high level of privacy (STAR Methods). A set of video tutorials are included

in the homepage of CRISPRcleanRWebApp, guiding the user through every step: from job

submission, to results identification and access, up to results exploration and download. In

addition, screen responsiveness is ensured, allowing a pleasant and effective user

interaction on a wide variety of screen sizes, including tablets and smartphones. The

application is served through a containerized architecture hosted at Human Technopole (the

hosting research institute). This makes CRISPRcleanRWebApp highly stable, easy to maintain

and scalable.

The core function of CRISPRcleanRWebApp applies a circular binary segmentation algorithm

(Olshen et al., 2004; Venkatraman and Olshen, 2007) to patterns of sgRNAs’ depletion log

fold-changes (logFCs) on a per chromosome basis. More specifically, it identifies genomic

regions containing sgRNA clusters with sufficiently similar depletion logFCs which are, on

average, significantly different from those in the flanking genomic regions. Since it is very

unlikely to observe the same fitness effect when targeting a large number of contiguous

genes, the logFCs in regions characterised by a stretch of essential genes (at least 3 in the

default settings) are deemed as biased due to local features of the genomic segment (e.g.

copy number amplification), and they are thus corrected via mean-centering. On top of that,

CRISPRcleanRWebApp includes a suite of tools to 1) measure, assess and visualise the effect

of said correction, 2) assemble gene level summaries of essentiality and related significance

scores (collapsing sgRNA logFCs by averaging on a targeted gene basis), and 3) to assess

the performances of a depletion logFC rank-based classification of prior known sets of

essential/nonessential genes pre/post correction. This latter classifier is also used by

CRISPRcleanRWebApp to identify and output genes significantly depleted at a fixed 5% false
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discovery rate of prior known non-essential genes, using the approach we introduced and

used in (Dempster et al., 2019a; Pacini et al., 2021). Finally, CRISPRcleanRWebApp

implements an inverse transformation function through which corrected sgRNA counts can

be derived from corrected depletion logFCs. These corrected sgRNAs are then used by

CRISPRcleanRWebApp to compute further summaries of gene essentiality, and associated

significance scores, via mean-variance modelling (using MAGeCK (Li et al., 2014)).

Taken together, these features make CRISPRcleanRWebApp a one-stop tool for the complete

processing and analysis of CRISPR-Cas9 screens, producing results that are readily usable

and interpretable by non computational scientists. These results can also be post-processed

by bioinformaticians to call depletion significance in a supervised manner, employing

classification templates (Vinceti et al., 2022) via Bayesian statistics, using BAGEL (Hart and

Moffat, 2016; Kim and Hart, 2021).

Interface and workflow setup

CRISPRcleanRWebApp implements two main analytical workflows: the first one is for

preprocessing input files (i.e. raw sgRNA counts as FASTQ, BAM, or pre-computed in text

format) as well as normalising and correcting sgRNAs counts and depletion logFCs; the

second one implements a series of data quality control (QC) assessments, and outputs

interactive visualisations and result files. The first workflow encompasses calls to the

complete set of CRISPRcleanR functions.

FASTQ files, are converted to sgRNA counts by using the mapping sequences

included in the sgRNA library annotation (derived either from one of the CRISPRcleanR

built-in data object or from a plain text file provided by the user, STAR Methods). The BAM

format is also supported: in this case the sequence identifiers are mapped to the guide

identifiers to generate the sgRNA counts (STAR Methods). The user can optionally decide to

upload pre-computed sgRNA counts as plain text file.

Following this, different setups can be selected for the normalisation step: for instance,

sgRNA raw counts can be normalised either by scaling sample-wise, based on the total

number of reads, or via the median ratios’ method (Maza et al., 2013). In addition, the user

can specify the number of control samples should this be greater than one (default value).

Another option is to explicitly specify the minimal value of read counts for a sgRNA in the

control sample in order to be included in the follow-up analyses (default value is 30 as in

(Behan et al., 2019)). Finally the CRISPRcleanR correction is executed, using default values

for the parameters of the relevant functions.
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The second workflow encompasses all steps needed to assess the quality of a

CRISPR-Cas9 screen and visualise the results. For instance, common quality checks are

based on the computation of the Area Under Receiver Operating Characteristic and

Precision-Recall curves (AUROC and AUPRC, respectively). In particular, the computed

profile of gene/sgRNA depletion logFCs are employed as a rank-based classifier of two

built-in sets of prior known essential and nonessential genes (or their targeting sgRNAs). All

the results are then summarised in data plots that can be queried through interactive

visualisations or downloaded in static graphic formats (i.e. PNG or PDF).

These workflows are seamlessly integrated within CRISPRcleanRWebApp. Indeed, after secure

login, the user only needs to fill out the initial parameters, including a minimal amount of

experimental metadata, in a job submission form (Fig. 1B and Table 1), and upload properly

formatted input files containing sequencing data (FASTQ/BAM files) or the sgRNA

pre-computed counts (Fig. 1C) to run the analyses.

If the user opts to upload pre-computed read counts, these need to be in a comma- or

tab-separated plain text with csv and tsv extensions. In this file, the first two columns must

include unique sgRNA identifiers and their targeted gene’s symbol, respectively, followed by

one or more (in case of multiple controls) columns containing plasmid/control read counts.

The remaining columns must contain replicates of the sgRNAs’ counts obtained

post-selection and amplification, in the CRISPR screen (Fig. 1C). Before submission, the

entire form is checked for potentially incorrect file formats or missing parameter

specifications, in order to prevent incomplete or inconsistent input data.

After job submission, the user is notified of the outcome of this process (i.e. successful

submission or submission error).

The CRISPRcleanR WebApp home page contains a link to download example input files in a

single compressed folder. This folder contains pre-computed sgRNAs’ read counts obtained

by screening the HT-29 cell line with the Sanger KY library (Tzelepis et al., 2016) in a study

by Behan et al (Behan et al., 2019), and it includes one control sample, i.e. read counts from

the plasmid DNA, and three post-selection/amplification read counts’ replicates (fourth, fifth

and sixth columns). Read counts from a similar experiment are also included in FASTQ

format (one for the plasmid/control DNA, i.e. test_plasmid.fq.gz, and two for the screen

replicates, i.e. test_sample1.fq.gz and test_sample2.fq.gz, downsampled to reduce file size).

Finally, the example data folder contains a text file with the annotation of the KY v1.0 library

and a readMe file describing the content of the folder.
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Submission
form step

Field Type Mandatory ? Description

1
(Job Info)

Title String Yes Used to identify the output in the
results section once the job is
completed.

Charts label String Yes A string that will be used as a title
for all the plots generated by
CRISPRcleanR.

Send Email Checkbox Optional If selected the user will receive a
notification email upon job
completion.

Notes String Optional Additional notes describing the
job

2
(Settings)

Minimal nº reads in the
control sample

Integer Yes (default value = 30) Minimal nº reads that each
sgRNA should have in the control
sample (or on average across
control samples) in order to be
included in the analysis.

Normalisation method Multiple
selection

Yes (default value = Scaling by
total numbers of reads)

Normalisation method for the read
counts (scaling by total numbers
of reads or Median Ratios).

3
(Library

Selection)

Library Type Mutually
exclusive radio
buttons

Yes (default value = Built-in) Switch between one of the
natively  supported sgRNA
libraries or other (external) library.

Built-in library Multiple
selection

Yes if the selected library type
is ‘Built in’; inactive otherwise

Allows selecting one of the
natively supported sgRNA
libraries (AVANA, Brunello,
GeCKO, KY v1.0, KY v1.1,
MiniLibCas9 and Whitehead).

Library annotation file File upload Yes if the selected library type
is ‘Other’; inactive otherwise

Allows uploading a library
annotation file.

4
(Files upload)

Data type Mutually
exclusive radio
buttons

Yes (default value = sgRNA
counts)

Allows switching between
pre-computed sgRNA counts (in
plain text format), FASTQ or BAM
files.

sgRNA counts file File upload Yes if the selected Data type is
‘sgRNA counts’; inactive
otherwise

Allows uploading pre-computed
sgRNA counts as plain text file.

Nº of controls Integer Yes with default value = 1 (if
selected Data type is ‘sgRNA
counts’; inactive otherwise)

Nº of control samples in the
screen, i.e. columns in the sgRNA
count file.

FASTQ controls File upload Yes if the selected Data type is
‘FASTQ’; inactive otherwise

Allows uploading control
sample(s) as FASTQ files.

FASTQ samples File upload Yes if the selected Data type is
‘FASTQ’; inactive otherwise

Allows uploading screen
replicates as FASTQ files.

BAM controls File upload Yes if the selected Data type is
‘BAM’; inactive otherwise

Allows uploading control
sample(s) as BAM files.

BAM samples File upload Yes if the selected Data type is
‘BAM’; inactive otherwise

Allows uploading screen
replicates as BAM files.

5
(Review)

Submit Button Yes Job submission finalisation.

Table 1 - Fields to be filled in by the user in the job submission form.
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Fig. 1 - Overview of CRISPRcleanRWebApp design. A. Schematic of the CRISPRcleanRWebApp architecture. In the
front-end, the user fills out a job submission form and uploads input files in FASTQ/BAM formats or pre-computed
single-guide RNA read counts derived from a genome-wide CRISPR-Cas9 screen, alongside experiment
metadata and library specification. The form is then validated and submitted to the backend, where the data is
processed following the CRISPRcleanR workflow. Results are then made available to the web interface and they
are explorable through a set of interactive plots in a dedicated results page. B. Step 1 of the CRISPRcleanRWebApp

job submission form: the entry point for starting any new job request, after secure login. As illustrated, there are
fields which the user is asked to fill out before submitting the job. C. Example of tab-separated file containing
single-guide RNA pre-computed counts. This file is derived from screening the HT-29 cell line with the Sanger KY
library. First column contains sgRNA unique identifiers, the second one targeted gene symbols, then counts of
the plasmidic DNA, followed by counts obtained after 14 days post-transfection and selection of the library, in
three replicates.
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Results exploration and interactive plots

Once a job has been submitted, the CRISPRcleanRWebApp back-end server starts an

offline computation, sending an email message to the user once finished (if this option was

selected in the job submission form). A new results’ entry is then immediately listed in the

results page (Fig. 2A), where a data table offers a configurable pagination size for splitting

large sets of entries into smaller chunks. In this table, each row refers to a job submitted by

the logged user, and it shows main details such as submission date and time, job title, and

job status (succeed, failed or pending). Furthermore, the table allows for jobs filtering and

sorting according to any of the column fields. Through this page the user can access and

interactively explore the results obtained from each of their job submissions (Fig. 2B). The

job results page shows a detailed summary that recapitulates the parameters specified by

the user in the job submission form, and a series of panels allowing to explore and download

all data and results, and to access all the interactive plots outputted by CRISPRcleanRWebApp.

The Downloads panel contains links to all the results, which can be downloaded as zipped

folders, as well as to all the plots, downloadable as static images in pdf or png format.

All the plots can be also visualised interactively and are equipped with a tooltip providing

detailed information when hovering the pointer on a graphic component. The job results

page includes also a summary gene-signature plot, while the other plots are collected within

image accordions, containing clickable thumbnails, and partitioned in three different panels

(Fig. 2B): normalised counts and depletion fold-changes charts, chromosome charts and QC

assessment charts. All charts include a zoom area, often showing a minigraph

representation of the overall chart, where users can select an area to be magnified in the

main chart. The gene-signature plot interactively shows results from the normalisation and

the depletion logFCs and count correction, i.e. the chromosome plots. On the top-left of the

results’ page is provided a plot of all screened genes with coordinates indicating depletion

logFCs (x-axis) and depletion rank position (y-axis), respectively (Fig. 2B); on the top, the

user can select one among 7 different signatures of control genes, i.e. prior known essential

gene sets like proteasome, spliceosome, DNA replication, ribosomal proteins, RNA

polymerase, and BAGEL essential and nonessential gene-sets (Hart et al., 2014, 2017)),

and explore how they rank based on their depletion logFCs, on the right part of the chart.

Apart from the BAGEL gene-sets, the other 5 signatures are derived from the Molecular

Signature Database (MSigDB) (Iorio et al., 2018; Subramanian et al., 2005). The red line

indicates the rank position above which a false discovery rate (FDR) of non-essential genes

is < 5% (when considering all the genes in previous rank positions as positive predictions)

and it is determined using the logFC distributions of the BAGEL essential and nonessential

genes (STAR Methods).
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Fig. 2 - Results section of CRISPRcleanRWebApp. A. The results list page: here the user will find all the results
obtained from their submitted jobs. B. Job results accessible by selecting a job ID in the results list page. The
page is made of several sections including a detailed description of the job, an interactive summary plot where all
the screened genes are ranked based on their depletion fold-changes with overlaid signatures or control genes.
Three image accordions contain clickable thumbnails for opening the related interactive plot rendered by the web
application. Finally, the Downloads section includes links to all plots as static images (in pdf or png format), as
well as to both input and processed data and results (as unique zipped folder of plain text files).

The “normalised counts and depletion fold-changes” panel contains two interactive plots: the

first one shows a comparison between raw and normalised sgRNA read counts (Fig. 3A),

whereas the second shows uncorrected depletion logFCs (Fig. 3C), across samples in the

input file.

The user can toggle between raw and normalised read counts by clicking on a switch button

in the upper left corner of the corresponding interactive plot (Fig. 3A). A tooltip provides

several information on a given point, i.e. guide ID, exon, gene, and raw or normalised read

count, when moving the mouse over it. The same functionalities, with the exception of the

switch button, are accessible in the interactive plot showing the uncorrected logFCs (Fig.
3C).

The “QC assessment” panel contains a series of plots summarising data quality checks

performed on the sgRNA/gene-level depletion logFCs corrected by CRISPRcleanRWebApp

(Fig. 3BD). Particularly, they include visualisations of ROC and Precision/Recall curves (Fig.
3BD) computed on sgRNA- or gene-level corrected depletion logFC profiles, when they are

considered as rank-based classifiers of two built-in reference sets of a priori known essential

and nonessential genes. A tooltip provides information regarding the logFC threshold below

which a certain level of recall (for the AUROC plot), or precision (for the AUPRC plot) is

achieved.

The “chromosome charts'' panel shows one plot per chromosome, with segments of

sufficiently similar sgRNAs’ depletion logFCs on the x-axis, and the corresponding average

logFC pre-/post-CRISPCcleanR-correction on the y-axis. The first 22 charts correspond to

the autosomal chromosomes, the 23rd chart corresponds to the X chromosome, and the 24th

chart to the Y or X chromosome. Each chromosome chart has two checkboxes, in the upper

left corner, allowing the user to focus just on the segments (black lines) or the sgRNA

depletion logFC (green dots) components. A switch button, in the upper right corner, allows

to toggle between uncorrected and corrected logFCs. Also in this case, the segment tooltip

shows relevant information such as chromosome number, segment ID, start and end

position of the segment location on the genome, and average depletion logFC of the

mapped sgRNAs; on the other hand, the sgRNA tooltip provides information about
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chromosome number, targeted gene, start and end position of the gene portion targeted by

the sgRNA, and depletion logFCs (uncorrected or corrected).

Fig. 3 - Interactive plots rendered by CRISPRcleanRWebApp. AC. Overview of the normalisation plots: A.
boxplots for raw and normalised single-guide RNA (sgRNA) read counts across samples in the input file. C.
CRISPRcleanR uncorrected fold-changes (FCs). Both plots have a vertical scrollbar on the right that allows
zooming in on specific portions of the plot. When overing on each point, a tooltip shows information regarding the
corresponding sgRNA, i.e. guide ID, exon, gene, and read count/ depletion logFC. BD. Quality control (QC)
assessment plots. BD. Examples of interactive Receiver Operating Characteristic (ROC) and Precision Recall
Curve (PRC) plots, obtained from profiles of corrected depletion logFCs when considering them as rank-based
classifiers of two sets of a negative/positive control genes, i.e. a priori known essential and nonessential genes.
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E. Interactive plot showing the sgRNA logFCs (green dots) obtained targeting genes in the chromosome 1. The
logFCs are clustered within segments of equal copy number (black lines), which are corrected by
CRISPRcleanR. Each point is a sgRNA and when moving the mouse over it a tooltip will show related information
such as chromosome number, guide ID, start and end position and depletion logFC when hovering the pointer on
it.

Results

Extended sgRNA libraries’ support

The original version of CRISPRcleanR (v0.5.0) supported only the AVANA (Doench

et al., 2016) and Sanger KY (Behan et al., 2019; Tzelepis et al., 2016) CRISPR-Cas9

sgRNA libraries. CRISPRcleanRWebApp builds upon and uses CRISPRcleanR v3.0.0, which

(from v2.0.0) we have extended to fully support the following additional genome-wide

libraries: Brunello (Sanson et al., 2018), GeCKOv2 (Sanjana et al., 2014; Shalem et al.,

2014), Whitehead (Park et al., 2017; Wang et al., 2014, 2015), and the recent MiniLibCas9

(Gonçalves et al., 2021) library of minimal size (with only two targeting sgRNA per gene).

With the exception of GeCKOv2, the (publicly available) annotations of all these libraries

include genomic coordinates of the targeted sequences for all the sgRNAs. This information

is needed by CRISPRcleanR to genome-sort sgRNA depletion logFCs prior correction. For

the GeCKOv2 library, this information was not available. For this reason we remapped the

GeCKOv2 sgRNA sequences onto the human genome (GRCh38 - hg38) and assembled a

CRISPRcleanR compatible annotation object (STAR Methods) for this library. In addition,

CRISPRcleanRWebApp supports any genome-wide CRISPR library provided that the user

uploads a custom library annotation file. In this case, the sgRNA sequences in the read

count files are matched to the ones provided in the library annotation file, and the workflow

proceeds in case of a successful retrieval of at least 80% of the guides (STAR Methods).

This functionality further extends the applicability of CRISPRcleanRWebApp to a larger pool of

CRISPR screens performed on 2D cell lines or alternative cancer models (e.g. primary

cultures, organoids or patient-derived xenografts).

We tested the ability of CRISPRcleanR in supporting the extended set of libraries

described above, in terms of correction performances and results’ conservation across

analyses of screens performed on the same cell line. Particularly, we tested CRISPRcleanR

on screens performed with all the aforementioned genome-wide CRISPR-Cas9 libraries on

the HT-29 cell line. HT-29 is a human cancer cell line derived from colorectal carcinoma

frequently used to assess sensitivity and specificity of CRISPR-Cas9 libraries and with
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multiple publicly available CRISPR screen datasets (Behan et al., 2019; Doench et al.,

2016).

First, we compared the extent of correction brought about by CRISPRcleanR on the different

screens. To this aim we contrasted gene depletion logFCs pre- versus post-correction, and

compared differences across libraries (Fig. 4A). Prior to this comparison we averaged

sgRNA-level depletion logFCs on a targeted gene basis, in order to obtain gene-level

depletion logFCs. As the tested screens presented different depletion logFC ranges and

phenotype penetrance, due to inherent differences in the employed sgRNAs’ sequences and

for the sake of inter-screen comparability, we concatenated screen-wise the pre- and

post-correction logFC vectors and applied a min-max normalisation (STAR Methods) before

comparing the different screens. After the normalisation, we split back each normalised

vector in the two original components and computed differences between pre- and

post-corrected logFCs.

We observed an average median of these logFC differences across library equal to -0.012

(min = -0.002 for KY and max = -0.02 for GeCKOv2) and an average interquartile range

equal to 0.0245 (min = 0.015 for MiniLibCas9 and max = 0.037 for AVANA (Fig. 4A).

These results show that the correction applied by CRISPRcleanR has limited effects on the

whole screen, it is focused on a small set of genes and that this minimal impact is conserved

across screens of the same cell line performed with the different supported libraries.

Next, we asked at what extent the CRISPRcleanR correction affected each gene’s logFC

consistently across screens. To this aim, we computed for each gene a normalised Shannon

entropy, also known as efficiency, quantifying how homogeneous were the correction effects

for a given gene across screens. A low entropy value indicated that a gene’s logFC was

affected consistently across screens, whereas a high entropy value indicated the opposite,

(STAR Methods). In particular, we coded the gene-wise correction outcomes in a given

screen as follows. A 0 indicated that the logFC of the gene under consideration was not

corrected by CRISPRcleanR, as the sgRNAs targeting that gene were not mapped onto a

genomic segment detected as biased. A 1 indicated a positive correction, meaning that the

sgRNAs targeting the gene under consideration were mapped onto a genomic segment

detected as biased toward negative values by CRISPRcleanR and their logFC increased.

Following the same logic, a -1 indicated a negative correction. Applying this coding across all

screens, yielded for each gene a vector of 6 entries (one per each tested library) with values

in {-1, 0, 1}, from which we computed the normalised Shannon entropy.

A summary of the results is provided in Fig. 4B, showing the percentages of genes across

efficiency values and concordance/discordance of correction effects for each value. For
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example, the first bar from the left (corresponding to a 0 efficiency) accounted for all the

genes for which the correction outcomes were identical across screens, whereas the

second bar accounts for the corrections that agree across all the screen but one, and so on.

For over 95% (Fig. 4B) of the genes we observed the same correction effect in at least four

screens out of six (efficiency < 0.63), with the absolute majority (42%) showing different

outcomes in a 4:2 proportion. Finally, only 4.31% of the genes presented all three different

correction outcomes across screens, and 0.39% presented them equally partitioned (i.e. two

-1s, two 0s, and two 1s). Overall these results show that the CRISPRcleanR correction

affected individual genes’ logFCs homogeneously across screens of the same cell line

performed with the different supported libraries.
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Fig. 4 - Assessment of CRISPRcleanR correction across different supported CRISPR-Cas9 libraries on
the HT-29 cell line. A. Comparison of CRISPRcleanR pre- and post-correction fold-changes (FCs) across
screens. B. Normalised Shannon entropy (efficiency) of gene-wise correction outcomes (-1, 0, 1) across screens.
Only genes shared across libraries were considered. C. Recall at 5% FDR of six prior known gene-sets observed
when considering pre- and post-correction (as indicated by the different colours) sgRNA logFCs’ profiles as
rank-based classifiers.

Finally, we measured the extent to which the CRISPRcleanR correction tendency in reducing

false positive gene-essentiality calls while maintaining true positive calls was conserved

across processed screens.

To this aim, we considered six control sets of genes (Table 2): the Hart2017 essentials (Hart

et al., 2017), Hart2014 nonessentials (Hart et al., 2014), respectively as positive and

negative control plus another set of known essential gene-sets derived from the MSigDB

(Pacini et al., 2021; Subramanian et al., 2005) accounting for housekeeping cellular

processes (DNA replication, histone genes, RNA polymerase, proteasome, ribosomal

protein genes and spliceosome), and finally two sets of HT29 specific putative negative

controls, i.e. copy number amplified genes (from two different public resources) (Barretina et

al., 2012; Iorio et al., 2016; Mermel et al., 2011), as well as amplified and non-expressed

genes (FPKM < 0.1 in HT-29, STAR Methods).

For each gene-set, we computed the recall at 5% FDR (Star Methods) for the pre- and

post-corrected logFCs across the six screens (Fig. 4C). For the negative controls (expected

to be biased) we observed consistent reductions in recall across screens (median = 29.48%,

19.65% and 20.53%, respectively). In contrast, for the positive controls, we observed

negligible recall reductions across screens (median = of 3.61%, 0.16% and 1.74%

respectively). Thus, CRISPRcleanR can effectively correct the logFCs of amplified gene-sets

with high specificity without compromising the logFCs of other genes, regardless of their

phenotype intensity and employed supported library.

Set name Set Type Number of genes Dataset of origin

Hart2017 essential Reference set of core-fitness
essential genes.

684 BAGEL reanalysis of 17
genome-scale knockout
screens in human cell lines
performed with different
libraries (Hart et al., 2017)

Hart2014 nonessential Reference set of
nonessential genes.

927 Large collection of shRNA
gene dependency profiles
analysed with a linear
algebra approach (Hart et al.,
2014).

MSigDB independent
essential

Pooled sets of independent
essential genes from the
MSigDB.

290 MSigDB dataset (Pacini et
al., 2021; Subramanian et
al., 2005)
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GDSC amplified Amplified genes in HT-29
derived from the GDSC
dataset.

105 GDSC dataset (Iorio et al.,
2016).

CCLE amplified Amplified genes in HT-29
derived from CCLE dataset.

198 CCLE dataset (Barretina et
al., 2012; Mermel et al.,
2011).

Amplified non-expressed Amplified non-expressed
(FPKM < 0.1) genes in
HT-29 derived from the
GDSC dataset.

21 GDSC dataset (Iorio et al.,
2016).

Table 2 - Sets of predefined genes for the assessment of CRISPRcleanR correction performances.

Discussion

We introduced CRISPRcleanRWebApp, a web-based application integrating the

complete suite of functionalities available in the CRISPRcleanR R/python package (Iorio et

al., 2018). CRISPRcleanR is a computational tool for correcting gene-independent

responses to CRISPR-Cas9 targeting that are observed in data from pooled viability screens

and arise from copy number amplifications. Differently from other methods, CRISPRcleanR

works in an unsupervised way not requiring any input related to the copy number variations

profiles of the processed/screened model. In addition, CRISPRcleanR carries out the

correction on a single-sample basis, not requiring multiple screens to be analysed jointly nor

borrowing signals across screens. This offers the benefit of preserving the overall

heterogeneity of the data, making our tool especially suited for the identification of

context-specific dependencies and biomarkers (Pacini et al., 2021).

We also showed that CRISPRcleanRWebApp does not require any prior knowledge of

programming languages like R and python, and offers a user-friendly interface giving full

workflow control, and fully customisable execution of the correction procedure on the data

provided by the user.

The homepage of CRISPRcleanRWebApp is equipped with comprehensive video-tutorials on its

usage and a toy dataset for testing. The job submission form can take in input FASTQ/BAM

files (which are subject to quality checks and are then mapped to the library annotation file to

obtain sgRNA counts), or pre-computed sgRNA counts in a plain text format. A ‘Results’

page allows users to download the output data, such as corrected logFC file/s and static

plots, as well as exploring the results through a portfolio of interactive plots.

Furthermore, CRISPRcleanRWebApp supports a larger set of built-in genome-wide CRISPR

libraries compared to the original R package. We also enabled users to upload data from

screens performed with custom libraries: in this case, sgRNA IDs are checked for

consistency with respect to the library annotation file. We believe this feature will extend the
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services of CRISPRcleanRWebApp to a much larger audience. Indeed, CRISPR-Cas9 screens

can be carried out in a host of different models besides 2D cell lines (e.g. primary cultures,

organoids, or patient-derived xenografts). These screens are amenable to CRISPRcleanR

correction, provided that they are performed using libraries with sufficient sgRNA density,

and related annotation available.

Here, we have provided an overview of the CRISPRcleanRWebApp implementation, design and

interface and demonstrated that it yields consistent results across different technical settings

and supported libraries. Taken together, the features of CRISPRcleanRWebApp provide an

easy-to-use framework for pre-processing and correcting data derived from CRISPR-Cas9

screens, which might significantly widen the CRISPRcleanR user-community.

Limitations of the study

While CRISPRcleanRWebApp is a user-friendly web application accessible to

non-computational scientists, its current version still lacks some functionality of the original

package, which will be included in subsequent versions. For instance, we are planning to

extend the number of input parameters that can be specified before submitting a job, as

experienced users may require more advanced setups.

In addition, CRISPRcleanR is equipped with functions to test the depletion logFCs of

sgRNAs targeting different reference gene sets (for example prior known essential genes, or

copy number amplified genes) for statistically significant differences with respect to the

background pre- and post-CRISPRcleanR correction. The aim of this analysis is to show that

the CRISPRcleanR correction reduces false-positive essential gene calls while maintaining

true-positive rates. These functions will be visually rendered in future versions of

CRISPRcleanRWebApp. Furthermore, CRISPRcleanR includes the ccr.impactOnPhenotype

function that computes the percentages of genes whose depletion signal is attenuated

post-CRISPRcleanR correction or potentially ‘distorted’ (i.e. loss-of-fitness genes in the

uncorrected screens becoming gain-of-fitness genes post-correction, and vice-versa). In

(Iorio et al., 2018) we demonstrated that the amount of this type of ‘distortion’ introduced by

CRISPRcleanR is negligible, however also this analysis will be possible in future versions of

the CRISPRcleanRWebApp. Finally, another feature we are planning to integrate in new

versions is the possibility to pipeline CRISPRcleanRWebApp with existing tools that robustly

estimate gene essentiality after depletion logFC correction supervisedly (like BAGEL (Hart

and Moffat, 2016; Kim and Hart, 2021).
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Methods

Web-application architecture

Front-end

The front-end web application (also known as client) is implemented as a Single

Page Application (SPA). Dynamic data is retrieved from a backend API server, returning data

in JSON format, which is then used from the SPA to render HTML/CSS accordingly.

Example files are made downloadable from the API server, while all job related files are

managed through a dedicated file server.

The client is based on Vue.js JavaScript framework (https://vuejs.org/). Interactive charts are

implemented as scalable vector graphics documents managed through Vue components

leveraging the D3.js library (https://d3js.org/). Design and styling were done entirely from

scratch with Sass stylesheets, compiled as CSS during the application bundling process.

Screen layout and responsiveness is achieved with Flexbox, CSS Grid layouts and

Javascript. The bundled web application is served through a Dockerized

(https://www.docker.com/) version of Nginx (https://www.nginx.com/), hosted on a virtual

machine within HT IT infrastructure.

Back-end

The back-end consists of a docker multi-container app built upon the following

containers and underlying technologies:

● Application Programming Interface (API) server: FastAPI python framework

(https://fastapi.tiangolo.com/)

● File server: NodeJS with Express.js framework

● Background queue: Celery Python

(https://docs.celeryproject.org/en/stable/getting-started/introduction.html)

● Message Broker: Redis (https://redis.io/)

● Database: MongoDB (https://www.mongodb.com/)

An on premises S3 bucket compliant object storage is used to store all job related files (both

input and output).

Application Programming Interface. The API server is implemented with FastAPI, a

modern and popular Python API framework.

It is provided as a Docker container based on a python bullseye  official docker image.
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File server. A NodeJS server is used to manage the files’ upload and download. This allows

to directly and reliably stream data files to and from the S3 bucket, since it is not possible

with FastAPI. A redis-based pub-sub messaging system exists to ensure the file server

informs back the API main server about the upload outcome.

Task queue and Message Broker. To maintain the backend API server responsive while

processing a job, we implemented an offline job processing mechanism. More specifically,

job processing is delegated to another container that receives jobs and processes them

asynchronously with respect to the actual job submission, following a producer-consumer

pattern. When the backend receives a new submitted job, this is forwarded to the

background task queue through the message broker to inform consumers about new tasks

to be executed.

Background processing is implemented through Celery, a common python task queue

manager. Celery is executed on a dedicated Docker container based on a python bullseye

official docker image, further customised to perform R processing. This customised image

installs a Debian-compatible R distribution, along with all required CRISPRcleanR

dependencies. Communication with CRISPRcleanR package is performed through Rpy2

(https://rpy2.github.io/), a python package that enables us to register R functions and

environments into python wrapping objects, such that R interactions can be directly executed

from python code.

During job processing, the background queue container instantiates a single celery

consumer, called worker, that consumes job computation requests from the message queue.

In order to obtain parallel processing over multiple jobs, distinct independent workers can be

spawned on container replicas by properly configuring the underlying container orchestrator.

The message broker is then able to automatically send new job computations according to

each worker's current workload, while still avoiding the same job execution to be performed

on different workers. The communication between FastAPI backend and task queue is

accomplished through a Redis-based message broker, the latter running on a dedicated

container.

Database Container. Our database container runs on a MongoDB instance, a

cross-platform document-oriented NoSQL database. In addition, the backend container

communicates with MongoDB using a Motor asyncio driver

(https://motor.readthedocs.io/en/stable/), whereas the Celery-based background queue uses

a Pymongo driver (https://pymongo.readthedocs.io/en/stable/), not being based on asyncio

patterns.
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Security. CRISPRcleanRWebApp implements an authorization schema based on OAuth2

protocol (https://datatracker.ietf.org/doc/html/rfc6749), following the Authorization Code Flow

with a public client. A further layer of authentication is provided through OpenID Connect

(https://openid.net/connect/), which enables us to transmit user information, such as

username and email, to the client application. This highly secure schema allows for great

flexibility in configuration and it might easily be extended to implement federated/third party

access through external acknowledged identity providers.

The security schema is implemented through Keycloak (https://www.keycloak.org/), an

integrated authorization/authentication system which provides a comprehensive solution for

managing users and providing an authorization server for managing authentication and

applications’ tokens. Our hosting infrastructure at Fondazione Human Technopole is

equipped with a dedicated Keycloak system made accessible both from the backend (for

token validation) and frontend (for issuing tokens).

CRISPRcleanRWebApp management of input files

Computation of read count from FASTQ or BAM files

CRISPRcleanRWebApp accepts trimmed FASTQ as well as BAM file formats as input to

derive single-guide RNA (sgRNA) counts. For the FASTQ format, a preliminary quality

control is performed on the sequencing data based on the quality scores of the

corresponding nucleotide sequences. The sgRNA sequences are then mapped to the library

index, which it’s generated from the sequences retrieved in the library annotation file using

the Rsubread R package (Liao et al., 2019). In order to provide the most reliable counts

estimation the alignment doesn’t allow N bases, mismatches or gaps. All alignment summary

statistics are provided in a text file available in the downloadable results. BAM files

generated by the alignment step or supplied as input are processed using the

GenomicAlignments R package (Lawrence et al., 2013). The occurrence of the “seqnames”

of the aligned reads are counted and matched with the sgRNA IDs in the library annotation

to provide the counts for each sample. All sample count data are then merged to create a

count matrix that is downloadable from the results page and used in the following steps of

the pipeline.

Upload of custom genome-wide CRISPR-Cas9 library

In case of upload of a custom genome-wide CRISPR library (i.e. not part of the six

built-in libraries of CRISPRcleanRWebApp), the annotation file must include a “seq” field
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including the sgRNA sequences used in the screening. The application will then convert

those sequences in a library index suitable for the alignment and then proceed to evaluate

the read counts as described for the standard libraries. The matching has to be exact (i.e. no

mismatches allowed), and at least 80% of the guides must be recapitulated to proceed with

the workflow of the application and correct the depletion fold-changes for biases.

Validation of the supported CRISPR-Cas9 libraries in the new version of

CRISPRcleanR

Data acquisition

We validated CRISPRcleanR (v2.2.1) on six screens obtained from transducing

popular CRISPR-Cas9 libraries into the HT-29 cell line. We tested the following libraries:

AVANA (Doench et al., 2016), Brunello (Sanson et al., 2018), GeCKOv2 (Sanjana et al.,

2014; Shalem et al., 2014), KY (Behan et al., 2019; Tzelepis et al., 2016), MiniLibCas9

(Gonçalves et al., 2021) and Whitehead (Park et al., 2017; Wang et al., 2014, 2015). All raw

read count files are available in the following GitHub repository:

https://github.com/francescojm/CRISPRcleanR/tree/master/inst/extdata.

GeCKOv2 library mapping onto the Human genome

We mapped the protospacer sequence of each sgRNA in the GeCKOv2 library onto

the human genome (GRCh38 - hg38) using the short read mapping method bwa-mem. Most

of the reads were mapped uniquely to the reference genome sequence and their positions

were found within their targeted genes . On the other hand, the remaining guides were

mapped ambiguously and with some mismatches. We remapped them to the reference

human genome using first BLATt and then BLASTn. For the guides mapped onto multiple

locations, we only considered those included in the targeted genes declared in the original

library annotation file. The annotations of the genes were extracted from Gencode v38.

Finally, the remaining sequences were mapped to the reference genome with mismatches,

and the positions with the minimum mismatches within the targeted genes were selected. All

the guides were mapped to a position on the reference genome within their targeted genes.

Comparison of CRISPRcleanR pre- and post-correction logFCs across screens

To compare the differences in log fold-changes (logFCs) pre- and post-correction, we

first normalised the sgRNAs’ raw read counts by scaling for the total number of reads, after
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filtering out those guides having a plasmid read count less than 30. This is implemented in

the ccr.NormfoldChanges function and resulted in uncorrected depletion logFCs. Following

the pipeline implemented in

https://github.com/francescojm/CRISPRcleanR/blob/master/Quick_start.pdf, we applied the

ccr.GWclean function with default settings to correct the logFCs of each screen.

We obtained gene-level logFCs by averaging the score of sgRNAs targeting the same gene,

and considering only the genes in common across the six screens, leading to 8473 genes. In

order to reduce technical variability due to the usage of different libraries, we applied for

each screen a min-max normalisation on the concatenated vector of pre- and post-corrected

gene-level logFCs. We then split back the vector in pre- and post-corrected logFCs, and

computed gene-wise logFC differences across screens.

Gene-wise correction agreement across screens

In information theory, Shannon entropy is used to quantify the uncertainty of a

random variable. It is formally defined as the average auto information associated with each

outcome of the random variable. Efficiency (or normalised Shannon Entropy) is defined as

the Shannon entropy divided by the maximum value that the entropy can assume (which

depends on the size of the spectrum of the random variable under consideration). In our

case: the lower the efficiency the higher the homogeneity in the CRISPRcleanR outcomes

across screens. Thus, a low efficiency score means a high agreement of correction

outcomes across the screens. We computed gene-wise normalised Shannon entropy across

screens when considering the three possible correction outcomes outputted by the

ccr.GWclean function.

We considered only the genes in common across the screens, leading to 8473 genes, and

removed those found at the conjunction of two segments, totalling to 7923 genes. Then, we

computed the gene-wise normalised Shannon entropy Hn, following the formula (1):

where Hg is the Shannon entropy of a gene g, computed as the sum over the variable’s

probability values, gi ∈ {-1, 0, 1} and C is the total number of possible correction outcomes

(i.e. 3 in this case), divided by the maximum expected entropy (log2 of C).
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Recall of genes in six predefined gene-sets following CRISPRcleanR correction

We assessed the effect of CRISPRcleanR correction on six predefined sets of genes,

namely Hart2017 essential, Hart2014 nonessential, independent sets of essential genes

derived from the MSigDB, copy number amplified genes from GDSC dataset, copy number

amplified genes from CCLE dataset, and copy number amplified genes from GDSC that

were not expressed (FPKM < 0.1 in HT-29).

For each screen, we computed the essentiality threshold at 5% false discovery rate (FDR)

for the pre- and post-corrected screens, using the Hart2017 essential and Hart2014

nonessential as source of reference essential (EG) and nonessential genes (NEG),

respectively. In particular, we ranked the gene-level depletion logFCs of the EG and NEG in

increasing order. For each rank position i, we calculated a set of predicted fitness genes

(PFG) as follows:

where rank(FCg) is the corresponding rank position of gene g in the reference gene set

based on its depletion logFC. The ranked list is then used to calculate positive predictive

values (PPV) for the ith rank position as follows:

We determined the highest threshold of depletion logFC (logFC*) in rank position i* such that

PPV(i*) ≥ 0.95, which is equivalent to an FDR of 5%. We considered all genes with a logFC <

logFC* as essential for the viability of HT-29. For each gene-set S, we computed the recall

by dividing the size of genes gs below the 5% FDR threshold (logFC*) by the total size of gs

included in the screen, according to (4):
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Availability

CRISPRcleanRWebApp is available at: https://crisprcleanr-webapp.fht.org (reviewers’ access

credentials: username = test1@test.com, password = 1111 and username =

test2@test.com, password = 1111). The latest version of the original CRISPRcleanR

package can be found at the following GitHub repository:

https://github.com/francescojm/CRISPRcleanR. The raw read count files obtained from six

screens performed on the HT-29 cell line using different genome-wide CRISPR-Cas9

libraries are available as external data in the CRISPRcleanR package:

https://github.com/francescojm/CRISPRcleanR/tree/master/inst/extdata.
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Abbreviations

API = application programming interface

AUPRC = Area Under Precision-Recall Curve

AUROC = Area Under Receiver Operating Characteristic

CCLE = Cancer Cell Line Encyclopaedia

CN = copy number

CRISPR = Clustered Regularly Interspaced Short Palindromic Repeats

DSB = double strand breaks

EG = essential genes

FDR = false discovery rate

GDSC = Genomics of Drug Sensitivity in Cancer dataset

logFC = log fold-change

MSigDB = molecular signature database

NEG = nonessential genes

QC = quality control

sgRNA = single-guide RNA

PPV = positive predicted value

SPA = Single Page Application
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