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Abstract

Recent advancements in Cybergenetics have lead to the development of new computational and experimental
platforms that enable to robustly steer cellular dynamics by applying external feedback control. Such technologies
have never been applied to regulate intracellular dynamics of cancer cells. Here, we show in silico that Adaptive
Model Predictive Control (MPC) can effectively be used to steer signalling dynamics in Non-Small Cell Lung
Cancer (NSCLC) cells to resemble those of wild-type cells, and to support the design of combination therapies.
Our optimisation-based control algorithm enables tailoring the cost function to force the controller to alternate
different drugs and/or reduce drug exposure, minimising both drug-induced toxicity and resistance to treatment.

Our results pave the way for new cybergenetics experiments in cancer cells for drug combination therapy design.
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1 Introduction

Cybergenetics is a recent field of synthetic biology, which refers to the forward engineering of complex phenotypes
in living cells applying principles and techniques from control engineering [1].

Three main approaches have been proven to be effective for the control of different processes (such as gene expres-
sion, cell proliferation), namely: i) open- or closed-loop controllers embedded into cells by means of synthetic gene
networks [2-6]; i) external controllers, where the controlled processes are within cells, while the controller (either
at single cell or cell-population level) and the actuation functions are implemented externally via microfluidics-
optogenetics/microscopy-flow cytometry platforms and adequate algorithms for online cell output quantification
and control |7H16]; iii) multicellular control, where both the control and actuation functions are embedded into
cellular consortia [17H20]. Plenty of examples of embedded controllers have been engineered across different cellular
chassis; instead, applications of external and multicellular controllers in mammalian cells are scarce and either just
theoretical or limited to proof of concepts.

Here, we propose to apply cybergenetics, in particular external feedback control, to predict combinations of
drugs (i.e. control inputs) which can bring dysregulated cellular variables (i.e. gene expression, control output of
the system) within tightly controlled ranges in cancer cells. We take Non-Small Cell Lung Cancer (NSCLC) as
an example; using a previously proposed differential equations mathematical model describing the dynamics of the
EGFR and IGF1R pathways, we show in silico that external feedback controllers can effectively steer intracellular
gene expression dynamics in cancer cells to resemble those of wild-type cells.

The use of feedback control is advantageous as it enables coping with changes in both steady-state levels and in
the temporal dynamics of genes involved in dysregulated signalling cascades. The control action is implemented by
means of an Adaptive Model Predictive Controller (MPC), thus not requiring an exact model of the system; this is
particularly advantageous in biological applications, where the derivation of detailed models can be time-consuming
and troublesome [21H23)].

The possibility to control single/multiple outputs with one or more inputs can support the design of combination
therapies which target different nodes in signalling cascades; this approach can be advantageous to maximise the
efficacy of cancer therapies [24]. In this regard, our optimisation-based control algorithm enables tailoring the cost
function to force the controller to alternate different drugs and/or reduce drug exposure. The controller should also
be able to cope with the crosstalk among different signalling pathways and the presence of endogenous feedback
loops within signalling pathways, which might be a further mechanism causing drug resistance by adaptive cellular
responses [25].

In what follows, we demonstrate that adaptive MPC can be used to effectively steer the concentration of several
proteins within different signalling pathways of a NSCLC cell in order to tune gene expression, whilst reducing the

dose of each input.

2 Methods

2.1 Control Scheme Used in External Feedback

We applied a feedback controller to regulate the concentrations of two downstream genes (ERK and Akt) of the
mTOR and MAPK pathways as modelled in [26], and as shown in Figure

Figure [2[ shows the response of y1(ERK) and y2(Akt) in a wild type ~ and in a NSCLC ~ cell to a phospho-
rylation of EGFR and IGF1R as modelled by the initial conditions [26], referred to as an activation. A wild type
activation is caused by an active concentration of 8000 uM for both EGFR and IGF1R and a NSCLC activation
is triggered by an active concentration of 800’000 and 400’000 uM for EGFR and IGF1R respectively. The term
‘Free’, refers to a free response of the NSCLC system (i.e. if no feedback control is applied). It can be seen that this
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overexpression in cancer cells causes different y1(ERK) and y2(Akt) activation dynamics; of note, the activation of

y1(ERK) occurs over a timescale of an order of magnitude faster than the activation of y2(Akt).

IGF1R EGFR

y(t)

Reference [—> rt) _Q &(t) Regulator EQ»

x(t)

Figure 1: A control scheme including three inputs, (I, I, I3), that interact with the mTOR and MAPK pathways.
Two observable protein concentrations, y1(ERK) and y2(Akt), are used as control outputs for the two pathways.
The regulator used throughout this project is an adaptive MPC program which attempts to steer the concentrations
of the outputs to the transient response of the wild type cell, set as the control reference, as shown in Figure
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Figure 2: Simulations of the NSCLC model [26]: free NSCLC cell response ~ compared to a wild type cell ~ [26].
A) The response of y1(ERK). B) The response of y2(Akt).

The two pathways are both kinase activated cascades, meaning that an activation at the receptors in the cell
membrane causes a cascade of phosphorylations in downstream genes. Therefore it is difficult to robustly control
the system as once an error is measured in the outputs, it can be too late to have a significant effect by acting on
the internal states higher up the cascade.

A model based controller is needed to interpret a small change in the outputs, rather than using a model free
controller with a large gain that will have a large reaction to all errors in the outputs. For example, a PID controller
can be tuned such that the reaction to the initial error of the outputs is enough to mimic the reference, however the

response might be so finely tuned that robust control is not achieved (Section . A controller that can preempt
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the activation curve in the outputs by estimating the changes in internal states higher up the cascade can robustly
control the NSCLC system.

Adaptive MPC is used as the model based control scheme here (Regulator block in Figure [1]). The success of
MPC relies on the quality of the model used to predict the future behaviour of the system, and on the cost function
the controller uses to calculate the optimal inputs to be fed to the process. The novelty of the controller used here

lies in the choice of adaptive model and cost function. The MPC implementation is presented in Section [S4}

2.2 MPC’s Linearised Model

The NSCLC model |26] contains significant non-linear terms and a large number of internal states. An adaptive
MPC controller which computes a linear approximation of the NSCLC model at each time step of the controller,
predicts the future of the internal states and calculates the optimal input profile. The controller then applies the first
input of its calculated optimal input profile to the actual system. At the next time step, the controller recalculates
a new linear model by linearising the NSCLC model. The use of a linear system results in a convex optimisation
problem which can be solved quickly. Adaptive MPC is used in all simulations unless stated otherwise.
Alternatively, non-linear MPC could have be used but it is computationally expensive and can takes a time to

compute the next input which is longer than the time-step between inputs (see Section .

2.3 Improving the Traditional MPC Cost Function

The cost function used in the adaptive MPC algorithm to find the optimal input depends on the current internal state
error, eg, and the inputs, u(t). The error, e(t), is the difference between the reference, r(¢), and the internal states
of the NSCLC system, x(t), shown in Figure [I} The standard cost function used for linear MPC controllers [27],
focuses on how readily the inputs, u(t), are used and on reducing the proportion error in the states, e(t).

In order to include both the magnitude and duration of the error, the integral of the state error, [ e(t)dt, is
added to the standard cost function. It has been shown that it is beneficial to integrate the state error |28, meaning
that the controller acts due to these longer, smaller errors in the outputs caused by states higher in the cascade
which will later have a significant affect on the error in the output.

Moreover, to avoid rapid fluctuations in the control input, u(t), as this would be impractical in vitro, a differential
cost of the inputs is also added to cost function.

The focus of the cost function is decided by varying the weights of term coefficients (v, 8,7, 7,0) to inform the

controller what an optimum solution favours. The derivation of the cost function can be found in Section [S4}

2.4 MPC Simulation Parameters

The MPC simulations are reproducible due to the deterministic nature of the model and controller, as long as the
cost function coefficient weights and other MPC related parameters are consistent. Table [I] gives a summary of

these parameters. Several key parameters are added to the caption of each MPC simulation.

2.5 Indexes Used to Quantify Control Performance

To assess quantitatively the performance of our controller, we define an Error Index, EI. It is the sum of the

squared error between the output and the reference for the outputs, as used in [29].

EI = fOT eTCedt (1)

C is the output matrix of the linearised NSCLC model. This index is displayed in the top left corner of output

plots. A small ET indicates a good performance of the controller.
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Parameter Description

Value

T Sample time of the MPC regulator - duration between when
the MPC regulator is initiated and the future inputs predicted.

N The length of the prediction horizon - the number of steps into the
future that the MPC will predict the states and optimum input.

e The weight of the internal state errors.
I6] The extra weight associated with the output state errors.
¥ The weight associated with using each input, a row vector, an

element for each input, I; to I3 respectively.
0 The weight of the gradient of the input profile.

n The weight of integral of the output state errors.

Usually 1min (0.02 in Figure

and 30 in Figure

10 steps

0

Usually 0 (1 in Figure ))

Usually 0 (10°, Figure ))

Usually 1 (0 in Figure {4/A))

Table 1: The parameters used for each MPC simulation.

To get a sense of the controller effort needed to achieve a certain output, we assess the dose of input drug(s)
received by the cell using a Dose Index, DI;. It is the integral of the input signal, where u(t) = [I1(t), I2(t), I5(t)].

DI; = [/ I(¢) dt

(2)

It is indicated in each input plot. The inputs can never be negative as they are physical concentrations, therefore

there is no need to square the input signal.

2.6 Crosstalk Within the NSCLC System
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Figure 3: A step response of y1(ERK) to I; and Is. A) The response of ERK. B) and C) A 1uM step of I; and Is.

Within the NSCLC cells, different signalling pathways interact with each other, having evolved to cumulatively

work against an external disturbance in one pathway through changing the activation of another. Figure [3] shows
the effect of this crosstalk for a step input of both I; and Iy on y1(ERK). In this simulation, EI = 2.4237, where as
the ET of a free response is, FT = 2.4002, showing that, although hardly visible in Figure[3] the inputs used on the

mTOR pathway which would work to reduce the activation of y2(Akt) also increases the activation of y1(ERK) in

the MAPK pathway, (see Figure [1| for the pathways). This is expected, as the network of pathways perceives the

input as an external disturbance.
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3 Results

Non-Small Cell Lung Cancer (NSCLC) accounts for 80% of lung cancer cases and is characterised by various
mutations which usually lead to an overexpression of the EGF and IGF1R receptors. These receptors trigger
several cascades including the mTOR and MAPK pathways; their downstream genes FOXO1 and C-FOS regulate
cell apoptosis and proliferation, and their dysregulation can lead to tumours. The differential equation mathematical
model for NSCLC signalling developed in [26] includes the mTOR and MAPK pathways along with some of the
reactions between the two pathways, as shown in Figure |1} it enables comparing gene expression dynamics in wild
type vs cancers cell. We chose the downstream genes ERK and Akt (noted as y1 and y2, respectively) as the control
outputs for the external feedback loop (Figure . The two outputs can be tuned by varying three inputs (I, Io,
I3), which inhibit three specific proteins within the mTOR and MAPK pathways. The pathways can influence each
others’ reactions, creating internal feedback loops (crosstalk).

The code used to implement an adaptive MPC program on this NSCLC model |26], used in these simulations is
available on GitHub: INSERT LINK HERE.

3.1 Assessing the Importance of Each Term in the Cost Function

Firstly, Single-Input Single-Output (SISO) simulations were performed. The controller tries to steer the dynamics
of either y1(ERK) or y2(Akt) by varying the concentrations of a drug that acts directly on one of the two signalling
cascades (I3 for y1(ERK) and either I or Iy for y2(Akt)). Figure [4] uses Iy to regulate y2(Akt), and shows the
effect of different cost function terms on the performance of the controller.

Figure ) shows that using integral terms within the cost function reduces the error in y2(Akt), as compared to
the proportional terms in (ET — 1.945~< 10.923~). However, it can be seen in plot C) ~ that the controller using
integral terms can cause fluctuations in the input. Such fluctuations are reduced when using a differential cost, which
also has low Error Index, but higher Dose Index (ET — 1.690~< 1.945~< 10.923~, DIy — 603~> 546~> 129~).
This is due to the fact that the cost function is relative to every non-zero term, therefore adding another set of
terms means that the other terms are relatively less important to the controller. Therefore adding differential terms
restricts the fluctuation of the inputs at the cost of a higher dose.

The derivative term is not included in further simulations to simplify the tuning of therapies, clearly showing
the balance between the Error and Dose Indexes by only costing the integral error and inputs. All subsequent cost

functions are consistent with plot C) apart from the weight associated with each input, ~, that is varied.

3.1.1 Single-Input Single-Output Control with the Chosen Cost Function

Figure [5 shows Single-Input Single-Output (SISO) adaptive MPC simulations for I7, I and I5; each drug is used
to control the downstream molecule in the cascade it acts on. It can be seen that plots C) and D) of Figure
are identical to ~ in plot A) and plot C) of Figure 4| as these are both SISO responses of Iy using the chosen cost
function (costing the integral and input terms). All of the SISO controllers move the NSCLC response towards
the wild type response ~ using a lower dose than just a step of each input at the maximum allowed dose (1uM),
decreasing the Dose Indexes. The step input response can be found in Section [S3] This demonstrates the benefits

of using an external feedback loop compared to an open loop response with a static step input.
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Figure 4: Single-Input Single-Output (SISO) adaptive MPC simulation using I5 to control y2(Akt). Comparing the
effect of using the integral error and input differential terms in the cost function. A) The response of y2(Akt) to
different cost functions. B) The input profile (I5) using the proportional error ~ within the cost function. 8 = 1,

v =[-,10%,—], 0 = 0 and = 0. C) The input profile (I3) using the integral error ~. 3 =0, v = [—,10°,—], 8 =0
and 77 = 1. D) The input profile (I3) using the integral error and input differential terms ~ of the cost function.
B=0,v=[-,10% -], 0 =10° and n = 1. Ty = Imin and N = 10 for all plots.
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Figure 5: SISO adaptive MPC simulations. A) The response of y2(Akt) to the input of I; in plot B), v = [1, —, —].
C) The response of y2(Akt) to the input of I5 in plot D), v = [—, 10°, —]. E) The response of y1(ERK) to the input
of I3 in plot F), v = [, —,10%]. Plots A)-F): Ty =1, N =10, =0, 3=0,6 =0 and n = 1.

Page 6


https://doi.org/10.1101/2022.03.14.484268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484268; this version posted April 11, 2022. The copyright holder for this preprint (which
was not certified bygeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
External Control Of Cancer CellidwailddjeumuecadBEieNGIdpAdveliddirational license. Benjamin Smart

3.2 Multi-Input Multi-Output Control

Adaptive MPC can also be used to steer both outputs using all three inputs, in a Multi-Input Multi-Output (MIMO)

simulation, as shown in Figure [6]
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Figure 6: A MIMO adaptive MPC simulation using I, Is and I5 to control the concentration of y1(ERK) and
y2(Akt). A) The response of ERK. B) The response of Akt. C) to E) The inputs used in the simulation. Parameters:
T, = Imin, N =10, a = 0, =0, v = [1,10%,10°], § = 0 and 5 = 1.
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Figure 7: A MIMO adaptive MPC simulation using I, Is and I3 to control the concentration of y1(ERK) and
y2(Akt). A) The response of ERK. B) The response of Akt. C) to E) The inputs used in the simulation. Parameters:
T, = 0.02min, N =10, a =0, 3 =0, v = [1,10°,10°], § = 0 and n = 1.

The error of y2(Akt) (Figure [6B)) is significantly smaller in comparison to Figure [5JA) and C) (EI — 0.791 <
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1.954 < 2.75), whilst using significantly less of I; (DI; — 570 < 1068) and Iy (DI — 418 < 546), suggesting that
it might be advantageous to use adaptive MPC to predict and apply combination drug profiles.

However, due to the fast dynamics of the MAPK pathway, the output y1(ERK) fails to adequately follow the
reference activation curve. Figure [7] compared to Figure [6] shows that if the time step is adequately reduced
(for instance, to Ts = 0.02 minutes), the controller can handle the faster dynamics of the pathway and effectively
control both outputs (EI — 0.001 < 0.791) whilst using a lower dosage of all the inputs (DI; — 545 < 570,
DI, — 297 < 418, DIz — 4.35 < 6.87).

The large error within y1(ERK), when Ty = 1min, means that the controllers optimal input profile will refrain
from using I; and I due to the negative effects on y1(ERK) caused by crosstalk. In order to investigate the effect
of varying the weights of each input within the cost function to design combination therapies it was decided to run
Multi-Input Single-Output (MISO) simulations with only y2(Akt). Allowing a more straightforward comparison
of different combination treatments without having to factor in the added effect of the crosstalk from y1(ERK)

suppressing the use of either input.

3.3 Combination Therapies Using [; and I

If cells are exposed to drugs for an extended period of time, side effects and resistance might become an issue |24].
Therefore, the controller should be used to find potential drug profiles that can achieve a similar Error Index (ET)
whilst reducing the dose of the inputs (DI;). The weight associated with using each input, v, within the cost
function can be varied for this aim, as shown in Figure |8] The Bliss Independence (BI) formula [30}/31] has been
used as a combined normalised Dose Index to summarise the combined effect of multiple drugs.

Figure [§] focuses on the control of y2(Akt) using I; and I as control inputs. The weights in the cost function

= %7 ranging from low R values (where a high weight is

associated with each input can be varied as a ratio of R
associated with Iy, (1), producing a SISO like plot only using I5), all the way through to a high R value (where 7,
is relatively large and the controller will only use I7). Figure 8| compares the normalised Error Index, EI ~, and the
Bliss Independence, BI ~, to the weight ratio, R. It shows that there is a range of R, significantly reducing both
EI ~ and BI ~. Therefore, the control performance of the MISO controller is better than any SISO simulation
while keeping drug concentrations low. For the purpose of designing combination therapies, here the optimal input
is associated to the minimum value of the ET ~.

It can be seen from Figure [8| that the minimum occurs when R = 10°, corresponding to v; = 1 and o = 10°.
Figure [0 compares the responses obtained using a very low or high R value to the MISO simulation at the optimum
of EI. This optimum achieves a significantly lower Error Index (EI — 0.25 ~ < 1.95 ~ < 2.75 ~), and a lower
Dose Index (DI} — 568 ~< 1068~ and DIy — 423 ~ < 546~).

The formation of the normalised Error Index, Dose Index and Bliss Independence are shown in Section
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Figure 8: The normalised Error Index of y2(Akt) ~, Dose Indexes of I; ~ and Iy ~ and Bliss Independence ~, from
31 MISO adaptive MPC simulations using varied ratio of input weights, R = 72/71, for example, when R = 100,
v =[1,100, —]. Parameters: Ty = lmin, N =10, « =0, 3 =0, § = 0 and n = 1. The three star markers show the
ratio used in the plots of Figure @l
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Figure 9: Three adaptive MPC simulations using I; and Is to control y2(Akt). A) the response of y2(Akt) to
three different input weightings, SISO - I} ~ (y = [1,10®,—]), SISO - I, ~ (v = [1,107%,—]) and MISO
(v =[1,10%,—]). v was selected from the minimum point of the ET and the limits of R in Figure|§] B) and C), the
input of I; and I, respectively, used in the two SISO simulations. D) and E), the inputs of I and I, respectively,
used in the MISO simulation. Parameters: Ty = 1min, N =10, a =0, =0,0=0and n=1
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3.4 Drug Holidays

If using an adaptive MPC, the user can set specific time intervals in which the controller does not give specific drugs

(for example, to interrupt related toxicity). These Drug Holidays can be achieved by varying the weights associated

with each input,

low Error Index
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online, during a single simulation. As an example, Figure [10|shows that the controller can retain a
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Figure 10: A MISO adaptive MPC simulation swapping I; and I to control y2(Akt). )
to C) The inputs used in the simulation. Parameters: T = 1min, N =10, « =0, 8 =0,

t < 600min and v = [00,10%, —] when 600 < t < 2200min, § = 0 and n = 1.
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—],0=0and n=1.
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Therefore it is shown that a programmed change of cost function weights during the simulation can decide which
input to stop using.

Alternatively, the controller can be set to only choose one input at each time step. The inputs shown in Figure[T]]
have an ON or OFF state, 1uM or OuM (discrete inputs). The step size, T, used makes a significant difference to
the response. When Ty = 1min the drugs can switch ON or OFF every minute, leading to rapidly fluctuating inputs
(shown in Section [S6)). Figure|l1|shows the discrete simulation with a larger time step (Ts = 30min). It can be seen
that there is a better performance when compared to the SISO simulations (Figurep|) as EI — 1.6878 < 1.95 < 2.75,
whilst still using less of each input (DI; — 630 < 1068, DI, — 450 < 546). This controller benefits from
producing combination therapies at a much larger time step of Ty = 30min whilst including drug holidays. However
when compared to the optimal MISO response (Figure E[), these added constraints result in a higher Error Index
(ET — 1.6878 > 0.2534) for a higher dose (DI; — 630 > 568, DIy — 450 > 423).

4 Discussion

Computational methods have been extensively used in the search for effective cancer treatments, with approaches
including optimal control to regulate dynamics of different cell populations [32H41], and a feedback action to account
for changes in the cancer system, either in silico or in vitro [42H49|]. This is, to the best of our knowledge, the first
attempt of using feedback control to regulate intracellular dynamics in cancer cells.

We showed that an adaptive MPC program can be used to inform treatments for NSCLC cells, steering the
dynamics of several key signalling pathways, whilst offering a tunable cost function that allows to adjust the
characteristics of an optimal input. Indeed, the controller can be tuned to choose different drug profiles that will
achieve a similar control performance whilst reducing exposure to one or more drugs.

Other control strategies, like PID controllers, are less straightforward to tune as the gains are not so related to
the observed output and desired input. The use of a linear model within the MPC algorithm makes the control
algorithm running time short enough for it to be used, in the future, in external feedback control experiments.
The implementation of those would require some practical aspects to be considered, which we did not account for.
Firstly, there might be delays in cell responses to drugs/actuation, which the model used by the controller should
account for. Also, the sampling/actuation time might need to be fast enough, if aiming at controlling genes with fast
dynamics. This issue might be overcome using experimental optogenetics-based platforms instead of microfluidics-
based ones, as they can reduce delays in the actuation. Finally, this method assumes the knowledge of a model. In
the future we hope to work on an controller that adapts the model due to online system measurements.

We foresee a growing interest in applying cybergenetics approaches, and in particular feedback controllers, to
steer mammalian cells dynamics. If we realise our ambition to implement the experiments proposed here on living
cells and, longer term, on patient-derived organoids, feedback control might be a valuable tool for the design or

personalised optimal treatments for a range of conditions.

5 Conclusion

It has been demonstrated that adaptive MPC can be used to better inform treatments for NSCLC cells, guiding
the behaviour of several key signalling pathways and offering a tunable cost function which the user can adjust,
modifying the characteristics of the optimal response. The controller can be tuned to focus on: the duration of
the output state errors; the rapidity of the inputs; and the use of the inputs themselves. The weights can also be
changed during its operation to choose different drug profiles that will achieve a similar performance whilst giving
the cell a break from individual drugs. In the future we hope to test the controller on a microfluidics device as

currently the controller has only been tested in silico.
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S1 NSCLC Model

The model of the NSCLC is [26]
% = f(x,u), y =Cx=0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,0]x (S1)

where the vector field f(.,.) is detailed in — , X is the state vector containing 21 molecule concentrations
(Table , u is the input vector u = [I1, Iy, I3]T ( in (S4)-(S23), each input acts on both the active and
inactive target molecule and therefore appears twice in —) and y is the vector of outputs y; = pEFRK and

y2> = pAkt (blue in (S4)-(S23)).

X; Shorthand Molecule

r1  pEGFR Active epidermal growth factor receptor
ro DSOS Deactive SOS
x3  SOS Son Of Sevenless, a Guanine nucleotide exchange factor
r4s  Raf Raf kinase
x5  pRas Active Ras, a small GTPase
z¢ pMEK Active Methyl ethyl ketone
7  ERK Extracellular-signal-regulated kinase
rs pERK Active ERK
g  pIGFIR Active Insulin-like growth factor receptor
x19 PI3K Phosphoinositide 3-kinase
x11  pPI3K Active PI3K
r12 pAkt Active Akt
r13 Akt Set of three serine/threonine-specific protein kinases
x4 PP2A Protein phosphatase 2, Kinase inhibitor
r15 Ras A small GTPase
x16 pRaf Active Raf
r17  MEK Methyl Ethyl Ketone
x13 RasGAP GTP hydrolyser of Ras
r19 ppRaf Raf which has been phosphorylated twice
x99 P90 Ribosomal S6 kinase
r91  pP90 Active P90
Table S1

S1.1 Initial Conditions

Mutations present in NSCLC cells can lead to an overexpression of EGF R and IGF1R; this is represented by using
different initial conditions for pEGFR and pIGF1R are taken from [26] and lead to the response of the system as

shown in Figure[2] These initial conditions are used for all the simulations where NSCLC cells are being controlled.

NSCLC Cell:  pEGFRy = 800000 uM pIGF1Ry = 400000 puM

S2
Wild Type Cell:  pEGFRy = 8000 uM  pIGF1Ry = 8000 piM (52)

SOSy = 120000 pM Rasg = 120000 M Rafo = 120000 pM MEK, = 600000 pM
ERK,y = 600000 uM  P90Rske = 120000 M PI3K, = 120000 pM ppRafs = 120000 pM ($3)

PP2Ay = 120000 puM RasGAP, = 120000 puM
DSOSy = pRasy = pRafy =pMEK)=pERKy = pP90Rsky = pPI3Ky =0 uM
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S1.3 Parameters in the NSCLC Model

Variable Definition Value, |]26[|
kfe EGFR deactivation 0.02
ksos:E Catalytic constant for SOS activation by EGFR 694.731
KMsos.E Michaelis—Menten constant for SOS activation by EGFR 6086070.0
kpisk.E Catalytic constant for PIK3 activation by EGFR 10.6737
KMprsk.E Michaelis—Menten constant for PIK3 activation by EGFR 184912.0
kfr IGF1R deactivation 0.02
ksos:1 Catalytic constant for SOS activation by IGF1R 500.0
KMsos.1 Michaelis-Menten constant for SOS activation by IGF1R 1000000.0
kprsk.1 Catalytic constant for PIK3 activation by IGF1R 10.6737
KMprsk.1 Michaelis—Menten constant for PIK3 activation by IGF1R 184912.0
kpsos:p9o Catalytic constant for DSOS deactivation by p90Rsk 161197.0
KMpsos:pyo Michaelis—Menten constant for DSOS deactivation by p90Rsk  896896.0
kRas:SOS Catalytic constant for Ras activation by SOS 32.344
KMpgas:s0s Michaelis—Menten constant for Ras activation by SOS 35954.3
kRas:Gab Catalytic constant for Ras deactivation by RasGAP 1509.36
KMpas:Gab Michaelis—Menten constant for Ras deactivation by RasGAP  1432410.0
kERaf:Ras Catalytic constant for Raf activation by Ras 0.884096
KMRat:Ras Michaelis-Menten constant for Raf deactivation by Ras 62464.6
kRaf:ppRaf Catalytic constant for Raf deactivation by RafPP 0.126329
KMRat:ppRaf Michaelis—Menten constant for Raf deactivation by RafPP 1061.71
ERaf:Akt Catalytic constant for Raf deactivation by Akt 15.1212
KMpgay: Akt Michaelis—Menten constant for Raf deactivation by Akt 119355.0
kRaf:MEK Catalytic constant for MEK activation by Raf 185.759
KMpor:-MEK Michaelis-Menten constant for MEK activation by Raf 4768350.0
kMEK:-PP2A Catalytic constant for MEK deactivation by PP2A 2.83243
KMy grk.ppaa Michaelis-Menten constant for MEK deactivation by PP2A 518753.0
kERK.-MEK Catalytic constant for ERK activation by MEK 9.85367
KMgrrx.merx  Michaelis-Menten constant for ERK deactivation by MEK 1007340.0
kERK.-PP2A Catalytic constant for ERK activation by PP2A 9.85367
KMgri.pp2a  Michaelis-Menten constant for ERK deactivation by PP2A 1007340.0
kdpog p90Rsk deactivation 0.0050
kpoo:ERK Catalytic constant for p90Rsk activation by Erk 0.0213697
KMpgo.ErRK Michaelis—Menten constant for p90Rsk activation by Erk 763523.0
kAkt:-PI3K Catalytic constant for Akt activation by PIK3 0.0566279
KMagi.prsix Michaelis—Menten constant for Akt activation by PIK3 653951.01
kdaps Akt deactivation 0.0050
kdprax PI3K deactivation 0.0050
Value estimated in this report
Kony Catalytic constant for PI3K deactivation by Iy 0.1
Kmq Michaelis-Menten constant for PI3K deactivation by I; 60
Kong Catalytic constant for Akt deactivation by I 0.01
Kmeo Michaelis-Menten constant for Akt deactivation by I 8.9
Kong Catalytic constant for ERK deactivation by I3 2
Kmg Michaelis-Menten constant for ERK deactivation by I3 2.5

Table S2: The Parameters used in the NSCLC model including the six input parameters as discussed in Section
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S2 Parameter Choice For Input Interactions

The equation governing the inputs reaction with the target molecule is given by

dTarget KonlI
——— =-T t— S25
dt T Km T (525)
Drug Km(u)M Kon(uMs~') Target Molecule
T; - 3MA 60 50] 0.1 PI3K
I, - Oridonin 8.9 [51] 0.01 Akt
I5 - Pimasetib 2 [52] 2.5 MEK
Table S3

Where the Menten parameter values associated with each input are listed in Table Km is equivalent to the
1C'5¢ value of the inhibitor being used on each target and is a property of the drug. To make the response of the
controller inputs less ‘switch like’, inhibitors with relatively large I1C5¢ values have been chosen. Kon has then been
chosen by comparing the model of the drug to western blots for I;-3MA [53], I>-Oridonin [54] and I3-Pimasetib [55].

S3 Step Input Response

Step input simulations for each input, as described in Section [3.1.1] can be seen in Figure[S1] In all cases, the control
performance is worst as compared to that obtained with SISO control (Figure [5)), as the ET is either comparable
(S1|A) or higher and E) than those obtained applying feedback control; also, in all step input simulations, the
Dose Index is higher.

Ao . y2 - Akt B SISO -1,
. |EI=24135 ——Wild Type 1
206 Free DI, = 2200
T ——SISO-1
2 0.4 ! =
Ly 205
Z02
a
0 0
0 440 880 1320 1760 2200 0 440 880 1320 1760 2200
Co . y2 - Akt D Siso-1,
< " |EI=24134 1
<06 _ Di, =2200
© —Wild Type
204 Free % 05
= ——SIs0-1, ==
<02
a
0 0
0 440 880 1320 1760 2200 0 440 880 1320 1760 2200
= v1 - ERK F SISO -1,
x " |El'=0.020397 1
Fos DI, =50
= ——Wild Type
204 Free % 05
> ——SIs0-1, =
0.2
L
(o8
0 0
0 10 20 30 40 50 0 10 20 30 40 50
Time(min) Time(min)

Figure S1: Step Input simulations. A) The response of y2(Akt) to the step input of I; in plot B). C) The response
of y2(Akt) to the step input of I5 in plot D). E) The response of y1(ERK) to the step input of I3 in plot F).
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S4 Model Predictive Control (MPC)

MPC uses a model of the Plant (system to be controlled) in the feedback loop to show the dominant dynamics of
the Plant to estimate the effect of the inputs the controller will optimally choose at each time step. The inputs
are chosen to minimise a user-defined cost function that typically includes terms penalising the magnitude of the
inputs, u(t), and the magnitude of errors, e(t), between the response of the system and reference signals [27], as
shown in Figure The feedback loop then measures the outputs of the actual Plant, y(t), to estimate the actual
states, x(t), and reiterates the MPC scheme to choose each subsequent input, u(t).

Some additions to the cost function will be discussed in Sections[S4.2] and [S4.3] MPC controllers are not limited
to linear systems, however, non-linear systems will result in a larger computational effort and require more complex

optimisation solvers, as discussed in Section [S7]

MPC
Regulator
t) — t t
Reference |[—== r® O e®) [ u(t)-; Plant ﬁ—»
A
Plant Model Y
—> |Estimator

x(t)

Figure S2: MPC scheme.

For the present numerical study, the Plant is the nonlinear NSCLC model presented in Equations f
and all the system states, x(t), are measured directly. In practice, only a few outputs/states can be measured and
an Estimator is required to estimate the remaining states from input-output data as shown in Figure [S2|

The control reference signal, r(t), is chosen as the response of a wild type cell (i.e. without cancer). e(t) is the
error signal between the reference, r(t), and internal states of the Plant, x(t). e(t) is fed into the Regulation block

of the control scheme; this is where the optimisation problem is solved.

S4.1 Cost Function Derivation

The internal state errors e(t) are calculated and fed into the MPC block at each time step. The MPC controller
uses the model of the Plant system to predict the future state error of the system for possible combinations of
inputs, within the problem constraints, over the prediction horizon, N. The controller then optimally chooses the
input profile that results in the minimum of a predetermined cost function, J(U), in the Regulator. The inputs of
the first time step of this optimal sequence are then applied to the Plant system. At the next time step, the error
in the states is estimated and this process repeats.

Usually, the optimisation problem contains the cost function to be minimised, and the state and input constraints.

min(J(E,U)) st. —U<Ug, U<Uy,
v (S26)
where J(E,U)=E"QE + U'RU

The model that the regulator sees is a discrete approximations of the NSCLC model for 1 < k < N steps.
E = [e(0),e(1),...,e(N)]T describes the current and future predicted state errors. U = [u(1),u(2),...,u(N)]T
describes the future inputs. The weight of the cost function related to each term can vary what is considered the
optimal input. Q weights the error of the states and R weights the use of the inputs [27]. For example, if the drugs
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used as an input need to be used forbearingly then the weight of the cost function associated with the inputs, R,
should be relatively large compared to the weight of the state error, Q. Constraints on the input bounds are also
included here (U < U < Uy, in all simulations Uy, = 0uM and Uy = 1uM).

S4.1.1 Linear MPC

If a linear approximation of the model can be produced and represented by a state space, the future behaviour of
the model can be calculated offline and the optimisation problem is convex (for affine constraints). The minimal
cost can then be solved using a quadratic solver, which is relatively computationally light (MATLAB R2021b’s

‘quadprog’ solver was used here). Here, a state space was used to represent the Plant’s model.

e(k+1)=Ae(k) + Bu(k+1) y(k) = Ce(k) (S527)

As long as the current state is known, each future state can be estimated for a given input profile, i.e.

e(l) = Aep + Bu(l)
e(2) = Ae; + Bu(2) = A(Aep + Bu(1)) + Bu(2) (528)
e(N) = ANey + AN"1Bu(1) + AN 2Bu(2) +... + Bu(N).

Defining a new notation containing all of the states in the prediction horizon.

E = Me, + CU

u(1) I | 0 o . . .0
u(2) A B 0 .. .0

. AB B . ..0 29

U= M = C= (529)
u(N) AN AN-1B AN-2B . . | B

,U) = ETQE + UTRU

J(U) = (Meg 4+ CU)TQ(Me, + CU) + UTRU

= UT(CTQC +R)U +2¢7 (CTQM)TU + eI M7 QMe,
UT(Q+R)U + qU + eI M”QMe,

(S30)

The final term in the cost function can be removed as it is constant with respect to the inputs and therefore

will not affect the position of the minimum point; thus,

J(U) UTRU + (UTQU + qU)

UT(Q+R)U +gquU (531)

Only the optimal inputs for the first time step are then applied to the Plant, u(1), the whole optimisation

process is repeated at the next time step.

S4.1.2 Weighting of the Traditional Cost Function

The cost function as shown in (S30)), can be weighted as a balance of using the inputs, 7; the error in all of the

estimated states, a and the error in the outputs, 5.

Page 20


https://doi.org/10.1101/2022.03.14.484268
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.03.14.484268; this version posted April 11, 2022. The copyright holder for this preprint (which

was not certified bygeer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
External Control Of Cancer CellidwailddjeumuecadBEieNGIdpAdveliddirational license. Benjamin Smart

CcTc 0
Q=ol+p
0 cfc
(S32)
71 0
R=|: :
0 71
where I is an identity matrix. The cost function can be tuned by «, 5 and 7.
J(U) = U"(Q(a. )+ R(M))U + (e, HU (833)

S4.2 Differential Terms in the Cost Function

The controller can favour to rapidly change input concentrations, which is not ideal for in vitro experiments, where
there might be delays in the actuation, and frequent media change might cause stress to cells. Therefore, a term
related to the gradient of the inputs was added to the cost function to reduce fast variations of the inputs. The
linear approximation of the model used within the MPC simulations is discrete and therefore the derivative is

approximated by the scaled difference between inputs at adjacent time steps.

d£| NU(k:)—U(k:—l)
at * 7 Ts

Using the squared sum of the derivative of the inputs, the gradient of the steps between the last actual input

(S34)

and the last step in the prediction horizon can be added to the cost function. Any constant scaling can be dropped

as this would just change the weighting added to the term.

i N(U) - Uk —1))? = VUK 4+ Uk - 1)2 = 2U(k)U(k — 1)
= U@G-1)2-2U0()UG —1)+2[U(¢)>2+ ...+ UG+ N —1)? (835)
~U(HUG+1)—...— UG+ N-1)UG+ N)|+ U@+ N)?
= U'DU +dU

The gradient can be added to the cost function, J(U), through D and d, pre-multiplying by a scaling factor, 6.

o I 0 ... 0
I A I .0

D=¢|0 -I 2I ... 0 d:G{QU(j—l) 00 .. 0 (S36)
0 0 o .. I

where I is a square identity matrix (size equal to the number of inputs).

J(U) =  UTRU+ (UTQU +gU) + (UTDU +dU)

oA _ (837)
U7 (Q(, ) + R(7) + D(0))U + (q(ev, B) + d(0))U

Figure [4] comparing plots C) and D) demonstrates the effect of the differential cost.
An alternative approach would have been to add the gradient as a constraint into the optimisation problem
preventing the inputs from varying faster than a limiting value. However, this would have merely limited the

maximum rate of inputs’ variation.
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S4.3 Integral Terms in the Cost Function

When controlling a signalling phosphorylation cascades, it is desirable to decrease both the peak and the duration
of an error [28|. Both the duration and the peak are included in the integral of the outputs. Therefore the integral
of the output errors should be added as a term in the cost function. The square of the integral errors has been

approximated.

([N eydt)” ~ N e(k)? + e(k — 1)% + 2e(k)e(k — 1)
~ e(j —1)% +2e(j — 1)e(j) +e(j + N)*+

S38
2(e(j)2+...+e(j+N—1) e(j)e(j+1)+...+e(j—|—N—1)e(j+N)) (538)
~ ETPE + pE
The first term is constant and is therefore dropped. P and p are weighted by 7 in the cost function.
[2c”™c ¢™c o ... o0 |
c’c 2c'c c’'c ... 0
p=y| 0 C'C 2¢TC ... o0 pzn[O 2%l 0 ... 0} (S39)
| O 0 0 CTC_

The integral cost is defined in terms of the future state errors E rather than the inputs U. The matrices defined
in Equation (S29)), can be used.

ETPE +pE = (Meg + CU)TP(Mey + CU) + p(Me, + CU)

L . . S40
e’ M?TPMe, + UTCTPCU + 2¢]M?”PCU + pMe, + pCU (540)

The constant terms with respect to U can be dropped and the quadratic and proportional terms reorganised.

UTCTPCU + 2¢TM”PCU + pCU = UTPU + pU

- - ~ ~ ~ S41
P =CTPC p=pC+ (2efMTPC) (541)
The cost function, J(U), can be formed including the integral of the state error.
J(U) = UTRU+ (UTQU +@U) + (UTDU +dU) + (UTPU + pU) (342)

= U"(Q(a, ) + R(7) + D(6) + P(n)U + (a(e, 5) + d(6) + b(n))U

This is the cost function that has been used in all the simulations with different weights. Figure ) demonstrates
the effect of the integral cost on reducing both the amplitude and the duration of the outputs.

S4.4 Adaptive MPC

Adaptive MPC describes an MPC control scheme in which the model of the Plant changes as the simulation
progresses. Our non-linear model of the NSCLC, - , can be linearised about the current estimate of the
states of the actual Plant, x(k), at each time step. This linear model forms the state space in Equation and the
cost function is reformed at each iteration to better represent the local future dynamics of the Plant. The adaptive
linear MPC has a better performance than a single linear model and is less computationally expensive than using

a full non-linear model.
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S5 Normalisation of Indexes And Bliss Independence

In order to easily compare simulations, it is useful to have an index which summarises the performance of the
controller and the type of input it takes to achieve this performance, EI and DI;, respectively (normalised here
such that multiple plots can be compared within Figure (8] see below).

The Error Index, ET, is the sum of the squared errors of the outputs, calculated by integrating the square of all

the output error signals by using a trapezium approximation of the discrete data.

El= [ e"Cedt (S43)

The largest EI (worst performance) found in any MPC simulation using the chosen cost function to control
y2(Akt) is the SISO simulation using I; (EI = 2.75, Figure . This has been used to normalise EI to form EI.

nl EI _ EI
P T @0 = By (544)

DI; is equivalent to the integration of input profile for each input, I;.

DI, = [l I,(t)dt, DIisiso = fy IS150(t)dt (545)

DI; is normalised by the DI; of I;’s SISO simulation (I; and I3 acting on y2(Akt) and I3 acting on y1(ERK)
in Figure DIlSISO = 1068, DIQS]SO = 546, DI3S]SO = 4), producing DAL

DI; = 2L (S46)

Dl;siso

DI; does not give a quantitative measure on the dose of the combined input profile. Within current literature,
there are many methods of trying to summarises the joint effect and toxicity of combination therapies, where
multiple drugs are given together at a determined time point [30]; however these do not look into dynamic dosages
over a given time period. Therefore a combined effect of the drug profiles can be estimated by replacing these static
drug dosages with the normalised Dose Index, DI,.

An Tsobole can be defined as Iso = DI; + DI, for these therapies. From this definition our combinations are

all antagonistic. The Bliss Independence formula, BI, assumes that there is no correlation between the two agents.

BI = DI, + DI, — DI, DI, (S47)

Our model is deterministic, with each input having a different target molecule, therefore within these in silico
simulations there is no correlation between the inputs. Therefore the Bliss Independence formula can be used to

gauge the combined effect of 2 drugs [31]. All three indexes are used in Figure [§[ to compare multiple simulations.

S6 Discrete Drug Holiday

A discrete MISO simulation, as described in Section [3.4] where Ts = 1min can be seen in Figure Figure
achieves an ET = 1.3533, significantly better than just a SISO simulation in Figure 5| (E1 — 1.35 < 1.95 < 2.75)
whilst using a lower Dose Index (DI} — 645 < 1068 and DIy — 438 < 546). However in this simulation both

inputs rapidly fluctuate from OuM to 1uM, therefore a longer time step can be used to reduce the fluctuations.
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Figure S3: A discrete MISO adaptive MPC simulation using I; and I5 to control the concentration of y2(Akt). A)
The response of Akt. B) and C) The inputs used in the simulation. Parameters: Ts = 1min, N = 10, a =0, 8 = 0,

v=[1,10°,~], 0 =0 and n = 1.

S7 Linear vs Non-Linear MPC

All MPC simulations use an adaptive linear MPC controller, where the linear model is based off a linearisation

of a non-linear model of the NSCLC system (S4)-(S23)). Using non-linear MPC creates a non-convex optimisation
The non-linear simulations have used

problem requiring a more complex (and computationally heavy) solver.
MATLAB’s ‘fmincon’, a gradient based non-linear solver. It is the fastest appropriate solver in MATLAB R2021b.
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Figure S4: Two MISO MPC simulations using I; and I to control the concentration of y2(Akt). A) The response
of Akt to a non-linear MPC controller~ and an adaptive linear MPC controller B) and C), the input of I; and
I5, respectively, used in the non-linear simulation. D) and E), the input of I; and I, respectively, used in the linear

simulation. Parameters: T, =1, N =10, a =0, 3 =0, v = [1,10° ], # =0 and n = 1.
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Figure [S4] compares a MISO response using adaptive linear MPC ~ to non-linear MPC ~. It can be seen that
the non-linear MPC has a lower Error Index of I = 0.0148 compared to the adaptive linear MPC’s ET = 0.2520.
However, the non-linear MPC had a significantly higher run-time, as expected.

Non-linear MPC would limit the controller’s use in vitro, as it the time to process the measurements might be
longer than the data acquisition sampling time. This would then suggest using a larger sampling time, possibly
causing issues with the controller performance (see Figures |§| and. When using the adaptive linear MPC controller,
each iteration of the algorithm is well within the sampling time and enables capturing key dynamics of the system

even though some of the non-linear couplings between the states are lost.

S8 MPC vs Proportional (P) Control Schemes

All feedback simulations have used an MPC controller. Figure [S5] compares the performance of a linear adaptive
MPC controller ~ to a Proportional controller ~. Due to the relatively slow changing outputs, a differential gain
was not used. An integral gain is not used as the output concentration is almost always greater than the reference,
therefore the integral error never resets to zero, leaving the inputs at a non-zero steady state, causing a high DI;.
Therefore a Proportional (P) controller is used. The two gains (for each input) can be tuned such that the P
controller’s initial reaction to the state error results in a relatively low EI, as shown in Figure [S5| ~, however the
response is sensitive to the choice of gains. It can be seen in Figure B) and C) that the inputs are identical, as

the controller does not know the dynamics of the Plant.

A 0.7 y2- Akt B I, -PID
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Figure S5: A comparison of a P~ and adaptive MPC ~ controller using I; and Is to control the concentration of
y2(Akt). A) The response of y2(Akt) to a Proportional controller ~ and an adaptive linear MPC controller ~. B)
and C) The input of I; and I, respectively, used in the P simulation. =Proportional gains: Kp;, = Kpy, = 0.001.
D) and E), the input of I; and Iy, respectively, used in the MPC simulation. Parameters: Ts = 1, N = 10, a = 0,
B=0,v=1[1,10°—],0 =0 and n = 1.

In Figure [S5] the two controllers obtain a similar performance, but the P controller ~ offers no control on the
inputs used. The P controller does not achieve robust control, as the low EI is as an effect of the finely tuned
gains reacting to the initial error in the output, whereas the adaptive MPC controller ~ can be tailored for specific

inputs’ choices.
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