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Abstract 
Adult aging is characterized by a progressive deterioration of biological functions at physiological, 
cellular and molecular levels, but its damaging effects on the transcriptome are not well 
characterized. Here, by analyzing splicing patterns in ~1,000 human subjects sampled across 
multiple tissues, we found that splicing fidelity declines with age. Most prominently, genuine 
introns fail to be spliced out, manifesting as a broad surge in intron retention, and this is 
exacerbated by the increase in diverse spurious exon-exon junctions with age. Both of these effects 
are prominently detected in the majority of human tissues. Collectively, they result in the 
progressive deterioration of the active transcriptome, wherein functional mRNAs are increasingly 
diluted with non-functional splicing isoforms. We discuss the concept of “splicing damage” and 
formulate methods to quantify it. Using these tools, we show that splicing damage increases both 
with age and with the incidence of diseases. Altogether, this work uncovers transcriptome damage 
as a critical molecular indicator of human aging and healthspan. 
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Introduction 
Aging is accompanied by a vast array of molecular, cellular and physiological changes, generally 
characterized by a global decline in biological function and health throughout adulthood 1. By 
applying diverse molecular profiling techniques, researchers have now begun elucidating the 
epigenetic, transcriptional, and metabolic changes that accompany aging 2–5. Splicing is an 
important layer of gene expression leading to gene product diversification and regulation.  
In the last ten years, several studies reported changes in alternative splicing with age, as reviewed 
in 6. A 2011 study profiled gene expression in leukocytes by microarray analysis and found that 
genes involved in mRNA processing and splicing significantly changed with age, leading authors 
to hypothesize that splicing patterns may also be altered 7. This view was further reinforced with 
the advent of high-throughput RNA sequencing. A multi-tissue study of mouse showed that 
alternative splicing isoform usage increased with age, and splicing machinery genes were 
themselves affected 8. Both these observations were confirmed by a recent multi-tissue study in 
human, which identified as many as ~50,000 splicing events whose frequency correlated with age, 
mostly with tissue-specific patterns 9.  
Several studies analyzed splicing changes occurring specifically in the aging brain to investigate 
potential mechanisms of cognitive disease, in particular Alzheimer’s disease (AD) 10–15. From this 
research, one type of splicing event is emerging as relevant for aging and disease: intron retention 
(IR), in which an intron is retained in the final mRNA instead of being spliced out (Fig. 1a). It has 
been observed that, in the human brain, many introns show increased levels of retention with age 
11. The same effect was seen in brains of patients with AD compared to controls 14,15. Notably, an 
age-dependent increase in many IR events has been shown also in rhesus macaque brains 11, mouse 
brains 15, fruit fly heads 15, and Caenorhabditis elegans 16,17. These observations have put IR 
research in focus, but much remain to be understood. In particular, a global study of IR across 
genes and tissues is lacking, which could address whether IR represents a general signature of 
human aging.  
In this work, we analyzed IR changes with age in the largest human transcriptomic dataset 
available, GTEx, encompassing approximately a thousand individuals sampled across multiple 
tissues. We discovered a systematic age-related increase of the transcriptome-wide level of IR 
across the great majority of tissues. We observed that the age-associated trend of individual introns 
is mostly consistent across tissues and relates to the functional consequences of each IR event. 
Indeed, the emerging picture is of an age-dependent drift from a “healthy” transcriptome, as 
functional transcripts are increasingly diluted by non-functional splicing variants. This 
predominantly comes from progressively higher levels of IR, but also from increasing occurrence 
of spurious splicing of functional exonic portions. Based on these advances, we defined new 
metrics to quantify these “splicing damage” effects, and analyzed their age trajectory, determinants 
and correlated transcriptomic changes. Altogether, we reveal splicing damage as a new indicator 
of deterioration of molecular function, relevant for studying and quantifying the effects of aging 
and disease. 
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Results 
Quantification of splicing across tissues and ages 

To investigate the impact of aging on intron retention (IR) in humans, we analyzed 17,329 RNAseq 
samples encompassing 49 subtissues of 948 subjects (Fig. 1b), constituting the GTEx dataset v8 
18 after filtering (see Methods). We defined age groups for visualization and analysis by splitting 
samples in 5 quantiles for subtissues (Fig. 1b). The age boundaries of groups varied between 
subtissues, mostly reflecting different cohort compositions (Fig. S1). 
IR was quantified using the program Suppa 19. This program derives the set of IR events from a 
gene annotation, selecting all introns which are spliced in at least one annotated transcript and 
retained in at least another isoform of the same gene. IR events are quantified separately in each 
sample and expressed in the form of PSI values (percent-spliced-in) ranging from 0 (complete 
intron removal) to 1 (complete retention). Quantification requires transcript isoforms to be 
expressed. We filtered Suppa results to retain only the events quantified in abundant samples 
across all ages (“coverage cut-off”; Methods). For most analyses,  we applied the strictest coverage 
cut-off: for each subtissue we considered only the IR events quantified in all samples. These sets 
ranged in size from 624 to 3,696 IR events across subtissues, with an average of 2,773 (Fig. 1b). 
These events corresponded almost entirely to introns in protein coding genes, both because most 
other gene types were intronless, and because coding genes exhibited higher expression levels, 
allowing them to pass our filtering procedure (Fig. S2). 

IR increases with age  

First, for each sample, we computed the mean IR, defined as the average PSI value of IR events 
quantified in all samples of that subtissue. Note that this measure is dependent on the set of IR 
events considered, defined here per subtissue. Strikingly, the mean IR exhibited a robust increase 
with age in most subtissues (Fig. 1b-e). We observed a positive correlation in 43 of 49 subtissues 
(Fig. 1d), reaching nominal significance in 30 cases (Pearson correlation p-value <0.05) and FDR 
significance in 20 cases (Benjamini-Hochberg adjusted p-value <0.05). None of the tissues showed 
a significant decrease in IR with age. To assess whether the IR increase with age could be due to 
covariates, we fit a linear mixed model with mean IR as function of age (fixed effect) with subject, 
subtissue and cohort as random intercepts. In this model, age showed a significant positive slope 
with mean IR (p-value<0.05). We explored many additional covariates recorded in GTEx (sex, 
autolysis score, collection site, race, ethnicity, and Hardy scale death circumstance), but we 
ultimately dismissed them as they accounted for less than 1% of variance when included in the 
model as random effects. We also fit a model for each subtissue separately (with cohort as the only 
random intercept), which resulted in positive slope in 37 subtissues, with 14 of them reaching 
significance (p-value< 0.05). These results show that the global level of IR shows a robust age-
dependent increase, detected across the remarkable diversity of GTEx samples. 
Next, we investigated how individual IR events contributed to the observed increase of mean IR 
with age. For each subtissue and for each IR event separately, we fit a linear model (PSI ~ age), 
and built a matrix with the resulting slopes, wherein each value represented the trend with age of 
a single IR event in a particular subtissue. We then used this matrix to cluster events and subtissues 
(Fig. 2a). For this analysis, we relaxed our filtering criteria, expanding IR event sets in order to 
better assess the consistency of individual IR events across subtissues. We used a coverage cut-off 
of 80% (Methods) per subtissue, and then excluded events quantified in <25% of subtissues for 
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visualization purposes. IR events (i.e., introns) separated in roughly 4 clusters (Fig. 2a): two 
clusters featuring a clear IR increase with age (the “I1” cluster of 326 events with the highest slope, 
and the “I2” cluster of 1,195 events), one large cluster with little or no trend with age (the “F” 
cluster for “flat”, 1,506 events) and a small cluster which decreased with age (“D” cluster, 135 
events). Although I1 included only 6% of IR events, its slopes summed up to 44% of the total 
(median value across subtissues; Fig. S3). The slope of any given IR event was typically consistent 
across subtissues, with one remarkable exception: cultured cells showed basically no correlation 
with other subtissues (Fig. 2b). 

 
Fig. 1 (next page): Change with age of mean IR in GTEx samples. (a) Schematic representation 
of an IR event, showing the mRNA resulting from either complete removal or retention of the 
intron marked as “D”. (b) Data overview showing the number of RNAseq samples per subtissue 
colored by GTEx cohort; the age distribution and age group segmentation; and the number of 
intron retention (IR) events passing the coverage filter, colored by cut-off (see Methods). 
Subtissues are grouped by tissue, as depicted by the alternating grey and black text color of x-axis 
labels, and ordered by the number of samples per tissue. For subsequent analyses, the sets of IR 
events passing the coverage cut-off of 100% were used, unless otherwise noted. (c) Distribution 
of mean intron retention per sample (average PSI value of IR events), split by age groups, for six 
representative subtissues. Black points indicate mean values per age group, with the size 
proportional to the number of samples. (d) Raw values and trend lines for three representative 
subtissues. (e) Pearson correlation coefficients between IR burden and age per subtissue. Stars 
indicate statistical significance (***= FDR < 0.05; *= nominal p-value < 0.05). (f) Summary of 
age changes of mean IR for all subtissues, showing average values per age group (analogously to 
panel (c)) with trend lines. Colors in panels (d-f) represent correlation coefficients (green= 
positive, red= negative). In panels (c) and (d), outliers (top and bottom 3%) were removed for 
visualization purposes.  
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(Fig. 2. Caption on 
next page).  
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Fig. 2 (previous page). Clustering intron retention events and subtissues. (a) Clustered heatmap 
of IR events (columns) and subtissues (rows). Clustering was performed based on the slopes of IR 
with age of individual IR events. The slopes are represented here in color: green for increase, red 
for decrease (color saturation set at 25% of the global maximum slope). The clustering structure 
on top was used to define 4 clusters of IR events: F (flat, grey), D (decrease, orange), I2 (increase, 
light blue), I1 (strong increase, dark blue). (b) Clustered heatmap of subtissues based on the trend 
with age of IR events. Color designates the Pearson correlation coefficient between pairs of 
subtissues, while the clustering structure of subtissues is taken from panel (a). 
 
Non-functional splicing isoforms increase with age  

Depending on intron location within the transcript, IR may have very diverse consequences on the 
synthesis of protein products. For example, the retention of an intron located between two coding 
exons alters the encoded protein sequence, typically in a dramatic fashion (through frameshifts or 
premature stop codons). On the other hand, the retention of an intron in the 3’UTR does not change 
the protein. Importantly, to assess the functional consequences of IR events, one needs to define 
directionality, i.e., choose a reference mRNA isoform per gene. Intuitively, we think of IR as an 
alteration wherein an extra intronic sequence is included in the final mRNA. Yet, while most IR 
events fit this intuition, others involve introns which are spliced out only in secondary isoforms. 
For these, it is more natural to think of intron retention as the normal status, and its exclusion (i.e., 
intron removal) as the alteration. Notably, the PSI values have opposite functional interpretations 
in the two cases, so that we must split events into categories for a meaningful analysis. 
In view of this, we selected a reference transcript for each gene, taking the “principal” functional 
isoform as defined by APPRIS  20. When several were present, we selected the top expressed one 
per subtissue. Then, we assessed the kind of alterations each IR event constituted when compared 
to that isoform. We defined 11 possible types of consequences (Fig. 3a; detailed in Methods), 
composed of two principal groups: intron inclusions (“IR-in”) and intron exclusions (“IR-ex”). 
Inclusions correspond to the retention of introns that are normally spliced out to produce the 
reference mRNA, i.e., the typical intuition of IR. They can introduce frameshifts (“in-FS” 
category) or premature stop codons (“in-PTC”), or lead to other consequences (“in-UTR” or “in-
pep”). Exclusions represent the removal by splicing of portions of exons present in the reference 
mRNA, resulting in frameshifts (“ex-FS”) or other alterations (“ex-Nter”, “ex-Cter”, “ex-UTR”, 
“ex-pep”). Other functional categories also exist (“noncoding” and “other”; Methods). Note the 
opposite interpretations of PSI values: for inclusions, the functional isoform is produced upon 
intron removal (PSI=0), while for exclusions, it is produced upon its retention (PSI=1). This is 
apparent in the different distributions of mean PSI of inclusions and exclusions (Fig. 3b), which 
reflect their natural functional state. 
To focus on damaging effects, we further defined groups of events expected to result in loss-of-
function (LOF), leading to the production of non-functional transcripts instead of functional 
reference isoforms. We defined LOF-inclusions (comprising of “in-FS” and “in-PTC” events) and 
LOF-exclusions (including “ex-Nter”, “ex-Cter”, and “ex-FS”). Strikingly, we noticed that LOF-
inclusions and LOF-exclusions followed opposite trends with age. The “D” cluster of IR events 
(whose PSI decreases with age) contained more LOF-exclusions events than other clusters (Fisher 
exact tests, Benjamini-Hochberg adjusted p-values < 2.03e-3 in every subtissue); and the “I1” and 
“I2” clusters (whose PSI increases with age) contained more LOF-inclusions than the other clusters 
(adjusted p-values < 7.36e-15 in every subtissue) (Fig. S4a). Indeed, the slope with age was on 
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average positive for LOF-inclusions and negative for LOF-exclusions for the vast majority of 
subtissues (Fig. S4b), indicating that, in older ages, both classes drift away from the functional 
state. Altogether, our results indicate that splicing fidelity progressively deteriorates with age, both 
by failing to splice out genuine introns (“under-splicing”) and by splicing out spurious introns 
(“over-splicing”), thus impairing the production of functional mRNAs. 

Introns with altered occurrence with age have specific sequence features 

Next, we set to identify sequence features characterizing the IR trend with age for each intron. 
Previous research pointed to the strength of splice sites, the length of introns, and their GC content 
as relevant attributes 21,22. We compared these features among three groups of introns: those with 
inclusions as functional consequence (“IR-in”, Fig. 3a), those with exclusions instead (“IR-ex”), 
and a set of constitutively spliced out introns (Methods). We predicted the strength of the 5’ and 
3’ splice sites of each intron using the MaxEnt program 23. Our results (Fig. 3c) show that the 
splice sites of IR-ex introns exhibited markedly lower scores than both IR-in and constitutive 
introns (Wilcoxon–Mann–Whitney tests, p-value<1e-38 for all comparisons in every subtissue), 
consistent with the idea that IR-ex are non-functional splicing events. Splice sites of IR-in introns 
featured overall lower scores than constitutive introns (p-value<1e-15), though their score 
distribution was largely overlapping. Intron length (Fig. 3d) was also on average larger in 
constitutive introns than in IR-in or IR-ex introns (p-value<1e-34), with the former being slightly 
longer than the latter (p-value<5e-3). GC content (Fig. 3e) was significantly lower in constitutive 
introns (p-value<1e-42), and nearly identical between IR-in and IR-ex introns (N.S.). These 
findings are consistent with the previously reported characteristics of retained introns 15,21,22.  
Next, we examined whether these features were relevant for the degree of age-dependent IR trends. 
We computed the slopes of IR with age resulting from fitting a linear model PSI ~ age for each 
event and subtissue separately. We initially focused on IR-in events (the majority), which, as 
already discussed, exhibited positive slopes on average. We explicitly selected those IR-in events 
with positive slopes and examined the correlation between slope and any of the features listed 
above. Most notably, intron size significantly positively correlated with the slope in most 
subtissues (Fig. 3f), so that introns with the highest IR increase tended to be longer (Fig. 3g; Fig. 
S5). Splice site strength negatively correlated with slope in most subtissues (Fig. 3f; Fig. S5), 
though the correlation did not reach statistical significance after multiple testing correction. The 
GC content showed a puzzling relationship with slope, with opposite significant effects in different 
subtissues (Fig. 3f; Fig. S5). Next, we considered the IR-ex events (which tend to decrease in PSI 
value with age), selected those with negative slope, and performed an analogous analysis. Splicing 
site strength and intron size correlated negatively with their slope, while GC content showed a 
positive effect (Fig. 3f-g; Fig. S5), so that the events with the strongest PSI decrease 
(corresponding to the production of “impaired” deleted isoforms) showed a tendency to be longer, 
AT-richer, and have stronger splice sites.  
Taken together, our results indicate that genuine introns (IR-in) failing to be spliced out with age 
tend to have weaker splice sites and to be longer (and yet, they are shorter than constitutively 
spliced out introns). On the other hand, spurious introns (IR-ex) that are increasingly spliced out 
with age are most similar to constitutive introns, in that they tend to be longer, GC-richer, and 
possess stronger splice sites. We must note, however, that these effects have relatively small 
magnitudes and are not entirely consistent. Therefore, we conclude that these features are only a 
part of the story, and other unknown characteristics must contribute to determine trends with age 
of individual introns. 
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Fig. 3. Functional consequences of IR events and features affecting their age-related change. (a) 
Examples of the 11 types of functional consequences attributed to each IR event (Methods). 
Categories grouping together multiple consequences are shown at the bottom. In the diagrams, 
coding sequences are colored in black. (b) Distribution of the mean PSI values of inclusion (IR-
in) and exclusion (IR-ex) events in three representative subtissues. The mean PSI is computed here 
per event, averaging across samples, separately for each subtissue and age group. Black points 
indicate the average of mean values per age group per category (IR-in or IR-ex), with the size 
proportional to the number of events. Colored horizontal lines correspond to the average in the 
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youngest and oldest age groups. (c) Comparison of the distribution of splicing site strength 
(MaxEnt score) between constitutive introns (i.e., always spliced out; Methods), IR-ex events, and 
IR-in events. Three representative subtissues are shown. (d) and (e) The same comparison of (c) 
for intron size and GC content, respectively. The number of events in each category is indicated at 
the bottom of panel (c). (f) Pearson correlation coefficient of each of these intron features with the 
slopes per event of the regression PSI ~ age, in the form of a clustered heatmap. Stars indicate 
statistical significance (***= FDR < 0.05; *= nominal p-value < 0.05). (g) Distribution of intron 
size, splitting IR events in quantiles by their slope (see Fig. S5 for other subtissues and other 
features). Note that for age-increasing IR-in events ((g) left), the fifth quantile corresponds to the 
largest increase, while for age-decreasing IR-ex ((g) right), the first quantile corresponds to the 
largest decrease. 
 

Transcriptional signatures of IR include age- and splicing-related pathways 

Seeking further insights into the mechanism of age-associated IR increase, we set out to 
characterize transcriptional changes correlated with IR. For context, we first analyzed the broad 
landscape of transcriptional changes with age in our dataset. First, we computed the relative 
representation of different gene types in the transcriptome, by summing up gene expression values 
(TPM) per gene type category (e.g., “protein-coding”, “miRNA”, etc.) in each sample, and we then 
analyzed the correlation with age. The transcriptome composition changed remarkably with age 
(Fig. 4a), with subtissues roughly split in two groups (independent of cohort). In one group, many 
non-coding gene types (e.g., miRNA, snRNA, lincRNA) increased their total transcriptomic output 
with age, while in the other subtissues, these decreased instead. 
We further tested whether the shape of the distribution of expression values changed with age, 
e.g., altering the transcriptome composition in terms of lowly abundant vs highly expressed genes. 
We partitioned protein coding genes in expression quantiles, computed the sum of TPM values per 
quantile, and examined its correlation with age (Fig. 4b). Subtissues clustered quite sharply in two 
groups, roughly corresponding to those in our previous analysis. In around half of the subtissues 
(including brain samples), the total number of transcript molecules from most expressed genes 
increased with age, therefore reducing transcript diversity; conversely, the relative transcriptome 
representation of all other gene quantiles decreased. In the other half of subtissues, (including 
adipose tissue and skin, among others), just the opposite occurred i.e., highly expressed genes 
decreased their transcript levels. Note that, since measured expression levels are relative to the 
total transcriptome, we cannot unequivocally differentiate the two scenarios: the observed pattern 
may be due to a change in transcript levels from highly expressed genes, or due to the opposite 
change from the rest of genes. Yet, the former is a more parsimonious explanation, and thus seems 
much more likely.  
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Fig. 4. Global shift in gene expression with age. (a) Clustered heatmap showing the Pearson 
correlation of age with the sum of gene expression values in transcript-per-million (TPM), splitting 
genes by type (some are shown with abbreviated labels: tr=“transcribed”, proc=“processed”, 
pseudo= “pseudogene”, bidir= “bidirectional”). (b) Here, the same measure was computed after 
partitioning protein-coding genes in 20 quantiles, based on their mean TPM across samples. The 
group of genes with TPM<0.3 (omitted from other quantiles) is also shown. 
 
In our quest for transcriptional changes correlated with IR, we realized that these global shifts in 
transcriptome composition posed a technical challenge, since they can systematically skew the 
distribution of the t-value statistic used in regression analysis (Fig. S6). Fortunately, the adoption 
of methods specifically designed for gene expression modelling (Limma and edgeR) remedied this 
issue (Fig. S6). We thus used Limma to detect genes whose expression correlated with the mean 
IR level per sample, while including age, cohort, and sex as covariates, and analyzed gene set 
enrichment. We performed this analysis for each subtissue separately, then focused on those gene 
sets showing a consistent effect across subtissues (Fig. S7), which resulted in 44 pathways 
negatively correlated with IR (Fig. 5a). This set was redundant, since the same genes may drive 
enrichment of multiple pathways. Therefore, we visualized the signal components (t-values of 
individual genes) together with the gene set overlap among pathways (Fig. 5c-d), allowing us to 
pinpoint these processes: spliceosome, ribosome, protein export, proteosome, endocytosis, 
oxidative phosphorylation, lysosome, and several metabolic pathways.  
Due to their direct relevance for IR, we further analyzed spliceosome genes (Fig. 5b). Many 
splicing factors and related proteins, encompassing all the steps of the splicing process, showed 
significant negative correlation with mean IR (after accounting for covariates). Interestingly, these 
included the majority of proteins which form (or are related to) the Prp19 complex, a major player 
in splicing (Fig. S8).  
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While inspecting the list of processes correlated with IR, we noticed that several of them have been 
previously associated with age. Indeed, when we searched for pathways whose gene expression 
correlated with age in our dataset (without taking IR into account), we found again the proteosome, 
oxidative phosphorylation, and proteolysis as negatively correlated pathways (Fig. S9). Note that 
age was considered as a co-variate in our previous analysis model, implying that the correlation of 
these pathways with IR goes beyond what is explained by age alone.  
Lastly, to test whether the increasing transcriptome deterioration due to under-splicing and over-
splicing was linked to distinct mechanisms, we searched for pathways correlated to the mean of 
IR-in or the mean of IR-ex separately. Both these analyses (Fig. S10) resulted roughly in the same 
gene sets described above for mean IR. 

 

The usage of rare exon-exon junctions increases with age 

At the onset of examining age changes, our expectation was that splicing fidelity may be 
decreasing with age, leading to a more diverse (and less functional) transcriptome. Our analysis of 
IR events described above supported this hypothesis, but with a limitation. The IR events 
quantified by Suppa rely on a fixed genomic annotation, and, as such, they do not fully capture 
transcriptome diversity generated by “splicing noise” (i.e., rare spurious splicing events), since 
many unannotated exon junctions may appear. Therefore, we turned to the program Leafcutter 24, 
which performs de novo quantification of exon-exon junctions by identifying and processing split-
mapped RNAseq reads. Leafcutter cannot quantify IR, but it is well suited for the analysis of 
junctions. We used Leafcutter data to calculate the proportion of reads supporting rare exon-exon 
junctions in each GTEx sample, a measure hereafter referred to as “rare junction usage” (see Fig. 
S11 for its definition). Our analysis shows that rare junction usage increases with age in the great 
majority of subtissues, consistent with an age-dependent deterioration of splicing fidelity. Notably, 
this trend was significant even in some subtissues without a strong age-dependent signal in mean 
IR (e.g. several brain sections) (Fig. 6). We also took an alternative approach to quantify splicing 
noise, calculating the proportion of Leafcutter reads supporting junctions which are missing from 
the annotation (“unannotated junction usage”), and results were very similar (Fig. 6). 
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Fig. 5. Pathways whose expression correlates with mean IR level across samples. (a) Gene sets 
correlated with mean IR consistently across subtissues (the full list of enriched gene sets are shown 
in Fig. S7). Mean IR is computed here per sample, as the average PSI value of IR events quantified 
in all samples of that subtissue. Rows represent gene sets (KEGG pathways), columns represent 
subtissues, and color designates the Normalized Enrichment Score (NES). (b) Results for the 
spliceosome in a representative subtissue (esophagus mucosa). Significant genes (p-value<0.05) 
are colored by their SNLogP (negative log of the p-value associated to the slope gene expression 
~ meanIR, with sign to indicate positive or negative correlation). (c) Breakdown of the gene sets 
in panel (a) to individual gene level: rows represent gene sets, columns represent genes (belonging 
to one or more sets), and color represents the associated t-value. (d) Content overlap of different 
gene sets. Both rows and columns represent gene sets, aligned to panel (c). 
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Fig. 6. Measures of splicing damage. (a) Comparison of the various metrics introduced in this 
work, with colors representing their correlation with age in each subtissue (Pearson’s correlation 
coefficient). meanIR= mean PSI of IR events; LOF_in= mean PSI of LOF-inclusions (see Fig. 3a); 
LOF_ex_flip= mean (1-PSI) of LOF-exclusions; spl_burden= splicing burden; rare_jct= rare 
junction usage; unann_jct= unannotated junction usage. (b) Correlation of splicing burden 
residuals (after regression with age and cohort) across subjects, among all pairs of subtissues. 
 

Splicing damage correlates with age 

We have shown that several measures of splicing noise increase with age in human tissues: rare 
junction usage, unannotated junction usage, and the mean IR level. We have also shown that, when 
analyzing IR, we should separate the events implicating an inclusion from those implicating an 
exclusion (relative to the functional mRNA isoform), due to the opposite interpretations of their 
PSI values, and opposite trend with age. We further defined one more measure of splicing noise, 
named “splicing burden”, as the mean of the observed frequencies of all IR events with LOF 
consequences (Fig. 3a), thus encompassing the PSI values of LOF-inclusions and the (1-PSI) 
values of LOF-deletions. This measure is highly correlated with mean IR, but it better captures the 
crucial difference of inclusions and exclusions. Among the aggregate measures presented in this 
work, it is the one that best correlates with age across human subtissues (Fig. 6a). Splicing burden 
represents the degree of impairment of functional mRNAs due to aberrant splicing, and thus it is 
well fit to reflect the concept of “splicing damage”. 
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A measure which reflects real biological damage should show correlation across tissues of the 
same individual. In fact, we expect that an individual with damage which is higher-than-average 
(for their age) in one organ would tend to have higher damage in other organs, too. This is because 
the exposure to many risk factors which are broadly detrimental (e.g. smoking, chronic diseases, 
genetic susceptibilities) is shared by the tissues of an affected individual. Therefore, we set to test 
whether we could detect such signal for our splicing burden measure. We calculated the residuals 
of the regression between splicing burden and age (including cohort as covariate), and then 
calculated the correlation of residuals among subtissues. In each pairwise comparison of 
subtissues, we considered only the subjects with available samples for both subtissues. 
Interestingly, we found that residuals were positively correlated among the majority of subtissues 
(Fig. 6b). This effect could not be explained by a correlation of residuals with age (Fig. S12).  

A novel molecular clock based on splicing damage can predict age 

Epigenetic clocks are machine learning models to estimate the age based on DNA methylation 
levels 25–29. Notably, epigenetic clocks are said to capture the “biological age” rather than 
chronological age, meaning that exposure to various detrimental factors results in an observable 
acceleration of the predicted age. Despite their wide use, the nature of epigenetic clocks remains 
unclear.  
We built a novel molecular clock explicitly based on measures of splicing damage. We prepared 
a feature table consisting of splicing burden components (i.e., PSI values of LOF-inclusions and 
LOF-exclusions). We then fit an elastic net regression model per subtissue, which allowed to select 
and appropriately weight those splicing events most informative for age. For 17 out of 49 
subtissues, the resulting clock was “flat”: no feature was selected, so that the only model parameter 
was the intercept. We dismissed these subtissues, which were the ones with the weakest correlation 
between splicing burden and age. The rest of clocks are shown in Fig. 7a. As expected, age 
predictions on the test sets had greater correlation with age than splicing burden (i.e., the clock 
worked better than the simple mean of input features). Prediction error of splicing damage clocks 
was relatively high (~10 years on average, Fig. 7a). Predicted ages spanned a narrow range, with 
larger discrepancies found in the youngest and the oldest samples (Fig. S13a). As in our previous 
analysis of splicing burden, we tested whether the residual signal (deltaAge= predictedAge – 
realAge) correlated among subtissues. In this case, delta age correlated negatively with age (Fig. 
S13b), which is not unusual for elastic net clocks. Since this would result in a deceiving correlation 
among subtissues, we considered the “age acceleration” instead 29, defined as the residual after 
fitting a predictedAge ~ age linear model per subtissue (Fig. S13c). Remarkably, our analysis 
showed that, according to our splicing damage clocks, age acceleration positively correlates among 
the majority of subtissues (Fig.7 b-c).  
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Fig. 7. Molecular aging clock based on splicing damage. (a) Performance of our subtissue-specific 
clocks built with elastic net based on splicing damage features. It contains the Pearson correlation 
coefficient (green) and mean absolute error (blue) calculated on the test set, as well the number of 
features per clock (writing over green). See Fig. S13 for scatterplots of raw data. (b) Correlation 
of age acceleration among subtissues of the same subjects, considering the test sets only. Stars 
within each square indicate statistical significance (***= FDR < 0.05; *= nominal p-value < 0.05). 
(c)  Age acceleration scatterplots of some representative pairs of subtissues, where each point is a 
subject. The two cohorts feature distinct distributions of age acceleration values. Still, note that 
residuals are correlated across subtissues even considering each cohort separately. 
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Splicing damage correlates with disease status 

We further explored the relationship between splicing damage and disease. We manually selected 
51 medical attributes recorded in GTEx as disease indicators (Fig. S14). These ranged from 
relatively mild features (e.g., influenza; unexplained cough) to serious illnesses (e.g., cancer; renal 
failure). The great majority of medical conditions were rare in the dataset, precluding analysis 
targeted to a single attribute. Instead, we calculated the total number of medical conditions per 
subject, collectively constituting a rough marker of disease status. This measure is likely subject 
to a high error, due to heterogeneity of diagnosis procedures among subjects, including lack of 
diagnosis for certain conditions. Still, we observed that it showed a strong and robust increase with 
age, as expected (Fig. 8a). When we correlated the number of conditions with splicing burden, we 
obtained a positive correlation for the majority of subtissues (Fig. 8c; positive correlation in 46 out 
of 49 subtissues; nominal p-value < 0.05 in 37; FDR < 0.05 in 24). Remarkably, this was not 
simply due to a common dependence on age: the residual of splicing burden (after regressing out 
age) also positively correlated with the number of conditions in most subtissues (Fig. 8b-c; positive 
correlation in 44 out of 49 subtissues; nominal p-value < 0.05 in 22; FDR < 0.05 in 9). This 
indicates that splicing damage is higher in the case of diseases, beyond what is explained by age 
alone. 

 
Fig. 8. Splicing burden and medical conditions. (a) Distribution of the number of medical 
conditions per subject across age groups. This is shown for the subjects with available samples 
for three representative subtissues. (b) Distribution of residual splicing burden (after regressing 
out age) split by the number of medical conditions. (c) Pearson correlation coefficient between 
the number of medical conditions and splicing burden (first column) or its residual (second 
column). Stars indicate statistical significance (***= FDR < 0.05; *= nominal p-value < 0.05). 
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Discussion 
In this work, we analyzed age-related changes in splicing patterns across human tissues and found 
that the mean level of intron retention (IR) increases with age. Previously, IR increases with age 
were observed in human and mouse brain 11,15, fruit flies and C.elegans 15–17 However, by 
examining a remarkable diversity of human samples, we demonstrated that the age-related IR 
increase occurs consistently in most tissues. To our surprise, brain was among the tissues with the 
smallest effect. We also showed that IR correlates with overall disease status, even beyond its 
dependence on age. These observations indicate that the IR increase during aging is not a specific 
feature of the brain or neurodegeneration, but instead is a more general indicator of disease. 
Much of our work involved the analysis of IR events quantified by RNAseq. An important feature 
in this type of data (to our knowledge, unaccounted for in previous research) is that it encompasses 
events with opposite functional interpretations (Fig. 3a-b): inclusions (IR-in) and exclusions (IR-
ex). Inclusions constituted the great majority of IR events, and corresponded to the common 
intuition of IR (Fig. 1a). These tend to increase with age in most tissues, leading to a progressively 
higher representation of dysfunctional mRNAs with impaired protein products (Fig. S2). This 
indicates that “genuine” introns fail to be recognized or processed, which we interpret as a sign of 
declining splicing efficiency with age.  
Exclusions, on the other hand, correspond to the removal of functional mRNA regions. This also 
leads to transcripts with impaired coding sequences, but by subtraction rather than addition. 
Strikingly, exclusions also show higher incidence with age (i.e., decreased PSI) (Fig. 3b, Fig. S4b). 
We interpret this as a sign of decline in splicing specificity: more and more spurious regions are 
spliced out with age. To confirm this, we applied a second approach to separately analyze exon-
exon junctions de novo. We found that the usage of rare and unannotated junctions increases with 
age in most human tissues (Fig. 6a, Fig. S11), supporting our hypothesis. The decline in both 
splicing efficiency and specificity leads to the general deterioration of the transcriptome, as 
functional mRNAs are increasingly diluted with dysfunctional isoforms. This represents the 
accumulation of splicing damage, and to measure it, we defined a “splicing burden” index, which 
we found to positively correlate with age in almost all tissues (Fig. 6a).  
Our results are consistent with the reports of altered splicing with age 9,11,15,17, but pinpoint two 
concurrent modalities of mis-regulation. Additionally, we assessed tissue heterogeneity as a 
potential explanatory factor. When a tissue is sampled by bulk RNAseq, an apparent pattern of 
altered splicing could be due to the infiltration by other cell types, in which distinct transcript 
isoforms are prominent. However, we observed that the age trend of individual IR events is quite 
consistent across tissues. This undermines tissue heterogeneity as an explanation for the age-
related increase of IR, and points instead to molecular processes occurring within cells. 
We also observed some differences among tissues. Most notably, mean IR correlates with age 
more poorly in brain than other tissues. We wondered whether this could be attributed to the 
different age distributions, e.g., since all brain samples belonged to a cohort (postmortem) notably 
older than the other (organ donor) (Fig. S1). However, when we analyzed splicing burden in 
postmortem samples only (with nearly homogenous age distributions across subtissues, Fig. S1), 
we obtained essentially the same tissue-specific pattern (Fig. S15). This suggests that differences 
among subtissues may be of biological nature. Interestingly, cultured cells derived from GTEx 
samples (fibroblasts and EBV-transformed lymphocytes) appeared as outliers from the actual 
tissues. In cell cultures, the correlation between splicing burden and age is poor (Fig. 6a), the 
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burden residual does not correlate across subtissues (Fig. 6b), and individual IR events are mostly 
unchanged with age (Fig. 2). This suggests that the age-dependent signal of splicing damage is lost 
in cell culture, so these systems may not be good models to study this phenomenon. 
The mechanism of splicing deterioration with age is yet unknown, but a link with splicing 
machinery dysregulation was implied. This is based on the observation that several genes in this 
pathway showed altered expression with age, both in absolute levels and in isoform usage 6,8,9,15,30. 
In our study, rather than seeking pathways overrepresented with the genes with altered splicing, 
we identified pathways whose expression correlated with global indicators of splicing damage, 
such the mean IR per sample. Our regression analysis (Fig. 5) revealed processes previously 
implicated in aging (e.g., DNA repair, translation, protein degradation), despite the fact that we 
controlled for age in our model design. Notably, a considerable proportion of spliceosome factors 
correlates negatively with IR. This reinforces the possibility of a direct link between splicing 
machinery levels and declining splicing fidelity with age. Within the spliceosome, the majority of 
the Prp19 complex had a significant negative correlation with IR. This complex constitutes a major 
player all throughout the splicing process, and was also involved in genome maintenance, protein 
degradation, biogenesis of lipid droplets, transcription elongation and mRNA export 31. Since it 
engages in multiple molecular processes involved in age-dependent decline, we propose the Prp19 
complex as a potentially important actor in aging, or even a possible target for anti-aging 
treatments. Notably, a recent report on GenAge 32 shows that the overexpression of the Prp19 
ortholog significantly extended lifespan of female fruit flies, by up to 25% 33.  
We were surprised to discover roughly the same pathways correlated with inclusions and 
exclusions (Fig. 5, Fig. S10). It is possible that the decline in splicing efficiency and specificity 
may be the two sides of the same coin. An attractive possibility is that, whether we measure one 
or the other (or any form of splicing damage), we capture a general index of molecular dysfunction, 
i.e. it reflects biological age. There are three additional observations supporting this notion. First, 
the residual of splicing damage with age correlates among most tissues, whether we quantify it as 
splicing burden (Fig. 6) or through the elastic net clock (Fig. 7). The residual represents the surplus 
(or deficit) of damage of a given individual compared to the population mean of the same age. In 
general, we think of damage as increasing with age, but of course there are many factors (e.g., 
lifestyle, injuries, treatments) which can accelerate this process or slow it down, creating a gap 
between chronological age and biological age. We expect these factors to exhibit generally 
concordant effects across tissues. Thus, a correlation of residuals is precisely what we expect from 
a measure capturing biological damage, and it was remarkable to observe it for our splicing-based 
metrics (though we must note that such correlation may have other contributions, e.g., due to 
sample structure). Second, we observed that IR-correlated pathways largely overlapped with those 
changing with age, despite the fact that we corrected for age (Fig. 5, Fig. S9). This may suggest 
that individuals with higher splicing damage are “biologically older”, which is reflected in their 
global expression profile -- roughly along the same axis of transcriptomic change taken by natural 
aging. Third, we observed that, in most tissues, splicing burden positively correlates with disease 
status (number of medical conditions), even after correcting for age (Fig. 8). All these observations 
support splicing damage measures as biologically relevant indicators of deterioration in molecular 
function.  
Although age can be estimated from splicing damage features, the age predictions were not as 
accurate as human clocks based on DNA methylation 25,34–38 or other molecular features 39–42. This 
is not entirely surprising, as other clocks also capture processes other than aging, most notably 
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neutral changes and changes associated with adaptation to damage. On the other hand, splicing 
damage has the advantage of explicitly measuring a form of molecular damage (transcriptome 
deterioration due to mis-splicing), so that it directly reflects the nature of aging as a progressive 
accumulation of damage. We believe that approaching aging in explicit terms of observable 
molecular damage is compelling to better understand this process, quantify its effects, and 
ultimately find methods to attenuate it or reverse it. Accordingly, this could also lead to the 
development of better clocks that capture the nature of aging, as opposed to age-related changes, 
age-related diseases or age-related mortality. 
A relevant open question is whether splicing dysregulation is itself causative of some aging 
phenotypes 6. Interestingly, there are indications from studies in C.elegans that it may be the case. 
Splicing factors SFA-1 and HRPU-1 have been shown to mediate the effect of dietary restriction 
on lifespan extension 16,17. Strikingly, SFA-1 overexpression is sufficient to significantly extend 
C.elegans lifespan 17. Further functional studies will be instrumental to pinpoint the precise role 
of splicing machinery in aging, and perhaps identify actionable targets to extend the lifespan and 
healthspan of vertebrates, too.  
An age-related increase in molecular damage is the cornerstone of aging 1. This damage manifests 
in many forms, such as damage to metabolites, DNA and proteins 43. Although gene expression 
analyses have been a major tool in examining the underlying biology of aging and available data 
far exceeds other “omics” (e.g. proteome or metabolome profiling), little information has been 
reported on the age-related damage to the transcriptome. In part, this is due to the difficulty of 
assessing chemical modifications in the mRNA through sequencing or microarray analyses. In this 
regard, our current study resolves this major roadblock by showing that the transcriptome damage 
may be quantified from RNAseq data in the form of intron retention and spurious splicing. 
Importantly, this damage represents transcriptome deterioration, as opposed to age-related changes 
in gene expression as in the traditional RNAseq analyses, which include, to a large degree, 
responses to age-related damage.  

Methods 
RNAseq data and gene expression  

We analyzed RNAseq samples in GTEx v8 18, filtering out the subtissues with fewer than 50 
samples. The resulting set consisted of 17,329 samples encompassing 49 subtissues of 948 subjects 
(Fig. 1a). Expression profiles at gene and transcript level in Reads Per Kilobase of transcript, per 
Million mapped reads (RPKM) and transcripts-per-million (TPM), respectively, were downloaded 
from the GTEx portal. These are based on the Gencode v26 annotation and the GRCh38.p10 
genome assembly. For each subtissue, samples were split in 5 age groups of approximately equal 
size (quintiles) using R function quantcut. 

Splicing quantification 

We used two different methods for splicing quantification. The first is the program Suppa v2  19, 
which deconvolutes transcript quantifications to infer PSI (percent-spliced-in) values representing 
the frequency of every splicing event derived from a genomic annotation (Gencode v26). We used 
Suppa to quantify all “retained intron” events, wherein a PSI value of 0 signifies complete splicing, 
and 1 signifies complete retention (IR). We filtered out events with an apparent intron length 
shorter than 10bp. In Suppa, any IR event for which all transcripts defining it do not pass an 
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expression level threshold (<1 TPM) are not quantified, and are assigned “NA” values. We thus 
filtered IR events to focus on those quantified in sufficient samples for meaningful analysis. For 
each subtissue, we generated sets of IR events by applying a “coverage filter” of 80%, 90% and 
100%, so that an event was included only if quantified in at least that proportion of samples in 
each age group (to avoid potential age-related bias). The number of IR events in these sets is shown 
in Fig. 1b.  
We also used a second method for splicing quantification: Leafcutter, which employs split-mapped 
reads to quantify exon junctions de novo. In contrast to Suppa, this program can detect unannotated 
events, but it cannot be used to quantify IR. Leafcutter quantifications (absolute read counts) were 
downloaded from the GTEx portal and used as described in the text. 

Classification of IR events by their functional consequence 

We selected a reference mRNA isoform per gene, and then inferred the alteration of its protein 
product upon occurrence of each IR event in our dataset. Annotations of “principal” transcripts 
were obtained from the APPRIS database 20, release version 2017_06.v23.HS.e88v22. For genes 
with more than one APPRIS principal isoform, we selected the one with the highest mean 
expression level in the subtissue under analysis. We defined 11 possible types of functional 
consequences. The most abundant type consisted in a mRNA “inclusion” (i.e., the retained intron) 
resulting in the introduction of a frameshift (“in-FS”). The second-most abundant type were 
inclusions maintaining the frame, but introducing a premature stop codon (“in-PTC”). In few 
cases, inclusions maintained the frame without additional stops, thereby adding a peptide to the 
protein sequence (“in-pep”). In other cases, the retained intron occurred within the 5’ or 3’ UTR 
(“in-UTR”). In all other cases, the coordinates of the IR event did not correspond to any of the 
introns of the reference transcript. From these, we isolated those events mapping entirely within a 
reference exon: these events consist in removal of portions of the functional transcript upon 
splicing, and we referred to them as “exclusions”. Most exclusion events introduced frameshifts 
(“ex-FS”). Others removed the region corresponding to the start (“ex-Nter”) or the end (“ex-Cter”) 
of the coding sequence. Others eliminated coding regions but maintained the frame (“ex-pep”) or 
mapped entirely in the 5’ or 3’ UTR (“ex-UTR”). The category “other” comprises all IR events 
not qualifying for any of the previous definitions; for these, none of the two alternative outcomes 
(splicing / retention) results in production of the reference mRNA, so that they are of unclear 
interpretation. Lastly, the category “noncoding” was used for all IR events in genes with no 
principal isoforms annotated, since these corresponded to non-coding genes.  
These consequence types were further grouped in categories, as depicted in Fig. 3a. Besides, a 
separate set of constitutive introns was used to analyze the sequence determinants of IR age trends. 
Constitutive introns were defined as all those present in reference transcripts (as defined above), 
excluding those annotated as retained in any isoform (i.e., those introns quantified by Suppa 
without any coverage cut-off). 

Linear models, gene expression regression, and gene set enrichment analysis 

Linear models were built in R with lm function from base package stats, and linear mixed models 
were built using lmer from the packages lme4 and lmerTest. Gene expression regression analysis 
instead was performed with Voom-Limma 44,45 and edgeR 46. Gene set enrichment analysis was 
performed using Clusterprofiler 47, ranking genes by the t-value assigned by Limma. We limited 
our analysis to KEGG pathways. To obtain the list of pathways with significant and consistent 
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effects across subtissues, we filtered those with FDR <0.05 and the same direction (positive or 
negative) in more than half of subtissues (see Fig. S7). 

Splicing damage clock 

We prepared a feature table with the PSI values of individual LOF- inclusion and LOF-deletion 
events (Fig. 3a), quantified per sample. We randomly selected 30% of the 948 subjects as potential 
test subjects. We partitioned samples to train and test sets for each subtissue, separately, following 
the split at the level of subjects. Then, we trained and tested an elastic net regression model for 
each subtissue.  The lambda parameter was optimized on the given training set by the built-in 10-
fold cross-validation of the Python package Glmnet (https://github.com/civisanalytics/python-
glmnet, v2.2.1; alpha=0.5, n_splits=10). We provide the intercepts and the non-zero weights of the 
clocks as well as the predicted ages (i.e. ‘splicing ages’) of the subject in Supplementary Data D1. 

Clustering, statistical analysis, and plotting  

All data analysis and statistical tests were performed in R. Multiple test corrections were performed 
by the Benjamini-Hochberg procedure (i.e., FDR= false discovery rate). Hierarchical clustering 
was performed using Euclidean distance matrices using the “Ward.D2” method. Clustered 
heatmaps were produced with the pheatmap package; all other plots were produced using the 
ggplot2 package 48. 
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