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Abstract 

Single-cell RNA-sequencing (scRNA-seq) offers unprecedented insight into heterogenous biology, 

allowing for the interrogation of cellular populations and gene expression programs at single-cell resolution. 

Here, we introduce scPipeline, a single-cell analytic toolbox that offers modular workflows for multi-level 

cellular annotation and user-friendly analysis reports. Novel methods that are introduced to facilitate 

scRNA-seq annotation include: (i) co-dependency index (CDI)-based differential expression; (ii) cluster 

resolution optimization using a marker-specificity criterion; (iii) marker-based cell-type annotation with 

Miko scoring; and (iv) gene program discovery using scale-free shared nearest neighbor network (SSN) 

analysis. Our unsupervised and supervised procedures were validated using a diverse collection of scRNA-

seq datasets and we provide illustrative examples of cellular and transcriptomic annotation of 

developmental and immunological scRNA-seq atlases. Overall, scPipeline provides a flexible 

computational framework for in-depth scRNA-seq analysis. 

Introduction 

Single-cell RNA-sequencing (scRNA-seq) has facilitated the characterization of diverse cellular 

populations at an unprecedented resolution, with the evolution of high-throughput protocols now allowing 

the profiling of millions of cells in a single experiment. While experimental protocols such as SMART-

seq21, Drop-seq2, sci-RNA-seq33 and commercial 10X genomics vary in approach and scale, gene 

expression  matrices (gene-by-cell count) are ultimately generated and represent a common starting point 

for most downstream analyses. 

The development of computational toolboxes like Seurat4-7, Scanpy8, and Cell Ranger (10X 

Genomics, commercial) facilitate scRNA-seq analyses broadly across a diverse array of research topics. 

These tools offer application-tailored functionalities, including data pre-processing, normalization, quality 

control (QC) and clustering analysis. However, comprehensive analyses still require a degree of 

computational expertise. With the more recent emergence of interactive and notebook-based analysis 

platforms, scRNA-seq analysis has become more accessible to users lacking high-level computational 

skills9-11. Despite the user-friendly interface offered by these platforms, difficulties can arise with custom-

tailored analyses, or when data integration between different scRNA-seq platforms is required. To address 

these limitations, we have developed scPipeline, a report-based single-cell analytic toolbox. scPipeline is 

offered as a series of Rmarkdown scripts that are organized into analysis modules that generate curated 

reports. The modular framework is highly flexible and does not require complete reliance on a single 

analysis platform. Additionally, the self-contained reports generated by each module provide a 
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comprehensive analysis summary and log of analytic parameters and scripts, thereby ensuring reproducible 

and shareable analysis workflows. 

In tandem to scPipeline, we developed the scMiko R package that comprises a collection of 

functions for application-specific scRNA-seq analysis and generation of scPipeline analytic reports. We 

describe and validate novel scRNA-seq methods implemented in scMiko that facilitate multi-level cellular 

and functional annotation. Specifically, using eight reference scRNA-seq datasets (Table 1), we validate 

the co-dependency index (CDI) as a differential expression (DE) method that identifies binary 

differentially-expressed genes (bDEGs), propose a specificity-based resolution criterion to identify optimal 

cluster configurations, describe the Miko scoring pipeline for cell-type annotation, and introduce scale-free 

shared nearest neighbor network (SSN) analysis as a gene program discovery algorithm. 

The scMiko R package (https://github.com/NMikolajewicz/scMiko) and scPipeline scripts 

(https://github.com/NMikolajewicz/scPipeline) are available on GitHub. Step-by-step tutorials and 

documentation are also provided at https://nmikolajewicz.github.io/scMiko/. 

Results 

1. Overview of scPipeline modules 

Here we introduce scPipeline, a modular collection of R markdown scripts that generate curated analytic 

reports for scRNA-seq analyses (Fig 1). For a given gene expression matrix, the QC and preprocessing 

module performs data filtering (based on mitochondrial content and gene recovery) and normalizes the 

count matrix using the scTransform algorithm implemented in Seurat12. The module outputs a Seurat object 

(for downstream analyses), and a corresponding standalone HTML report that summarizes the results13. In 

the case of multiple scRNA-seq datasets (e.g., experimental replicates, multiple studies and/or public 

datasets), we provide an integration module that leverages the canonical correlation analysis (CCA) and 

reciprocal principal component analysis (rPCA) approaches implemented in Seurat to facilitate data 

integration for downstream analyses5. Once data has been preprocessed, cells are clustered using the cluster 

optimization module, where we introduce a novel specificity-based criterion for identifying the optimal 

resolution for Louvain community-based clustering. For each candidate cluster resolution, we also report 

DEGs identified using the Wilcox and CDI DE methods, for which we highlight specific and distinct 

applications in our current work. Once the optimal cluster configuration has been identified, the annotation 

modules facilitate cell type and cell state annotation using a priori cell-type markers, analysis of gene 

expression and associations, and unsupervised gene program discovery and functional annotation. Notably, 

the cell annotation module utilizes our novel gene set scoring method (i.e. the Miko score) to reliably 

annotate cell clusters using cell-type-specific markers. The Miko score is distinct from existing gene set 
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scoring methods in that it adjusts for inherent variations in gene set size, thereby enabling direct comparison 

and ranking of gene set scores computed across gene sets of varying size. To facilitate gene expression 

exploration, we also developed a gene expression and association module which enables users to explore 

the expression pattern of query genes and predict gene function based on gene co-similarity profiles. 

Similarity profiles can be constructed using various methods, including Spearman correlation, rho 

proportionality, and CDI metrics14. These profiles are then functionally annotated to identify putative 

pathways correlated with the gene of interest. Finally, the gene program discovery module is used for gene 

program detection and transcriptomic network visualization. In addition to providing validated gene 

program discovery methods (e.g., ICA and NMF), we introduce the scale-free shared nearest neighbor 

network (SSN) method, which we demonstrate has superior recovery of known gene ontologies (GO) and 

enrichment of STRING-curated protein-protein interactions (PPI). Collectively, scPipeline offers a 

streamlined and reproducible workflow with user-friendly and intuitive reports and contributes to the 

current computational resources available for scRNA-seq.  Importantly, its modular framework provides a 

foundation upon which future analysis modules can be developed to support additional scRNA-seq 

analyses. 

2. Co-dependency index identifies cell-type specific markers 

Robust identification of DEGs between cell populations is critical in scRNA-seq analyses. DEGs can be 

further subclassified into two different groups: graded DEGs (gDEG), in which genes are expressed in both 

populations, but to varying degrees; and binary DEGs (bDEG), in which genes are exclusively expressed 

in one population but not the other (Fig 2A). Popular scRNA-seq DE methods, such as the Wilcoxon 

method15, identify DEGs indiscriminately and require additional downstream filters to parse out bDEGs. 

Thus, a method tailored towards specifying bDEGs is needed.  

 Here we propose using the CDI to identify cluster-specific bDEGs within scRNA-seq data. Using 

eight diverse public scRNA-seq datasets (Table 1), we identified significant DEGs using the CDI and 

Wilcoxon methods, and evaluated each method’s relative performance and behavior. The CDI method 

identified 66% fewer DEGs than the Wilcoxon method (1241 vs. 3653 genes, p = 0.017) (Fig 2B). These 

results reflect that the Wilcoxon method has the tendency to indiscriminately identify both gDEGs and 

bDEGs, whereas CDI selectively identifies bDEGs (Fig 2C, top). Among all the significant DEGs obtained 

by either method, the median Jaccard similarity was 0.09; however, when only the top 50 DEGs [ranked 

by -log10(p)] were considered, the Jaccard similarity increased to 0.266, suggesting a bias towards bDEGs 

among top DEGs identified by Wilcoxon (Fig 2C, bottom). Consistent with prior reports, the Wilcoxon 

method was systematically biased towards calling highly-expressed genes differentially-expressed. While 

this bias was present for the CDI method, it was significantly lower in contrast to the Wilcoxon method 
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(Fig 2D, p = 2.7e-3), and in the range of the best performing methods evaluated previously15. Finally, we 

evaluated the cluster-discriminating accuracy of the top 50 genes identified by each method (Fig 2E-I). 

While the Wilcoxon method identified genes with higher cluster-discriminating sensitivity (0.90 vs. 0.56, 

p = 9.8e-5; Fig 2F) and negative predictive value (NPV; 0.87 vs. 0.70, p = 1.2e-3; Fig 2I), the CDI method 

had superior specificity (0.95 vs. 0.75, p = 5.4e-3; Fig 2E, G) and positive predictive value (PPV; 0.91 vs. 

0.75, p = 7.6e-4, Fig 2H). As an illustrative example, we evaluated the top 50 DEGs in yolk-sac 

mesoderm16, where we observed a higher degree of specificity among the top markers identified by the CDI 

method (Fig 2J). Together, these analyses establish the CDI method as an approach to specifically 

identifying bDEGs.  

3. Marker specificity-based criterion for identifying optimal cluster resolutions 

scRNA-seq-based cell type identification relies on unsupervised clustering methods; however, resulting 

cell clusters can vary drastically depending on what resolution is used to perform clustering. Many 

approaches have been proposed to guide the selection of the optimal resolution, including silhouette index17 

and resampling-based methods (e.g., chooseR18 and MultiK19). However, these methods are motivated by 

theoretical rather than biological criterion. Having demonstrated that the CDI method yields cluster-specific 

markers (Fig 2), we propose to define cell-types at a clustering resolution that maximizes the specificity of 

markers obtained in each cluster. We proceed by first clustering over a range of candidate resolutions, and 

the top specific marker in each cluster at each resolution is identified using the CDI method (Fig 3A, step 

1). Subsequently, specificity curves are generated for each resolution and used to obtain aggregate 

specificity metrics. The resolution at which maximal specificity is observed is taken as the optimal 

resolution, 𝑆𝑝𝑒𝑎𝑘 (Fig 3A, step 2). However, acknowledging that there exist multiple levels of resolution 

that are biologically relevant (e.g. cell types vs. cell subtypes)19, we observed that the specificity curves in 

many datasets exhibited “elbows”, which we hypothesize represent additional biologically relevant 

clustering configurations, and we termed these 𝑆𝑒𝑙𝑏𝑜𝑤1 and 𝑆𝑒𝑙𝑏𝑜𝑤2. 

To evaluate the performance of our specificity-based resolution selection criteria (𝑆𝑝𝑒𝑎𝑘, 𝑆𝑒𝑙𝑏𝑜𝑤1, 

and 𝑆𝑒𝑙𝑏𝑜𝑤2), we used eight public scRNA-seq datasets, and adopted author-curated cell-types as “ground-

truth” clusters. We showed that our specificity-based criteria favor clustering configurations that align with 

manually curated cluster labels, as indicated by the lack of significant difference between the adjusted Rand 

index (ARI; i.e., a measure of classification consistency) obtained at 𝑆𝑝𝑒𝑎𝑘 and 𝐴𝑅𝐼𝑚𝑎𝑥 resolutions (Fig 

3B). By comparison, chooseR (a resampling-based resolution selection criteria), 𝑆𝑒𝑙𝑏𝑜𝑤1 and 𝑆𝑒𝑙𝑏𝑜𝑤2 

yielded clusters with significantly lower ARI, suggesting that these cluster configurations represent cell 

subtypes, whereas clusters obtained at the 𝑆𝑝𝑒𝑎𝑘 resolution represent well-defined cell type clusters (Fig 
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3B). In support of this, 𝑆𝑝𝑒𝑎𝑘 clusters were associated with significantly more specific markers (i.e., top 

markers were more specific) than “ground truth” clusters (p = 0.045), whereas there was no significant 

difference observed for the other cluster configurations compared to “ground truth” clusters. As a 

representative example, we applied our specificity-based resolution selection approach to the human 

gastrulation scRNA-seq data published by Tyser and colleagues (2021)16 (Fig 3D). Compared to curated 

clusters, 𝑆𝑝𝑒𝑎𝑘 clusters were associated with a higher specificity index (0.69 vs. 0.56) (Fig 3E) which was 

verified by visual inspection (Fig 3F), and further, it was demonstrated that the top markers associated with 

𝑆𝑝𝑒𝑎𝑘 clusters were significantly more sensitive (i.e., high expression fraction; p = 0.02) than those obtained 

in “ground truth” clusters (Fig 3G). Our results demonstrate that a specificity-based resolution selection 

criterion reliably identifies cluster configurations that reflect biologically relevant cell types.   

4. Marker-based cluster annotation with Miko score 

Transcriptome-wide expression profiling has led to the generation and availability of gene sets for 

cell-type identification. Nonetheless, the external validity of these genes sets is remarkably inconsistent, 

largely stemming from the fact that many gene sets are derived using one-versus-all DE methods on genetic 

backgrounds that lack population-level phenotypic diversity. While elucidating the exact conditions under 

which a gene set reliably identifies a given cell type is beyond the scope of the current study, we argue that 

cell-type specific gene sets obtained using one-versus-all DE methods are most valid when derived from 

diverse cell atlases. To complement our marker-based cluster annotation efforts, we performed DE analysis 

on the eight public scRNA-seq datasets presented in Table 1, each comprising highly diverse cell types. 

Together with cell type markers reported in Zhao 201920 and the PanglaoDB21, we provide a catalog of cell 

type markers comprising 1043 (redundant) cell type-specific marker sets spanning 11748 unique genes. 

Representating the cell-type marker catalog as a bipartite network revealed major cell type hubs including 

epithelial, mesenchymal, endothelial, and lymphoid/hematopoietic cell types, in addition to tissue-specific 

cell ontologies like cardiac, neural, and glial cells (Fig 4A).  

Many marker-based cell annotation methods have been described22,23; however, one limitation of 

these methods is a lack of consideration for gene set size. As the number of genes in a gene set increases, 

pooled signature scores become less sensitive to the influence of highly expressed individual genes. This 

gene set size dependency leads to a bias, such that scores obtained from smaller gene sets tend to have more 

spurious enrichments than those obtained from larger gene sets (Fig 4B), precluding unbiased comparison 

of signature scores obtained over a range of unevenly sized gene sets. Motivated by this limitation, we 

introduce the Miko score, a cell cluster scoring method that accounts for variations in gene set sizes. The 

Miko score also provides a hypothesis-testing framework capable of rejecting non-significantly enriched 

gene sets (Fig 4).  For a given single-cell dataset, query and size-matched random gene sets are scored using 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2022. ; https://doi.org/10.1101/2022.03.13.484162doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.13.484162
http://creativecommons.org/licenses/by-nc/4.0/


 7 

a standardized implementation of AddModuleScore(…), and the difference between query and random 

module scores is scaled using the size-adjusted standard deviation estimate obtained from a gene set size-

dependent null model (Fig 4B) to yield the Miko score (Fig 4C). The standardized implementation of 

AddModuleScore(…) accounts for cell-to-cell variation in gene expression, while scaling by the size-

adjusted standard deviation estimate adjusts for size-related dependencies and results in a test statistic from 

which a p-value can be derived. 

The performance of Miko score-based cell annotation was evaluated using cell-type-specific gene 

sets derived for each cell type in the mouse gastrulation dataset reported by Pijuan-Sala and colleagues24.  

To assess the robustness of the Miko score and account for inaccuracies in gene set definitions, each set 

was permuted to varying extents, such that a subset of cell-type specific markers in each gene set were 

replaced with an equal number of randomly sampled genes (Fig 4D). Using non-permuted gene sets, the 

Miko score-based enrichments were 100% sensitive and 94% specific for cluster-specific gene sets (Fig 

4E). When 25% of genes were permuted, we observed 93% sensitivity and 96% specificity.  However, at 

higher permutation rates, we observed a significant decline in sensitivity such that at 50% permutation there 

was 54% sensitivity and 98% specificity. We also found that filtering enrichments using a coherence 

criterion resulted in marginally improved specificity at the cost of sensitivity (Fig 4E). As an illustrative 

example, we calculated Miko scores using our cell-type marker catalog (Fig 4A; Pijuan-Sala-derived 

markers were omitted from the catalog) and demonstrated that author-curated endoderm and erythroid 

populations were accurately annotated using our Miko score pipeline (Fig 4F). Collectively, our analyses 

establish the Miko score as a marker-based scoring algorithm that is robust to gene set inaccuracies and 

capable of facilitating unbiased comparison across a large collection of unevenly sized gene sets.  

5. Gene program discovery using scale-free topology shared nearest network analysis  

Unsupervised gene program discovery offers a complementary approach to annotating cell clusters 

in scRNA-seq, which aim to group genes based on co-expression similarity profiles. Here we introduce the 

scale-free topology shared nearest network (SSN) method to identify gene expression programs (Fig 5A). 

In brief, the gene expression matrix is dimensionally reduced using principal component analysis (PCA). 

Each gene’s K-nearest neighbors (KNN) is then determined by Euclidean distance in PCA space. The 

resulting KNN graph is used to derive a shared nearest neighbor (SNN) graph by calculating the 

neighborhood overlap between each gene using the Jaccard similarity index. Adopting the framework from 

weighted gene correlation network analysis (WGCNA)25, an adjacency matrix that conforms to a scale-free 

topology is then constructed by raising the SNN graph to an optimized soft-thresholding power, which 

effectively accentuates the modularity of the network (Fig 5B). The resulting adjacency matrix is used to 

construct the network UMAP embedding and to cluster genes into programs (or modules) by Louvain 
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community detection. To reduce noise, genes with low connectivity (i.e., low network degree) are pruned 

so that only hub-like genes are retained for downstream annotation and analysis.  

Compared to independent component analysis (ICA) and non-negative matrix factorization (NMF), 

SSN gene programs had significantly superior GO term recovery and STRING PPI enrichment (Fig 5C, 

D). The importance of enforcing a scale-free topology was evident in the comparison between SN (shared 

nearest neighbor network without scale-free topology) and SSN (shared nearest neighbor network with 

scale-free topology) (Fig 5C, D). On average, the relative computational runtimes were 0.54, 1, and 3.9 for 

NMF, SSN, and ICA methods, respectively, thereby establishing NMF as the fastest algorithm, but only by 

a small margin over SSN which significantly outperformed ICA (Fig 5E).  

We demonstrated the use of SSN gene program discovery and network visualization with two case 

examples (Fig 5F-L). In the first case, we constructed an SSN network using scRNA-seq data of the murine 

immune compartment in brains engrafted with the syngeneic GL261 GBM cell line26 (Fig 5F). Functional 

annotation of each gene program revealed a diverse transcriptomic landscape (Fig 5G), including interferon 

signaling and pro-inflammatory programs that were highly active in monocyte/macrophage and microglial 

sub-populations, respectively (Fig 5H). In addition to facilitating further cellular characterization, 

functionally annotated gene programs offer opportunities to predict the function of previously 

uncharacterized genes using a “guilt-by-association” approach. For example, cross-referencing genes 

belonging to the interferon-signaling gene program in the SSN graph with PubMed-indexed publications, 

we find the gene Ms4a4c had not been previously associated with “inflammation”, “macrophage” or 

“interferon”. We predict that Ms4a4c, a previously uncharacterized gene, may have a role in the 

inflammatory process (Fig 5I). In our second example, we demonstrate how SSN gene program discovery 

can identify and facilitate the refinement of robust gene signatures (Fig S2). Briefly, we constructed a SSN 

network from scRNA-seq data derived from a murine developing brain27 (Fig S2A-B) and show that the 

expression of each gene belonging to the angiogenesis program is positively correlated with the aggregate 

gene program score when examined in the developing murine brain data from which the signature was 

derived (Fig S2C, left). Notably, in two other independent datasets (murine and human gastrulation), only 

a subset (albeit majority) of genes were positively correlated with the program score (Fig S2C, middle, 

right). By taking the 3-way intersection of coherent genes across these three relevant datasets, we find a 

64-gene signature (Fig S2D) that was specifically enriched among the hematogenic endothelial populations 

in all three scRNA-seq datasets (Fig S2E). Further supporting the validity of this gene signature refinement 

strategy, we previously applied this approach in the context of glioblastoma, where we derived robust 

prognostic signature panels that validated across multiple independent patient cohorts.28  
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Discussion  

Overview. We have described a pair of computational resources, scMiko (R package) and scPipeline 

(dashboard analysis reports), and propose new methods to facilitate multiple levels of cluster annotation in 

scRNA-seq data. Our computational tools follow established scRNA-seq analytic practices, and offer 

modular workflows that enable data preprocessing, normalization, integration, clustering, annotation, gene 

program discovery and gene association analyses. Among the novel methods presented in this work, we 

validated the CDI as a DE method that identifies binary DEGs. Given the inherent specificity of bDEGs, 

we then adopted the CDI algorithm to derive a specificity-based resolution selection criterion for 

determining optimal clustering configurations and benchmarked the performance of this approach against 

ground truth annotations. Upon identifying the optimal cluster resolution(s), we demonstrate how to 

annotate clusters using our Miko Scoring pipeline, which facilitates unbiased scoring of a diverse set of 

variable-sized cell-type-specific gene sets and accepts or rejects candidate annotations using a hypothesis-

testing framework.  Finally, we describe scale-free shared nearest neighbor network (SSN) analysis as an 

approach to identify and functionally annotate gene sets in an unsupervised manner, providing an additional 

layer of functional characterization of scRNA-seq data. 

Annotation methods. The annotation methods presented here, namely finding bDEGs with CDI, cell-type 

annotation with Miko Scoring, and gene program discovery and functional annotation with SSN analysis, 

all complement and expand the extensive list of analytic methods for scRNA-seq29,30. It has become evident 

from systematic benchmarking efforts that no single method is enough to probe single cell datasets in-

depth, and that several methods offer unique advantages with regards to biological accuracy, 

interpretability, computational complexity, visualization, or accessibility14,15,31.  

 Cluster optimization. Reliable annotation begins with identifying the optimal clustering 

configuration. Although there are many ways to cluster single-cell data, including K-means (SAIC32, 

RaceID333), hierarchical (CIDR34, BackSPIN35, SINCERA36) and density-based (Monocle237, GiniClust38) 

clustering, we used the community-detection based Louvain approach implemented in Seurat due to its low 

run time and high performance index39,40 and focused on optimizing the resolution that controls the number 

of resolved clusters.  If cells are clustered at an inappropriately low resolution (i.e. under-clustered), there 

is a risk of amalgamating distinct cell types into single populations, resulting in a loss of resolution in 

cellular identity. In contrast, if the resolution is too high (i.e. over-clustered), multiple near-identical cellular 

lineages emerge and obscure the true complexity of the dataset. At the same time, it is recognized that 

clustering configurations at multiple different resolutions may be biologically relevant, and reflect different 

layers of cellular identities, such as cell types at lower resolutions (e.g., macrophage), and cellular sub-

types (M1 vs. M2 polarized macrophage) at higher resolutions19. There are different selection criteria for 
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identifying the optimal resolution(s), including the silhouette index17 and resampling-based methods (e.g., 

chooseR18, MultiK19); however, these methods are motivated by theoretical rather than biological criterion. 

The specificity-based resolution selection criterion described in our current work identifies cluster 

configurations coinciding with maximal marker specificity. This is a desirable property for downstream 

applications that require individual biomarkers to resolve cell types, such as flow cytometry or imaging. 

Additionally, when evaluated over multiple candidate resolutions, more than one biologically relevant 

resolution is often identified, manifesting as “elbows” on the specificity-resolution curve (akin to the elbow 

method used for selecting the number of principal components on a Scree plot). We benchmarked the 

performance of our specificity-based criterion against author-curated “ground truth” annotations and 

demonstrated that a specificity-based criterion outperforms the resampling-based approach used in 

chooseR. We note that a limitation of our method relates to the stability and reproducibility of clusters, 

especially in single-replicate data sets. Artifact genes (i.e., genes that are highly expressed exclusively in a 

small subset of cells belonging to a single experimental replicate) have been shown to produce distinct 

cellular clusters and in the absence of experimental replicates, and it is difficult to determine whether these 

clusters represent technical artifacts or real biology41. While this can be addressed through profiling 

multiple experimental replicates41, it may also be circumvented by expanding our specificity-based criterion 

to consider the top 5-10 markers, rather than the top single cluster-specific marker, at each resolution. 

Finally, although we evaluated our specificity-based criterion using the Louvain clustering approach, the 

criterion may be applied to any clustering method that requires optimization of the number of resolved 

clusters (e.g., K-means). We expect that our specificity-based criterion will complement existing 

optimization methods to find meaningful cluster configurations. 

 CDI DE method. The CDI DE method offers an approach to identifying bDEGs, which have 

applications distinct from gDEGs.  Whereas gDEGs are useful for identifying differences that occur on a 

spectrum (e.g., neural development), bDEGs have greater utility in identifying cell-type-specific markers 

(e.g., FACS sorting of CD34+ for hematopoietic stem cells), diagnostic biomarkers, disease targets (e.g., 

CART-cell therapy), and artifact genes in scRNA-seq datasets41. A known limitation of existing DE 

methods for scRNA-seq is the failure to account for variation in biological replicates, and the CDI approach 

is no exception15. Nonetheless, we expect that with appropriate biological replicates and external validation, 

the CDI DE method will contribute to the identification of specific biomarkers.  

 Cell annotation. The Miko scoring cell-type annotation workflow described in this work 

supplements the existing repertoire of marker-based annotation algorithms including scCatch42, SCSA43, 

SCINA44, and CellAssign45. The hypothesis testing framework implemented in the Miko scoring pipeline 

enables the rejection of unlikely cell-type annotations, a property that is shared by SCINA and CellAssign. 
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However, unlike its predecessors, Miko scoring explicitly corrects for gene set size biases, thereby enabling 

unbiased comparison of scores over a large collection of various sized gene sets. This property enables 

prioritization of the most likely annotation if multiple marker sets are significantly scored for a given 

population. Coupled with our word cloud-based visualizations introduced in scMiko and scPipeline, 

candidate cell-type annotations can be easily inspected and interpreted.  

Cell-type marker database. To facilitate marker-based annotation of cell types, several reference 

databases are available including CellMatch42, CellMarker20, PanglaoDB21, CancerSEA46, and MSigDB 

(collection 8)47. We contribute to these resources by deriving marker sets from diverse single-cell atlases 

(Table 1), and through network-based visualization we demonstrate the hierarchical complexity of cell 

ontology (Figure 4A). While the network organization was generally coherent with the cell-type 

annotations assigned to the marker sets, an inspection of select local neighborhoods in our cell-type marker 

network revealed occasional co-similarities between marker sets from heterogeneous cell types, reflecting 

either inaccuracies in marker curation or similarities in cellular processes across dissimilar cell types. Based 

on these observations, we emphasize that marker-based annotations are only as good as the cell-type 

prescribed to the original dataset. Thus, integrating a large collection of marker sets from multiple 

independent sources to achieve consensus annotations, or alternatively, using a robustly validated collection 

of marker sets can attain optimal results. 

Gene program discovery. The SSN method for gene program discovery was inspired by the 

established shared-nearest neighbor (SNN) framework used in single-cell analyses to reliably identify cell-

to-cell distances in a sparse dataset, as well as the scale-free topology transformation used under the 

assumption that the frequency distribution of gene association in a transcriptomic network follows the 

power law25,48,49. A UMAP-embedded network, based on a SNN graph akin to that used in our SSN 

procedure, has previously resolved gene modules corresponding to protein complexes and pathways, with 

Euclidean distances in UMAP space out-performing correlation and PCA distances in predicting protein-

protein interactions 50. Consistent with these findings, we demonstrated that gene programs identified by 

SSN yielded superior GO term recovery and enrichment of STRING PPIs compared to ICA and NMF 

methods, and that the scale-free topology transform was critical in driving this improvement in 

performance. Taken together, the SSN gene program discovery method is robust to data sparsity, has a high 

performance index, offers a network-based visualization, and has run-times that scale well for larger 

datasets.  

Concluding Remarks. Future plans for scPipeline and scMiko involve continual review and improvement 

of existing workflows, and development of additional analysis modules that facilitate complementary 

analyses such as characterization of ligand-receptor interactions51,52, regulon-based transcription factor 
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inference53, trajectory analyses3,54,55 and differential-abundance analyses56. As innovative approaches to 

interrogate single cell data are proposed by us and others, we will adopt and implement these for all users 

to benefit.  
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Methods 

Software. Figure preparation: CorelDRAW x8 (Corel); Bioinformatic analyses: R v 4.0.3 (R Foundation 

for Statistical Computing).  

The scMiko R package and scPipeline are freely available and documentation and tutorial vignettes 

can be found here: https://nmikolajewicz.github.io/scMiko/.  

Data sources. scRNA-seq data from Ochocka et al. (2021) was obtained from Gene Expression Omnibus 

(GEO; accession number GSE136001)26; Cao et al. (2019) from GEO (accession number GSE119945)3; 

Cao et al. 2020 from GEO (accession number GSE156793)57; Zeisel et al. (2018) from 

http://mousebrain.org/downloads.html58; La Manno et al. (2021) from 

http://mousebrain.org/downloads.html27; Tabula Muris from FigShare59; Tabula Sapiens from FigShare60; 

Pijuan-Sala (2019) from the MouseGastrulationData R Package24; and Tyser et al. (2021) from 

http://www.human-gastrula.net/16. 

Data preprocessing. scRNA-seq data sets were normalized, scaled, dimensionally reduced and visualized 

on a UMAP using the Seurat (v 4.0.4) workflow4-7. In brief, count matrices were loaded into a Seurat object 

and normalized using NormalizeData(…, normalization.method = ‘LogNormalize’, scale.factor  = 10000). 

Variable features were identified using FindVariableFeatures (…, selection.method = ‘mvp’, mean.cutoff 

= c(0.1,8), dispersion.cutoff = c(1,Inf)) and then data were scaled using ScaleData(…). Principal 

component analysis, and UMAP embedding was performed using RunPCA(…) and RunUMAP(…, dims = 

1:30), respectively. Metadata from original publications were used to annotate cell types.  

Statistical analyses. All pairwise comparisons were performed using the signed Wilcoxon rank sum test, 

and p values were adjusted for multiple comparisons using the Benjamini-Hochberg procedure, as 

indicated. In cases where methods were compared across a common set of data, paired Wilcoxon tests were 

performed. 

Differential expression analysis. Differential expression analyses were performed using Wilcoxon rank 

sum (Wilcox) and codependency index (CDI)61,62. The Wilcox method was implemented using the 

wilcoxauc function (Presto R package, v 1.0.0)63. Alternatively, the CDI was adopted to calculate the 

probability of cluster and gene co-occurrence under a binomial distribution. For a given gene 𝑔 and cluster 

𝑘, the joint probability of observed non-zero 𝑔 expression in 𝑘 is formulated as: 

𝑃(𝑔 = 1, 𝑘 = 1) = 𝑃(𝑔 = 1)𝑃(𝑘 = 1) = 𝜋𝑔,𝑘 
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The probability of observing a test statistic more extreme under the null hypothesis that gene 𝑔 and cluster 

𝑘 are independent is then: 

𝑝𝑒(𝜋𝑔,𝑘) = ∑ 𝑩𝒊𝒏𝒐(𝑁, 𝑥, 𝜋𝑔,𝑘)

𝕀g,k≤x≤N 

 

where 𝑩𝒊𝒏𝒐(𝑁, 𝑥, 𝜋𝑔,𝑘) represents the probability of observed 𝑥 successes in 𝑁 trials if the probability of 

success is 𝜋𝑔,𝑘, and 𝕀g,k is the number of cells in which 𝑔 and 𝑘 are coincident. CDI is then defined as: 

𝐶𝐷𝐼 =  − log10[𝑝𝑒(𝜋𝑔,𝑘)] 

We further normalized the CDI score using the CDI score corresponding to the probability of observed a 

perfect co-dependency for cluster 𝑘: 

𝑛𝐶𝐷𝐼 =
𝐶𝐷𝐼

− log10[𝑝𝑒(𝜋𝑘,𝑘)]
 

where 𝜋𝑘,𝑘 = 𝑃(𝑐𝑘 = 1, 𝑐𝑘 = 1), under the assumption of independence. Possible values of 𝑛𝐶𝐷𝐼 range 

between [0,1], such that 𝑛𝐶𝐷𝐼 = 1 represents perfect co-dependence between a gene and cluster, and 

𝑛𝐶𝐷𝐼 = 0 represents no co-dependence but is not equivalent to mutual exclusivity which has been 

formulated elsewhere62.  

The CDI, by definition, only computes genes that are “up-regulated” relative to the comparison 

group, so to ensure fair comparison to the Wilcox method, only gene subsets that had a positive log fold 

change (LFC) were considered in Wilcox vs. CDI comparative analyses. Differentially expressed genes 

(DEGs) were deemed significant at a 5% false discovery rate (FDR). The top 50 DEGs identified by each 

method were subsequently characterized using sensitivity, specificity, positive predictive value (PPV) and 

negative predictive value (NPV):  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑃𝑖𝑛

(100% − 𝑃𝑖𝑛) + 𝑃𝑖𝑛
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
100% − 𝑃𝑜𝑢𝑡

(100% − 𝑃𝑜𝑢𝑡) + 𝑃𝑜𝑢𝑡
 

𝑃𝑃𝑉 =
𝑃𝑖𝑛

𝑃𝑖𝑛 + 𝑃𝑜𝑢𝑡
 

𝑁𝑃𝑉 =
100% − 𝑃𝑜𝑢𝑡

(100% − 𝑃𝑜𝑢𝑡) + (100% − 𝑃𝑖𝑛)
 

where 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 represent the expressing percentage of cells within and outside a cluster, respectively. 

We also computed the Gini inequality index as a complementary surrogate for gene specificity:  
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𝐺𝑖𝑛𝑖 𝐼𝑛𝑑𝑒𝑥 =
∑ (1 − (𝑥𝑔,𝑘 − max(𝑥𝑔)))

𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
𝑘

𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 − 1
 

where 𝑥𝑔,𝑘 is the average expression of gene 𝑔 for cluster 𝑘, and 𝑛𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 is the number of unique clusters.  

Cluster optimization. To identify the optimal cluster resolution, we first clustered samples over a range of 

candidate resolutions (0.05 to 3) using FindClusters(…, algorithm = 1) in Seurat. At each resolution 𝜌, the 

top cluster-specific marker for each cluster was identified using CDI-based DE analysis. Subsequently, 

specificity curves were generated by plotting the proportion of clusters that exceed a threshold nCDI score, 

for nCDI ranging [0,1]. The area under this curve (AUC) represents the aggregate specificity index 𝑆𝜌 and 

possible values range between [0,1], with a score of 1 representing the ideal cluster configuration in which 

each cluster has at least one marker satisfying nCDI = 1. Aggregate specificity indices were graphed over 

the range of candidate resolutions, and resolutions at which a peak and subsequent elbow(s) were manually 

observed were taken as optimal clustering resolutions for downstream analyses. Cluster resolutions were 

also identified using chooseR algorithm with default parameters (https://github.com/rbpatt2019/chooseR)18.  

 For each resolution, we computed the adjusted Rand index (ARI) between unsupervised scRNA-

seq clusters and author-curated cell-type clusters (i.e. ground truth) using the adj.rand.index (fossil R 

package, v 0.4.0)64. ARI is a measure of similarity between two data clusterings, adjusted for chance 

groupings.   Across all the candidate resolutions evaluated, the maximal ARI between our unsupervised 

clusters and ground truth clusters was ~0.8 and the resolutions at which the max ARI was observed was 

denoted 𝐴𝑅𝐼𝑚𝑎𝑥 (Fig 3B). The imperfect cluster similarity here reflects differences in computational 

preprocessing across datasets and possible manual cluster refinement performed by authors of the original 

datasets. Nonetheless, this represents the maximal ARI that is achievable using the current unsupervised 

cluster approach and serves as a positive control to which all other cluster configurations were compared.   

Cell-type marker catalog. To generate a cell-type marker reference catalog, cell-type-specific markers were 

derived from eight diverse public scRNA-seq atlases (Tabula Muris59, Tabula Sapiens60, Cao 20193, Cao 

202057, Pijuan Sala24, Tyser16, La Manno27 and Zeisel58) using the Wilcoxon DE method to identify DEGs 

across author-curated cell types (Table 1). All markers satisfying logFC > 0.5, AUROC > 0.95 and FDR < 

1% were included. If less than 15 markers were identified per a cell-type using these criteria, the top N 

markers (ranked by logFC) with FDR < 1% were taken to ensure the minimum 15 markers per cell-type 

requirement was satisfied. These markers were then consolidated with cell-type-specific markers from 

PanglaoDB21 and CellMarkers20 to yield a cell-type marker reference catalog. No additional filtering was 

performed, resulting in many cell-types being represented by multiple gene sets from several independent 

sources. We justified this redundancy as a strength of the catalog, as co-enrichment of independent and 
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coherent cell-type terms leads to higher confidence cell-type annotations.  To visualize the catalog using a 

bipartite network, a gene × cell-type incidence matrix was generated using graph.incidence (igraph R 

package, v 1.2.6) and the network was visualized using layout.auto (igraph).  Both human and murine cell-

types are represented in this catalog. All cell-type markers used in this study have been made available in 

our scMiko R package. 

Cell-type annotation. The Miko score is a scaled cluster-level module score that adjusts for cell-to-cell 

gene expression variation and gene set size. To compute the Miko score, standardized module scores 𝑍𝑗 for 

each cell 𝑗 must first be calculated by subtracting the mean expression of control features 𝑌𝑗 from the mean 

expression of gene set features 𝑋𝑗, and then scaling the difference by the pooled standard deviation of the 

gene set and control features: 

𝑍𝑗 =
𝑋𝑗 − 𝑌𝑗

√𝑉𝑎𝑟(𝑋𝑗) + 𝑉𝑎𝑟(𝑌𝑗)

 

Following the approach taken by Tirosh and colleagues65 and implemented in AddModuleScore (Seurat), 

all analyzed features are binned based on averaged expression and control features are randomly selected 

from each bin. As a variance-corrected statistic, the standardized module score can be used as-is to compute 

single-cell level significance [𝑝 = Pr(> |𝑍|)]. However, in the absence of a gene set-size correction, 

module score comparisons between gene sets are invalid.  

To correct for gene set size-dependencies, cell-level null standardized module scores 𝑍𝑛𝑢𝑙𝑙,𝑗 are 

computed for randomly sampled gene sets that span over a range of different sizes (2-100 genes per gene 

set by default). Random gene set-specific 𝑍𝑛𝑢𝑙𝑙,𝑗 scores are then aggregated for each cluster 𝑘 to yield a 

cluster-level null standardized module score 𝑍𝑛𝑢𝑙𝑙,𝑘: 

𝑍𝑛𝑢𝑙𝑙,𝑘 =
1

𝑛𝑐𝑒𝑙𝑙,𝑘
( ∑ 𝑍𝑛𝑢𝑙𝑙,𝑗

𝑛𝑐𝑒𝑙𝑙,𝑘

𝑗

) 

where 𝑍𝑛𝑢𝑙𝑙,𝑘 and 𝑍𝑛𝑢𝑙𝑙,𝑗 represent the null standardized module scores for a randomized gene set of a given 

size for cluster 𝑘 or cell 𝑗, respectively, and 𝑛𝑐𝑒𝑙𝑙,𝑘 represents the number of cells belonging to cluster 𝑘. 

The relationship between gene set size and null standardized scores is then fit using a polynomial spline: 

𝑛𝑢𝑙𝑙_𝑚𝑜𝑑𝑒𝑙𝑚𝑒𝑎𝑛 = glm(𝑍𝑛𝑢𝑙𝑙~𝑏𝑠(𝑠𝑖𝑧𝑒, 𝑑𝑒𝑔𝑟𝑒𝑒 = 3, 𝑓𝑎𝑚𝑖𝑙𝑦 = 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛)) 
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This null mean model is used to predict gene set size-adjusted null standardized scores 𝑍𝑛𝑢𝑙𝑙
𝑝𝑟𝑒𝑑

. In theory, 

the expected value of 𝑍𝑛𝑢𝑙𝑙
𝑝𝑟𝑒𝑑

 is 0 and we approximate it as such in our computational implementation. 

Separately, we calculate the observed variance in 𝑍𝑛𝑢𝑙𝑙,𝑘, denoted 𝑉𝑎𝑟(𝑍𝑛𝑢𝑙𝑙,𝑘), over a range of gene set 

sizes, and fit the relationship between gene set size and 𝑉𝑎𝑟(𝑍𝑛𝑢𝑙𝑙,𝑘) using a gamma-family generalized 

linear model: 

𝑛𝑢𝑙𝑙_𝑚𝑜𝑑𝑒𝑙𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = glm(𝑉𝑎𝑟(𝑍𝑟𝑎𝑛𝑑)~𝑠𝑖𝑧𝑒, 𝑓𝑎𝑚𝑖𝑙𝑦 = 𝐺𝑎𝑚𝑚𝑎)  

This null variance model is used to predict gene set size-adjusted variance of standardized scores 

𝑉𝑎𝑟(𝑍𝑛𝑢𝑙𝑙
𝑝𝑟𝑒𝑑

).  

Finally, to derive the gene set-size corrected Miko score, we aggregate standardized module scores 

𝑍𝑗 for each gene set into cluster-level means: 

𝑍𝑜𝑏𝑠,𝑘 =
1

𝑛𝑐𝑒𝑙𝑙,𝑘
( ∑ 𝑍𝑗

𝑛𝑐𝑒𝑙𝑙,𝑘

𝑗

) 

and center and scale 𝑍𝑜𝑏𝑠,𝑘 using gene set-size matched null mean 𝑍𝑛𝑢𝑙𝑙
𝑝𝑟𝑒𝑑

 and variance 𝑉𝑎𝑟(𝑍𝑛𝑢𝑙𝑙
𝑝𝑟𝑒𝑑

) to yield 

the Miko score 𝑀𝑘 for cluster 𝑘: 

𝑀𝑘 =
𝑍𝑜𝑏𝑠,𝑘 − 𝑍𝑛𝑢𝑙𝑙

𝑝𝑟𝑒𝑑

√𝑉𝑎𝑟(𝑍𝑛𝑢𝑙𝑙
𝑝𝑟𝑒𝑑

)

 

The Miko score is a cluster-level module score that is adjusted for gene set size-related spurious effects and 

cell-to-cell variability. This ensures the valid comparison of scores across differently sized gene sets, 

making it a valuable tool in marker-based cell annotation. Another property of the Miko score is that it can 

be handled as a Z statistic, thus facilitating p-value calculation and hypothesis testing: 

𝑝 = Pr(> |𝑀𝑘|) 

This facilitates cell cluster annotation based on which cell-type-specific gene sets are significantly active. 

In addition to the Miko score, we propose two post-scoring filters which serve to fine tune which 

gene sets are considered enriched. The first is a coherence filter in which a positive correlation between 

component gene expression and the Miko score is enforced for a minimum fraction of component genes. 

The second is a frequent flier filter, which flags gene sets that exceed a minimum significance rate and 

represent gene sets that enrich across most cell clusters. 
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Gene program discovery. Scale-free topology shared nearest neighbor network (SSN) analysis is a gene 

program discovery algorithm that groups genes based on co-expression similarity profiles and visualizes 

the network layout using a UMAP-based embedding. Features used for gene program discovery can be pre-

specified using a variety of criteria, including minimum expression thresholds, high variability or 

deviance66, however in the current study we select features using a minimal expression criteria (expressing 

fraction > 0.5 within at least one cluster). The cell × gene expression matrix (transposed from the Seurat 

object) is then subject to principal component analysis [RunPCA(…, ndim = 50)] and the top components 

explaining >90% of the variance are used to construct a K-nearest neighbor graph 𝐾 [FindNeighbors(…, 

k.param = 20)], from which a shared-nearest neighbor (SSN) graph 𝐺 is constructed by calculating the 

neighborhood overlap (Jaccard Index) between every gene and its K-nearest neighbors.  Adopting the 

framework from weighted gene correlation network analysis (WGCNA)25,49, a scale-free topology 

transform is then applied to the SNN graph by raising the SNN graph (gene × gene matrix) to an optimized 

soft-threshold power: 

𝐺` = 𝐺𝑠𝑜𝑓𝑡_𝑝𝑜𝑤𝑒𝑟 

where 𝐺` represents a scale-free topology-conforming SNN graph and is the adjacency matrix that will be 

used for downstream network construction. The optimal soft-threshold power used to derive 𝐺` is identified 

by calculating the signed  𝑅2 statistic for the following relationship: 

log(𝑝(𝑊)) ~ log(𝑊) 

where 𝑊 represents connectivity 𝑤 discretized into 𝑛 bins (default 20), and 𝑝(𝑊) represents the proportion 

of nodes (i.e., genes) within the 𝑊 bin. Connectivity 𝑤𝑔 for gene 𝑔 is calculated as row-wise sum of 𝐺: 

𝑤𝑔 = ∑ 𝐺𝑔,−𝑔 

where 𝑔 and −𝑔 represent the row and column indices corresponding to gene 𝑔 and all genes except gene 

𝑔, respectively. The soft threshold power is evaluated over a range of candidate values (default 1 to 5), and 

the optimal power is taken as the smallest power for which signed 𝑅2 < −0.9: 

arg min
𝑠𝑜𝑓𝑡 𝑝𝑜𝑤𝑒𝑟 ∈[0.5,5]

(signed 𝑅𝑠𝑜𝑓𝑡 𝑝𝑜𝑤𝑒𝑟
2 <  −0.9)  

To visualize the transcriptomic network, the scale-free SNN graph 𝐺` is embedded in a UMAP 

using RunUMAP(…, graph = 𝐺`, umap.method = “umap-learn”). Network nodes represent individual 

genes, whereas network linkages represent 𝐺` edges thresholded at a specified quantile (0.9 by default).  
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To identify gene programs from the scale-free SNN graph 𝐺`, Louvain clustering is performed. We 

identify the optimal clustering resolution using a nearest neighbor purity criterion which seeks to optimize 

the cluster consistency, or purity, within individual gene neighborhoods by maximizing the similarity of 

genes within programs compared to other programs (analogous to silhouette score17). For a candidate cluster 

resolution 𝜌, the gene-level purity score is defined as the proportion of genes within gene g’s neighborhood 

that belong to the most represented cluster within that neighborhood (Fig S1): 

𝑝𝜌,𝑔 =
|𝑘𝜌,𝑔 ∈ mode(𝑘𝜌,𝑔)|

|𝐾𝑔|
=

𝑛𝜌,𝑔

𝑁𝑔
 

where 𝑝𝜌,𝑔 is the gene 𝑔’s purity at 𝜌 resolution, the denominator 𝑁𝑔 represents the cardinality (||), or size, 

of gene 𝑔’s K-nearest neighborhood 𝐾𝑔 (20 by default), the numerator 𝑛𝜌,𝑔 represents the number of genes 

in gene 𝑔’s neighborhood that belong to the most represented cluster [i.e., majority cluster, mode(𝑘𝜌,𝑔)] 

and 𝑘𝜌,𝑔 is a vector of cluster memberships for all genes belonging to gene 𝑔’s neighborhood. For each 

candidate resolution, gene-level purity scores 𝑝𝜌,𝑔 are then aggregated as means to yield the global purity 

score 𝑃𝜌: 

𝑃𝜌 =
1

𝑁
∑ 𝑝𝜌,𝑔

𝑔

 

where 𝑁 is the number of genes in the SSN graph. Finally, the optimal cluster resolution is the maximal 

resolution at which the target purity 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 (0.8 by default) is satisfied:  

arg max
𝜌 ∈[0,∞]

(|𝑃𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑃𝜌|)  

Possible purity scores range between 0 to 1. Neighborhoods in which genes belong to many different 

clusters are considered “impure” (low purity score) whereas neighborhoods in which genes belong to a 

single cluster are “pure” (high purity score). In general, higher cluster resolutions are associated with lower 

the purity scores, however we recommend using a target purity between 0.7 (more gene programs) and 0.9 

(fewer programs).  

To minimize spurious gene program associations, genes with low connectivity (i.e., low network degree) 

are pruned so that only hub-like genes are retained for downstream annotation and analysis. Here 

connectivity for each gene 𝑔 is calculated as described above for 𝑤𝑔, however in this case we use the scale-

free SSN graph 𝐺′ instead of 𝐺. Connectivity scores 𝑤𝑖 are L2 normalized and those below a prespecified 

threshold (0.1 by default) are pruned.  
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SSN performance evaluation. To benchmark the performance of SSN, gene program discovery was 

performed using SSN, independent component analysis (ICA) and non-negative matrix factorization 

(NMF) on eight public scRNA-seq data sets (Table 1). For each dataset, a common subset of genes that 

was expressed by >50% of cells in at least one cell cluster were used (typically ranging between 1000-4000 

genes). ICA was performed using RunICA(…) implemented in Seurat (default parameters), and NMF was 

performed using nnmf(…, k = c(5, 10, 15), loss = “mse”, rel.tol = 1e-4, max.iter = 50) (NNLM R package, 

v 0.4.4). For NMF analysis, scaled gene expression values were truncated at zero. Graph modularity was 

compared between SSN graphs before (SN) and after (SSN) scale-free topology transformation using 

modularity(…) (igraph R package, v 1.2.6). GO gene set recovery was evaluated following the approach 

taken by Saelens and colleagues31, where the Jaccard similarity between observed (SSN, ICA, NMF)  and 

known (GO) gene programs was calculated to yield an observed × known gene program similarity matrix. 

Then, for each known gene program (matrix column), the max column-wise Jaccard similarity score was 

taken, representing the best recovery achieved by the unsupervised gene program detection algorithm for 

that known gene program, and the best Jaccard indices averaged over all known programs yielded the 

overall recovery score. The overall recovery score was compared across gene program detection methods. 

To evaluate the extent of STRING protein-protein interaction enrichment in gene programs identified by 

each method, within-program interaction enrichment was performed using get_ppi_enrichment(…) 

(STRINGdb R package, v 2.0.2) and enrichment ratios were compared across gene program discovery 

methods67. Finally, we used the murine gastrulation scRNA-seq data set to benchmark the computing times 

required to run each method. The data set was subsampled to 1000, 10000, 25000, 50000 and 100000 cells 

and for each data subset, 500, 1000, 2500, 5000, and 10000 genes were used for gene program discovery. 

The run times, relative to SSN, as well as the absolute run times for SSN across different cell/gene count 

settings were reported.  

Gene set enrichment analysis. To functionally-annotated gene programs identified by SSN, ICA and NMF, 

we perform hypergeometric overrepresentation analysis using fora (fgsea R package, v 1.14.0)68. Annotated 

gene sets used for enrichment analyses included GO ontology (biological processes, cellular components, 

molecular function) and gene-set collections curated by the Bader Lab69.  

Data visualization. Unless otherwise specified, the ggplot2 R package (v 3.3.5) was used for data 

visualization. scRNA-seq gene expression was visualized using FeaturePlot function (Seurat) or DotPlot 

function (Seurat). Venn diagrams were generated using either ssvFeatureEuler (seqsetvis R package, v 

1.8.0) or ggVennDiagram (ggVennDiagram R package, v 1.1.4).  
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Table 

Table 1. Public scRNA-seq datasets used in the current study.  

Dataset Description Species Method 
N 

Analyses 
Cells (% subset) Types 

Tabula Muris59 Pan-atlas Mm 10X  100,000 (99%) 100 A, B, C 

Tabula Sapiens60 Pan-atlas Hs 10X  100,000 (21%) 158 A, B, C 

Cao 20193 Organogenesis Mm sci-RNAseq3 50,000 (100%) 37 A, B, C, E 

Cao 202057 Fetus Hs sci-RNAseq3 100,000 (26%)  77 A, B, C, E 

Pijuan-Sala 201924 Gastrulation Mm 10X  100,000 (77%) 38 A, B, C, D, E 

Tyser 202116 Gastrulation Hs SMART-seq2 1,195 (100%) 18 A, B, C, E 

La Manno 202127 Developing brain Mm 10X  100,000 (39%) 16, 136 A, B, C, E 

Zeisel 201858 Adolescent brain Mm 10X  22,238 (100%) 39 A, B, C, E 

Han 2022 (in review) neural diff. Mm sci-RNAseq-3 26,117 (100%) - E 

Ochocka 202126 immune cells Mm 10X 40,401 (100%) - E 

Analyses in which the data sets were used are indicted as A: DE methods, B: cluster resolutions, C: cell 

type gene sets, D: Miko scoring, E: gene program discovery.  

Abbreviations: Hs; Homo sapiens (human), Mm; Mus musculus (mouse) 
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Figures 

 

Figure 1. Schematic of scPipeline analysis modules. (A) scPipeline is a modular collection of 

Rmarkdown scripts that generate reports for scRNA-seq analyses. The modular framework permits flexible 

usage and facilitates i) QC & preprocessing, ii) integration, iii) cluster optimization, iv) cell annotation, v) 

gene expression and association analyses, and vi) gene program discovery. Each standalone .HTML report 

provides a comprehensive analysis summary that can be seamlessly shared without any dependencies. 

Alternatively, online repositories (e.g., GitHub) can be used to host .HTML reports for public 

dissemination. (B) Representative snapshots of scPipeline reports generated using the QC and 

preprocessing (left), cell annotation (middle), and gene expression and association (right) modules. More 

examples can be found here.  
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Figure 2. Co-dependency index identifies cell-type specific markers. (A) Schematic illustrating binary 

and graded DEGs in scRNA-seq analysis. (B-I) DEGs were identified by Wilcoxon and CDI methods 

across eight public scRNA-seq datasets and evaluated for number of significant DEGs (5% FDR, B), DEG 

overlap (C), rank correlation of average gene expression with -log10(p) values (D), Gini inequality index 

(E), sensitivity (F), specificity (G), positive predictive value (PPV, H), and negative predictive value (NPV, 

I). For C, the top panel shows overlap between DEGs identified by Wilcoxon and CDI, whereas the bottom 

panel shows the distribution of Jaccard similarities across all significant DEGs and top 50 DEGs. For E-I, 

the top 50 DEGs identified by each method were considered. (J) Representative dot plot of top 50 DEGs 

identified by CDI (top) and Wilcoxon (bottom) methods in yolk sac mesoderm cell population from Tyser 

2021 scRNA-seq data (arrows indicate row corresponding to the yolk sac mesoderm population). For all 

comparisons, p values were determined by paired Wilcoxon ranked sum test. CDI; co-dependency index, 

DEGs; differentially-expressed genes, FDR; false discovery rate.  
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Figure 3. Identification of optimal clustering resolution using a specificity-based criterion. (A) 

Schematic of specificity-based resolution-selection criteria. (B, C) Adjusted Rand index (B) and  specificity 

index differences (C) between ground truth (author-curated) clusters and observed Louvain clusters, using 

resolutions determined by different optimization criteria [specificity criteria (𝑆𝑝𝑒𝑎𝑘 , 𝑆𝑒𝑙𝑏𝑜𝑤1, 𝑆𝑒𝑙𝑏𝑜𝑤2) and 

chooseR18]. 𝐴𝑅𝐼𝑚𝑎𝑥 represents resolution at which maximal ARI was achieved, after considering all 

candidate resolutions (0.5 to 3). For B, significance compared to 𝐴𝑅𝐼𝑚𝑎𝑥 was determined by paired 

Wilcoxon test. For C, significance compared to zero (i.e., ground truth) was determined by one-sample 

Wilcoxon test. (D-G) Optimal clustering resolution for Tyser 2021 human gastrulation scRNA-seq data16. 

(D) Relationship between resolution and specificity indices, and identification of 𝑆𝑝𝑒𝑎𝑘, 𝑆𝑒𝑙𝑏𝑜𝑤1 and 

𝑆𝑒𝑙𝑏𝑜𝑤2. (E) Specificity-curves. Grey curves: all candidate resolutions evaluated (0.5 to 3), blue curve: Speak, 

red curve: ground truth (curated) clusters. (F) Dot plots of top markers for curated (left) and 𝑆𝑝𝑒𝑎𝑘 (right) 

clusters. (G) Comparison of cluster sensitivity (expressing fraction) of each top marker obtained for curated 

and 𝑆𝑝𝑒𝑎𝑘 clusters. Significance determined by unpaired Wilcoxon test 
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Figure 4. Cell-type annotation. (A) Cell-type-specific gene set catalog represented as bipartite network. 

Edges between gene sets (red nodes) and genes (grey nodes) represent gene set membership. Major cell 

ontologies are annotated, and the corresponding gene sets can be accessed using the scMiko R package.  

(B) Representative null model relating gene set size and standardized module scores (SMS; for random 

gene sets). Red curves: predicted mean SMS ± 95% CI; black points: observed cluster-level mean SMS; 

grey points: observed cell-level SMS. (C) Relationship between cluster-level non-standardized module 

score (AddModuleScore, Seurat R package) and Miko score. Clusters with significant module activity 

(FDR < 0.05) are indicated. (D-E) Evaluation of Miko score performance. (D) Representative gene sets 

with varying rates of permutation (i.e., substitution of cluster-specific gene with random gene; left) and 

corresponding Miko scores (bar plot, right) with coherent fractions (dot plot, right). (E) Relationship 

between degree of gene set permutation and fraction of cluster- and cluster-non-specific gene sets with 

significant (FDR < 0.05) module activity. Coherent fraction (CF) filters were included to demonstrate 

capacity to titrate score sensitivities and specificities. (F) Representative example of Miko score applied to 

murine gastrulation data using cell-type gene set catalog (A). UMAPs illustrate cell population with curated 

cell-types of interest (Extraembryonic endoderm; left, erythroid lineage; right), and word clouds represent 

top cell types predicted by the Miko scoring algorithm.  
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Figure 5. Gene program discovery using scale-free shared nearest neighbor network (SSN) analysis. 

(A)  Schematic illustrating network construction and annotation. (B) Network modularity with (SSN) and 

without (SN) scale-free topology enforcement.  (C-E) Comparison of GO term recovery (C), STRING PPI 

enrichment (D) and computational run time (E) across different gene program discovery methods. ICA; 

independent component analysis, NMF; non-negative matrix factorization, SN; shared nearest neighbor 

network, SSN; scale-free shared nearest neighbor network. (F-I) Representative transcriptional network 

construction, annotation and applications using Ochocka 2021 scRNA-seq data26. (F) Optimal soft power 

required for scale-free topology (left column; threshold = -0.9) and pruning of genes with low network 

connectivity (right column; threshold = 0.1). (G) Functional annotation of gene programs. GO term 

enrichment was performed using hypergeometric overrepresentation analysis. (H) Activity of “interferon 

signaling” and “pro-inflammation” programs overlaid on cell UMAP. Macrophage and microglial 

subpopulations can be subtyped by program activity status. (I) Novel marker discovery and functional 

prediction using guilt-by-association. Genes belonging to “interferon signaling” program were cross-

referenced with PubMed articles queried using “inflammation”, “macrophage” and “interferon” search 

strings to identify novel candidate genes (e.g., Ms4a4c) implicated in interferon signaling. Ms4a4c 

expression was visualized on a UMAP to verify that expression is coherent with gene program activity.  
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Supplemental Figure 

 

Supplemental Figure 1. Schematic of nearest neighbor purity criterion. The nearest neighbor purity 

criterion seeks to optimize the cluster consistency, or purity, within individual gene neighborhoods by 

maximizing the similarity of genes within gene programs compared to other programs. In step 1 (left), for 

a given cluster resolution 𝜌, the gene-level purity score 𝑝𝜌,𝑔 is defined as the proportion of genes within 

gene g’s neighborhood that belong to the most represented cluster within that neighborhood. The gene-level 

purity scores 𝑝𝜌,𝑔 are then aggregated as means to yield the global purity 𝑃𝜌. In step 2 (right), the optimal 

cluster resolution (vertical dashed line, right) is the maximal resolution at which the target purity 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 

is satisfied (0.8 by default; horizontal dashed line, right).  
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Supplemental Figure 2. Application of SSN to identify robust angiogenesis-associated gene program. 

(A-E) Representative transcriptional network construction, annotation and applications using La Manno 

2021 scRNA-seq data27. (A) Optimal soft power required for scale-free topology (left column; threshold = 

0.9) and pruning of genes with low network connectivity (right column; threshold = 0.1). (B) Functional 

annotation of gene programs. (C-E) External validation and refinement of angiogenesis signature. (C) 

Correlation between angiogenesis program activity and expression of individual gene program genes across 

three independent scRNA-seq datasets. Genes that exceeded the coherence threshold (Spearman correlation 

> 0.1) were deemed coherent. (D) Venn diagram illustrating intersection between coherent gene sets 

determined in each scRNA-seq dataset. 64/108 genes (59%) were coherent in all scRNA-seq datasets. (E) 

Gene program activity of coherent angiogenesis signature specifically highlights the (hematogenic) 

endothelial population in all three scRNA-seq datasets.  
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