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ABSTRACT 15 
 16 
In volatile foraging environments, agents need to adapt their learning in accordance with the 17 
uncertainty of the environment and knowledge of the hidden structure of the world. In these 18 
contexts, previous studies have distinguished between two types of strategies, model-free learning, 19 
where reward values are updated locally based on external feedback signals, and inference-based 20 
learning, where an internal model of the world is used to make optimal inferences about the current 21 
state of the environment. Distinguishing between these strategies during the dynamic foraging 22 
behavioral paradigm has been a challenging problem for studies of reward-guided decisions, due 23 
to the diversity in behavior of model-free and inference-based agents, as well as the complexities 24 
that arise when animals mix between these types of strategies. Here, we developed two solutions 25 
that jointly tackle these problems. First, we identified four key behavioral features that together 26 
benchmark the switching dynamics of agents in response to a change in reward contingency. We 27 
performed computational simulations to systematically measure these features for a large ensemble 28 
of model-free and inference-based agents, uncovering an organized structure of behavioral choices 29 
where observed behavior can be reliably classified into one of six distinct regimes in the two 30 
respective parameter spaces. Second, to address the challenge that arises when animals use 31 
multiple strategies within single sessions, we developed a novel state-space method, block Hidden 32 
Markov Model (blockHMM), to infer switches in discrete latent states that govern the choice 33 
sequences across blocks of trials. Our results revealed a remarkable degree of mixing between 34 
different strategies even in expert animals, such that model-free and inference-based learning 35 
modes often co-existed within single sessions. Together, these results invite a re-evaluation of the 36 
stationarity of behavior during dynamic foraging, provide a comprehensive set of tools to 37 
characterize the evolution of learning strategies, and form the basis of understanding neural circuits 38 
involved in different modes of behavior within this domain. 39 
 40 
 41 
 42 
 43 
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Introduction 44 
 45 
Reward-guided decision making has largely been studied in terms of two broad regimes of 46 
behavioral strategies and neural systems. One influential class of models involve reinforcement 47 
learning models in which each action has an internal value that is updated over time based on 48 
feedback from the environment1. Variants of these model-free approaches, such as the Rescorla-49 
Wagner updating rule2, the Q-learning algorithm3, local matching strategies4, or Thomson 50 
sampling5, have been influential in formulating efficient decision-making and learning strategies 51 
in uncertain environments6–11. These models have also been successful in explaining the activity 52 
of cortical and subcortical areas in relation to reward prediction errors12, action values6,13 or 53 
previous choice and outcome history14,15.  54 
 55 
When reward and outcome contingencies follow a specific structure and regularity, another set of 56 
models, inference-based models with trial-to-trial Bayesian updates, are often used to simulate the 57 
actions of agents16–18. This type of strategy involves the use of internal models to make efficient 58 
inferences about the hidden states and optimal actions. Such inference-based (also known as 59 
model-based) behavior are often seen only in expert animals that are familiar with the structure of 60 
the task and able to hold an internal representation and understanding of the dynamics of the 61 
surrounding world16,17. Inference-based behavior has also been shown to engage a non-overlapping 62 
set of brain areas from those that are involved in model-free strategies19,20. 63 
 64 
In many previous studies of reward-guided decision-making, these two modes of behavior, model-65 
free and inference-based learning, have largely been treated as separate behavioral domains that 66 
require different sets of analytical tools and models. For example, reinforcement learning models 67 
and logistic regression models have often been used in a subset of studies that assume a model-68 
free structure of behavior6,13. This model-free approach allows researchers to answer questions 69 
related to the value representations in different brain areas, as well as study the effect of 70 
perturbations on the parameters of the models14,21–23. On the other hand, a complementary set of 71 
studies focus on the behavior of well-trained animal with the assumption that these animals behave 72 
exclusively in the inference-based domain24,25. While these stationarity assumptions are helpful 73 
when animal behavior exclusively belongs to one domain or another, recent studies have started 74 
to bring attention to the overlap and interaction between these types of strategies18,26. For example, 75 
it was found that in the same dynamic foraging task, rodents might engage in both model-free and 76 
inference-based behavior, transitioning from the former strategy to the latter with experience in 77 
the environment16,17. Another set of studies highlighted additional complexity in rodent behavior, 78 
as they often switch between states of engagement and disengagement during decision-making 79 
tasks27,28. These results suggest model-free and inference-based behavior might be interspersed 80 
within the same session, thus dynamically engaging different subsets of neural circuits from trial 81 
to trial. The use of mixture of strategies is further supported by the discovery of separable 82 
components of rodent behavior in a reward-guided task26. Together, these results call for a more 83 
unified approach for dissecting the two sets of strategies and understanding the transitions between 84 
them during learning as well as within single sessions of the task. 85 
 86 
Here, we focused on the problem of distinguishing these two types of behavior in the dynamic 87 
foraging paradigm (also known as the two-armed bandit task), a standard behavioral framework 88 
of previous investigations into reward-guided behavior29,30. Our main goal is to develop a set of 89 
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behavioral benchmarks, analytical tools and approaches to help reliably dissociate between the 90 
two classes of strategies. This is a challenging endeavor for two primary reasons. First, these two 91 
classes of models are qualitatively distinct in form: model-free approaches involve agents that 92 
update their action values from trial to trial with a learning rate and an exploration parameter1, 93 
while inference-based approaches involve agents with a prior and internal model specified by some 94 
parameters31. We are thus faced with two sets of parameters with which to fit the behavior, and 95 
will need to compare how well these parameter spaces can fit the same sequence of observations. 96 
The second analytical challenge occurs when animals mix between different modes of behavior in 97 
the same session. With this mixing, techniques that rely on aggregate measures of behavior over 98 
entire sessions will lead to inaccurate estimates of behavioral parameters, as we will show in our 99 
subsequent analyses, requiring alternative methods to segment and infer latent states of the 100 
behavior from trial to trial. 101 
 102 
To present our approach for distinguishing between the two types of strategies in dynamic 103 
foraging, the paper is organized as follows. We first describe our experimental setup to study 104 
dynamic foraging behavior in head-fixed mice. To analyze the behavior of our animals during 105 
training, we focus on two models, (1) model-free agents that implement the ε-greedy Q-learning 106 
decision strategy, and (2) inference-based agents that hold a Markovian internal model of the 107 
world. With this formulation, we show that current analytical methods are inadequate to fully 108 
dissociate between the two classes of strategies, as these methods are insufficient to account for 109 
the diversity of learning across the parameter spaces. In addition, methods that rely on session-110 
averaged metrics might give rise to inaccurate estimates of the behavior when animals mix between 111 
behavioral strategies. We then present our approach to overcome the two challenges. To 112 
comprehensively compare the behavior of the two models, we characterize four main behavior 113 
features of the agent’s switching dynamics and perform a complete survey of these features across 114 
the inference-based and Q-learning parameter spaces. This analysis reveals distinct behavioral 115 
clusters which can be robustly decoded from each other, with a decoding accuracy close to 100% 116 
between model-free and inference-based agents. To address the difficulty of behavioral analysis 117 
of mixtures of strategies, we have built a novel state-space model (blockHMM) to infer the latent 118 
states of behavior sessions, eliminating the potential confound of mixtures of learning strategies 119 
on behavioral analysis. We validate this approach with simulations to demonstrate its reliability in 120 
recovering the hidden states of behavior from observed choice sequences. Together, these new 121 
tools reveal the highly dynamic nature of rodent behavior in this task, further highlighting the 122 
variabilities between animals and the need for a statistical approach based on inferred latent states 123 
for understanding the structure of task behavior. 124 
 125 
 126 
Results 127 
 128 
Dynamic foraging task and decision strategies of model-free and inference-based agents 129 
 130 
We trained head-fixed mice on a dynamic foraging (two-armed bandit) task (Fig. 1a). Mice were 131 
placed on a vertical rotating wheel32, and on each trial, they were trained to perform one of two 132 
actions, left or right wheel turns. On each trial, one movement was rewarded with probability of p 133 
and the other with the complementary probability of 1 – p. We tested mice in different dynamic 134 
environments with different values of p. In the `100-0` environment, one action yielded reward  135 
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with 100% probability, while the alternative yielded no reward (Fig. 1b). Similarly, in `90-10`, 136 
`80-20` and `70-30` environments, reward probabilities were assigned to the two indicated values. 137 
The environments were volatile such that the high- and low-value sides switched after a random 138 
number of trials sampled between 15-25 without any external cues, requiring agents to recognize 139 
block transitions using only the reward feedback. To ensure stable behavioral performance, we 140 

Figure 1. Dynamic foraging task and formulation of Q-learning and inference-based agents. a) (Top) Behavioral task 
setup for head-fixed mice with freely-rotating wheel. (Bottom) Timing structure for each trial, demarcating the cue, 
movement and outcome epochs. b) World transition models of the task. Hidden states alternated between right-states, 
with high reward probability for right actions, and left-states, with high reward probability for left actions. The block 
lengths were randomly sampled from a uniform distribution between 15-25 trials. c) Example behavioral performance of 
an animal in the 90-10 environment, block transitions are demarcated by vertical dashed lines. Dots and crosses represent 
individual trials (correct or incorrect). Black trace indicates the rolling performance of 15 trials. d) Implementation of Q-
learning (top) and inference-based algorithms (bottom) for simulating choice sequences of simulated agents. e) Example 
behavior of simulated Q-learning (top) and inference-based (bottom). Each dot or cross represents the outcome of a single 
trial. In the Q-learning plot, black and blue traces represent the values of each of the two actions. In the inference-based 
plot, black trace represents the posterior probability of the right state 𝑃( 𝑠! = 𝑅 ∣∣ 𝑎", 𝑟", … , 𝑎!#", 𝑟!#" ). 
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also required the average performance of the last 15 trials in each block to be at least 75% before 141 
a state transition occured. We collected behavioral data from n = 21 mice that were trained in the 142 
task for up to 40 sessions per animal (typical animal behavior shown in Fig. 1c for a 90-10 143 
environment).  144 
 145 
We focused on disentangling the behavior of two classes of agents, Q-learning and inference-based 146 
agents. Q-learning is a model-free learning strategy that performs iterative value updates based on 147 
external feedback from the environment (Fig. 1d, top). In the dynamic foraging task with two 148 
options, these agents maintain two values associated with the two actions, 𝑞!	for left actions and 149 
𝑞" for right actions. On each trial, the value of the chosen action is updated toward the reward 150 
magnitude of the experienced reward, r, with a learning rate γ. 151 
 152 

𝑞# ← 𝑞# + γ(𝑟 − 𝑞#)  153 
 154 

where qi represents the action value for one of the arms (L or R), r reflects whether the previous 155 
action was rewarded (0 or 1), and γ is the learning rate parameter. We additionally assumed that 156 
the agent adopts an ε-greedy policy. In this policy, the agent chooses the higher-valued action with 157 
probability 1 - ε, and chooses actions at random (with probability 50%) on a small fraction ε of 158 
trials. Altogether, the two free parameters, γ and ε, define a two-dimensional parameter space that 159 
captures the entire behavioral repertoire of Q-learners. 160 
 161 
The second class of reward-based models consists of “inference-based” agents whose actions are 162 
guided by an internal model of the world. Unlike model-free agents that use the action/outcome 163 
history to directly estimate an action value for each arm, these models use the history to infer the 164 
hidden state of the environment (i.e., which side is more rewarding) and use that information to 165 
guide actions. In our task, the world model (Fig. 1) consists of two hidden states, L and R, that 166 
determine whether the “left” or “right” action is associated with higher reward probability, 167 
respectively (𝑃$%&). The evolution of these hidden states can be approximated by a Markov process 168 
with probability 𝑃'&#()*	of switching states and 1 – 𝑃'&#()*	 for remaining in the same state on each 169 
trial. Given this model and observed outcomes, the ideal observer can perform Bayesian updates 170 
to keep track of the posterior distribution of the two states (see update equations in Methods). 171 
 172 

𝑃( 𝑠( = 𝐿 ∣∣ 𝑎,, 𝑟,, 𝑎-, 𝑟-, … , 𝑎(.,, 𝑟(., ) 173 
 174 
On each trial, the agent uses the posterior over the world states to select the action that maximizes 175 
the expected reward on that trial. The free parameters, 𝑃$%& and 𝑃'&#()*	, constitute a two-176 
dimensional parameter space that span the full behavioral repertoire of all inference-based agents 177 
with potentially wide variations in behavior along these two axes. 178 
 179 
 180 
Evaluation of previous approaches for dissociating model-free and inference-based behavior 181 
from dynamic foraging data 182 
 183 
Dissociating model-free from inference-based behavior has traditionally been a difficult problem 184 
in this task domain. One challenge that analytical methods need to address is the large parameter 185 
space involved in these two very different models – model-free agents are described by the learning 186 
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rates γ and exploration rates ε, while inference-based agents are specified by a combination of 187 
𝑃'&#()*	 and 𝑃$%& of their internal models. Within these parameter spaces, the behavior can vary 188 
drastically from one region to another, requiring a thorough mapping of behavior in different parts 189 
of the two spaces before classification algorithms can be evaluated. 190 
 191 
Due to this large size of the parameter spaces, it might not be feasible to distinguish model-free 192 
from inference-based behavior using a single behavioral metric, as previous studies have 193 
done16,17,33. For example, consider the use of a previously proposed feature, denoted by ρ, that 194 
takes into account the correlation between the number of errors in block t – 1, and the number of 195 
rewards in block t16. For a Q-learning agent with a low learning rate (agent denoted by blue X in 196 
Fig. 2a,d), ρ will be positive. This reflects the underlying slow value accumulation, such that the 197 
more rewards are experienced in the previous block, the more errors are needed in the next block 198 
to make a behavioral switch happen. On the other hand, for an inference-based agent with 𝑃$%& 	= 199 
0.1 and 𝑃'&#()*	 = 0.7 (black X in Fig. 2b,d), the inference process is independent of the number of 200 
rewards experienced in the previous block. Thus, ρ is close to 0. Hence, ρ is a reliable metric for 201 
distinguishing the behavior of these two agents. However, this metric is insufficient to discriminate 202 
between other pairs of agents from other parts of the corresponding parameter spaces. For instance, 203 
ρ is also close to zero for a Q-learner with a high learning rate (blue * in Fig. 2c,d). Similarly, ρ 204 
may be positive for an inference-based agent with a different set of parameters (black * in Fig. 205 
2c,d). In fact, the overall distribution of ρ over the two parameter spaces are very similar for the 206 
two types of models (Fig. 2d). Thus, dissociating model-free from inference-based behavior might 207 
require more detailed benchmarking of behavior using multiple complementary behavioral 208 
metrics. 209 
 210 
Another analytical challenge for understanding dynamic foraging behavior arises when agents mix 211 
between multiple strategies in a single behavioral session. This poses a problem for current 212 
analytical techniques such as logistic regression14,18,23 or reinforcement learning models6,21,22,34,35 213 
which assume that the behavioral strategy is stationary within individual sessions. Although these 214 
methods work well when the agent uses a single strategy with a fixed set of parameters, they can 215 
provide erroneous estimates in scenarios of mixed strategies. To investigate the nature of such 216 
errors, we confronted models that assume stationary behavior with data generated by agents that 217 
adopt a mixture of strategies.  218 
 219 
We simulated three agents that perform a value-guided task in a 90-10 environment (Fig. 2e). The 220 
first agent was a Q-learning agent, the second was an inference-based agent, and the third (“agent 221 
M”) mixes equally between the two strategies (see Methods). Both logistic regression and 222 
reinforcement learning models gave inaccurate estimates for the parameters that underlie the 223 
behavior of agent M. The learning rate inferred by the reinforcement learning model was 224 
intermediate between the two learning modes that make up agent M’s strategy (Fig. 2f).  225 
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 226 

Figure 2. Evaluation of current analytical approaches for dissociating model-free from inference-based behavior. a) 
(Left) Simulation of a Q-learning agent with parameters γ = 	0.1, ϵ = 	0.01, illustrating the correlation between the 
number of errors, 𝑁$, and the number of rewards on the previous blocks, 𝑁%. (Right) Relationship between 𝑁$ and 𝑁% 
(mean ± standard deviation, n = 1000 blocks across all values of Nr) showing a positive correlation between the two 
quantities, ρ = 0.47. b) Same as a, but for an inference-based agent with parameters 𝑃&'(!)* = 0.1, 𝑃%$' = 0.7. Here, no 
correlation between 𝑁$ and 𝑁% was seen. c) Same as a-b, but for two other Q-learning and inference-based agents that 
show opposite effects of 𝜌. d) Map of the values of 𝜌 across the Q-learning and inference-based parameter spaces. Blue 
X: agent in a, black X: agent in b, blue *: Q-learning agent in c, black *: inference-based agent in c. e) Strategies of three 
agents over 1000 blocks of trials in the dynamic foraging task, a Q-learning agent (left), an inference-based agent 
(middle), and agent M (right) which mixed between the two strategies. f) Inferred learning rate by fitting the behavior 
of the three agents in (e) to a reinforcement learning model. Middle line represents the median (n = 10 repetitions). g) 
Logistic regression model coefficients (mean ± standard deviation, n = 10 repetitions) fitted on the behavioral choices 
of the three agents, with regressors representing previous choice, previous reward and previous choice x previous reward. 
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More problematic was the result of the logistic regression model. While the inference-based agent 227 
showed no dependence on previous choice and the Q-learning agent showed positive coefficients 228 
of previous choice regressors, agent M’s dependence on previous choice was intermediate between 229 
the two agents (Fig. 2g, left panel). The coefficients for the interaction terms of agent M (previous 230 
choice x previous rewards) also showed a different pattern from either the inference-based or the 231 
Q-learning agent. Agent M’s interaction terms were higher in magnitude for the t – 1 trial than 232 
both the Q-learning and inference-based agents (Fig. 2g, right panel). The coefficients for previous 233 
reward are close to zero for all three types of agents (Fig. 2g, middle panel). Considering these 234 
results in the context of differentiating inference-based from model-free strategies, the inaccurate 235 
estimates are concerning. If an animal executes a mixture of inference-based and model-free 236 
strategies during the task, a method that relies on these estimates will fail to discriminate between 237 
the two modes and thus will be unable to discover the true underlying strategies. 238 
 239 
Four behavioral features to discriminate model-free from inference-based behavior 240 
We first developed a framework for differentiating model-free from inference-based behavior in 241 
the case of a pure strategy with no mixing. To quantify the agent’s behavior during block 242 
transitions, we computed four features of the “transition function” that describes the dynamics of 243 
action switching of the agents in response to an uncued change in the external reward contingency 244 
(Fig. 3a). This function is a sigmoidal curve parameterized by three parameters, the switch offset, 245 
s, the slope α, and the lapse ε which represents the exploration rate of the agent in the environment. 246 
The fourth parameter is the foraging efficiency E, which is the fraction of rewarded choices of the 247 
agent over the whole session. In the limit of large number of blocks, this fraction is reflected by 248 
the area under the curve of the choice transition function. Either a decrease in offset, an increase 249 
in slope or a decrease in exploration would lead to an increase in the foraging efficiency. 250 
 251 
We hypothesized that together, the combination of these four behavioral features can help 252 
discriminate different regimes of the model-free and inference-based behavioral spaces. For 253 
instance, the switch offset s might be immediate or delayed depending on the learning rate of Q-254 
learning agents, or the parameters of the inference-based agent’s internal model. The slope 𝛼 of 255 
the transition might be shallow or steep depending on the agent’s strategy. For an agent that relies 256 
on slow value integration from trial to trial, choice transitions might occur gradually, whereas for 257 
an agent that can quickly infer the underlying states using internal models, the transitions can be 258 
sharp. The degree of exploration might also be informative of the underlying strategy. For 259 
example, Q-learning agents require a non-zero rate of exploration in order to prevent them from 260 
getting stuck in sub-optimal strategies when reward contingencies need to be relearned. In contrast, 261 
inference-based agents with a model of the environment requires no exploration to discover these 262 
state changes. Finally, the overall foraging efficiency which non-linearly combines information 263 
from all three metrics, could be another metric that can distinguish efficient agents from less 264 
efficient ones. The use of these multiple features which are sensitive to different aspects of the 265 
behavior will thus help increase our ability to distinguish diverse ranges of behavior coming from 266 
different parts of the parameter spaces. Before building a decoder for behavioral strategy using 267 
inputs provided by these features, we will start with a survey of how each of the four features vary 268 
across the Q-learning and inference-based parameter spaces. 269 
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 270 
 271 

Figure 3. Behavioral metrics of Q-learning agents. a) Illustration of the sigmoidal transition function with four parameters: 
switch delay s, switch slope α, lapse ε, and overall foraging efficiency E. b) Behavior metrics for Q-learning agents in a 
100-0 environment. We simulated the behavior of 25 x 20 Q-learning agents with different values of the learning rate γ and 
exploration parameter ε, and measured the four behavioral features for each agent by fitting the average transition function 
over 1000 blocks to a sigmoidal function. c) Example behavior of three Q-learning agents with a fixed ϵ = 	0.1 and varying 
learning rate γ. Top row shows the behavior of each agent over 100 blocks (each row represents the outcomes of all the 
trials within a single block, red: incorrect choice, blue: correct choice). Bottom row shows the average transition function 
(black curve, mean ± standard deviation, n = 1000 blocks), and the fitted sigmoid (blue curve). d) Same as c, but for three 
Q-learning agents with fixed γ = 	1.2 and varying 𝜖. 
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Behavioral features of Q-learning agents 272 
To characterize the behavior in the Q-learning space, we simulated an ensemble of agents, each 273 
with a different combination of γ and ε, where 0.01	 ≤ γ ≤ 1.4, and 0.01	 ≤ ϵ ≤ 0.5. For each 274 
parameter combination, we simulated the agent in the given environment (100-0, 90-10, 80-20 or 275 
70-30) for 1000 blocks, with block sizes randomly sampled between 15-25 (similar to the protocol 276 
we use for rodent behavior training). We then averaged the behavior responses over all blocks to 277 
obtain the choice transition function (Fig. 3a), and performed a sigmoidal fit of this function to 278 
obtain the behavioral features s, α, and ε, that defined the switching dynamics for all points in the 279 
Q-learning space (Fig. 3b). 280 
 281 
The distribution of behavioral features in the space was highly non-linear, and the features showed 282 
a variation along the two primary axes, γ and ε (Fig. 3b). When ε was held constant, a higher 283 
learning rate led to faster and sharper switching dynamics at the block transitions (Fig. 3b, c). For 284 
example, when ε was fixed at 0.1, increasing the learning rate γ from 0.1 to 1.2 led to faster 285 
behavioral switching (offset decreased from 8.6 to 5.3, to 0.8 trials). Notably, as we traversed the 286 
parameter boundary from γ < 1 to γ > 1, there was a sharp transition in the switch slope and switch 287 
offset. This is because in the high learning-rate regime where γ > 1, a single error was enough for 288 
agents to switch their actions, resulting in switch offsets that were very close to zero, and very 289 
sharp action transitions.  290 
 291 
Along the ε axis, variations in these behavioral features were non-monotonic (Fig. 3d, top). When 292 
we fixed γ = 1.2, a low value of ε (such as ε = 0.01, Fig. 3d, left panel) often prevented Q-learning 293 
agents from switching as they failed to explore the alternative action after block transitions. This 294 
agent was not able to discover the more rewarding action, leading to an average transition function 295 
that is perfectly flat (Fig. 3d, bottom). A moderate value of ε (such as ε = 0.2, Fig. 3d, middle 296 
panel) encouraged exploration and enabled agents to discover the optimal action in order to make 297 
rapid action switches. However, when the degree of exploration became large (ε = 0.5, Fig. 3d, 298 
right panel), although the agents were able to switch rapidly, their noisy asymptotic behavior 299 
prevented them from fully exploiting the most rewarding action. 300 

Behavioral features of inference-based agents. 301 

Similar to the survey of the Q-learning landscape, we characterized the inference-based space by 302 
simulating an ensemble of inference-based agents with different combinations of 𝑃'&#()*	and 303 
𝑃$%& (with 0.01 ≤ 𝑃'&#()* ≤ 0.45 and 0.55 ≤ 𝑃$%& ≤ 0.99). 304 

Unlike the variations seen in the Q-learning space which were mainly along the primary axes, the 305 
behavior of inference-based agents varied systematically along the diagonal axis of the parameter 306 
space (diagonal line in Fig. 4a). In the low 𝑃'&#()*	and low 𝑃$%& 	regime (Fig. 4b, left panel), which 307 
we call the ‘stable’ regime of the state space, agents assumed an internal model where state 308 
transitions occur infrequently. This made them rather insensitive to errors and resulted in high 309 
switch offsets (switch offset = 8.4 trials for the agent with 𝑃'&#()*	 = 0.01 and 𝑃$%& 	= 0.55). In 310 
contrast, the regime where both 𝑃'&#()*	and 𝑃$%& 	were high is called the ‘volatile’ regime (Fig. 4b, 311 
right panel). Here, agents assumed an environment with frequent state transitions and high reward 312 
probability. This volatile assumption made them more sensitive to errors, switching their choices 313 
more readily after only a few errors (switch offset = 0.96 trials for the agent with 𝑃'&#()*	 = 0.45 314 
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and 𝑃$%& 	= 0.99). In this regime, each error was more impactful to the agent’s update estimate of 315 
the current world state. The behavior in between these regimes had low exploration rates and 316 
offsets that were intermediate between the two extremes (Fig. 4b, middle panel). 317 

One feature that distinguished inference-based agents from Q-learning agents is their lapse rates: 318 
inference-based agents tend to explore much less compared to the Q-learning agents, with lapse 319 
rates below 10% across most of the parameter space (compare Fig. 4a and Fig. 3b). This low 320 
exploration of inference-based agents can be explained by the effectiveness of the inference-321 
based update procedure compared to the Q-learning strategy. Even for Q-learning agents with a 322 
high learning rate, a small degree of exploration is required to achieve high foraging efficiency 323 

Figure 4. Behavioral metrics of inference-based agents. a) Behavioral features offset s, slope α, lapse ϵ and 
efficiency E for inference-based agents in the parameter space. Conventions are the same as Fig. 3a. b) Example 
behavior of three inference-based agents taken from the diagonal of the parameter space (represented by crosses in 
panel a plots). Conventions are as Fig. 3b,c). 
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and avoid getting stuck with low-reward actions. In contrast, Bayesian inference allows 324 
inference-based agents to infer state changes without the need to explore alternative choices. 325 
Together with the faster switch delays and sharper switch transitions, this low exploration leads 326 
to a much higher foraging efficiency than can be achieved by Q-learning agents in the uncertain 327 
worlds. Indeed, foraging efficiency was consistently above 90% for most inference-based agents, 328 
which was much higher than the maximum efficiency that can be achieved in the Q-learning 329 
parameter space (85%). 330 

The simulation of Q-learning and inference-based agents was repeated for 90-10, 80-20, and 70-331 
30 environments, yielding qualitatively the same trends and axes of variation among the four 332 
behavioral features in these environments (Supp. Figs. 1, 2). Thus, the qualitative trends in these 333 
features were consistent across different types of environments regardless of the level of 334 
stochasticity in the reward probability. 335 

Decomposition of the Q-learning and inference-based parameter spaces into sub-regimes 336 
with distinct behavioral signatures 337 

Given the large variation of the four behavioral features across both the Q-learning and inference-338 
based spaces, we next investigated whether the behavior of these agents naturally cluster into 339 
distinct modes that are qualitatively different from each other. To perform this analysis, we pooled 340 
the behavioral features from all Q-learning and inference-based agents in the 100-0 environment 341 
to form a 4 x 650 feature matrix, representing 4 features/agent x 650 agents (25 x 20 Q-learning 342 
and 15 x 10 inference-based agents, Fig. 5a). We applied a density-based clustering method which 343 
is well-suited for cases where the component distributions are heterogeneous and non-Gaussian36. 344 
The data points were first non-linearly embedded onto a two-dimensional t-SNE space, and a 345 
watershed algorithm was applied to identify borders of the embedding that separates regions of 346 
high-density point clusters. This resulted in six clusters that can be visualized on the embedding 347 
space (Fig. 5a).  348 

Interestingly, when the identities of the classified points were mapped back into the parameter 349 
space that they came from, each of the six clusters corresponded to a contiguous regime in either 350 
the Q-learning or inference-based space, but not both (except for cluster 1 which was found both 351 
in large portions of the Q-learning space and a very small region of the lower left corner of the 352 
inference-based space). The first four classes were localized to regions of the Q-learning space 353 
that corresponded to low (class Q1), medium (classes Q2 and Q3) and high learning rates (class 354 
Q4), respectively. The remaining two classes were mapped to different sub-regions of the 355 
inference-based space: class IB5 resided in lower left corner of the space which corresponded to a 356 
‘stable’ world model with low 𝑃'&#()*	; class IB6 was mapped to the complementary region, the 357 
‘volatile’ regime where 𝑃'&#()*		and 𝑃$%& 	are both high. The distribution of these regimes suggests 358 
a clear distinction between Q-learning and inference-based behavior, such that inference-based 359 
and Q-learning regimes are largely non-overlapping. 360 
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 361 

Figure 5. Decomposition of parameter spaces into regimes of qualitatively different behaviors. a) Method of 
segmentation of the parameter spaces. We performed a computational simulation of an ensemble of Q-learning and 
inference-based agents taken from grids that spanned the entire two spaces. For each agent, we obtained the transition 
function and four behavioral features characterizing the sigmoidal fit. We pooled the features of all agents into a 
feature matrix and applied a density-based approach to cluster these features into six regimes. We then visualized 
the regime identities for all points in the two parameter spaces. b) Transition functions grouped according to the 
behavioral regime Q1-4, IB5-6. Red trace represents the mean across all the transition functions in each group. c) 
Demarcation of the six regimes in the Q-learning and inference-based spaces in different types of environments 
(100-0, 90-10, 80-20, or 70-30).  
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We verified that these regimes represented distinct modes of behavior by visualizing all the choice 362 
transition functions, grouped by the regime identity (Fig. 5b). We found qualitative differences 363 
and systematic variations across the different regime types. For example, transition functions in 364 
regime Q1 were the flattest, having shallow slopes and very late switch offset, consistent with the 365 
slow switching of Q-learning agents with low learning rates. From regime Q2 to Q4, transition 366 
functions became progressively steeper with higher slope and faster switch offsets. The average 367 
rates of exploration for all the Q-learning regimes (Q1-Q4) were all non-zero. This lapse rate was 368 
lowest for Q2 and higher in the other three regimes. In contrast, the inference-based regimes (IB5 369 
and IB6) could be distinguished from the Q-learning clusters by lapse rates that were very close to 370 
zero. Although the behavior transitions were sharp in both regimes, they occurred at different 371 
latencies: the offset was immediate in cluster IB6 but delayed in cluster IB5, consistent with the 372 
delayed switching seen in inference-based agents with low 𝑃'&#()*	that assumed a more stable 373 
model of the world (Fig. 5b). 374 

Structure of behavioral features and regime demarcation in 90-10, 80-20 and 70-30 375 
environments 376 

So far, our clustering analysis and regime segmentation has been performed in a deterministic 377 
environment (100-0) where in each state, the reward is given with 100% probability for the high-378 
value action and 0% probability for the low-value action. To determine how these clusters might 379 
vary in probabilistic settings, we performed the same behavior simulation and clustering 380 
procedures in 90-10, 80-20 and 70-30 environments, where rewards are given with progressively 381 
higher degrees of stochasticity. For example, in a ’90-10’ environments, rewards are given with 382 
probability 90% on the high-valued side, and only 10% on the low-valued side. In each 383 
environment, we characterized the variations in the four behavioral features across the Q-learning 384 
and inference-based spaces (Supp. Fig. 1-2). 385 

Our simulations revealed that the boundaries of the behavioral regimes (Q1-4 and IB5-6) were 386 
largely preserved across different environments. In all types of environments, the presence of six 387 
clusters could be confirmed when visualized in the t-SNE embeddings (Supp. Fig. 3a). 388 
Furthermore, the clusters were localized to similar regimes in the Q-learning and inference-based 389 
parameter spaces (Fig. 5c). Notably, as rewards became more unreliable (going from the 100-0 to 390 
the 70-30 environment), there was an increase in extent of overlap between Q-learning and 391 
inference-based behavior. In the 80-20 and 70-30 environments, a larger section in the lower left 392 
corner of the inference-based space was found to co-cluster with regimes Q1 and Q2 in the Q-393 
learning space. This suggests that noisy environments, it becomes more difficult to dissociate the 394 
behavior of Q-learning agents in the Q1-Q2 regime from the behavior of inference-based agents 395 
that hold ‘stable’ internal models (the dissociability of the regimes will be further quantified by 396 
the decoding results in the next section and Fig. 6). Finally, when visualizing the behavioral 397 
transition functions of the six behavioral regimes in different types of environments, we found the 398 
same variations and patterns across the six clusters (Supp. Fig. 3b). In each environment, from 399 
regime Q1 to Q4, there was a consistent increase in the slope and a decrease in offset of the 400 
transition function. For the inference-based agents (IB5-6), we generally observed sharper 401 
transitions and faster switches compared to their Q-learning counterparts, demonstrating the 402 
usefulness of internal models in bringing about more efficient switching strategies. The IB5 cluster 403 
tended to have lower lapse rate than the IB6 cluster, and this lapse rate increased as the 404 
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environment got noisier (100-0 to 70-30). As with the deterministic case, regime IB5 had a slightly 405 
delayed offset compared to IB6, as the agents’ internal belief of a stable environment made them 406 
less inclined to switch their actions as successive errors were encountered. Finally, as the level of 407 
noise increased in the environment, there was a general decrease in slope and increase in lapse rate 408 
in the transition functions for all of the six regimes. 409 

Decoding of Q-learning and inference-based regime identity from behavioral data 410 

The segregation of the Q-learning and inference-based spaces into six discrete domains suggests 411 
qualitative differences in behavior between these clusters. These differences are revealed by the 412 
features of the choice transition functions, which showed systematic variations across regime and 413 
environment types (Fig. 6a). For example, agents in regime Q1 have flattest transition functions 414 
with the highest offsets, suggesting a random mode of behavior with slow switching between the 415 
two actions. On the other hand, agents in regimes IB5 and IB6 have the lowest lapse rates and 416 
sharpest transitions (highest slopes), suggesting a mode of behavior that relies on internal models 417 
of the world to achieve the highest foraging efficiency. Altogether, these differences can be used 418 
to decode the cluster identity from the behavioral performance of animals in an experimental 419 
session. In this section, we will build and optimize these decoders, and evaluate their regime 420 
classification performance on synthetic data sets for which the ground truth is known. 421 

The synthetic training and validation data were again obtained by computational simulations (Fig. 422 
6b). For each agent in the Q-learning and inference-based parameter spaces (with a known regime 423 
identity according to our previous segmentation), we performed repeated simulations in 50 424 
synthetic experimental sessions with 20 block transitions per session (chosen to resemble the 425 
number of blocks that animals typically complete in a regular training day). For each synthetic 426 
session, we averaged the behavior across all blocks to obtain the transition function, and fitted a 427 
sigmoidal curve to estimate the four features of this function. This procedure yielded a four-428 
dimensional feature vector for each agent per session. We split this data into a training set 429 
(containing 80% of the data) and a test set (20% of the data). We trained a k-nearest neighbor 430 
(kNN) decoder on the training set to predict the behavioral regime (1 to 6), and evaluated its 431 
performance on the held-out test set. The accuracy of the decoder was measured both by the 432 
fraction of correctly labeled examples per regime, and by the Matthews Correlation Coefficient, 433 
which is a metric for evaluating the decoding performance across all six clusters (similar to the 434 
area under the ROC curve but for multi-class classifications). 435 

We used the decoding accuracy and Matthews correlation metrics to determine the number of 436 
neighbors (k = 24) for optimal decoding (Fig. 6c). For the optimized decoder, the performance that 437 
could be achieved was significantly above chance for all six behavioral regimes (Fig. 6d). We 438 
found that each cluster could be decoded with higher than 75% accuracy (compared to a chance 439 
performance of 17%). Most impressively, the analysis showed that inference-based behavior (IB5-440 
6) could be almost certainly separated from Q-learning behavior (Q1-4) (decoding performance 441 
was 99.8% for distinguishing classes IB5-6 from Q1-4 in the 100-0 environment). The decoder 442 
performed extremely well for the inference-based regimes, achieving almost perfect performance 443 
for these two clusters. The decoding accuracy was lower for classes Q1 to Q4, reflecting the higher 444 
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stochasticity in these four modes due to the random exploration that is inherent in the mechanism 445 
of Q-learning agents. 446 

Figure 6. Decoding of behavioral regimes and evaluation of decoding accuracy. a) Average behavioral features 
(offset, slope, lapse and efficiency, mean ± standard error) of simulated agents belonging to classes 1 to 6, for the 
four types of environments, 100-0, 90-10, 80-20 and 70-30. In the efficiency plot (right), top dashed line represents 
the ideal performance, bottom dashed line represents random performance. b) Procedure for the behavioral regime 
decoding. c) Selection of the number of nearest neighbors, k, based on cross-validated decoding performance (blue, 
mean ± standard deviation, n = 20 repetitions) and Matthews Correlation Coefficient (red, mean ± standard deviation, 
n = 20 repetitions). d) Cross-validated confusion matrix for simulated behavior in the 100-0 environment. Diagonal 
entries show the accuracy for each respective class. e) Decoding performance (mean ± standard deviation, n = 20 
repetitions) for the six behavioral regimes across different environments (100-0, 90-10, 80-20 and 70-30). Dashed 
horizontal line represents chance performance. 
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We also trained separate decoders and investigated the decoding accuracy in the other three types 447 
of probabilistic environments (90-10, 80-20 and 70-30, Fig. 6e) to determine which type of 448 
environment would be the most optimal for distinguishing between the six behavioral regimes. We 449 
found that the decoding performance for the clusters dropped as the level of stochasticity increases 450 
in the environment. The decoding accuracy was consistently high and close to perfect for regime 451 
IB6, regardless of the type of environment. For each of the other five clusters, there was a drop of 452 
about 20% in decoding accuracy as we go from the 100-0 environment to the 70-30 environment. 453 
These results suggest that given our choice of behavioral features, more deterministic 454 
environments are better for distinguishing the behavior of model-free and inference-based agents, 455 
likely due to the greater separation between the behavioral features among the six types of agents 456 
(Fig. 6a).  457 

Session-average rodent behavior progressed through model-free regimes with increasing 458 
learning rates 459 

The high decoding accuracy of behavioral regimes gave us more confidence to use these decoders 460 
on the experimental data that we obtained from our trained animals. We analyzed behavioral data 461 
obtained from n = 21 head-fixed mice that were trained on the 100-0 dynamic environment. On 462 
average, behavioral features varied systematically over time: choice transitions occurred faster 463 
(shown by the decrease in offset) and switches became sharper (shown by the increase in slope), 464 
while the lapse rate decreased with training (Fig. 7a). Although the average lapse rate decreased 465 
over time, it remained high even after 3 weeks of training (~30% on day 30), suggesting a 466 
substantial degree of exploration and indicating that not all animals transitioned to the inference-467 
based regime at this late stage of training. 468 

The sharper and faster switches of trained mice in the task could be attributed to an increase in 469 
learning rate in the Q-learning mode, or a shift from the Q-learning to the inference-based decision 470 
mechanism. We dissociated these hypotheses by decoding the behavioral regime (Q1-4 or IB5-6) 471 
of each training session using the decoder that was previously trained on the synthetic data (Fig. 472 
6). Remarkably, we found that 100% of the decoded states over the training days (across 21 473 
animals, up to 30 training days), belonged to the Q-learning regimes, Q1-Q4 (Fig. 7b). Within 474 
these regimes, there was gradual shift toward regimes with higher learning rates. The behavior 475 
started predominantly in state Q1, and with learning, the frequency of state Q1 decreased, while 476 
states Q3 and Q4 increased in prevalence (Fig. 7b). As such, the mean decoded states across 477 
animals showed a slow increase toward higher Q-learning modes (Fig. 7c). By the end of 30 478 
sessions, about 40% of all animals were in class Q4, and the rest were divided between regimes 479 
Q1 and Q3. There was no indication that the behavior transitioned to inference-based modes (IB5-480 
6) in any single animal. 481 
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We also trained a subset of n = 6 animals on the probabilistic environments (90-10, 80-20 and 70-482 
30). We applied decoders that are trained on synthetic data for each environment (Fig. 7d) to infer 483 
the behavioral modes for these sessions, and again found that the vast majority of these sessions 484 
were in the Q-learning regimes (Q1-Q4). Altogether, these results failed to reveal any signature of 485 
inference-based behavior from the session-averaged behavioral features of rodents. This was 486 
highly surprising, and as we noted at the start of the paper (Fig. 2d-f), could be due to the use of 487 
session-averaged statistics which can yield erroneous results by masking the use of mixtures of 488 
strategies in single sessions. In the next sections, we will tackle this challenge of analyzing 489 
mixtures of strategies by building a state-space model to quantify dynamic shifts and transitions 490 
in learning modes. 491 

A novel framework to quantify mixture of strategies in dynamic foraging 492 

The absence of inference-based strategies from our previous decoding analysis was highly 493 
surprising for several reasons. First, inference-based behavior has been observed in previous 494 
studies of dynamic foraging in rodents, as well as in other complex tasks which involve multiple 495 
decision stages16,17. Thus, it seems unlikely that our animals are unable to develop an internal 496 
model that facilitates efficient inference in our task. Second, from our training experience, we have 497 
frequently observed expert animals making sharp switches in their actions, with some animals 498 
being able to reverse their actions after a single error after each block transition. Hence, our 499 

Figure 7. Decoding of session-averaged rodent behavior during dynamic foraging. a) Evolution of offset, slope, lapse 
and efficiency of rodent dynamic foraging behavior with training (mean ± standard error, n = 21 animals). b) Distribution 
of decoded state across all animals (n = 21) with training. c) Evolution of average decoded state across all animals (mean 
± standard error, n = 21 animals) with training. d) Same as b, but in probabilistic environments (90-10, 80-20 and 70-30, 
with n = 6 animals). These sessions were conducted after animals became expert in the 100-0 environment. 
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inability to discover inference-based behavior was suggestive of the need for a more sophisticated 500 
analysis of behavior. 501 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.14.484338doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484338
http://creativecommons.org/licenses/by-nc-nd/4.0/


One factor that might explain this result was the highly variable behavior of mice in training 502 
sessions. For example, in the same session, an individual animal might vacillate between different 503 
strategies, switching their choices immediately in some blocks, transitioning more slowly in others, 504 
and selecting choices at random toward the end of the session as they became satiated (red, green, 505 
and blue shades in Fig. 8a, respectively, for a simulated agent). These state changes pose a 506 
challenge for analysis methods which make use of session-average metrics, as highlighted by our 507 
examples in Fig. 2d-f. In our framework, each of these strategies might be governed by a separate 508 
choice transition function with varying offsets, slopes and lapse rates (sigmoidal curves in Fig. 509 
8b). Since the session average transition function (Fig. 8a, bottom panel) is more likely to be flatter 510 
with higher lapse rate than a typical inference-based sigmoid, the average behavior will tend to 511 
look model-free, masking the inference-based strategies in some of the individual components. 512 

The fact that individual modes of the behavior might be obscured by session-averaged measures 513 
prompted us to develop a computational tool to identify the discrete latent states that constitute the 514 
behavior of animals across their training sessions. We took advantage of recent developments of 515 
state space models that were used to infer discrete latent states from sequences of discrete or 516 
continuous variables28,37,38. In particular, adapting the previously developed GLM-HMM 517 
framework28 to the dynamic foraging setting, we assumed that each hidden state determines the 518 
parameters of a single sigmoidal transition function (offset s, slope α and lapse ϵ), which in turn 519 
determines the joint log likelihood of all the choices within each block. We named the approach 520 
“block Hidden Markov model (blockHMM)” to indicate the use of hidden states which dictate the 521 
evolution of choices throughout the block duration (Fig. 8a). 522 

More concretely, we assumed that the choice sequences in each block k is governed by an 523 
underlying sigmoidal transition function σ/(𝑡), where t = 0, 1, 2, … are the trial numbers within 524 
the block (Fig. 8a). These transition functions can be parameterized by the switch delay 𝑠/, slope 525 
α/ and lapse rate ϵ/ 	(Equation 1, Fig. 8b). The discrete latent states 𝑧#’s evolve from one block to 526 
the next with a Markovian property specified by the transition matrix 𝑃( 𝑧#0, ∣∣ 𝑧# ) (denoted by 527 

Figure 8. Formulation and evaluation of the blockHMM algorithm. a) Example of behavior generated by a 
blockHMM mixture with K = 3 components. The circles on top represent the underlying hidden states, 𝑧(, which 
evolve according to a Markov chain. Each state (shown by blue, red and green shade) follows a different set of 
underlying switching dynamics. Blue dots represent correct choices, red crosses represent incorrect choices. (Inset) 
Average transition function across all blocks of the session (black) together with the fitted sigmoidal curve (blue). 
b) (Top) Transition functions corresponding to each of the three hidden states, 𝑧( = 1, 2, 3. Each sigmoidal curve can 
be parameterized by three features, the slope, offset, and lapse. Arrows represent transition probabilities between the 
states. (Bottom) Equations of the blockHMM generative model. Each hidden state governs the choice sequence of 
the entire block according to the sigmoidal transitions (equations 1 and 2). The log-likelihood of the observed choices 
in the block is the sum of the log-likelihoods of individual trials (equation 3). c) (Top) Example behavior in 1000 
blocks of trials generated by the same blockHMM mixture shown in panels a and b. Each column represents one 
block, with trials 1 to 30 of each block running from top to bottom. Red represents incorrect choices and blue 
represents correct choices. (Middle) True states that underlie the behavior shown in the top panel. (Bottom) Inferred 
latent states by the blockHMM fitting procedure. d) (Left) Evolution of the log-likelihood during model fitting in 
panel c. (Right) Dependence of cross-validated log-likelihood on the number of components, K. e) True and inferred 
transition matrices for the behavior shown in panel c. f) Grouping of blocks of trials according to the inferred state 
after the model fitting with K = 3 HMM components. (Top) Raw behavioral performance grouped by the identity of 
the latent state. Conventions are as Fig. 3c,d and Fig. 4b. (Bottom) Average transition function and fitted sigmoidal 
curve for each of the grouped blocks. g) Comparison of true and inferred parameters for the three components of the 
behavior shown in panel c. 
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arrows in Fig. 8a). The transition function determines the likelihood of all trials within each block 528 
(Equation 2, Fig. 8b). Finally, to fit the model, we used the EM algorithm to maximize the log-529 
likelihood over all observed choices, which is the sum of the log-likelihoods of individual trials 530 
(Equation 3, Fig. 8b). 531 

Our synthetic agent (Fig. 8a) was simulated according to a blockHMM process with K = 3 hidden 532 
states. State z = 1 (blue) corresponded to a random mode of behavior with a flat transition function, 533 
z = 2 (red) corresponded to a sigmoidal curve with a fast offset, and z = 3 (green) involved a sharp 534 
but delayed switching of actions. We generated the behavior of this agent over 1000 blocks (Fig. 535 
8c), and fitted the blockHMM model to the observed choice sequences of the agent. The log-536 
likelihood of the fit converged to the true log likelihood value (Fig. 8d, left). To determine the best 537 
number of latent states for the model, we trained the model on 80% of the blocks and evaluated 538 
the log-likelihood on the remaining 20% of the blocks. Inspecting the normalized cross-validated 539 
log-likelihood, we found that the optimal number of clusters was K = 3, agreeing with the ground-540 
truth value (Fig. 8d, right). At the end of the fitting procedure, blockHMM recovered the correct 541 
transition matrix (Fig. 8e), as well as the parameters of the transition function in each mode (Fig. 542 
8f-g). Importantly, the inferred latent states closely matched the true states that underlie the 543 
behavior (Fig. 8c, bottom panels). 544 

Mice use a mixture of strategies during dynamic foraging 545 

We used the blockHMM procedure to identify the hidden states that underlie behavioral 546 
performance of our trained animals (n = 21). For each animal, we fit the model with the number 547 
of components, K, that was chosen to maximize the cross-validated log-likelihood (Supp. Fig 4, 548 
the value of K was also capped at a maximum value of 6 for interpretability). From the model fits, 549 
we obtained the slope, offset and lapse parameters that define each transition function. We also 550 
computed the foraging efficiency of each mode based on the performance of the animal in all of 551 
the trials in the respective states. The combination of four features per strategy were then input to 552 
our trained decoder (Fig. 6) to determine the behavioral regime (Q1-4 or IB5-6) for each of the six 553 
HMM modes (Fig. 9a). For 11/21 animals, we observed the presence of both Q-learning and 554 
inference-based regimes in the decoded HMM modes, while the rest of the animals only showed 555 
the presence of Q-learning regimes. To visualize behavior within each HMM mode, we pooled 556 
together the fitted functions from all animals (a total of 97 modes across 21 animals) and grouped 557 
them according to the decoded regime (Fig. 9b). Overall, the shape of these HMM modes closely 558 
matched the results of our regime segmentation: HMM modes that were decoded as Q1 showed 559 
delayed and gradual transitions that were close to random behavior, Q2 modes showed slow 560 
switching (with offset ~5 trials) and low exploration. Very few HMM modes were decoded to be 561 
Q3 – these modes showed similar offsets to Q2 but had higher lapse rates. Q4 modes displayed 562 
very fast switching (with offset of 1-2 trials) and a wide range of lapse rates. Importantly, 563 
blockHMM revealed the existence of a significant number of inference-based modes, which were 564 
decoded to regimes IB5-6. Consistent with our previous characterizations of these regimes, the 565 
transitions in regime IB5 occurred more slowly than IB6, and transition functions in these modes 566 
tended to have much lower lapse rates compared to the Q-learning regimes. Finally, we also 567 
recovered the state transition matrices for each animal (Supp. Fig. 6). 568 
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The model fits also allowed us to investigate the extent to which individual animals mixed between 569 
learning strategies within single training sessions. Although individual behavioral profiles were 570 
highly variable, there was a significant degree of mixing between HMM modes for all animals 571 
such that on each day, it was common to see a mixture of two or more behavioral regimes. An 572 
example animal (f11, Fig. 9c) executed an approximately equal mixture of Q1 and Q4 on its first 573 
training days. This fraction slowly shifted over time, as the prevalence of the Q1 mode decreased, 574 
while other Q-learning modes with higher learning rates (such as Q2-Q4) started to dominate. 575 
Around day 10 of training, the inference-based modes started to appear, growing in proportion 576 
until the late stages of training. However, remarkably, even in the expert stage (day 38 of training), 577 
the animal never operated fully in the inference-based regime. Instead, there remained a mixture 578 
of both inference-based and Q-learning strategies in roughly equal proportions at this stage of 579 

Figure 9. Mixture of strategies underlying rodent behavior in dynamic foraging. a) Composition of blockHMM 
mixtures for individual animals. Each row represents one mouse with ID shown on the left. The color of each square 
represents the decoded behavioral regime of each HMM mode (Q1-4, IB5-6). The number of blocks for each animal, 
K, was selected by cross-validation and are sorted here in descending order. b) Transition function of HMM modes for 
all animals, grouped according to the decoded behavioral regime. c) Distribution of HMM modes for an example 
animal, f11, across all training sessions. d) Same as c, but for another animal, f16. e) Average frequency of HMM 
modes for all experimental animals (mean ± standard error, n = 21 animals). 
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training. This was a common feature of many animals that managed to reach the inference-based 580 
stage (such as animal e46, e54, e56, f01, f11, f12, fh02, fh03, Supp. Fig. 5). On the other hand, a 581 
small subset of other animals, such as f16 (Fig. 9d), never reached the inference-based mode even 582 
after up to 25 days of training. The behavior of these animals primarily mixed between regimes 583 
Q1 and Q4 on each day, presumably alternating between periods of attention (high learning rate, 584 
Q4) and low attention (low learning rate, Q1). 585 

We compared the results of our segmentation approach to previously proposed metrics to 586 
distinguish between model-free and inference-based behavior. We determined the ρ coefficient as 587 
defined in Fig. 2 and previous studies16, for all training sessions across our n = 21 animals. On 588 
average, ρ systematically shifted from a significantly positive value for the first 5 sessions (Supp. 589 
Fig. 7a, p < 10-5, Wilcoxon signed-rank test, n = 21 animals) to a value that is not significantly 590 
different from 0 for sessions 21-25 (Supp. Fig. 7a, p = 0.3, Wilcoxon signed-rank test, n = 21 591 
animals). This is consistent with the previously reported trend16 and the average transition from 592 
model-free to inference-based modes of learning in our animals. However, the trends in ρ for single 593 
animals were noisy (Supp. Fig. 7b, c) which made it more challenging to distinguish model-free 594 
from inference-based behavior in single sessions. For example, although the two animals f11 and 595 
f16 (Fig. 9c,d) had qualitatively different behavioral modes as revealed by blockHMM, the 596 
evolution of the ρ estimates were qualitatively similar and not statistically different from sessions 597 
21 – 25 (Supp. Fig. 7b, p = 0.8, Wilcoxon signed-rank test, n = 5 sessions). Moreover, for animals 598 
whose behavior primarily lie in the Q-learning regime (e53, e57, f04, f16, f20), ρ was not 599 
statistically different from 0 in many sessions. This discrepancy could be attributed to the level of 600 
noise in the estimates, or the fact that Q-learning agents can also have ρ values close to zero 601 
especially in the high-learning rate regime (Fig. 2c, d). 602 

Across all animals, the average frequency and dominance of the HMM modes and behavioral 603 
strategies changed systematically over the course of training (Fig. 9e). On average, animals started 604 
training with a significant fraction of the Q1 mode and smaller fraction of Q4 (56% in Q1 and 24% 605 
in Q4, averaged across days 1-5). Over the course of training, the mixture of behavioral strategies 606 
slowly shifted from Q1 to Q4, such that around day 15, there is a higher fraction of Q4 than Q1 607 
mode (39% in Q4 compared to 35% in Q1, averaged across days 16-20). This shift in composition 608 
reflects an average increase in learning rate in the Q-learning regime. At the same time, the fraction 609 
of inference-based modes, IB5 and IB6, was low at the beginning (3% in IB5 and 6% in IB6 610 
averaged across days 1-5), but continuously increased as animals gained experience with the task 611 
(6% in IB5 and 14% in IB6 averaged across days 36-40). Notably, at the expert stage, there was a 612 
significant fraction of blocks in the inference-based mode (20% in IB5-6 combined averaged 613 
across days 36-40), but the mixture of strategies still remained with Q1 and Q4 being the primary 614 
Q-learning modes of the animals. Overall, these ubiquitous use of mixtures of strategies, which 615 
were distinctive both in naïve and expert animals, further underscore the importance of our 616 
approach to dissociate and characterize the features that constitute individual modes of behavior.  617 
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Discussion 618 
 619 
Model-free and inference-based strategies are the two types of models that are most often used for 620 
analysis of choice sequences in dynamic foraging experiments. Model-free constructs such as 621 
reinforcement learning models have been particularly useful when probing representation of action 622 
values in numerous brain regions6,13,14,21,39,40. Complementarily, inference-based models using 623 
Bayesian inferences has helped us understand the inference process that occurs in the brain from 624 
trial to trial when animals hold an internal model of the world transitions17,25. In the dynamic 625 
foraging task, while most studies tend to focus exclusively on one of the two model types, it has 626 
been recognized that both of these modes can co-exist in the behavior of rodents, with a transition 627 
from model-free to inference-based behavior as animals gain familiarity with the task16. By 628 
providing the tools to understand the difference between these two modes of behavior, our study 629 
provides a basis for comparison between these two disparate spaces of models. Our efforts are 630 
among other work of dissociating model-free from inference-based (or model-based) behavior in 631 
other task domains41–44. As building internal models of the world is a crucial, challenging but less 632 
understood brain function45, distinguishing between model-free from inference-based behavior in 633 
dynamic foraging is the first step toward an understanding of how these internal models can be 634 
acquired with learning. 635 
 636 
Our approach builds upon previous work in this domain in several ways. First, we proposed a 637 
framework that relies on quantitative measurements of four behavioral features that characterize 638 
transitions between actions, using the concept of transition functions which had only been 639 
qualitatively characterized by other studies18. Our combined use of four behavior features also 640 
makes it easier to decode the behavioral strategies, as these metrics offer better coverage of the 641 
large parameter spaces involved in the two models, γ-ε for Q-learning agents, or 𝑃'&#()*	- 𝑃$%& 	for 642 
inference-based agents. Although we have not considered other behavior features such as the 643 
probability of action switching18,25, similar metrics can be incorporated in the same framework to 644 
potentially improve the decodability of strategies even further. In general, the use of multiple 645 
features would help maximize the discriminability between the two types of behavior in the high-646 
dimensional feature space. This offers an improvement from previous attempts which use a single 647 
parameter to distinguish between the two modes of learning. For example, we showed that ρ by 648 
itself is insufficient to distinguish model-free from inference-based behavior for certain pairs of 649 
agents16. In the same way, this problem also applies to other single metrics such as transition 650 
slope17 or offset33 which have been used in previous studies. Our approach also differs from 651 
previous attempts using data-driven methods26 to predict the choice of animals and agents on 652 
individual trials. We instead try to estimate a set of aggregate behavioral metrics such as the switch 653 
offset and lapse rate to decode the behavioral regimes of different agents. Since our focus is to 654 
predict the behavioral class rather than the choice on single trials, this allows us to gain statistical 655 
power and robustness as these aggregate measures can be estimated more accurately from the 656 
performance of the animals over multiple blocks of trials, in comparison to single-trial choice 657 
prediction which can be difficult due to the presence of noise in the choice sequences46. 658 
 659 
Among the four features we investigated, the variation in lapse rate during training was particularly 660 
noteworthy. We found that there was a high lapse rate in our experimental animals, even in the 661 
deterministic environment where the reward contingency should be straightforward to learn and 662 
acquire. On average in this easiest task condition, the lapse rate of animals even on day 30 of 663 
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training was close to 30%. In our Q-learning model, this lapse rate could be accounted for by a 664 
high value of ϵ	which leads to a high degree of exploration of the animals. This high rate of 665 
exploration would agree with previous studies of mice in a maze47, open-field48 or head-fixed8, 666 
which found a tendency for mice to explore their environments, presumably to gain information 667 
about unknown events or contingencies49,50. Although exploration is the most direct explanation 668 
for the high lapse rate, we cannot rule out the possibility that the high lapse rate could be caused 669 
to other factors such as inattention, motor errors, or incomplete knowledge of the task28,51–53, which 670 
similarly affect the interpretation of lapse rates in sensory-guided behavioral paradigms8,28.  671 
 672 
Together, the four behavioral features of the transition dynamics, the switch offset, slope, lapse 673 
and efficiency, provide a basis for reliably classify the behavior of different Q-learning and 674 
inference-based agents into one of six distinct clusters that show qualitatively different behavioral 675 
phenotypes. Remarkably, each of these two parameter spaces can be further segmented into 676 
smaller subdomains, thus highlighting the heterogeneity of behavior within these two classes of 677 
strategies. We found that the Q-learning space can be divided into four clusters, Q1-Q4, that 678 
broadly correspond to different learning rates. Q1 is a low-learning rate regime where the behavior 679 
is close to random on most of the block, Q2,3 have moderate learning rates where slow block 680 
transitions occur, while Q4 is a high-learning rate regime where the behavior transitions are fast, 681 
but foraging efficiency can be strongly dependent on the degree of exploration, highlighting the 682 
well-known exploration-exploitation trade-off in reinforcement learning54,55. In this regime, too 683 
low exploration risks getting the agent stuck a sub-optimal choice during block transitions, while 684 
too high exploration results in a failure to maximize received rewards. The types of behavior for 685 
model-free agents might be even more complex when alternative schemes for exploration, such as 686 
soft-max, UCB-1 or pursuit55, are considered. Interestingly, in our characterization, the difference 687 
between lapse rates turned out to be an important criterion for distinguishing model-free from 688 
inference-based behavior, especially in deterministic (100-0) environments. Here, model-free 689 
clusters (Q1-Q4) tend to have significant, non-zero rates of exploration, while inference-based 690 
clusters (IB5-6) has a lapse rate that is very close to zero. This suggests that the lapse rate can 691 
serve as an additional discriminator for the two types of models, in addition to other metrics that 692 
have been considered by previous studies16,17. 693 
 694 
The ground-truth parameters used in our simulations also allowed us to evaluate the reliability of 695 
decoding model-free from inference-based behavior in different types of environments. We found 696 
that decoding accuracy was highest in the deterministic (100-0) environment and slowly degrades 697 
for more stochastic environments (going from 90-10 to 80-20 and 70-30). This degradation arises 698 
because in probabilistic environments, inference-based and model-free transition functions 699 
become more similar. In such noisy environments, an efficient inference-based procedure might 700 
still give rise to slow and delayed switching since in these environments, the rewards received are 701 
rather uninformative of the current state of the world. The lapse rates of inference-based agents 702 
also become non-zero in this unreliable condition which makes it difficult to distinguish between 703 
the effect of ε-greedy exploration in Q-learning agents. On the other hand, in the deterministic, 704 
100-0 environment, a failure to fully exploit an action after switching must be attributed to 705 
exploration, allowing an accurate detection of exploration states which imply a Q-learning 706 
behavior. The decoding accuracy of behavioral strategies thus establishes a baseline evaluation of 707 
our ability to distinguish model-free from inference-based behavior in high-noise environments. 708 
 709 
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The second major contribution of this work is the development of a state-space model, blockHMM, 710 
which allows us to segment of behavior during the session into blocks of trials that are governed 711 
by different underlying states. Our work adds to the existing body of literature for quantifying 712 
mixtures of strategies in reward-guided contexts which revealed interacting components of 713 
behavior involving reinforcement learning, working memory, episodic memory or the interaction 714 
between model-free and model-based systems26,56. To tackle challenges faced by models that 715 
assume stationarity of behavior (Fig. 2e-g), our model takes inspiration from recent modeling 716 
approaches which are used to infer discrete latent states that underlie neural dynamics37 , natural 717 
behavior38, and behavior in decision-making tasks27,28. In particular, we adapted the recent GLM-718 
HMM framework28, where discrete hidden states determine the coefficients of a generalized linear 719 
model (GLM) which specifies how the decision of the animal depends on external trial variables. 720 
While the latent states in this approach are updated from trial to trial, latent states in the blockHMM 721 
framework govern the choice selection across entire blocks, and are only updated at the boundaries 722 
of block transitions. Each state involves a separate sigmoidal transition function parameterized by 723 
the slope, offset and switch. By pooling the behavior across different sessions, blockHMM 724 
bootstraps from the large number of blocks across multiple sessions to estimate these state-specific 725 
parameters. As these are the same parameters that are used for decoding Q-learning or inference-726 
based regimes, this allows us to recover the behavioral regime (Q1-4 or IB5-6) that corresponds 727 
to each state. We performed a cross-validation analysis to determine the number of states, K, that 728 
best describe the behavior of each animal, ensuring that these modes are meaningful units of 729 
behavioral states and not arbitrary noise patterns that are fit by the model. 730 
 731 
Our results uncover a remarkable diversity of behavior across the 21 animals that were trained in 732 
the task. This diversity is demonstrated by different number of HMM modes, K, the composition 733 
of the modes (Fig. 9a), the shapes of the transition function of each mode (Fig. 9b), the transition 734 
probabilities (Supp. Fig. 5), as well as the evolution of the mixture composition throughout the 735 
course of training (Supp. Fig. 4). We found only 11/21 of our animals transitioned to an inference-736 
based mode of learning, while the rest of the animals remained in the Q-learning modes. This 737 
might explain why some previous studies might not observe efficient inference-based behavior of 738 
rodents during behavioral switching18, since a large fraction of animals might have failed to 739 
transition to this regime. 740 

Not only is the behavior variable across animals, but it can also be highly dynamic within a session. 741 
We found that rodents frequently employ a mixture of strategies, mixing between periods of 742 
random behavior, Q-learning and inference-based behavior even at the expert stage after being 743 
exposed to the task for many weeks. This is so even for the easiest reward contingency (100-0 744 
environment) where the optimal decision is simple – the animal only needs to make a switch each 745 
time a single error is encountered. Although we might expect rodents to be able to quickly figure 746 
out this task and become fully committed to the inference-based strategy, this was not the case. 747 
Instead, the frequent switches between behavioral states is representative of rodent behavior and 748 
agrees with many other studies of a diverse array of tasks27,28. This feature of rodent behavior once 749 
again highlights the need for powerful analytical methods that can infer hidden behavioral states 750 
that govern behavior, since these types of models allow a finer scale resolution when dissecting 751 
the behavioral circuits. 752 
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Overall, our study lays the foundation for future analyses and investigations into the neural basis 753 
of model-free and inference-based behavior, and calls for a focus on the problem of state 754 
segmentation in rodent behavioral studies. An interesting question that is raised by our 755 
characterizations is how internal models are acquired during the task, and the factors that affect 756 
the evolution of parameters of these internal models. The methods developed in the paper can be 757 
leveraged in investigations of the neural mechanisms that govern these distinct modes, as well as 758 
the plasticity of these circuits during the transition between model-free and inference-based 759 
behavior. The state segmentation approach will also be a valuable tool for perturbation 760 
experiments, with the power to reveal shifts in composition, order or transition probabilities 761 
between these modes, thus augmenting existing methods for a much richer and complete view of 762 
rodent behavior during dynamic foraging. 763 
 764 
 765 
Methods 766 
 767 
Animals. All experimental procedures performed on mice were approved by the Massachusetts 768 
Institute of Technology Animal Care and Use Committee. Mice were housed on a 12 h light/dark 769 
cycle with temperature (70 ± 2 °F) and humidity (30–70%) control. Animals were group-housed 770 
before surgery and singly housed afterwards. Adult mice (2-6 months) of either sex were used 771 
for these studies. In addition to wild-type mice (C57BL/6J), the following transgenic lines were 772 
used: Ai184D (B6.Cg-Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze/J), Jackson #030328; 773 
Ai162D (B6.Cg-Igs7tm162.1(tetO-GCaMP6s,CAG-tTA2)Hze/J), Jackson #031562; 774 
B6.129(Cg)-Slc6a4tm1(cre)Xz/J, Jackson #014554. 775 
 776 
Surgical procedures. Surgeries were performed under isoflurane anesthesia (3–4% induction, 777 
1–2.5% maintenance). Animals were given analgesia (slow release buprenex 0.1 mg/kg and 778 
Meloxicam 0.1 mg/kg) before surgery and their recovery was monitored daily for 72 h. Once 779 
anesthetized, animals were fixed in a stereotaxic frame. The scalp was sterilized with betadine 780 
and ethanol. The skull was attached to a stainless-steel custom-designed headplate 781 
(eMachines.com) using Metabond. Animals were allowed to recover for at least 5 days before 782 
commencing water restriction for behavioral experiments. 783 
 784 
Behavioral apparatus and task training. The training apparatus and software for running the 785 
experiments were adapted from the Rigbox framework for psychophysics experiments in 786 
rodents57,58. Mice were head-fixed on the platform (built from Thorlabs hardware parts) and their 787 
body placed in a polypropylene tube to limit the amount of movement and increase comfort. 788 
Their paws rested on a vertical Lego wheel (radius 31 mm) which was coupled to a rotary 789 
encoder (E6B2-CWZ6C, Omron), which provided input to a data acquisition board (BNC-2110, 790 
National Instruments). The data acquisition board also provided outputs to a solenoid valve 791 
(#003-0137-900, Parker) which controlled the water reward delivery. 792 
 793 
After mice recovered from surgery, they were placed under water restriction for 1 week, with 794 
daily water given by HydroGel (Clear H2O). The initial amount of HydroGel was equivalent to 795 
2mL of water a day, and this decreased gradually until mice received an amount equivalent to 40 796 
mL/kg each day. Mice were weighed weekly and monitored signs of distress during the course of 797 
training. In the case of substantial weight loss (>10% loss weekly) or decrease in body condition 798 
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score, the restricted water amount was increased accordingly. Mice were handled daily during 799 
the initial 1-week water restriction period for ~10 minutes each day. They were then allowed to 800 
explore the apparatus and given water manually by a syringe on the platform. If mice did not 801 
receive their daily water amounts during training, they were given the remaining amount as 802 
hydrogel (Clear H2O) in their home cage. 803 
 804 
When mice were comfortable with the setup, they were head-fixed on the platform and given 805 
small water rewards of 4 µL from a lick spout every 10 seconds, for a total duration of 10 806 
minutes. This duration was increased to 20 minutes, and 40 minutes on the two subsequent days. 807 
The wheel was fixed during this protocol. On the next day, mice were trained on the 808 
movementWorld protocol, with the wheel freely moving. Here, each trial was signal with an 809 
auditory tone (0.5s, 5 kHz), following which movements in any direction crossing the movement 810 
threshold of 8.1° rotation were rewarded with 4 µL of water. Mice then had to remain stationary 811 
for 0.5 s before the next trial starts. This discouraged a strategy of continuous rotation of the 812 
wheel. 813 
 814 
After mice became comfortable with this stage and consistently obtained at least 0.6 mL of water 815 
each session, they were taken to the final task stage, blockWorldRolling. Each trial began with an 816 
auditory tone (0.5s, 5 kHz). During a delay period of 0.5 s from the trial tone onset, movements 817 
of the wheel were discounted. After this window, the movement period started, where 818 
movements of the wheel past a specified threshold were recorded. The threshold was fixed at 819 
8.1° in the first session of blockWorldRolling and subsequently increased to 9.5°, and 10.8° on 820 
the next days. The trials were grouped into blocks of trials of 15-25 trials, with lengths of the 821 
blocks sampled uniformly at random. The blocks alternated between the “left” and “right” state. 822 
In the “left” state, left wheel turns were rewarded with probability 100% and right wheel turns 823 
were not rewarded. In the “right” state, right wheel turns were rewarded with probability 100% 824 
and left wheel turns were not rewarded. If mice made the correct movement, they were given a 4 825 
µL water reward. For unrewarded trials, a white noise sound was played for 0.5 s, followed by a 826 
time-out of 1 s. After the trial feedback was given, an inter-trial interval (ITI) of 0.5 s elapsed 827 
before the next trial started. The ITI was gradually increased to 1 s once animals performed well 828 
in the task. If mice didn’t make a choice within 20 seconds, the trial was aborted, signaled by a 829 
white noise and 1-s time-out period (similar to an error trial). After the length of the block has 830 
passed, if the rolling performance of the animal in the last 15 trials was above 75%, the state of 831 
the block would flip and the next block continued. Otherwise, the block continued until the 832 
rolling performance in the last 15 trials in the block passed 75%. 833 
 834 
For n = 6 animals (F11, F12, F16, F17, F20, F21), after becoming expert in the 100-0 835 
environment, we continued training them in successively more volatile environments. Each 836 
animal was trained in 2-3 sessions in the 90-10 environment, followed by 2-3 sessions in each of 837 
the 80-20, and 70-30 environments. The example behavior in Fig. 1c was for animal F11 on a 838 
90-10 environment. 839 
 840 
 841 
Simulated environment. We simulated an artificial environment that alternates between two 842 
states, “left” and “right”, in blocks of trials. The first block was chosen at random to be in the “left” 843 
or “right” state, and the state identity flipped for each subsequent block. At the start of each block, 844 
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we determined the number of trials in the blocks, N, by sampling an integer at random in the range 845 
[15, 25]. We then simulated N trials in the block. In each trial, the agent selected an action (see 846 
“Simulation of Q-learning agents” and “Simulation of inference-based agents” for details below) 847 
and received feedback from the environment. If the block was in the “left” state, left actions yielded 848 
reward with probability of p and right actions yielded reward with probability of 1 – p. Conversely, 849 
if the block was in the “right” state, left actions yielded reward with probability of 1 – p and right 850 
actions yielded reward with probability of p. We considered four different environments with p = 851 
1.0, 0.9. 0.8 and 0.7, which we called 100-0, 90-10, 80-20 and 70-30, respectively. 852 
 853 
Simulation of Q-learning agents. Each Q-learning agent was defined by two parameters, the 854 
learning rate γ	and exploration rate ϵ. For our simulations, we simulated a 25 x 20 grid of 855 
parameters within the range 0.01	 ≤ γ ≤ 1.4, and 0.01 ≤ ϵ ≤ 0.5. 856 
 857 
On each trial, the Q-learning agent implemented a Q-value update and selected actions with an ϵ-858 
greedy policy. The agent maintained two values associated with the two actions, 𝑞!	for left actions 859 
and 𝑞" for right actions. We initialized 𝑞! = 𝑞" = 0.5. On each trial, the agent updated these 860 
values according to 861 
 862 

𝑞# ← 𝑞# + γ(𝑟 − 𝑞#)  863 
 864 
where r is the feedback of the trial (r = 1 for rewarded actions and r = 0 for non-rewarded actions). 865 
The Q-learner chose the higher-valued action with probability 1 - ε, and selected actions at random 866 
(with probability 50% for each choice) on a small fraction ε of trials.  867 
 868 
Simulation of inference-based agents. Each inference-based agent held an internal model which 869 
consisted of two hidden states, L and R, that corresponded to the unobserved hidden states, “left” 870 
or “right”, of the environment. The internal model was defined by two parameters, 𝑃'&#()*	 and 871 
𝑃$%&	 according to 872 
 873 

P( s10, = 𝑅 ∣∣ 𝑠# = 𝐿 ) = P( 𝑠#0, = 𝐿 ∣∣ 𝑠# = 𝑅 )  =  P231456 874 
 875 

P( 𝑠#0, = 𝐿 ∣∣ 𝑠# = 𝐿 ) = P( 𝑠#0, = 𝑅 ∣∣ 𝑠# = 𝑅 )  =  1 − 𝑃'&#()* 876 
P( 𝑟# = 1 ∣∣ 𝑠# = 𝐿, 𝑐# = 𝐿 ) = P( 𝑟# = 1 ∣∣ 𝑠# = 𝑅, 𝑐# = 𝑅 )  =  𝑃$%& 877 

P( 𝑟# = 1 ∣∣ 𝑠# = 𝐿, 𝑐# = 𝑅 ) = P( 𝑟# = 1 ∣∣ 𝑠# = 𝑅, 𝑐# = 𝐿 )  =  1 − 𝑃$%& 878 
 879 
where 𝑠# refers to the hidden state on trial I and 𝑐_𝑖 refers to the choice on trial i. 880 
 881 
That is, the evolution of the hidden states followed a Markov process with probability 𝑃'&#()*	of 882 
switching states and 1 – 𝑃'&#()*	 for remaining in the same state on each trial. For our simulations, 883 
we simulated a 15 x 10 grid of parameters within the range 0.01	 ≤ 𝑃'&#()*	 ≤ 0.45, and 0.55 ≤884 
𝑃$%& ≤ 0.99. 885 
 886 
We derived a recursive update for the agent’s posterior belief about the current world state, given 887 
previous choices and feedback. Let  P7(t) = ( 𝑠( = 𝐿 ∣∣ c,, 𝑟,, 𝑐-, 𝑟-, … , 𝑐(.,, 𝑟(., ) and 𝑃"(𝑡) =888 
( 𝑠( = 𝑅 ∣∣ 𝑐,, 𝑟,, 𝑐-, 𝑟-, … , 𝑐(.,, 𝑟(., ). Then 889 
 890 
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𝑃!(𝑡) =
1
Ω J 𝑃#(𝑡 − 1)
#8!,"

 P( 𝑟(., ∣∣ 𝑠(., = 𝑖 ) P( 𝑠( = 𝐿 ∣∣ 𝑠(., = 𝑖 ) 891 

𝑃"(𝑡) =
1
Ω J 𝑃#(𝑡 − 1)
#8!,"

 P( 𝑟(., ∣∣ 𝑠(., = 𝑖 ) P( 𝑠( = 𝑅 ∣∣ 𝑠(., = 𝑖 ) 892 

 893 
where Ω is a normalization factor to ensure 𝑃!(𝑡)  +  𝑃"(𝑡) =  1. 894 
 895 
We initialized 𝑃!(0) 	= 	𝑃!(0) 	= 	0.5. On each trial, the agent selected the left action if 𝑃!(𝑡) 	>896 
	0.5, the right action if 𝑃!(𝑡) 	< 	0.5, and acted randomly otherwise. 897 
 898 
Evaluation of previous metrics and approaches. For a given agent, the ρ metric is defined as 899 
follows. For each block transition, we counted the number of consecutive rewards that take place 900 
before the block transition, 𝑁$, and the number of consecutive errors that take place immediately 901 
after the block transition, 𝑁%. We defined ρ to be the Pearson correlation coefficient between 𝑁$ 902 
and 𝑁% across all the blocks in the session. To minimize the effect of outliers, we only considered 903 
blocks where 𝑁$ ≤ 15. 904 
 905 
The Q-learning and inference-based agents in Fig. 2a-d were simulated in a 90-10 environment, 906 
where the block lengths ranged from 5 to 40. The block lengths were sampled as follows. The 907 
minimum possible block length was 5 trials, and each subsequent trial where the agent chose the 908 
high-reward side, there was a 10% probability of switching states. The block also automatically 909 
switched after 40 trials had elapsed.  910 
 911 
The Q-learning agent in Fig. 2e was simulated with γ = 0.1 and ϵ = 0.1. The inference-based agent 912 
in Fig. 2e was simulated with 𝑃$%& = 0.7 and 𝑃'&#()* = 0.2. Each agent was simulated for 10 total 913 
sessions, each lasting 1000 blocks. For agent M, we used a mixture of strategies: we alternated 914 
between the Q-learner’s strategy for 50 blocks and the inference-based agent’s strategy for 50 915 
blocks, and kept alternating between these modes until the agent has executed 1000 blocks in total. 916 
This was repeated for 10 total sessions (similar to the Q-learning and inference-based agents) to 917 
obtain error bars for the parameter estimates. 918 
 919 
To infer the learning rates in a traditional reinforcement learning framework (Fig. 2f), we fit a 920 
reinforcement learning model with three parameters, learning rate γ, inverse temperature β, and 921 
bias b, to the sequence of choices and feedback of the agent. We assumed the agent maintained Q-922 
values for the left and right action and use the same update rules as described in “Simulation of Q-923 
learning agents”. Given Q-values 𝑞! and 𝑞", the likelihood of selecting an action is given by 924 
 925 

P(𝑎(𝑡) = 𝐿) =
1

1 + 𝑒𝑥𝑝[−β(𝑞!(𝑡) − 𝑞"(𝑡) + 𝑏)]
 926 

 927 
We jointly fit γ, β, and b using the MATLAB function fmincon with initial values γ: = 0.2, β =928 
	1 and 𝑏: = 0, with the constraint β ≥ 0. 929 
 930 
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Logistic regression model. Similar to previous studies, we fitted a logistic regression of the 931 
following form to predict the choice on trial n based on the previous choices, previous outcomes, 932 
and interaction between previous choices and outcomes: 933 
 934 

log
𝑝(𝑐; = 𝐿)

1 − 𝑝(𝑐; = 𝐿) =Jα#𝑐;.#

<

#8,

+Jβ#𝑟;.#

<

#8,

+Jγ#𝑐;.#𝑟;.#

<

#8,

 935 

In other words, the logit was a linear combination of the previous N choices (𝑐;.# = 1 for left 936 
choice and -1 for right choice), previous N rewards (𝑟;.# = 1 for rewarded actions and -1 for 937 
unrewarded actions), and previous N interactions of choice and reward. The logistic regression 938 
model in Fig. 2g was fitted with MATLAB function mnrfit to recover the best fit coefficients 939 
α# , β# , γ# , together with the confidence intervals of these estimates. For ease of visualization, the 940 
parameters α, β and γ were normalized by their respective maximum values. 941 
 942 
Characterization of Q-learning and inference-based spaces. We simulated an ensemble of Q-943 
learning and inference-based agents with parameters as described above. For each agent, the 944 
behavior was simulated for a total of 1000 blocks. To calculate the transition function of the agent, 945 
we took the average of the “signed choice” 946 

f(𝑡) =
∑ 𝑐;,(𝑢;,(
<+,-./0
;8,
𝑁=>?)/'

 947 

 948 
where 𝑐;,( denotes the choice in trial t of the block n (-1 for left and 1 for right choices) and 𝑢;,( 949 
denotes the unobserved hidden state in trial t of the block n (-1 for “left” state and 1 for “right” 950 
state). The signed choice ensures that f(t) is an increasing function of t regardless of the hidden 951 
state of the block. 952 
 953 
The transition function f(t) was fit with a sigmoidal curve with the form 954 

f(𝑡) = ϵ +
1 − 2ϵ

1 + 𝑒𝑥𝑝^−α(𝑡 − 𝑠)_
 955 

 956 
Where ϵ, α and 𝑠 are free parameters of the function representing the lapse rate, slope and offset, 957 
respectively. The parameters were jointly fit with the Python function scipy.optimize.minimize(), 958 
with constraints 𝑠 ≥ 0, α ≥ 0, 0 ≤ ϵ ≤ 0.5. 959 
 960 
We also determined the foraging efficiency of the agent, 𝐸 = 𝑁$%&@$A%A/𝑁, where 𝑁$%&@$A%A 	is 961 
the number of rewarded trials and N is the total number of trials in the session. 962 
 963 
 964 
Clustering into behavioral regimes (Fig. 5). The above fitting procedure was done for all 650 965 
agents (25 x 20 Q-learning and 15 x 10 inference-based agents). We pooled the four behavioral 966 
features, ϵ, α, 𝑠, and E, from these agents to form a 4 x 650 feature matrix, representing 4 967 
features/agent and 650 agents. We applied a density-based clustering method to segment the cloud 968 
of points into distinct domains. First, the four-dimensional features were embedded into a two-969 
dimensional t-SNE space using the MATLAB tsne function with Euclidean distance metric and 970 
perplexity of 30. For the 90-10 world, the perplexity was adjusted to 25 to achieve better 971 
convergence of the t-SNE clusters. 972 
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We formed 2-D histograms of the data points in the t-SNE space using the MATLAB hist2d 973 
function (n = 25 bins in each dimension). These histograms were heat maps that indicated regions 974 
of high concentration of the data points. The histograms were mean-filtered by a square kernel of 975 
size 4x4, and local ‘noise’ maxima with heights less than 3 were suppressed. A watershed 976 
algorithm was run on the resulting heat map to identify the local clusters of high density. The 977 
identities of these clusters were assigned after mapping back to the location in the Q-learning or 978 
inference-based parameter spaces. 979 
 980 

Decoding analysis (Fig. 6). We generated a synthetic data set using computational simulations 981 
that serve as the basis for our decoding analysis. For each agent in the Q-learning and inference-982 
based parameter spaces, we performed repeated simulations in 50 synthetic experimental sessions 983 
with 20 block transitions per session. For each synthetic session, we obtained the transition 984 
function f(t), and fit a sigmoidal curve to estimate the four features, ϵ, α, 𝑠, and E of the behavior. 985 
The fitted slope was capped at a maximum value of 20 to avoid outliers. To balance the number 986 
of training examples for different classes in the data set, we determined the number of training 987 
examples, 𝑛,, … , 𝑛B, for each of the six classes (Q1-4, or IB5-6), and subsampled each class so 988 
that each class contains N = 𝑚𝑖𝑛(𝑛,, … , 𝑛B) examples. We split this data into a training set 989 
(containing 80% of the data) and a test set (20% of the data). Each of the four features were 990 
normalized to mean 0 and standard deviation 1. A k-nearest neighbor (kNN) decoder was trained 991 
on the training set to predict the behavioral regime (1 to 6). Its performance was evaluated on the 992 
held-out test set. The accuracy of the decoder was measured both by the fraction of correctly 993 
labeled examples per regime, and by the Matthews Correlation Coefficient. 994 

Session-averaged decoding (Fig. 7). For each behavioral session consisting of N blocks, we 995 
obtained the transition function f(t) as described in Characterization of Q-learning and inference-996 
based spaces. We obtained the sigmoidal fit of this function and determined the parameters ϵ, α, 997 
𝑠, and E of the session. The features were input to the kNN decoder that was trained in the 998 
Decoding analysis section. This results in a predicted class (Q1-4 or IB5-6) for each behavioral 999 
session. For sessions in probabilistic environments (90-10, 80-20 or 70-30), the behavioral features 1000 
were input to the corresponding decoder which were trained on synthetic data from the 1001 
corresponding environment type. 1002 
 1003 
BlockHMM implementation. The blockHMM inference procedure was implemented based on 1004 
the existing ssm toolbox that was previously developed for a wide range of Bayesian state-space 1005 
models59. 1006 
 1007 
We added an implementation to this toolbox by specifying a new set of transition and observation 1008 
probabilities which specify the blockHMM process. Each observation was defined by three 1009 
vectors, 𝜶, s and 𝝐 representing the parameters of the sigmoidal transition function for each of the 1010 
K HMM modes (each vector has dimension K x 1). The vectors were initialized to 𝛂𝒊 = 4, 𝑠# =1011 
0.2, ϵ# = 0.3 for all 1	 ≤ 𝑖	 ≤ 𝐾. 1012 
 1013 
Given the hidden state in block i, i.e. given 𝑧# = 𝑘, the joint log likelihood of the observed choices 1014 
in the block is defined via the sigmoidal transition function specified by parameters α/ , 𝑠/ , ϵ/ 1015 
 1016 
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σ/(𝑡) =
1 − 2ϵ/

1 + 𝑒𝑥𝑝^α/(𝑡 − 𝑠/)_
+ ϵD 1017 

where t = 1, 2, …, T enumerates the position of the trials in the block. 1018 
 1019 
The log-likelihood for a “signed” choice 𝑦( (the product of choice 𝑐( and hidden state 𝑢() is that 1020 
of a Bernoulli random variable with a rate of σ/(𝑡). 1021 

𝑙𝑜𝑔 𝐿 (𝑦(|α/ , 𝑠/ , ϵ/) = 𝑦( log σ/ (𝑡) + (1 − 𝑦() log^1 − σ/(𝑡)_ 1022 
 1023 
The joint log-likelihood of the observed choices in the block i is the sum of the log-likelihoods of 1024 
individual trials 1025 

𝑙𝑜𝑔 𝑃 (𝒚 ∣∣ 𝑧# = 𝑘 ) =J𝑙𝑜𝑔 𝐿 ( 𝑦( ∣∣ α/ , 𝑠/ , ϵ/ )
E

(8,

 1026 

The joint log-likelihood for the whole session is the sum of the log-likelihood in individual blocks. 1027 
The hidden states evolved according to a Markovian process with stationary transition governed 1028 
by a transition matrix T with dimension K x K. 1029 
 1030 
The blockHMM was fit with an Expectation-Maximization (EM) algorithm. The hidden states 1031 
were initialized based on k-means clustering with K clusters. The implementation of the EM 1032 
algorithm was the same as described previously for the ssm toolbox. We used the L-BFGS 1033 
algorithm for the M-step when updating the values of 𝜶, s and 𝝐, with constraints  𝒔 ≥ 0.01, 𝜶 ≥1034 
0.01, 0.01 ≤ 𝝐 ≤ 0.5. 1035 
 1036 
To evaluate the cross-validated log-likelihood (Fig. 8d), we split the data into 80% training set and 1037 
20% test set. The blockHMM was run on the training set and the log-likelihood 𝐿(%'( was evaluated 1038 
on the test set. We normalized this cross validated log-likelihood by 1039 
 1040 

𝐿;?$F =
𝐿(%'( − 𝐿:
𝑛(%'( 𝑙𝑜𝑔(2)

 1041 

where 𝐿: is the cross-validated log-likelihood of a null model (a Bernoulli(p) model where p is the 1042 
observed fraction of trials where 𝑦( = 1), 𝑛(%'( is the number of trials in the test set. 1043 
 1044 
Synthetic agent simulation. The synthetic agent (Fig. 8c-g) was simulated with K = 3 HMM 1045 
modes with parameters 𝑠, = 4, α, = 0.2, ϵ, = 0.3; 𝑠- = 1, α- = 0.8, ϵ- = 0.15; 𝑠G = 9, αG =1046 
1.5, ϵG = 0.05. The true transition matrix of the agent was  1047 
 1048 

𝑇  =   u
0.966 0.003 0.031
0.007 0.954 0.039
0.025 0.020 0.955

w 1049 

 1050 
The behavior was generated for N = 1000 blocks, each block consisting of 30 trials. 1051 
 1052 
BlockHMM fitting to animal behavior. For each animal, we concatenated the behavioral choices 1053 
from all training sessions into a B x T matrix where B is the total number of blocks from all the 1054 
sessions and T = 15 is the number of trials in each block (for blocks that are longer than T trials 1055 
we kept only the first T trials of that block). The blockHMM fitting procedure was run on this 1056 
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matrix for K = 1, 2, 3, …, 8 modes. We chose the value of K that maximized the normalized log-1057 
likelihood of the test set (𝐿;?$F). We capped this K value at 6 for interpretability of the model (i.e. 1058 
if the value of K with the highest log-likelihood is higher than 6, we chose K = 6 as the optimal 1059 
value). 1060 
 1061 
After fitting the blockHMM model, we recovered parameters 𝑠/ , α/ , ϵ/ for individual modes in the 1062 
model. We determined the foraging efficiency 𝐸/ by numerically integrating the area under the 1063 
curve of the choice transition function (with a step size of 0.1) 1064 
 1065 

𝐸/ = x σ/(𝑡)dt
-H

,
 1066 

Together, the four parameters 𝑠/ , α/ , ϵ/ , 𝐸/ are input into the kNN decoder that was trained in 1067 
“Decoding analysis” to infer the behavioral regime (Q1-4, IB5-6) of each of the HMM modes. 1068 
 1069 
 1070 
Data availability. The data that support the findings of this study are available from the 1071 
corresponding authors upon reasonable request. 1072 
 1073 
Code availability. Code used in this study is available at https://github.com/nhat-le/switching-1074 
simulations. 1075 
 1076 
 1077 
 1078 
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SUPPLEMENTARY FIGURES 1238 
 1239 

 1240 

 1241 
 1242 
Figure S1. Behavioral metrics of Q-learning agents in different types of deterministic and 1243 
stochastic environments (100-0, 90-10, 80-20 and 70-30). Conventions are the same as Fig. 3b. 1244 
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 1245 
 1246 
Figure S2. Behavioral metrics of inference-based agents in different types of deterministic and 1247 
stochastic environments (100-0, 90-10, 80-20 and 70-30). Conventions are the same as Fig. 3b. 1248 
 1249 
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 1250 
 1251 
Figure S3. a) Non-linear embedding of all agents’ behavioral features on the t-SNE space. Points 1252 
are colored based on the results of density-based segmentation (Colors of the six clusters are the 1253 
same as in Fig. 5). b) Transition functions of all simulated agents grouped according to the six 1254 
behavioral regimes. Red lines indicate the mean across all functions in the group. 1255 
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 1256 
 1257 
Figure S4. Normalized cross-validated log-likelihood for different values of K, the number of 1258 
clusters of the blockHMM for the n = 21 mice used in the paper. For each animal, the value of K 1259 
that gave the highest cross-validated log-likelihood was chosen for subsequent analyses and 1260 
fitting (this K value is indicated by the vertical red line). 1261 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.14.484338doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484338
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1262 
 1263 
Figure S5. Evolution of mixture of behavioral strategies as inferred by blockHMM for all the n 1264 
= 21 mice through different training sessions. Colors and conventions are the same as Fig. 9. 1265 
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 1266 
 1267 
Fig. S6. Transition functions as fitted by the blockHMM procedure for all the n = 21 mice 1268 
analyzed in the paper. 1269 
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 1270 
Fig. S7. a) Average evolution of ρ across all experimental animals (mean ± standard errors, n = 1271 
21 animals). b) Comparison of the evolution of 𝜌 for two animals, f11 and f16 (mean ± standard 1272 
errors). c) Fitting of 𝜌 for the remaining 19 animals over the course of training (mean ± standard 1273 
errors). 1274 
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