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Abstract
Classifying the degree of relatedness between pairs of individuals has both scien-
tific and commercial applications. As an example, GWAS may suffer from high rates
of false positive results due to unrecognized population structure. This problem be-
comes especially relevant with recent increases in large-cohort studies. Accurate
relationship classification is also required for genetic linkage analysis to identify
disease-associated loci. Additionally, DNA relatives matching service is one of the
leading drivers for the direct-to-consumer genetic testing market. Despite the avail-
ability of scientific and research information on the methods for determining kinship
and the accessibility of relevant tools, the assembly of the pipeline, that stably oper-
ates on a real-world genotypic data, requires significant research and development
resources. Currently, there is no open-source end-to-end solution for relatedness
detection in genomic data, that is fast, reliable and accurate for both close and dis-
tant degrees of kinship, combines all the necessary processing steps to work on
real data, and is ready for production integration. To address this, we developed
GRAPE: Genomic RelAtedness detection PipelinE. It combines data preprocess-
ing, identity-by-descent (IBD) segments detection, and accurate relationship esti-
mation. The project uses software development best practices, as well as GA4GH
standards and tools. Pipeline efficiency is demonstrated on both simulated and
real-world datasets.
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Introduction
Distant relationship estimation has both scientific and commercial applications. Scientific applications may include the
identification of monogenic (single gene) Mendelian diseases [1], [2]. Also, relatedness detection can be used during
data quality control for GWAS, since close relatives should be excluded to ensure that no pair of individuals is more
closely related than second degree relatives [3], [4]. Otherwise, GWAS may suffer from high rates of false positive
results. Potential commercial application of relationship estimation is utilized by direct-to-consumer genetic testing
companies to find possible distant relatives for their customers [5]. The applicability of existent tools and pipelines to
both applications is limited. Currently, there is no open-source end-to-end solution for relatedness detection in genomic
data, that: (a) is reliable and accurate for both close and distant degrees; (b) includes all necessary processing steps
to work with real data; (c) is flexible enough to be adapted for various applications; (d) is user-friendly and ready
for production integration. Specifically, for commercial usage, the pipeline should deal with data heterogeneity and
efficiently process newly added data samples. Samples can be genotyped with different chips and may have been
passed thought different quality controls. Typical databases of genetic testing companies contain a lot of data from the
previously used chips, which need to be combined together during the processing. Scientific database may also contains
heterogeneous data. For example, UK Biobank dataset [6] contains samples which were genotyped using two different
chips.
Driven by the idea of open and user-led innovation, we have developed GRAPE (Genomic RelAtedness detection
PipelinE), the first open-source end-to-end solution for relatedness detection that is able successfully address the above
mentioned difficulties. As a preliminary step, we comprehensively studied available approaches and software instru-
ments for relatedness estimation from genotypes data, such as identity-by-descent (IBD) segments detection tools:
GERMLINE [7], IBIS [8], RaPID [9], PhasedIBD [10]; relationship inference tools: DRUID [11], ERSA [12, 13], KING
[14]; other tools, which may be required during data preprocessing steps, like algorithms of phasing (Eagle [15]) and
genotype imputation (Minimac [16]). Then, we selected several perspective tools and joined them together into the
user-friendly GRAPE pipeline.
GRAPE adapts the best practices for software development, including the Snakemake [17] workflow management sys-
tem, Conda [18] virtual environments, Docker [19] containerisation, Funnel task execution service, which implements
GA4GH Task Execution Schema [20], and CI/CD with automatic testing. The pipeline requires a single multi-sample
VCF file as input and has a separate workflow for downloading of reference datasets and checking their consistency.
IBD segments detection workflows of GRAPE can work with both phased and unphased data. As real-world datasets
are often heterogeneous and inconsistent, GRAPE incorporates various data preprocessing and quality control (QC)
options. GRAPE has a modular architecture that allows switching between tools and adjust tools parameters for better
control of precision and recall levels. The pipeline also contains a simulation workflow with an in-depth evaluation of
pipeline accuracy using simulated and reference data.
GRAPE can work like a standalone version as well as from the dedicated Docker container. Provided docker image
contains all the dependencies installed, and highly recommended to use. We published GRAPE image in both Docker
Hub and Dockstore [21] repositories to satisfy GA4GH [22] standards for sharing Docker-based tools. As a results we
got a robust, reliable, and easy-to-use tool. Analysis for 10k samples with 600k SNPs requires half an hour, and about 22
hours have been required to process 100k samples dataset. Precision / recall analysis for GRAPE was performed using
simulated datasets. We compared GRAPE with TRIBES [23], another open-source pipeline for relatedness detection,
and showed the advantages of our solution in a sense of the precision / recall metrics.

Methods
This section describes the input data, reference datasets, and the main pipeline steps. Scheme of the pipeline is presented
in Figure 1. GRAPE takes single VCF file of individuals genotypes as input. Configuration of the pipeline is managed by
config.yaml file, or via the parameters of the GRAPE launcher. Reference data should be previously downloaded and
stored on a hard drive. After that, the pipeline performs relationship inference accordingly to one of the three possible
workflows (described in a corresponding section below). The main pipeline steps are:

1. Downloading of the reference datasets.

2. Quality control and data preprocessing.

3. Application of the relationship inference workflow.

GRAPE also includes simulation workflow to evaluate precision / recall metrics on the simulated data. To simulate
artificial pedigrees, Ped-sim tool [24] is used, while unrelated founders for the simulation are taken from 1000 Genomes
Project data.
There are two main approaches for relationship estimation implemented in GRAPE. The first one is based on allele
frequencies calculation (KING [14]). This approach is optionally used for the first three degrees of relatedness, and for
calculation of the kinship coefficients. The second approach relies on searching of pairwise identical-by-descent (IBD)
segments. There are two options for this purpose based on two different tools: (a) IBIS [8] and (b) GERMLINE [7].
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Figure 1. Scheme of the GRAPE pipeline.

IBIS is a fast tool that can operate with unphased data. IBIS performs an IBD detection using homozygous SNPs only.
It breaks the genome into windows of fixed length and searches for homozygous SNP mismatches for each genotype
window. If there the number of mismatches does not exceed some predefined threshold, the window becomes a part of
an IBD segment. In contrast, GERMLINE is slower and can work only with phased data, but under some circumstances
it may produce higher precision results. Upon the pairwise IBD segments search is completed, relationship degrees are
estimated using the ERSA tool [12].

Downloading of the Reference Datasets
GRAPE requires various reference data to perform preprocessing, quality control, phasing, and imputation. Reference
data is also required for the simulation workflow. In order to facilitate collection of reference data, we created a separate
workflow that automates this step. It can be run by specifying reference command to the GRAPE pipeline launcher.
The workflow downloads data, unpack it, and perform required post-processing procedures. If phasing and genotype
imputation are required, one should also add additional flags --phase and --impute to the command. It affects the
amount of downloaded data. If these flags are specified, the workflow downloads additional reference dataset to make
phasing and imputation possible.
There is another options to download all required reference data as a single file. This file is prepared by us and preloaded
on our side in the cloud. It can be done by specifying additional flag --use-bundle to the workflow. This way is faster,
since all the post-processing procedures have been already performed. Reference files consist of three main groups.

• Files for the preprocessing. These files genetic recombination maps for mapping SNPs coordinates from base
pairs (bp) to centimorgans (cM); files with the SNPs information from the 1000 Genomes Project for the SNPs
quality control; reference genome of hg37 build; liftOver chain file.

• Files for phasing and imputation. Phasing is required as a preliminary step for GERMLINE tool, if input data
is unphased. Upon the phasing is done, genotype imputation can be additionally applied. These files are space
demanding and require a considerable amount of post-processing time.
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• Files for simulation. These files include phased per-chromosome files from the 1000 Genomes Project; Affymetrix
chip data that is used as a source of founders for the simulation; sex-specific recombination maps for better Ped-sim
simulation results [24].

Quality Control and Data Preprocessing
GRAPE have a versatile and configurable preprocessing workflow. One part of the preprocessing is required and must
be performed before the relationship inference workflow. It is launched by the preprocess command of the GRAPE.
Along with some necessary technical procedures, preprocessing includes the following steps.

• [Required] SNPs quality control by minor allele frequency (MAF) and the missingness rate. We discovered
that blocks of rare SNPs with low MAF value in genotype arrays may produce false positive IBD segments. To
address this problem, we filter SNPs by minor allele frequency. We remove SNPs with MAF value less than 0.02.
Additionally, we remove multiallelic SNPs, insertions / deletions, and SNPs with the high missingness rate, because
such SNPs are inconsistent with IBD detection tools.

• [Required] Per-sample quality control, using missingness and heterozygosity. Extensive testing revealed
that samples with an unusually low level of heterozygosity could produce many false relatives matches among
individuals. GRAPE excludes such samples from the analysis and creates a report file with the description of the
exclusion reason.

• [Required] Control for strands and SNP IDs mismatches. During this step GRAPE fixes inconsistencies in
strands and reference alleles.

• [Optional] LiftOver from hg38 to hg37. Currently GRAPE uses hg37 build version of the human genome refer-
ence. The pipeline supports input in hg38 and hg37 builds. One should specify the genome build version by the
dedicated flag --assembly of the pipeline launcher. If hg38 build is selected (--assembly hg38), then GRAPE
applies liftOver tool to the input data in order to match the hg37 reference assembly. This parameter should be
also specified during the simulation workflow.

• [Optional] Phasing and imputation. GRAPE supports phasing and genotype imputation. GERMLINE IBD de-
tection tool requires phased data. So, if input data is unphased, one should include phasing (--phase flag) into
the preprocessing before running the GERMLINE workflow. If input data is highly heterogeneous in a sense of
available SNPs positions, we recommend to include imputation procedure as well (--impute).

• [Optional] Removal of imputed SNPs. We found, that if input data is homogeneous in a sense of SNPs positions,
the presence of imputed SNPs does not affect the overall IBD detection accuracy of the IBIS tool, but it significantly
slows down the overall performance. For this particular case, when input data initially contains a lot of imputed
SNPs, we recommend to remove them by specifying --remove-imputation flag to the GRAPE launcher. GRAPE
removes all SNPs which are marked with IMPUTED flag in the input VCF file.

GRAPE Workflows
There are three relationship inference workflows implemented in GRAPE. These workflows are activated by the find
command of the launcher. Workflow selection is made by the --flow parameter.

1. IBIS + ERSA, --flow ibis. During this workflow IBD segments detection is performed by IBIS [8], and esti-
mation of relationship degree is carried out by means of ERSA algorithm [12]. This is the fastest workflow.

2. IBIS + ERSA & KING, --flow ibis-king. KING [14] is a well-known method for the inference of close
relationships. It’s fast and can work with unphased data. During this workflow, GRAPE uses KING tool for the
first 3 degrees of relationships, and IBIS + ERSA approach for higher order degrees (see Figure 1). Comparison
of evaluation time between IBIS + ERSA and IBIS + ERSA & KING workflows is presented in Figure 3.

3. GERMLINE + ERSA & KING, --flow germline-king. The workflow uses GERMLINE for IBD segments de-
tection. KING is used to identify relationship for the first 3 degrees, and ERSA algorithm is used for higher
order degrees. This workflow was added to GRAPE mainly for the case, when input data is already phased and
accurately preprocessed.
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Pedigree Simulation
We added a simulation workflow into GRAPE to perform a precision / recall analysis of the pipeline. It’s accessible by
simulate command of the pipeline launcher and incorporates the following steps: (1) pedigree simulation with unre-
lated founders; here we use the Ped-sim simulation package [24]; (2) relatedness degrees estimation; (3) comparison
between true and estimated degrees. The source dataset for the simulation is taken from CEU population data of 1000
Genomes Project. As CEU data consists of trios, we picked no more than one member of each trio as a founder. We
also ran GRAPE on selected individuals to remove all cryptic relationships up to the 6th degree. Then, we randomly
assigned sex to each individual and used sex-specific genetic maps to take into account the differences in recombination
rates between men and women [25]. Results of our precision / recall analysis for the simulated datasets are presented
in the corresponding Results section.

IBD Segments Weighing
Distribution of IBD segments among non-related (background) individuals within a population may be quite heteroge-
neous [13]. There may exist genome regions with extremely high rates of overall matching, which are not inherited
from the recent common ancestors [26]. Instead, these regions more likely reflect other demographic factors of the
population. The implication is that IBD segments detected in such regions are expected to be less useful for estimating
recent relationships. Moreover, such regions potentially prone to false-positive IBD segments.
GRAPE can use two different approaches to address this issue. The first one is based on genome regions exclusion
mask, wherein some genome regions are completely excluded from the consideration. This approach was proposed
by authors of the ERSA algorithm, see [13]. The mask was computed based on whole-genome sequencing data for
European individuals. The computed mask is built-in into ERSA 1.0 algorithm and is used by GRAPE by default.
The second approach is based on the so-called IBD segments weighing. This idea reminds one proposed in the Ancestry
DNA Matching White Paper [27] (see description of their Timber algorithm there). The key idea is to down-weight IBD
segment, i.e. reduce the IBD segment length, if the segment cross regions with high rate of matching. The approach can
be briefly described as follows. At first, one should evaluate IBD segments {B j} for some background population. After
that, we break chromosomes into windows Wi of fixed length and compute total overlap length ci between found IBD
segments {B j} and each window Wi , ci =

∑

j |Wi j |, where Wi j is an overlap between the segment B j and the window Wi .
Obtained overlap lengths are transformed into weights wi which are assigned to the windows, wi = f (ci) ∈ [0; 1]. Here
f is a weighing function that reflect the following heuristic: if the overlap length for a window Wi is a relative outliers
in the distribution of overlap lengths, then value of f (ci) is close to 0, otherwise it’s close to 1. Given that weights for
all windows are computed, for each IBD segment G one can compute its weighted length |G|w using the formula

|G|w =
∑

i

wi |Gi |, (1)

where |Gi | denotes the overlap length between IBD segment G and a window Wi . Weighted lengths of IBD segments
then are used by the ERSA algorithm (while the ERSA mask is disabled).
GRAPE provides an ability to compute the weight mask from the VCF file with presumably unrelated individuals. It
breaks each chromosome into 1cM windows to compute overlaps. After that, GRAPE detects outliers among overlap
lengths by means of Minimum Covariance Determinant (MCD) algorithm [28], and then determines outliers upper
bound h. This upper bound is used to compute weights, wi = h/ci , if ci > h; and wi = 1 otherwise. Computed
mask can be further used as a parameter for relationship inference workflow (see the --weight-mask parameter).
As an example, Figure 2 depicts the weight mask computed for the individuals of East Asian Ancestry taken from
1000 Genomes Project. To detect IBD segments, IBIS workflow was used with parameters --ibis-seg-len 5,
--ibis-min-snp 400. High matching regions (wi ≈ 0) are marked with the blue color. For comparison, ERSA
1.0 masked regions are depicted with the pick hatching.

Operation
GRAPE can be run inside a Docker container. This way is recommended. Another option is to run the pipeline from
scratch with all the dependencies being pre-installed. We successfully ran the pipeline on Ubuntu 18.04 with 8 CPUs
and 32 GB of RAM to evaluate the performance on huge datasets with up to 100k samples and millions of SNPs.

Resource Allocation
GRAPE can utilize multiple cores. For that, one should specify the cores number via the --cores parameter. Default
number of cores equals to the total number of available CPUs minus 1.

Execution by Scheduler
The pipeline can be run using Funnel [29], a lightweight task scheduler that implements Task Execution Schema [20]
developed by GA4GH [22]. The scheduler can work in various environments, from a regular virtual machines to Ku-
bernetes cluster with the support of resource quotas. We provide several examples of the task specifications for Funnel.
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Figure 2. Weight mask computed for the individuals of East Asian Ancestry taken from 1000
Genomes Project; compared to ERSA 1.0 masked regions (pink hatching). IBIS workflow parameters:
--ibis-seg-len 5, --ibis-min-snp 400.

Each sample represents a JSON file with the task description. These files are available in the GRAPE GitHub repository
within the corresponding funnel subfolder.

Performance
The fastest IBIS + ERSA (--flow ibis) relatedness inference workflow takes about 22 hours to process 100k indi-
viduals dataset, see Figure 3. IBIS tool has a quadratic time complexity with respect to the total number of individuals.
The addition of KING (--flow ibis-king) increases the total running time by roughly 50%. Performance analysis
confirmed that IBIS is a simple and efficient tool. It allows the pipeline to process hundred of thousands of individuals
in a reasonable amount of time.

Use Cases
This section gives examples of the GRAPE pipeline commands which have to be run to infer relationships, or to evaluate
precision / recall metrics on a simulated dataset.

Relationship Inference with IBIS + ERSA
As the first step, reference data must be downloaded. We suppose that reference data to be stored in /media/ref
directory. Here and below we specify the --real-run flag. Without this flag GRAPE performs a dry-run.

Listing 1. Reference downloading for the IBIS + ERSA workflow

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py reference --ref-directory /media/ref --real-run

As the second step, preprocessing is performed. We suppose that the input file is located at /media/input.vcf.gz,
and it’s in hg38 build. Input file location specified by the flag --vcf-file. GRAPE working directory is /media/data.
It’s specified by the --directory flag.

Listing 2. Preprocessing for the IBIS + ERSA workflow

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py preprocess --ref-directory /media/ref

--vcf-file /media/input.vcf.gz --directory /media/data --assembly hg38 --real-run
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Figure 3. Performance comparison between IBIS + ERSA and IBIS + ERSA & KING workflows. GRAPE
was evaluated on a machine with 8 CPU cores and 32 GB of RAM. Both axes are in logarithmic scale.

The third step is the relationship inference. It is launched with the the find command. We use IBIS + ERSA workflow
that corresponds to the ibis value of the --flow parameter (default).

Listing 3. Relationship inference with the IBIS + ERSA workflow

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py find --flow ibis --ref-directory /media/ref

--directory /media/data --ibis-seg-len 7 --ibis-min-snp 500
--zero-seg-count 0.5 --zero-seg-len 5.0 --alpha 0.01 --real-run

GRAPE has an ability to specify additional parameters to the ERSA and IBIS algorithms to control the sensitivity and
the false positive rate. These parameters are described below. Default GRAPE parameters are quite conservative. They
provide a low false positive rate and low sensitivity in high (9+) degrees.

• [IBIS] --ibis-seg-len. Minimum length of the IBD segment to be found by IBIS. Higher values reduce false
positive rate and give less distant matches (default = 7 cM).

• [IBIS] --ibis-min-snp. Minimum number of SNPs per IBD segment to be detected (default = 500 SNPs).

• [ERSA] --zero-seg-count. Mean number of shared segments for two unrelated individuals in the population.
Smaller values tend to give more distant matches and increase the false positive rate (default = 0.5).

• [ERSA] --zero-seg-len. Average length of IBD segment for two unrelated individuals in the population.
Smaller values tend to give more distant matches and increase the false positive rate (default = 5 cM).

• [ERSA] --alpha. ERSA significance level [12] (default = 0.01).

Relationship Inference with IBIS + ERSA & KING
The first and the second steps are the same as for the previous use case. Third step is launched with specifying of the
ibis-king flow parameter. For this case GRAPE performs an estimation of the first three degrees of relationship with
KING. Other degrees are estimated with ERSA (see Figure 1). Resulted report of individual relationships for this case
contains additional king_degree and kinship columns. KING algorithm has no additional parameters.

Listing 4. Relationship inference with the IBIS + ERSA & KING workflow

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py find --flow ibis-king --ref-directory /media/ref

--directory /media/data --ibis-seg-len 7 --ibis-min-snp 500
--zero-seg-count 0.5 --zero-seg-len 5.0 --alpha 0.01 --real-run
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Relationship Inference with GERMLINE + ERSA & KING
At first, reference data must be downloaded. GERMLINE tool works with phased data only. So, if input data is unphased,
one should download additional reference dataset to perform phasing. For that purpose we use a reference panel from
1000 Genomes Project. This panel takes a considerable amount of disk space (∼ 25 GB), and requires significant time
to download. To download this panel one should specify --phase flag while using the reference command.

Listing 5. Reference downloading

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py reference

--ref-directory /media/ref --phase --real-run

The second step is the data preprocessing. We use --phase flag to apply phasing procedure during this stage.

Listing 6. Preprocessing for the GERMLINE + ERSA & KING workflow

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py preprocess --ref-directory /media/ref

--vcf-file /media/input.vcf.gz --directory /media/data
--assembly hg38 --phase --real-run

The third step is the relationship inference. One should specify --flow germline to use GERMLINE tool for the
IBD segments detection. ERSA parameters are the same as for IBIS + ERSA workflow. Parameters of the GERMLINE
are not configurable. Currently, we use the following sets of GERMLINE parameters: -min_m 2.5, -err_hom 2,
-err_het 1. See GERMLINE documentation for the parameters description [7].

Listing 7. Relationship inference with GERMLINE + ERSA & KING workflow

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py find --flow germline-king --ref-directory /media/ref

--directory /media/data --zero-seg-count 0.5 --zero-seg-len 5.0
--alpha 0.01 --real-run

Evaluation of the IBIS + ERSA Workflow on a Simulated Dataset
To perform simulation, at the first step one should download full reference dataset by using the reference command
with the --phase and --impute flags enabled. The second step is the simulation workflow. For that, one should use
simulate command of the GRAPE launcher.

Listing 8. Evaluation of the IBIS + ERSA workflow on a simulated dataset

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py simulate --flow ibis --ref-directory /media/ref

--directory /media/data --sim-params-file params/relatives_average.def
--sim-samples-file ceph_unrelated_all.tsv --assembly hg37 --real-run

Along with the parameters for preprocessing, ERSA and IBIS tools, simulation workflow has two additional parameters
listed below.

• --sim-params-file. File with parameters of simulation for the Ped-sim tool. For more information see [24].
We have prepared several simulation parameters files, and stored them in the GRAPE repository on GitHub.

• --sim-samples-file. File with a list of individuals from 1000 Genomes Project which are used as founders
for the simulations. One can choose ceph_unrelated_all.tsv (unrelated individuals from CEU population),
or all.tsv (all individuals available in 1KGP).

The output files include a list of kinship matches found in simulated dataset, precision / recall plots, and a confusion
matrix to compare the detected degrees of relationship with the true degrees. Detailed information on the computed
metrics is presented in the Results section.

Evaluation of GERMLINE + ERSA & KING Workflow on a Simulated Dataset
The first step is to download the reference dataset (see the previous section). The second step is to run simulate
command with specifying germline-king flow and the --phase flag.
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Listing 9. Evaluation of the GERMLINE + ERSA & KING workflow on a simulated dataset

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py simulate --flow germline-king

--ref-directory /media/ref --directory /media/data --assembly hg37 --phase
--sim-params-file params/relatives_average.def
--sim-samples-file ceph_unrelated_all.tsv --real-run

Computation of the IBD Segments Weighing Mask
GRAPE has a dedicated command to compute the weight mask, compute-weight-mask. It performs IBD segments
detection for the input VCF file and then analyse IBD segments distribution to compute the weight mask. The resulting
files consist of a weight mask file in JSON format and a visualization of the mask (see Figure 2)

Listing 10. Computation of the IBD segments weighing mask

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py compute-weight-mask

--directory /media/background --assembly hg37
--real-run --ibis-seg-len 5 --ibis-min-snp 400

For the example above the resulting files are store in the /media/background/weight-mask/ directory.

Usage of the IBD Segments Weighing Mask
To apply weight mask during the relatedness detection (find command), one should specify the mask file with the
--weight-mask parameter. When used, the ERSA 1.0 exclusion mask is disabled.

Listing 11. Usage of the IBD segments weighing mask

docker run --rm -it -v /media:/media
genx_relatives:latest launcher.py find --flow ibis --ref-directory /media/ref

--weight-mask /media/background/weight-mask/mask.json
--directory /media/data --assembly hg37
--real-run --ibis-seg-len 5 --ibis-min-snp 400

Results
To test the accuracy and flexibility of the pipeline, we performed an extensive testing on both real and simulated
datasets. As a sanity check, we took Allen Ancient DNA Resource (AADR) dataset [30] and made sure that GRAPE does
not produce any kinship matches between ancient and present-day individuals.
Next, we have run Khazar origins dataset [31] through the GRAPE. Khazar dataset contains 1770 samples from 106
Jewish and non-Jewish populations. The dataset contains significant amount of data from small homogeneous pop-
ulations. The KING analysis was previously applied to this dataset by the authors [31] to identify close relatives up
to the third degree. We applied GRAPE and found 1715 putative relationships. Most of them have a degree of 4+.
This result highlights the fact, that total length of IBD segments in small homogeneous populations is several orders of
magnitude higher then for the heterogeneous populations in Europe and Asia [32, 33]. This is an obvious obstacle for
the relatedness detection. There is no method known to us to address this issue while using genotypic data obtained
from SNP arrays. Whole genome sequencing has a potential to solve this problem, since rare mutations should break
long IBD segments.
As for the data from genetic testing companies, GRAPE has been successfully applied to the database of 100k+ customers
of Atlas Biomed [34], a company that provides direct-to-consumer genetic tests. During this test GRAPE was proven to be
able to handle diverse data obtained from different chips, reference alignments, and other possible data inconsistencies.

Precision / Recall Analysis on Simulated Datasets
Finally, GRAPE was evaluated on simulated datasets. We performed the simulation using unrelated founders from 1KGP
Affymetrix genotype chip data. This chip contains approximately 900k SNPs. The simulation was carried out with the
Ped-sim package. Using this tool, we produced several pedigree structures with 8 generations, and a maximum degree
of relationship equals to 14. Then we joined all of the pedigrees into one dataset, and performed the precision / recall
analysis of the GRAPE pipeline for the different flows. For each degree i of relationships we computed precision and
recall metrics:

Precision(i) =
TP(i)

TP(i) + FP(i)
; Recall(i) =

TP(i)
TP(i) + FN(i)

. (2)
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Here TP(i), FP(i), FN(i) are the numbers of true positive, false positive, and false negative relationship matches pre-
dicted for the degree i. In our analysis we used non-exact (fuzzy) interval metrics. For the 1st degree, we require an
exact match. For the 2nd, 3rd, and 4th degrees, we allow a degree interval of ±1. For example, for the 2nd true degree
we consider a predicted 3rd degree as a true positive match. For the 5th+ degrees, we use the ERSA confidence intervals
which are typically 3-4 degrees wide. For 10th+ degrees, these intervals are 6-7 degrees wide. We also plot a confusion
matrix for the predicted vs true degrees.
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Figure 4. Interval (fuzzy) precision / recall (left panel) and confusion matrix (right panel) for
the IBIS + ERSA & KING workflow, obtained for a simulated dataset. Parameters of the work-
flow: --ibis-seg-len 7, --ibis-min-snp 500, --zero-seg-count 0.5, --zero-seg-len 5,
--alpha 0.01.

Results of the simulation for the IBIS + ERSA & KING workflow is presented in Figure 4. The following set of pa-
rameters was used: --ibis-seg-len 7, --ibis-min-snp 500, --zero-seg-count 0.5, --zero-seg-len 5,
--alpha 0.01. Confusion matrix is presented on the right panel in Figure 4. There -1 stands for no-relationship. The
pipeline shows recall above 90%+ for degrees from 1 to 5. It detects all relatives with 1-4 degrees. GRAPE found no
false positive matches, i.e. it does not found any relationships among unrelated individuals, Recall(−1) = 1. Precision is
above 90% among all detected degrees. We set these parameters as default for this GRAPE workflow. These parameters
are quite conservative, i.e. they provide high precision but low sensitivity.
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ERSA & KING workflow, obtained for a simulated dataset. Parameters of the workflow: --ibis-seg-len
5, --ibis-min-snp 400, --zero-seg-count 0.1, --zero-seg-len 5, --alpha 0.01.
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One can relax GRAPE parameters of get more relatedness matches for high degrees. On the other hand, the num-
ber of false positive matches increases as well. Figure 5 shows the simulation results for the IBIS + ERSA & KING
workflow for slightly relaxed parameters: --ibis-seg-len 5, --ibis-min-snp 400, --zero-seg-count 0.1,
--zero-seg-len 5, --alpha 0.01. Number of detected relationships increases significantly for higher (≥8) de-
grees. But false positive matches arise as well, i.e. Recall(−1) ̸= 1.
Simulation results for the GERMLINE + ERSA & KING workflow is presented in Figure 6. We used the same ERSA
parameters as for Figure 4: --zero-seg-count 0.5, --zero-seg-len 5, --alpha 0.01. In comparison to Fig-
ure 4, one can see that GERMLINE slightly decrease recall for 6th and 7th degrees, but improves it for higher (≥8)
degrees. Precision is above 95% among all detected degrees. No false positive matches were found, i.e. Recall(−1) = 1.
Our experiments showed that, in comparison to IBIS, GERMLINE is better suited for a careful analysis of relatively small
cohorts with phased data. IBIS algorithm is less sensitive, but for segments with length above 7 cM, it produces the
same results as GERMLINE, while working with unphased data.
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Figure 6. Interval (fuzzy) precision / recall (left panel) and confusion matrix (right panel) for the
GERMLINE + ERSA & KING workflow, obtained for a simulated dataset. Parameters of the workflow:
--zero-seg-count 0.5, --zero-seg-len 5, --alpha 0.01.

Performance of the IBD Segments Weighing
Our simulation experiments showed that both weighing and exclusion approaches reduce false-positive rate and signif-
icantly improves the overall performance of the pipeline. By the way, weighing mask can be better adapted to specific
ancestries, and after additional parameters tuning may slightly outperform ERSA 1.0 approach. In Figure 7 compari-
son between between the ERSA 1.0 exclusion mask and the GRAPE weight mask is presented for a simulated dataset
with the founders of East Asian Ancestry from 1KGP. IBIS workflow was used. Weight mask was taken from Figure 2.
Parameter --zero-seg-count was varied while using weight mask to achieve the same level of precision. One can
see, that with approximately the same precision, weighing approach gives several percentages higher recall.

Comparison with TRIBES
In the end, we compared GRAPE with TRIBES [23]. TRIBES is an earlier open-source pipeline for relatedness detection.
The pipeline combines the GERMLINE algorithm for IBD segments detection and the calculation of the genome pro-
portion with zero alleles inferred IBD (IBD0) for each pair to detect the relatedness. If the data is not phased, TRIBES
provides an ability to phase data with the EAGLE tool. This part of TRIBES is similar to one of the corresponding
GRAPE workflows of IBD segments detection. In contrast to GRAPE, TRIBES estimates degrees of relationship accord-
ing to expected IBD0 segments proportion ranges. GRAPE uses the ERSA algorithm, which, to our knowledge, is a more
advanced approach.
We have run TRIBES pipeline on the same simulated datasets. Since the simulated datasets contain unphased data, we
also applied built-in phasing procedure from TRIBES. The result of the analysis is presented in Figure 8. TRIBES has
demonstrated high detection power for distant relationships of up to the 12th degree. Given that many 13+ degree
relatives do not share any IBD segments, this is near a theoretical limit. However, TRIBES produces a huge number of
false positive matches, see confusion matrix in the right panel of the Figure 8. Since TRIBES lacks options that allow
users to control false positives rates by varying pipeline parameters, it becomes a crucial drawback. This obstacle does
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Figure 7. Interval (fuzzy) precision / recall comparison between the ERSA 1.0 exclusion mask and the
GRAPE weight mask. Metrics differences are marked with colors: green, if the metric has increased
while using weighing; and red, if the metric has decreased. Common parameters for the both work-
flows: --ibis-seg-len 5, --ibis-min-snp 400 --zero-seg-len 5, --alpha 0.01. Parameter
--zero-seg-count equals 0.1 while using weight mask, and 0.3 while using original ERSA 1.0 exclu-
sion mask.
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Figure 8. Interval (fuzzy) precision / recall (left panel) and confusion matrix (right panel) for the TRIBES
pipeline results, obtained for a simulated dataset.

not allow the TRIBES pipeline to be adapted for applications, where desired precision / recall rate may vary depending
on different business or research objectives.

Conclusions
In the current paper, we introduced GRAPE: genomic relatedness detection pipeline. We performed the careful selection
of tools, and combined various preprocessing steps, IBD segments detection tools, and algorithms of estimations of
relationship into a single pipeline. One of the possible workflows of the pipeline is based on IBIS tools and can work
with unphased data. It’s suitable for the analysis of large cohorts in a relatively short time. Using this workflow
GRAPE can perform relationship estimation among 100k samples in 22 hours. Another possible workflow is based on
GERMLINE IBD segments detection tool and works with phased data. Our experiments showed that GERMLINE has
the most detection power, while IBIS option is the fastest, easiest to use, and has sufficient accuracy for 1-8 degrees of
relationship. Finally, we compared GRAPE with TRIBES, another relatedness detection pipeline. In contrast to GRAPE,
TRIBES produce a huge number of false positive matches, requires phased data, and lacks of important preprocessing
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and evaluation options, that makes it impractical for various application. GRAPE is proved to be reliable and accurate
tool for the analysis of close and distant degrees of kinship. It provides an ability to control a false positive rate, can
work with heterogeneous data obtained from various chips, and is ready for production integration.
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