
 

1 
 

Shared and distinct genetic etiologies for different types of clonal 
hematopoiesis 

 
Derek W. Brown,1,2* Liam D. Cato,3,4* Yajie Zhao,5* Satish K. Nandakumar,3,4,6 Erik L. Bao,3,4 

Eugene J. Gardner,5 Alexander DePaulis,1 Thomas Rehling,1 Lei Song,1 Kai Yu,1 Stephen J. 
Chanock,1 John R. B. Perry,5,7^ Vijay G. Sankaran,3,4^ Mitchell J. Machiela1^ 

 
 
*These authors contributed equally 
^These authors jointly supervised this work 
 
Author Affiliations 
 

1. Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, 
MD, USA 

2. Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer 
Institute, Rockville, MD, USA 

3. Division of Hematology/Oncology, Boston Children's Hospital and Department of 
Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 
02115, USA 

4. Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA 
5. MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of 

Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK 
6. Department of Cell Biology, Albert Einstein College of Medicine, Albert Einstein Cancer 

Center, Ruth L. and David S. Gottesman Institute for Stem Cell Research and 
Regenerative Medicine, Bronx, NY 10461, USA  

7. Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, 
University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK 

 
Keywords: clonal hematopoiesis, CHIP, mosaic chromosomal alterations, telomere length, 
hematopoiesis 
 
 
Corresponding Authors:  
John R. B. Perry, Ph.D.: john.perry@mrc-epid.cam.ac.uk  
Vijay G. Sankaran, M.D., Ph.D.: sankaran@broadinstitute.org 
Mitchell J. Machiela, Sc.D., M.P.H.: mitchell.machiela@nih.gov  

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted September 17, 2022. ; https://doi.org/10.1101/2022.03.14.483644doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.483644


 

2 
 

Abstract 
 
Clonal hematopoiesis (CH) – age-related expansion of mutated hematopoietic clones – can differ 

in frequency and cellular fitness. Descriptive studies have identified a spectrum of events (coding 

mutations in driver genes (CHIP), gains/losses and copy-neutral loss of chromosomal segments 

(mCAs), and loss of sex chromosomes). Co-existence of different CH events raises key questions 

as to their origin, selection, and impact. Here, we report analyses of sequence and genotype array 

data in up to 482,378 individuals from UK Biobank, demonstrating shared genetic architecture 

across different types of CH. These data highlighted evidence for a cellular evolutionary trade-

off between different forms of CH, with LOY occurring at lower rates in individuals carrying 

mutations in established CHIP genes. Furthermore, we observed co-occurrence of CHIP and 

mCAs with overlap at TET2, DNMT3A, and JAK2, in which CHIP precedes mCA acquisition. 

Individuals carrying these overlapping somatic mutations had a large increase in risk of future 

hematological malignancy (HR=17.31, 95% CI=9.80-30.58, P=8.94×10-23), which is 

significantly elevated compared to individuals with non-overlapping CHIP and autosomal mCAs 

(Pheterogeneity=8.83×10-3). Finally, we leverage the shared genetic architecture of these CH traits to 

identify 15 novel loci associated with blood cancer risk. 
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Main 

Recent studies have reported the frequent occurrence of clonal expansion of post-zygotic 

mutations in the hematopoietic system, now seen in all human tissues but at different attained 

frequencies.1–6 Initially, clonal expansion was recognized by the presence of skewed X 

chromosome inactivation.7,8 Subsequent studies have revealed the presence of mosaic 

chromosomal alterations (mCAs), including frequent loss of chromosomes X and Y, in a subset 

of hematopoietic cells. Most recently, clonal expansion of recurrent somatic driver mutations 

observed in hematologic malignancies have been identified in individuals with otherwise normal 

hematologic parameters, a condition known as clonal hematopoiesis of indeterminate potential 

(CHIP). These somatic alterations can predispose to either myeloid or lymphoid malignancies 

but do not necessarily progress; in other words, many otherwise healthy individuals are observed 

to have CHIP.9 Moreover, recent studies have shown the additive impact of mCAs and CHIP 

mutations on predisposition to blood cancers, with respect to overall risk for a primary 

hematologic malignancy and also in the setting of therapy-associated myeloid malignancies.10,11 

 

Large studies have begun to reveal how germline genetic variants can increase risk for 

acquisition of CH but have yet to systematically investigate the co-existence of events. 

Moreover, the biologic mechanisms of hematopoiesis that confer risk have not been well-

characterized. Here, we utilized a range of genotyping and sequencing data from large-scale 

studies of genetic susceptibility of types of clonal hematopoiesis (e.g., mCAs, CHIP), 

hematologic malignancies (e.g., myeloproliferative neoplasms (MPNs)), and hematopoietic 

phenotypes to assess genetic and phenotypic relationships between these distinct but potentially 
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related phenotypes to gain new insights into the underlying mechanisms and consequences of the 

range of clonal hematopoietic expansions.  

 

Results 

CH states display shared genetic and phenotypic relationships 

We began by investigating the co-existence of different types of CH: loss of chromosome Y 

(LOY) in men, loss of chromosome X (LOX) in women, autosomal mCAs including gains, 

losses, and copy neutral loss of heterozygosity (CNLOH), CHIP, and MPNs (Figure 1) and 

subsequently examined associations with germline susceptibility variants, in anticipation of 

discovery of shared elements. Genome-wide association study (GWAS) summary statistics for 

each type of CH were analyzed and pairwise genetic correlations between traits were computed 

(Online Methods). Using the high-definition likelihood (HDL) method, positive genetic 

correlations were observed between LOY and LOX (ρ= 0.23, P= 5.53×10-9), LOY and MPN (ρ= 

0.35, P= 1.74×10-4), autosomal mCAs and MPN (ρ= 0.57, P= 1.83×10-3), and CHIP and MPN 

(ρ= 0.48, P= 4.32×10-3) (Figure 2, Supplemental Table 1). We repeated genetic correlation 

analyses using linkage disequilibrium score regression (LDSC) (Online Methods) and likewise 

observed positive genetic correlations for LOY with both LOX (ρ= 0.30, P= 4.09×10-5) and 

MPN (ρ= 0.21, P= 1.67×10-2) (Supplemental Figure 1, Supplemental Table 2). The genetic 

correlation between autosomal mCAs and MPN, and CHIP and MPN had the same direction of 

effect as found with HDL (Supplemental Figure 1, Supplemental Table 2).  

 

In an analysis of 482,378 subjects from the UK Biobank, we investigated adjusted phenotypic 

associations between types of CH (Online Methods, Supplemental Table 3). Consistent with 
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previous studies of CH,12–14 each type of CH investigated demonstrated a strong positive 

association with age (Supplemental Figure 2). We observed an inverse phenotypic association 

between LOY and MPN (T-statistic= -4.76, P= 1.96×10-6) (Figure 3, Supplemental Table 4), 

which is opposite in direction from the genetic correlation. We were unable to evaluate the 

phenotypic association between LOY and LOX, as these are sex specific traits.  

  

We report positive phenotypic associations of autosomal mCAs with LOY (T-statistic= 4.31, P= 

1.61×10-5), LOX (T-statistic= 12.44, P= 1.54×10-35), CHIP (T-statistic= 8.89, P= 6.41×10-19), 

and MPN (T-statistic= 41.00, P< 5×10-324) (Figure 3, Supplemental Table 4). Sensitivity 

analyses removed individuals with mCAs spanning the JAK2 region (N=550), a region 

frequently impacted by mCAs in MPNs,15–18 and still observed a positive phenotypic association 

between autosomal mCAs and MPN, though the association was attenuated (T-statistic= 15.53, 

P= 2.39×10-54). CHIP was also positively associated with MPN (T-statistic= 8.82, P= 1.18×10-18) 

and inversely associated with LOY (T-statistic= -4.11, P= 4.04×10-5) (Figure 3, Supplemental 

Table 4). The inverse association and exclusivity between CHIP and LOY was consistently 

observed when stratified by frequently observed CHIP gene mutations, e,g., DNMT3A CHIP 

with LOY (NCHIP= 1,818, T-statistic= -3.71, P= 2.08×10-4) and TET2 CHIP with LOY (NCHIP= 

786, T-statistic= -3.99, P= 6.50×10-5) (Supplemental Table 5). In further evaluation, we 

performed exome-wide burden analyses to identify rare (MAF<0.1%) protein coding variants 

associated with LOY (Online Methods). These analyses identified three established CHIP genes 

at exome-wide significance (Supplemental Table 6), demonstrating that individuals carrying 

heterozygous loss-of-function variants in TET2 (n=193, beta = -0.21, SE = 0.03, P = 7.7×10-15), 

ASXL1 (n=213, beta = -0.18, SE = 0.03, P = 1.3×10-12), and DNMT3A (n=89, beta = -0.17, SE = 
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0.04, P = 2.2×10-5) were less likely to exhibit LOY (Supplemental Figures 3 and 4, 

Supplemental Table 7). These findings reinforce the idea that acquiring LOY in the presence of 

CHIP mutations is likely selected against in clonally-expanded hematopoietic stem cells.  

 

We next examined the cellular fraction of individuals with autosomal mCA events and the 

variant allele frequency (VAF) of individuals with CHIP mutations and observed that individuals 

with higher cellular fractions of autosomal mCA events (i.e., greater proportion of cells carrying 

the somatic event) were more likely to have LOX (T-statistic= 3.08, P= 2.09×10-3), CHIP (T-

statistic= 2.35, P= 1.88×10-2), and MPN (T-statistic= 17.83, P= 3.17×10-70) (Supplemental 

Figure 5, Supplemental Table 8). Higher autosomal mCA cellular fraction was inversely 

associated with LOY (T-statistic= -7.76, P= 9.77×10-15) (Supplemental Figure 5, 

Supplemental Table 8). Individuals with higher VAF of CHIP mutations (i.e., higher clonal 

fractions) were more likely to have detectable autosomal mCAs (T-statistic= 5.82, P= 6.21×10-9) 

and MPNs (T-statistic= 7.19, P= 7.36×10-13), and less likely to have LOY (T-statistic= -3.80, P= 

1.48×10-4) (Supplemental Figure 6, Supplemental Table 9).  

 

In an analysis of co-existence of types of CH, CHIP and autosomal mCAs significantly co-

occurred in the same individual (hypergeometric P= 5.32×10-28; Supplemental Figure 7a) with 

439 individuals (6.0% of individuals with CHIP, 6.3% of individuals with autosomal mCAs) 

carrying both (Supplemental Table 3). Individuals with autosomal mCAs displayed a distinct 

pattern of CHIP gene mutations compared to individuals without autosomal mCAs 

(Supplemental Figure 7b, Supplemental Table 10). 13 CHIP gene mutations were 

significantly enriched in individuals with autosomal mCAs (DNMT3A, TET2, ASXL1, TP53, 
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SF3B1, STAT3, SRSF2, MPL, KRAS, JAK2, IDH1, PRPF40B, and PIGA; Supplemental Figure 

7b), a similar pattern of co-occurrence as previously observed.10,11 Additionally, individuals with 

CHIP mutations were more likely to acquire autosomal mCAs across 16 chromosomes 

(Supplemental Figure 7c, Supplemental Table 11), with enrichment for several chromosome-

specific copy number states (e.g., CNLOH in chromosomes 1, 4, and 9; Supplemental Figure 

7c, Supplemental Table 11).  

 

An evaluation of the 439 individuals with both a CHIP mutation and autosomal mCA revealed 

that 53 (12.1%) had events spanning the same genomic region (binomial P= 1.70×10-10). 9 CHIP 

genes overlapped with autosomal mCAs, with TET2 mutations accounting for 34 (54.0%) of the 

observed overlapping mutations (Supplemental Figure 8). CNLOH was the most frequently 

observed autosomal mCA event (N= 46 (73.0%)) among all overlapping mutations 

(Supplemental Figure 8). We examined the clonal fractions of both somatic mutations to 

provide a window into the clonal evolution of CHIP mutations and autosomal mCAs and found 

higher estimated CHIP VAF than estimated mCA cellular fraction in a majority of co-localizing 

mutations, suggesting the acquisition of the CHIP mutation preceded the acquisition of 

autosomal mCAs (binomial P=1.75×10-4; Supplemental Figure 9); this finding is consistent 

with a multi-hit hypothesis in driving clonal evolution. This is particularly evident in loss-of-

heterozygosity of chromosome 9 alterations after acquisition of a JAK2 V617F mutation, as has 

been seen in individuals with MPNs.19,20 Subsequent autosomal mCA-induced loss of 

heterozygosity or amplification of CHIP driver mutations could confer strong selective 

advantages promoting rapid cellular expansion. To test this hypothesis, we investigated 

hematological malignancy risk in individuals with and without CHIP and autosomal mCAs 
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(Supplemental Figure 10). Individuals with both CHIP and non-overlapping autosomal mCAs 

(N= 386) demonstrated a strong positive association with incident hematological malignancy risk 

(hazard ratio (HR) = 7.25, 95% confidence interval (CI) = 5.27-9.96, P= 2.94×10-34) compared to 

individuals without CHIP or autosomal mCAs. Individuals carrying overlapping CHIP and 

autosomal mCAs (N= 53) displayed an even stronger association (HR= 17.31, 95% CI= 9.80-

30.58, P= 8.94×10-23), significantly elevated compared to individuals with non-overlapping 

CHIP and autosomal mCAs (Pheterogeneity= 8.83×10-3, Supplemental Figure 10 and 

Supplemental Table 12). The co-occurrence and overlap of CHIP and autosomal mCAs 

motivates future studies that jointly assess both CH traits to better understand CH interactions 

that could confer increased propensity for clonal expansion and elevated disease and mortality 

risk, particularly at specific loci or with specific mutations.9 

 

Pathway-based analyses using GWAS summary statistics (Online Methods) utilized 6,290 

curated gene sets and canonical pathways from Gene Set Enrichment Analysis (GSEA) and 

revealed significant associations between several biological pathways and types of CH 

(Supplemental Figure 11) with all types of CH associated with gene sets related to apoptosis, 

IL-2 signaling, DNA methylation, promyelocytic leukemia gene product (PML) targets, and 

cancer-related gene sets (Supplemental Tables 13-17). LOY, LOX, and MPN were significantly 

associated with hematopoietic progenitor cells, hematopoietic cell lineage and differentiation 

gene sets, and DNA damage response (Supplemental Tables 13, 14, and 17). LOY, autosomal 

mCAs, CHIP, and MPN were associated with telomere extension by telomerase, with LOY and 

MPN also associated with telomere stress induced senescence (Supplemental Tables 13, 15-17). 

Additionally, the 12 genetic pathways significantly associated with autosomal mCAs were also 
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associated with CHIP, providing further evidence that these types of CH are interrelated. Overall, 

pathway analyses suggest core shared pathogenic mechanisms related to cellular differentiation, 

DNA damage repair, and cell cycle regulation that are critical for the development and clonal 

expansion of most types of CH. 

  

Correlation of types of CH with myeloid and lymphoid cell traits  

We examined genetic and phenotypic correlations between types of CH and 19 blood cell traits 

to assess lineage-specific effects by type of CH (Figures 2-3). All types of CH displayed positive 

genetic correlations for both plateletcrit (P< 0.02) and platelet count (P< 0.05) (Figure 2, 

Supplemental Table 1). LOY, MPN, and CHIP were the only types of CH to also display 

significant phenotypic associations with plateletcrit (P< 2×10-13) and platelet count (P< 1.5×10-

13) (Figure 3, Supplemental Table 4). LOY and MPN demonstrated additional genetic 

correlations enriched for myeloid lineage traits, namely, positive correlations with total white 

blood cell, eosinophil, monocyte, and neutrophil counts (P< 0.026; Figure 2, Supplemental 

Table 1). LOY was additionally positively correlated with lymphocyte count (ρ= 0.05, P= 

8.74×10-3; Figure 2, Supplemental Table 1). MPN was positively correlated with other myeloid 

lineage traits including hematocrit, hemoglobin, and red blood cell count (P< 6.5×10-4; Figure 2, 

Supplemental Table 1), as previously reported.21 In support of the genetic correlations, we 

observed strong phenotypic associations of LOY and MPN with myeloid traits that closely 

mirror the magnitude and significance of the genetic correlation results (Figure 3, Supplemental 

Table 4), and previously reported phenotypic associations.22–24 Both LOY and MPN were 

positively associated with monocyte, neutrophil, and white blood cell counts (P< 1.5×10-41; 

Figure 3, Supplemental Table 4). LOY was also inversely associated with lymphocyte count 
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(T-statistic= -2.75, P= 5.91×10-3) (Figure 3, Supplemental Table 4). These findings suggest 

shared mechanisms regulating hematopoiesis likely also govern susceptibility to LOY and MPN. 

 

LOX was the only type of CH to display both a positive genetic correlation (ρ= 0.17, P= 

8.40×10-5; Figure 2, Supplemental Table 1) and a positive phenotypic association with 

lymphocyte count (T-statistic= 23.96, P= 9.11×10-127) (Figure 3, Supplemental Table 4). LOX 

had a positive genetic correlation with myeloid traits such as basophil count and eosinophil 

count, whereas it displayed an inverse genetic correlation with hematocrit and hemoglobin (P< 

0.02, Figure 2, Supplemental Table 1). LOX also had positive phenotypic associations with 

MCH, MCHC, MCV, and monocyte count (P< 0.015, Figure 3, Supplemental Table 4), and 

inverse associations with hematocrit, red blood cell count, and neutrophil count (P< 0.03, Figure 

3, Supplemental Table 4).  

 

Besides the aforementioned genetic correlations with plateletcrit and platelet count, we observed 

additional genetic correlations between autosomal mCAs and CHIP with blood cell traits (Figure 

2). Inverse genetic correlations were observed between autosomal mCAs with MCH, MCV, and 

mean reticulocyte volume (P< 3.0×10-2, Figure 2, Supplemental Table 1). CHIP had a positive 

genetic correlation with MCHC and reticulocyte count (P< 4.0×10-2, Figure 2, Supplemental 

Table 1). In the case of combined autosomal mCAs, there was evidence for positive phenotypic 

associations with both lymphocyte count (T-statistic= 60.33, P< 5×10-324) and total white blood 

cell count (T-statistic= 34.48, P= 3.89×10-260) (Figure 3, Supplemental Table 4). Combined 

CHIP was positively associated with platelet distribution width (T-statistic= 5.02, P= 5.26×10-7), 

red blood cell distribution width (T-statistic= 4.09, P=4.37×10-5), and neutrophil count (T-
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statistic= 3.59, P= 3.32×10-4) (Figure 3, Supplemental Table 4), all of which are myeloid 

lineage traits. The CHIP phenotypic association findings support recent evidence suggesting 

CHIP primarily results in myeloid-related disruptions, although select distinct CHIP events could 

increase risk for disruptions in the lymphoid lineage.9 Together our results support lineage-

specific effects that differ by type of CH, suggesting shared etiology, specifically shared genetic 

etiology for LOY and myeloid traits, as well as ample phenotypic associations that detail early 

downstream phenotypic disruptions in hematologic phenotypes that alter disease risk. 

 

A dynamic association of telomere length with CH  

Telomere length in leukocytes provides a metric of hematopoietic stem cell activity and can 

provide insights into how genetic variation in hematopoietic stem cells interact with risk for 

acquiring CH.21,25 The genetic relationship between each type of CH with leukocyte telomere 

length (TL) was evaluated to determine whether genetic variation in telomere maintenance genes 

could also contribute to predisposition to CH. A positive genetic correlation for autosomal mCAs 

with TL was observed (ρ= 0.23, P= 4.95×10-3) (Figure 2, Supplemental Table 1). To further 

test for a genetic association, we conducted one-direction Mendelian randomization (MR) 

between TL and each CH type using 130 previously published TL-associated variants 

(Supplemental Figure 12).26 Based on MR-IVW models, we observed positive associations 

between the TL IV and autosomal mCAs (Zfiltered= 5.65, P= 1.21×10-7), CHIP (Zfiltered= 5.72, P= 

9.65×10-8), and MPNs (Zfiltered= 5.61, P= 1.88×10-7), and observed a negative association 

between the TL IV and LOY (Zfiltered= -6.40, P= 8.11×10-9) and did not identify evidence for a 

genetic relationship between telomere length and LOX (Supplemental Figure 13, 

Supplemental Table 18). These observations provide additional support of associations between 
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inherited telomere length and select CH traits.12,21,27–30 The intercept from MR-Egger regression 

was significant (p< 0.05) for both autosomal mCAs and MPN (Supplemental Table 18), so we 

performed additional MR weighted median (MR-WM) analyses which displayed the same 

positive association between the TL IV and autosomal mCAs (Zfiltered= 4.16, P= 6.19×10-5), and 

MPNs (Zfiltered= 4.34, P= 3.53×10-5) (Supplemental Table 18). These MR associations are 

supported by our pathway analyses, which demonstrate telomere pathways are significantly 

associated with LOY, autosomal mCAs, CHIP, and MPN (Supplemental Tables 13, 15-17). 

Based on these data it is plausible that inherited variation in telomere length maintenance 

contributes to clonal expansion of mutated hematopoietic stem cells, or alternatively confers 

greater risk for mutation acquisition and clonal evolution in hematopoietic stem cells. 

 

Once clonal expansion ensues, measured telomere length is a metric of hematopoietic stem cell 

growth and clonal expansion. Using available measured telomere length data from UK Biobank, 

we observed inverse phenotypic associations between CH and measured telomere length (Figure 

3). CHIP, which presents with the smallest fraction of mutated clones, had an insignificant 

phenotypic association with measured TL (T-statistic= -1.03, P= 0.30) (Figure 3, Supplemental 

Table 4). To further examine this relationship, we conducted analyses between CHIP VAF and 

measured TL and observed individuals with higher VAF, i.e., higher CHIP cellular fraction, had 

a more inverse association with measured TL (T-statistic= -6.50, P= 8.34×10-11, Supplemental 

Figure 14a and Supplemental Table 19). Additionally, individuals with higher autosomal mCA 

cellular fraction also demonstrated a stronger inverse association with measured TL (T-statistic= 

-9.02, P= 2.16×10-19, Supplemental Figure 14b and Supplemental Table 20). The number of 

mutations present in an individual was also inversely associated with TL for increasing 
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autosomal mCA count (T-statistic= -10.01, P= 1.35×10-23). Individuals with both CHIP and 

autosomal mCAs also demonstrated an inverse association with TL (T-statistic= -2.75, P= 

5.93×10-3) with individuals carrying overlapping CHIP and autosomal mCAs displaying a 

stronger inverse association with TL (T-statistic= -3.48, P= 5.01×10-4) compared to individuals 

without CHIP or autosomal mCAs (Supplemental Figure 15 and Supplemental Table 21). 

These inverse TL associations indicate increased clonal expansion leads to reduced measured 

telomere length and suggest reductions in telomere length from the expansion of mutated clones 

could lead to further genomic instability and the acquisition of additional CH mutations.  

 

Leveraging shared correlations to nominate additional MPN susceptibility loci  

Finally, we leveraged the shared genetic architecture between these CH traits (Figure 4) to 

identify novel loci associated with MPN - a disease where it has been challenging for GWAS to 

perform well powered case-control analyses, despite the finding of considerable heritable 

influences on this disorder.21 We first performed multi-trait analysis of GWAS (MTAG), which 

boosts the power to identify potential MPN-associated signals by leveraging the shared genetic 

architecture with LOY and TL (Online Methods). This approach identified 25 MPN loci at 

genome-wide significance (P<5×10-8), 15 of which have not been previously implicated in MPN 

(Supplemental Table 22). We next evaluated a complementary approach of performing 

colocalization analyses (Online Methods) using genome-wide significant loci associated with 

LOY, TL, and MPN. We found that 12 LOY loci, mapping to 11 genes (TET2, NREP, GFI1B, 

TERT, DLK1, PARP1, TP53, RBPMS, MAD1L1, MECOM, and ATM) co-localized with MPN 

(Supplemental Table 23), highlighting 6 loci that have not previously reached genome-wide 

significance for MPN (P= 1.17×10-4 to 5.14×10-8). In addition, 5 leading SNPs for TL co-
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localized with MPN and mapped to 4 genes (TERT, NFE2, PARP1, and ATM), 2 of which have 

not reached genome-wide significance (P<5×10-8) in prior MPN analyses (NFE2 and PARP1) 

(Supplemental Table 24). Of note, leading SNPs at TERT, PARP1, and ATM colocalized across 

all 3 traits (Supplemental Table 23 and Supplemental Table 24), and 5 co-localized loci also 

reached genome-wide significance in the MTAG analysis (PARP1, MAD1L1, DLK1, RBPMS, 

and TP53) (Figure 5). While validation is required for the newly identified putative MPN risk 

loci, these results illuminate opportunities to use insights from correlated diseases or phenotypes 

to gain new genetic and biological insights on blood cancer risk. 

 

Discussion 

Understanding the underlying molecular mechanisms of different types of CH is critical for 

disentangling age-related clonal evolution and the possible impact of CH on subsequent disease 

risk, particularly the risk of acquiring blood cancers. Herein, our analysis of CH using large-scale 

genetic data highlights both similarities in the underlying mechanisms and key differences, 

particularly with respect to events related to distinct aspects of hematopoiesis. Common to the 

types of CH are core pathways, namely, cellular differentiation, DNA repair, and cell cycle 

regulation, that contribute to generation and clonal expansion. Together, these findings detail 

specific characteristics of CH that should be investigated to improve the utility of detectable CH 

for disease risk and possible intervention or prevention.  

 

We provide evidence for genome-wide genetic correlations between LOY and LOX, LOY and 

MPN, autosomal mCAs and MPN, as well as between CHIP and MPN, suggesting shared 

biologic mechanisms promoting or predisposing to the development and clonal expansion. 
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Genetic correlations with blood cell traits further demonstrate lineage-specific effects that differ 

by type of CH. As many of these CH and blood cell traits are interrelated, we report associations 

that do not adjust for stringent multiple testing corrections and caution against the 

overinterpretation of marginally significant associations. Phenotypic associations between types 

of CH further support similar genetic etiology, but could also indicate shared environmental 

factors that drive CH growth and expansion (e.g., medication31,32 or tobacco usage12,33–37). A 

notable discordance in directionality between the genetic correlation and the phenotypic 

relationship between LOY and MPN supports a shared genetic etiology, but also suggests a 

mutual exclusivity of some CH types such that once one type of CH develops, the occurrence of 

others may be suppressed (e.g., DNMT3A and TET2 CHIP38). Individuals with CHIP and higher 

cellular fraction autosomal mCA events also demonstrated an inverse phenotypic association 

with LOY indicating a similar mutually exclusive relationship. These findings further support 

common genetic factors, and raise the importance of pursuing shared environmental contributors 

beyond smoking and air-pollution.12,33–37,39 Our findings reveal that there is mutual exclusivity of 

CH, most likely due to hematopoietic stem cells that cannot tolerate multiple independent 

somatic drivers of CH. However, we also observe strong evidence for the co-occurrence of CHIP 

and autosomal mCAs in the same individual, and in many instances, overlapping within known 

CH driver mutations (e.g., TET2, DNMT3A, JAK2). Cross-sectional observations of cellular 

fraction indicate these CHIP mutations often precede autosomal mCAs, which can lead to 

preferential clonal expansion of mCAs containing CHIP mutations, as has been mechanistically 

examined in specific cases.40 
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Rapid clonal expansion afforded by each type of CH leads to marked reductions in measured 

telomere length. These reductions in telomere length can lead to increased genomic instability in 

individuals with CH and could increase the likelihood of acquiring additional types of CH. 

Individuals who acquired overlapping CHIP and autosomal mCAs were found to have greater 

reductions in telomere length, which is a marker of past clonal expansion, while also having a 

significantly higher risk for acquiring blood cancers. Detection of these highly clonal, co-

occurring CH events, especially at TET2, DNMT3A and JAK2, could be helpful in identifying 

individuals at increased risk of developing hematological malignancies. Likewise, these genetic 

relationships can be leveraged to identify disease susceptibility loci for related traits. Future 

studies should focus on investigating the co-occurrence and overlap of CHIP and autosomal 

mCAs to further evaluate associations with environmental factors, elevated disease, and 

mortality.  

 

Online Methods 

Hematopoietic Phenotypes 

We used genome-wide association study (GWAS) summary statistics to investigate germline 

similarities and differences of 25 hematopoietic related phenotypes. These included loss of 

chromosome Y (LOY) in men,13 loss of chromosome X (LOX) in women, autosomal mCAs 

including gains, losses and copy neutral loss of heterozygosity,29 CHIP, MPNs,21 leukocyte 

telomere length (TL),26 and 19 blood cell traits21 (Supplemental Table 25). For LOX, we used 

previously generated data on copy number variation,24,29 and performed GWAS on 243,106 

women in the UK Biobank using a linear mixed model implemented in BOLT-LMM,41 to 

account for cryptic population structure and relatedness, a similar methodology was used to 
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conduct the LOY GWAS.13 For CHIP, we called somatic mutations using Mutect2 from 

available UK Biobank 200K whole exome sequencing data.42 A QCed set of N=198,178 

individuals were analyzed using a panel of one hundred normals created from UK Biobank 

participants with age <40, and included as part of the QC process. Variants were considered 

passing QC if the following criteria were met: meeting FilterMutectCalls quality standards 

including learned read orientation, variant allele fraction (VAF) >=2%, depth of calling >10, and 

a Phred scaled GERMQ score of >20 (1% error rate). CHIP was defined in these individuals 

using a curated list of CHIP mutated variants as previously described in the UKBB WES cohort 

(Supplemental Table 26).43 Individuals with a diagnosis of myeloid malignancy (AML, MDS, 

MPN) before blood draw were excluded from the CHIP phenotype while those that went on to 

develop myeloid malignancy post-blood draw by at least 5 years were retained. In total, 7,280 

(3.7%) individuals were found to have at least one CHIP curated variant (Supplemental Table 

26, Supplemental Table 27). We performed a CHIP GWAS in the UK Biobank array data,44 

restricted to European ancestry individuals (Supplemental Table 25) and those passing the 

following QC measures: individual had not withdrawn consent, included in kinship inference, no 

excess (>10) of putative third-degree relatives inferred from kinship, not an outlier in 

heterozygosity and missing rates, not found to have putative sex chromosome aneuploidy, no 

genotype missing rate of >0.1. Variants were included if they had a genotype missing rate <0.1 

across QC’ed individuals, Hardy-Weinberg equilibrium p-value of >1×10-15, and a minor allele 

frequency of >0.1%. Using Regenie,44 we performed ridge regression in step 1 using a set of 

~300,000 pruned SNPs and default cross-validation settings. We included age, age-squared, sex, 

smoking status (categorical level variable), and principal components of ancestry 1 through 10 as 

covariates. To further increase the power of downstream analyses, we conducted a meta-analysis 
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using METAL45 of CHIP GWAS summary statistics between our generated UK Biobank 

summary statistics and those from a previous CHIP GWAS in TOPMed.12 Before meta-analysis, 

both GWAS summary statistics were lifted-over from their respective genome builds to reference 

genome hg19. Alleles were flipped according to the hg19 build reference allele, and if neither 

allele was present the variant was removed. Strand ambiguous and non-biallelic SNPs were 

removed. Minor allele frequency was filtered to >=0.1%. RSIDs were assigned to variants using 

dbSNP version 144. 

 

Data on 482,378 subjects from the UK Biobank were used for phenotypic association analyses, 

after removing individuals with sex discordance or whose DNA failed genotyping QC. We used 

previously generated data for each of the hematopoietic related phenotypes,13,21,26,29 with the 

exception of CHIP which was called in the UK Biobank as detailed above (Supplemental Table 

3).  

 

Genetic Correlation 

We used both the high-definition likelihood method46 (HDL) and linkage disequilibrium score 

regression47 (LDSC) to compute pairwise genetic correlation between hematopoietic phenotypes. 

For HDL, we utilized an LD score reference panel available within HDL which contains 

1,029,876 QCed UK Biobank imputed HapMap3 SNPs,46 and also calculated the observed 

heritability for each hematopoietic phenotype (Supplemental Figure 16 and Supplemental 

Table 28). For LDSC, we utilized an LD score reference panel generated on 6,285 European 

ancestry individuals combined from the 1000 Genomes Phase 3 and UK10K cohorts, with a total 

of 17,478,437 available variants, and GWAS summary statistics were filtered to include 
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overlapping variants with >1% MAF and >90% imputation quality score. As all of the included 

GWAS summary statistics utilized UK Biobank data, we constrained the intercept within both 

HDL and LDSC by accounting for both the known sample overlap and phenotypic correlation 

between traits (Supplemental Table 29). Pairwise genetic correlations with CHIP were 

conducted using the generated UK Biobank summary statistics, due to incomplete overlap with 

the HDL reference panel within the TOPMed CHIP summary statistics (Supplemental Table 25 

and Supplemental Table 29). Correlation matrixes and circular charts for results visualization 

were generated using the “corrplot” and “circlize” R packages.48,49 

 

Phenotypic Associations 

Pairwise phenotypic associations between all hematopoietic phenotypes were generated using 

linear regression adjusting for age, age-squared, sex (in non sex-specific traits), and a 25-level 

smoking variable to reduce the potential for confounding variables driving associations.35 To 

ensure compatibility between binary and continuous phenotypic association results, association 

T-statistics were generated and reported to measure strength and direction of phenotypic 

associations. 

 

Hematological Malignancy Association 

Using available data within UK Biobank, we extracted relevant cancer information from both 

inpatient records and cancer registry data. Incident hematological cancers were defined as 

occurring after study enrollment using codes: C81: Hodgkin's disease, C82: Follicular [nodular] 

non-Hodgkin's lymphoma, C83: Diffuse non-Hodgkin's lymphoma, C84: Peripheral and 

cutaneous T-cell lymphomas, C85: Other and unspecified types of non-Hodgkin's lymphoma, 
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C86: Other specified types of T/NK-cell lymphoma, C88: Malignant immunoproliferative 

diseases, C90: Multiple myeloma and malignant plasma cell neoplasms, C91: Lymphoid 

leukemia, C92: Myeloid leukemia, C93: Monocytic leukemia, C94: Other leukaemias of 

specified cell type, C95: Leukemia of unspecified cell type, C96: Other and unspecified 

malignant neoplasms of lymphoid, haematopoietic and related tissue, D47: Other neoplasms of 

uncertain or unknown behavior of lymphoid, haematopoietic and related tissue. We performed 

Cox proportional hazards regression to assess the risk of hematological malignancies across 

CHIP and autosomal mCA group adjusting for age, age-squared, sex, and a 25-level smoking 

variable.35 Hazards ratios and 95% confidence intervals were generated and reported to measure 

strength and direction of hematological malignancy risk. 

  

Mendelian Randomization Analyses 

We performed one-direction Mendelian randomization (MR) between TL and LOY, LOX, 

autosomal mCAs, CHIP, and MPN. Briefly, MR analyses utilize genetic variants from GWAS as 

instrumental variables (IVs) to assess the directional association between an exposure and 

outcome, which can mimic the biological link between exposure and outcome.50 Each variant 

used in a MR analysis must satisfy three assumptions: 1) it is associated with the risk factor, 2) it 

is not associated with any confounder of the risk factor–outcome association, 3) it is 

conditionally independent of the outcome given the risk factor and confounders.51,52  

 

For our analyses, we used summary statistics and 130 significant signals of the largest TL 

GWAS to date to form the TL IV.26 We then extracted the same set of signals from summary 

statistics for each CH outcome. If any signals were missing in the outcome summary statistics, 
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we collected proxies for these signals using GCTA53 with European UK Biobank individuals as 

reference (within 1 MB of reported signals and R2 > 0.4). We chose the proxy of each missing 

signal with the largest R2 value as the replacement IV, which was contained in both GWAS 

summary statistics of the exposure and outcome. All TL signals were aligned to increasing allele 

and alleles for outcome were realigned accordingly.  

 

The MR inverse-variance weighted (MR-IVW) model, which can provide high statistical 

power,54 was used as our primary analysis. As some signals may have a stronger association with 

the outcome than the exposure, which may induce reverse causality, we applied Steiger filtering 

to each IV in order to remove these variants using the “TwoSampleMR” R package.55 We then 

applied Radial filtering to exclude signals that were identified as outliers according to Ru�cker’s 

Q′ statistic.56  

 

The sensitivity of MR models was checked by the degree of heterogeneity (I2 statistics and 

Cochran’s Q-derived P-value), horizontal pleiotropy (MR-Egger pintercept <0.05), and funnel and 

dosage plots (Supplemental Figure 12). To account for potential horizontal pleiotropy and 

heterogeneity, three additional MR models were performed: MR-Egger,57 weighted median 

(MR-WM),58 and penalized weighted median (MR-PWM).58  

 

Pathway and Gene Set Analyses 

We performed agnostic pathway-based analyses using the summary data-based adaptive rank 

truncated product (sARTP) method, which combines GWAS summary statistics across SNPs in a 

gene or a pathway,59 to identify gene sets and pathways associated with each type of CH. A total 
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of 6,290 curated gene sets and canonical pathways from GSEA (https://www.gsea-

msigdb.org/gsea/msigdb/) were used for the analyses. For each type of CH, the signals from up 

to five of the most associated SNPs in a gene were accumulated. We adjusted for the number of 

SNPs in a gene and the number of genes in a pathway through a resampling procedure that 

controls for false positives.59 The P values of gene- and pathway-level associations were 

estimated from the resampled null distribution generated from 100 million permutations. Linkage 

disequilibrium between SNPs was computed from European individuals within 1000 Genomes 

Project data.60 To reduce the potential for population stratification to bias the results, we rescaled 

the marginal SNP results for each CH trait to set the genomic control inflation factor to 1. A 

Bonferroni corrected level of significance of 7.95×10-6 (0.05/6,290 GSEA pathways) was used to 

assess statistical significance.  

 

Rare variants gene-burden test for LOY in UK Biobank 

To explore the relationship between rare variant burden and LOY, we performed association 

tests using whole exome sequencing (WES) data for 190,759 males provided by the UK 

Biobank. Prior to performing association tests, we performed quality control on provided 

sequencing data as previously described.61 

 

We utilized the ENSEMBL Variant Effect Predictor (VEP) v10462 to annotate variants on the 

autosomal and X chromosomes. VEP was run with default settings, the “everything” flag, and 

the LOFTEE plugin.63 The predicted consequence of each variant was prioritized by a single 

MANE (version:0.97) or, when not available, a VEP canonical ENSEMBL transcript, and the 

most damaging consequence as defined by VEP defaults. Variants with high confidence (HC, as 
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defined by LOFTEE) stop gained, splice donor/acceptor, and frameshift consequences were 

grouped as protein-truncating variants (PTVs). Following transcript annotation, we utilized 

CADD v1.6 to calculate the Combined Annotation Dependent Depletion (CADD) score for each 

variant.64 

 

To perform gene burden tests, we implemented BOLT-LMM v2.3.6.41 As input, BOLT-LMM 

requires genotyping data for variants with allele count greater than 100, all variants from WES 

passing QC as defined above, and a set of dummy genotypes representing participant carrier 

status per-gene for PTVs, missense variants with CADD ≥ 25 (MISS_CADD25, ) and damaging 

variants (HC_PTV+MISS_CADD25, DMG). Dummy genotypes were generated by collapsing 

all variants within each gene with a minor allele frequency (MAF) < 0.1%. For each gene, 

carriers with a qualifying variant were set to heterozygous (“0/1”) and non-carriers were set as 

homozygous reference (“0/0”). All models were controlled for age, age-squared, WES batch, and 

the first ten genetic ancestry principal components (PCs) as generated by Bycroft et al.65 

 

Following association testing, we further excluded genes with less than 50 non-synonymous 

variant carriers, leaving 8,984 genes of PTVs, 14,685 genes of MISS_CADD25, and 16,066 

genes of DMG for an exome-wide significance threshold of 1.26×10-6 (0.05/39,735) after 

Bonferroni correction (Supplemental Table 6).  

 

Associations between CHIP loss of function variant carriers and LOY  

As associations between known CHIP genes and LOY identified as part of rare variant burden 

testing could be due to reverse-causality – somatic instability such as LOY could lead to, or 
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occur in parallel with, variants arising within CHIP genes – we queried underlying variant call 

data to determine if individual variants within these genes were likely to have arisen somatically. 

We first extracted the number of reads supporting the alternate and reference alleles for all 

carriers of protein truncating variants (PTV) at MAF < 0.1% in four genes associated with LOY 

– three known CHIP genes, ASXL1 (n = 213 carriers), DNMT3A (n = 89), and TET2 (n = 193), 

and one control gene not previously associated with CHIP, GIGYF1 (n = 81; Supplemental 

Figure 3). This information was then used to calculate a Variant Allele Fraction (VAF) for each 

genotype, where a VAF of 0.5 indicates perfect balance between sequencing reads supporting the 

reference and alternate allele (Supplemental Figure 4). For all variants, we also annotated 

whether it was found in a list of known, specific CHIP driver mutations or was likely to be a 

CHIP driver mutation based on a broader set of criteria presented in Bick et al .12 For each gene, 

we tested for an association between PTV carrier status and PAR-LOY except using 6 additional 

criteria that excluded individuals carrying: 

1. Frameshift InDels with a binomial test p-value for allele balance < 0.001 (i.e. 

filtering InDels identically to SNVs, see above). 

2. Any variant with VAF < 0.25 or > 0.75. 

3. Any variant with VAF < 0.4 or > 0.6. 

4. Any variant with VAF > 0.35. 

5. A variant explicitly listed in Supplementary Table 3 from Bick et al.12 

6. A variant explicitly listed in Supplementary Table 3 or matching the criteria in 

Supplementary Table 2 from Bick et al.12 

All association tests were run separately for each gene using a logistic model corrected for 

identical covariates as the rare variant burden tests outlined above. 
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MTAG and Colocalization analysis among TL, LOY, and MPN 

GWAS summary statistics for LOY,13 TL,26 and MPN21 were utilized to conduct a meta-analysis 

by implementing the multi-trait analysis of GWAS (MTAG).66,67 Based on the summary 

statistics from GWAS of multiple correlated traits, MTAG can enhance the statistical power to 

identify genetic associations for each trait included in the analysis.66,67 We performed the MTAG 

analysis using Python. Prior to the analysis, we excluded the variants with MAF < 0.01 from the 

summary statistics of all three traits.13,21,26 A potential problem for MTAG is that SNPs can be 

null for one trait but non-null for another trait, which can cause MTAG's effect size estimations 

of these SNPs for the first trait to shift away from 0. This causes the false positive rate (FDR) to 

increase. Therefore, we estimated the max FDR for each trait by invoking “—fdr” when running 

MTAG. We implemented a clumping algorithm to select signals from the MTAG generated 

MPN summary statistics. Preliminary leading signals were selected with a P< 5×10-8 and a MAF 

> 0.1% at a 1 Mb window. We then selected the secondary leading signals using approximate 

conditional analyses in GCTA68 with UK Biobank reference panel. If the genome-wide 

significant leading signals shared any correlation with each other due to the long-range linkage 

disequilibrium (r2> 0.05), these signals were excluded from further analysis. We mapped the 

leading signals to the genes with 1 Mb window based on the start and end sites of genes’ 

GRCh37 coordinates. For all leading signals, we extracted their summary statistics from the 

original MPN GWAS summary statistics. In total, 36 independent leading signals were 

identified. We then applied Bonferroni correction for the identified signals. We further excluded 

the signals with P > 0.05/36=1.39×10-3 in the original GWAS to avoid false positives mentioned 
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above, as GWAS for both LOY and TL identified many more leading signals than MPN, which 

increased the FDR for MPN (Max FDR of MPN=0.11). 

 

We conducted the Bayesian test for colocalization between pairs of TL and MPN, and LOY and 

MPN using their summary statistics13,21,26 and the leading GWAS signals by implementing R 

package coloc (Version: 5.1.0).69 The signals with posterior probability (h4.pp) ≥ 0.75 were 

defined as the co-localized causal variant for both traits. Manhattan plots for results visualization 

were generated using the “qqman” R package.70 
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Figure Legends: 
 
Figure 1. Description of each type of clonal hematopoiesis. 
 
Figure 2. Pairwise genetic correlations between each type of clonal hematopoiesis, telomere 
length, and 19 blood cell traits derived using the high-definition likelihood (HDL) method. 
Square areas represent the absolute value of genetic correlations. Blue, positive genetic 
correlation; red, negative genetic correlation. Genetic correlations that are significantly different 
from zero (p-value< 0.05) are marked with an asterisk. All pairwise genetic correlations and p-
values are given in Supplemental Table 1. 
 
Figure 3. Pairwise phenotypic associations between each type of clonal hematopoiesis, telomere 
length, and 19 blood cell traits. Blue, positive T-statistic; red, negative T-statistic. T-statistics 
were derived using linear regression adjusted for age, age-squared, 25-level smoking status, and 
sex (in non LOY or LOX comparisons). Black cells were not tested. T-statistics that are 
significantly different from zero at a nominal p-value (p< 0.05) are marked with an asterisk and 
Bonferroni corrected p-value (p< 1.67×10-4) are marked with two asterisks. All pairwise T-
statistics and p-values are given in Supplemental Table 4. 
 
Figure 4. Shared etiologies and associations between types of CH and hematopoietic 
phenotypes: telomere length, and white blood cell count (WBC). Pairwise HDL genetic 
correlations are given in the left plot, pairwise phenotypic associations derived using linear 
regression adjusted for age, age-squared, 25-level smoking status, and sex (in non LOY or LOX 
comparisons) are given in the right plot. 
 
Figure 5. Stacked Manhattan plots from the MTAG and colocalization analyses among telomere 
length, LOY, and MPN (Top plot) and the original MPN GWAS performed by Bao et al. 
(Bottom plot). Nominated MPN susceptibility loci are labeled by analysis, MTAG(�), LOY 
colocalization(●), TL colocalization(�), and colored red for previously unidentified and black for 
previous identified. 
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