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ABSTRACT 1 
Microbial communities have tremendous potential as therapeutics. However, a major bottleneck 2 
is manufacturing high-diversity microbial communities with desired species compositions. We 3 
develop a two-stage, model-guided framework to produce microbial communities with target 4 
species compositions. We apply this method to optimize the diversity of a synthetic human gut 5 
community. The first stage exploits media components to enable uniform growth responses of 6 
individual species and the second stage uses a design-test-learn cycle with initial species 7 
abundance as a control point to manipulate community composition. Our designed culture 8 
conditions yield 91% of the maximum possible diversity. Leveraging these data, we construct a 9 
dynamic ecological model to guide the design of lower-order communities with desired temporal 10 
properties over a longer timescale. In sum, a deeper understanding of how microbial community 11 
assembly responds to changes in environmental factors, initial species abundances, and inter-12 
species interactions can enable the predictable design of community dynamics. 13 
 14 

INTRODUCTION 15 
The potential of microbial communities as human therapeutics is evidenced by the remarkable 16 

efficacy of fecal microbiota transplantation (FMT) in treating recurrent C. difficile infection1. This 17 
strategy of modifying a patient’s dysbiotic microbiome with live, therapeutic organisms (“bugs-as-18 
drugs”) holds significant promise for treating an ever-lengthening list of microbiome associated 19 

health conditions2. However, FMT also poses the risk of pathogen transmission and other adverse 20 
health outcomes3–5. Further difficulties with this procedure include development of regulatory 21 
standards, definition of a precise mechanism of action, and scalability of donor material supply 22 
chain6,7. A promising alternative is the use of defined microbial community therapeutics8. The 23 

beneficial properties of these well-characterized mixtures of isolates could be optimized while 24 
avoiding the drawbacks of FMT9–11.   25 

A key challenge towards this goal is the scalable production of defined, therapeutic 26 

communities that span the phylogenetic and functional diversity of the healthy adult microbiome12.  27 
Most of the commercially successful “probiotics” that are commonly recommended by physicians 28 

have gained traction not because of conclusive clinical indications, but rather because they are 29 

relatively easy to produce13,14. “Probiotics” tend to be oxygen-tolerant anaerobes like Lactobacilli 30 
and Bifidobacterium, while the healthy adult microbiome tends to be dominated by fastidious, 31 

oxygen-sensitive anaerobes such as Bacteroides, Prevotella, Clostridiaceae, Ruminococcaceae, 32 

and Lachnospiraceae15. “Probiotics” have even been shown to impair post-antibiotic microbiome 33 
recovery16.  The challenge of producing therapeutic communities is a barrier to more than just 34 

commercial manufacturing; it slows scientific progress by limiting pilot-scale drug supply to clinical 35 

trials and precludes low-cost, global health applications13,17,18.  A major contribution to this 36 
production challenge is the current strain culturing process, in which the constituent organisms of 37 

the community are grown as separate cultures, then subsequently mixed to a desired species 38 
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composition18. This process is complicated, costly, and scales poorly for communities with large 39 
numbers of organisms18.  Therefore, new methods to produce microbial communities with desired 40 

species compositions could alleviate this manufacturing bottleneck.   41 
Developing model-guided approaches to predict community growth as a function of 42 

specific control inputs would greatly enhance our ability to manipulate community composition 43 

towards a desired state19. Design of experiments with statistical modeling (DoE) has been 44 
increasingly used to study and engineer biological systems. For example, DoE has been used to 45 

explore regulatory sequence space for modulating protein translation and for tuning enzyme 46 

expression to optimize production of a target metabolite20–22. In addition, DoE was used to design 47 

chemically defined media by optimizing microbial growth as a function of various media 48 

components23,24. Statistical modeling, an integral part of the DoE workflow, has been applied to 49 
predict microbial community composition as a function of dietary inputs, though it has been more 50 

commonly used to predict a given community-level function from species abundance25–27. 51 
Dynamic ecological models, while generally lacking abiotic control points like resources, have 52 
been shown to be predictive of microbial community assembly in a particular media 53 

environment28,29. These studies have demonstrated that inter-species interactions and initial 54 
species abundances strongly affect transient states of community assembly, suggesting that 55 
these parameters could be used to manipulate community dynamics. 56 

We develop a two-stage, model-guided approach for systematically tuning key media 57 

components and initial species densities to optimize the diversity of a synthetic human gut 58 
community. Using statistical modeling, we design a new culture medium that yields a more 59 
uniform distribution of endpoint abundances of the monocultures. This monoculture-based 60 

optimization procedure improves community diversity.  Then, in communities cultured on the new 61 
medium, we use a design-test-learn cycle to modulate individual species’ initial population 62 

densities (i.e., inocula) to further optimize community diversity. In both stages, a substantial 63 

degree of community composition (a systems-level property) can be forecasted as the composite 64 
behavior of constituent monocultures (parts-level properties)30. Finally, we use our data to build a 65 

dynamic ecological model that captures inter-species interactions and use this model to guide the 66 

design of communities with distinct classes of dynamic behaviors. In sum, we demonstrate that 67 
model-guided design of experiments can be combined with high-throughput species abundance 68 

measurements to steer community composition towards desired states.  69 

70 
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Manipulating media components to enhance community Shannon diversity 71 
The diversity of a donor’s microbiota has been identified as a major factor determining clinical 72 

response during the use of FMT to treat inflammatory bowel disease31,32. Since diverse, defined 73 
communities are useful therapeutics, we aimed to maximize the Shannon diversity (Methods, 74 

equation 1) of a synthetic human gut community10,11. Shannon diversity is an ecological metric 75 

used to characterize both the number of species in a community and the evenness of their 76 
population sizes33. We designed a representative synthetic 10-member community that spans the 77 

phylogenetic and metabolic diversity of the human gut microbiome (Fig. 1a). This community 78 

consisted of Blautia hydrogenotrophica (BH), Bifidobacterium longum (BL), Bacteroides uniformis 79 

(BU), Collinsella aerofaciens (CA), Dorea longicatena (DL), Eggerthella lenta (EL), Eubacterium 80 

rectale (ER), Faecalibacterium prausnitzii (FP), Prevotella copri (PC), and Parabacteroides 81 
johnsonii (PJ). Several of these species, including FP, have been shown to be critical to the 82 

recovery of a healthy microbiome after childhood malnutrition and thus hold promise as bacterial 83 
therapeutics for global health applications34,35.  84 

We characterized the growth of individual species (monocultures) in a baseline defined 85 

medium that can support the growth of diverse human gut species (Methods, Supplemental Data 86 
1)25. The monocultures displayed a wide range of growth rates and population sizes at steady-87 
state (i.e. carrying capacities) (Fig. S1a, medium 7), suggesting that the species with low 88 
monoculture fitness may be outcompeted in the community. Human gut anaerobes have diverse 89 

metabolic strategies36,37. Therefore, we exploited the concentrations of key media components to 90 
manipulate monoculture growth responses36,38. Sugars and amino acids represented the main 91 
fermentable substrates, consistent with their key role in the mammalian gut39.  Likewise, pH is a 92 

major environmental factor, and can distinctly modify bacterial growth40.  In addition, we selected 93 
yeast extract since it consists of a complex digest containing vitamins, peptides, and other 94 

resources, and supports the growth of FP41.  We used statistical design of experiments (DoE) to 95 

identify an optimal concentration profile of these components by manipulating four key variables: 96 
(1) a mixture of three sugars, (2) a defined mixture of amino acids, (3) yeast extract, and (4) pH. 97 

The ”DoE” workflow involves (1) identification of (independent) variables and (dependent) 98 

responses of the system, (2) construction of an experimental design matrix of combinations of 99 
levels of each variable that satisfies a designated optimality criterion, (3) experimental 100 

implementation, (4) statistical modeling of the experimental data, and (5) use of optimization 101 

techniques to determine the values of the variables that are predicted to yield a desired system 102 
response.   103 
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Figure 1. Model-guided design of media composition to enhance community Shannon diversity. a 
Phylogenetic tree of the 10-member synthetic human gut community: Bacteroidetes (upper branch), Firmicutes 
(middle branch), and Actinobacteria (lower branch). Phylogenetic analysis was performed using a 
concatenated alignment of 37 single-copy marker genes in Phylosift42. b Media factor experimental design that 
varies the concentration of a sugar mixture (glucose, arabinose, and maltose), yeast extract (Y.E.), defined 
amino acid mixture (Aminos.), and pH in a common base medium (Methods). Shading indicates design levels: 
“high” (black), “intermediate” (gray), and “low” (white), with concentration values labeled in units of g/L or pH. 
c Bar plots of the steady-state abundance (carrying capacity, Ki) of each species determined by fitting a logistic 
differential equation model to the time-series measurements of absorbance at 600 nm (OD600) in each media 
condition (Methods, equation 3, Fig. S1). Different colors denote species shown in g. Bar height denotes the 
mean carrying capacity and data points denote biological replicates (n=4 with outlier detection, Methods).  c 
Bar plots of “monoculture-diversity” (Methods, equation 4,5) based on the mean carrying capacities for each 
medium (Methods). Data points denote monoculture-diversities calculated from each biological replicate. 
Dashed line indicates maximum possible monoculture-diversity for ten species.  e Bipartite network 
representation of linear regression growth models (MR, Table S1), where edge thickness is scaled by mean 
parameter value across cross validated parameter sets. Models predict the carrying capacity of each species 
(𝐾"!) as a function of media component concentrations (X) (Methods, equation 6), and as such, the parameters 
(𝛽!) represent the inferred growth effect of a media component on a particular species. Left and right nodes 
denote species and media components, respectively. Light gray nodes denote main effects, medium gray 
nodes denote interactions, and dark gray nodes denote quadratic main effects. Parameters with mean values 
of less than 0.05 are not shown. f Scatter plot of monoculture diversity calculated from fitted carrying capacities 
(x-axis) vs. monoculture-diversity calculated from media regression model validation/test predictions 
(“predicted”, y-axis, Methods). Pearson correlation (rho) and p-value (P) are indicated. Star indicates optimized 
medium. g Heatmap of media component concentrations that maximized monoculture-diversity (Methods, 
equation 7, Methods). Color scale is according to (a). h Bar plot of the inferred carrying capacities based on 
the logistic model of each species on the optimized medium (Fig. S1b) (f). i Stacked bar plot (left bars) of 
community compositions from the even inoculum proportion in the baseline medium (7), the highest 
monoculture-diversity screened medium (4), and the optimized medium (10). Bar height indicates mean of 3 
biological replicates, error bars indicate 1 s.d., and all replicates are shown in Fig. S14. Shannon diversity of 
mean community composition (n=3 biological replicates, Methods, equation 1) is indicated as gray solid bars 
(right bars).  Shannon diversities as calculated from each set of biological replicates are overlaid as diamonds.  
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j Bar plot of the change in media pH for community cultures in the best screened (4) and optimized medium 
(10). Bar height indicates mean of biological replicates (diamonds, n=3).    

 104 

We use this workflow to maximize the similarity between steady-state population sizes (i.e. 105 
carrying capacities) of the monocultures as a function of media component concentrations, while 106 

also supporting sufficient growth (Fig. 1b, Methods).43   107 
We performed time-series measurements of optical density at 600 nm (OD600) for each 108 

monoculture in each media condition (Fig. 1b) and fit a logistic growth model (LM, Table S1) to 109 

these data (Fig. S1a).  The carrying capacity parameter (𝐾!) of this model indicates population 110 

size at steady-state (Fig. 1c). To quantify the similarity among the growth responses of individual 111 
species as a function of media components, we determined the Shannon diversity of the 112 

normalized carrying capacities in a particular medium. Normalization was performed by dividing 113 
by the sum of the inferred carrying capacities in a particular medium, mirroring how Shannon 114 
diversity is calculated from community absolute abundance data (Methods, equation 4). This 115 

quantity, hereafter referred to as “monoculture-diversity,” varied widely as a function of media 116 
composition (Fig. 1d). 117 

Although we identified a medium that enabled high monoculture-diversity in the screening 118 

experiment (Fig. 1d, medium 4), we used model-guided optimization for further improvement. We 119 
fit linear regression models (MR, Table S1) with quadratic and interaction terms to predict the 120 
carrying capacity of each species from the concentrations of the media component variables (Fig. 121 
1e, Methods, equation 6).  The media regression model parameters provide an interpretable 122 

relationship between the concentration of a given media component and its effect on the growth 123 
of a given organism.  For instance, the main effects regression parameter corresponding to 124 

“sugars” was large for the BL and DL growth models, consistent with their substantial growth 125 

improvement in the presence of the sugar mixture (Figs. 1b,c,e, S2b,c).  Interaction parameters 126 
in the regression models captured more subtle trends, as these terms indicate a specific 127 

combination of independent variables that results in a distinct effect on the measured response. 128 
For example, BH had a substantial growth improvement in media containing both amino acids 129 

and sugars (Fig. 1b,c). The large magnitude of this interaction parameter for BH suggested that 130 

the simultaneous presence of amino acids and sugars enhanced growth more than the sum of 131 
their individual contributions alone (Figs. 1e, S2a).  132 

To reduce overfitting and biasing of hyperparameters, we implemented elastic net 133 
regularization with nested leave-one-out cross validation (Methods). Goodness of fit was high for 134 

all species, while validation predictions on the out-of-fold measurements ranged in accuracy (Fig. 135 

S3a). Despite the sparse sampling of the design space using the DoE approach (Fig. S4), the 136 
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models were predictive of an aggregate property (monoculture-diversity) on new data, even 137 
though they were variably predictive of the constituent species (Fig. 1f, Pearson rho=0.67, P = 138 

0.034).   139 
An optimization procedure (Methods, equation 7) identified a profile of media factor 140 

concentrations that maximized the predicted monoculture-diversity (Methods). The predicted 141 

concentrations were similar to medium 4, but contained 3-fold less sugar (Fig. 1b,g).  To test this 142 
prediction, individual species were grown in the optimized medium. The monoculture-diversity for 143 

the optimized medium was close to the maximum possible value, consistent with the model 144 

prediction (Fig. 1f,g).  145 

To determine if monoculture-diversity could inform the Shannon diversity of the 146 

community, we cultured the 10-member community from even initial species proportions in the 147 
baseline medium 7, best screened medium 4, and optimized medium (Fig. 1b,g). The model-148 

guided, monoculture-based optimization process yielded a concomitant improvement in 149 
community Shannon diversity (Fig. 1h,i). Our results suggest that the reduced sugar 150 
concentration in the optimized medium, as compared with the best screened medium 4, mitigated 151 

rapid production of high levels of inhibitory organic acids by fast growing sugar fermenters. This 152 
was consistent with the substantially higher endpoint pH of a community cultured in the optimized 153 
medium 10, compared to the acidified environment of medium 4 (Fig. 1j). A microbial community 154 
culture that autonomously maintains non-inhibitory pH levels could be produced in simple vessels 155 

(e.g. flasks or tanks), obviating the need for expensive equipment (e.g., bioreactors with pH 156 
control). 157 

Our model-guided, high-throughput, monoculture-based approach identified a single 158 

medium in which all species were capable of similar endpoint growth. As compared to the baseline 159 
medium, Shannon diversity of the community was increased from 53% to 80% of its maximum 160 

possible value. These results demonstrated that a moderate number of media components are 161 

effective control points for manipulating community composition.  162 
 163 
A constrained system of logistic equations predicts trends in community assembly 164 

The initial population density of the constituent members of a microbial community has been 165 
shown to impact community assembly28,44,45. Therefore, we reasoned that we could use a design 166 

of experiments approach to further optimize community diversity as a function of inoculum density.  167 
However, this constituted a large design space for community experiments, as there are many 168 

possible combinations of inoculum proportions for a 10-member community. We first studied the 169 
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“parts” of our microbial community by characterizing growth kinetics of the monocultures across 170 
a wide range of inoculum densities.  171 

 
Figure 2. Predicting community assembly using a constrained system of logistic equations. a 
Schematic of experimental approach and model equation to predict community assembly as a set of 
monoculture logistic models (LI, Table S1) coupled via a total community growth limit, referred to as a 
“constrained system of logistic equations” or “CSLE” (Methods, equation 9 and Supplementary Information). 
Parameters: monoculture logistic growth rates (𝜇!), monoculture carrying capacities (𝐾!), and total 
community growth limit (𝐾"#$$, community carrying capacity). b Monoculture kinetic data based on 
absorbance at 600 nm (OD600, filled circles) where each species was inoculated at a range of initial 
densities (0.01 to 1e-7 OD600 by 10-fold serial dilution). Inoculum densities that did not yield reproducible 
growth were omitted (Fig. S5a).  Lines denote the logistic differential equation fit to the time-series OD600 
measurements (Methods). Colors denote species per legend in (e). c Bar plot of the endpoint growth of a 
10-member community culture vs. the sum of the inferred logistic carrying capacities of all 10 monocultures 
(bar height indicates mean, diamonds show biological replicates, n=3). Kcomm (denoted by dashed line) 
represents the mean of the endpoint OD600 of the 10-member community culture (n=3 biological replicates). 
d Scatter plot of the CSLE model predictions (y-axis, left stacked bar) versus the experimentally measured 
community relative abundance data (x-axis, right stacked bar).  Pearson correlation coefficient and p-value 
are indicated by “rho” and “P”, respectively. Dashed “x=y” line represents where predictions from a perfectly 
accurate model would fall. Error bars on experimental data denote 1 s.d. of biological replicates (n=3). e 
Scatter plot of predicted community composition based on a set of independent, logistic differential 
equations (y-axis, right stacked bar) and measured community composition (relative abundance, x-axis, left-
hand stacked bar). Pearson correlation coefficient and p-value are indicated by “rho” and “P”, respectively. 
Dashed “x=y” line represents where predictions from a perfectly accurate model would fall. Error bars on 
experimental data denote 1 s.d. from the mean of biological replicates (n=3). f Line plot of CSLE simulation 
of monospecies growth. Optimization techniques are used to maximize the predicted Shannon diversity as 
a function of initial conditions (Methods, equation 10). This set of initial conditions is later used as a reference 
point to guide community experimental design (Fig. 3). Colors denote species per legend in (e). 
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 Lower inoculum density delayed the time at which the species entered a measurable 172 

exponential growth phase (Fig. 2b). In addition, BH, ER, and FP tended not to grow (or displayed 173 
variable growth between biological replicates) at lower inoculum densities. The remaining species 174 

displayed consistent growth kinetics at most inoculum densities, which spanned several orders of 175 

magnitude.  A logistic model (LI, Table S1) with a single parameter set represented each species 176 
growth kinetics across the large range of inoculum densities (Fig. 2b, Methods).   177 

The 10-member community cultured from an even species inoculum displayed a 178 

substantially lower total growth than the sum of the monoculture carrying capacities (Fig. 2c). 179 
This implies that negative inter-species interactions dominated the ecological network of the 180 

community. The total growth of microbial communities in batch culture was shown to be a 181 
saturating function of the number of species in the community25. Therefore, we reasoned that an 182 

upper limit on total community growth (independent of species composition) could serve as a 183 
useful null-hypothesis governing community assembly, given unknown, but largely negative, inter-184 
species interactions. Further, we assumed that a species with higher fitness in monoculture would 185 

display higher abundance in the community.  186 
We captured these behaviors by deriving a mathematical model, referred to as a 187 

“constrained system of logistic equations” (CSLE) (Supplementary Information). In this model, 188 
a species grows according to its monoculture logistic kinetics until total growth is constrained by 189 

a “community carrying capacity” (Kcomm). Thus, a species may cease to grow (𝑑𝑥!/𝑑𝑡 → 0, arrow 190 

represents approaches) either when its population size approaches its monoculture logistic 191 

carrying capacity (𝑥!(𝑡) → 𝐾!)	 or when the total community growth approaches the community 192 

carrying capacity (∑𝑥" (𝑡) → 𝐾#$%%). Kcomm was defined as the mean OD600 of biological 193 

replicates of the 10-member community culture (Fig. 2c).  194 
The CSLE model captured major trends in measured relative species abundances of the 195 

community (Pearson rho=0.71, P=0.021, Fig. 2d).  Conversely, predicting community assembly 196 

as a set of independent logistic models (assuming no inter-species interactions) failed to describe 197 
community composition (Pearson rho=0.085, P=0.82, Fig. 2e). In the CSLE model, species that 198 

grow faster in monoculture are more likely to negatively impact the growth of other community 199 

members, resulting in a trade-off in the species’ endpoint abundances. For example, the CSLE 200 
model accurately predicted that the species with the highest monoculture growth rate (DL, yellow) 201 

would occupy a substantially larger fraction of the community than the other species (Figs. 2d,e, 202 

S1c). However, the set of independent logistic models failed to predict this trend. This 203 
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demonstrates that the CSLE model, which was not informed by community data, could predict 204 
trends in community assembly.  205 

The CSLE model reaches equilibrium for any community composition in which species’ 206 

absolute abundances sum to the total growth limit (∑𝑥! (𝑡) = 𝐾#$%%). Thus, in contrast to the 207 

logistic model, which has a single positive steady-state, the steady-state population size of a 208 

species in the CSLE model is a continuous function of initial conditions (as long as ∑𝐾! > 𝐾#$%%, 209 

i.e., in a large community). This model allowed us to computationally explore how community 210 

composition changes as a function of species inoculum prior to collecting community data (Fig. 211 

2f).   212 

 213 
Tuning species inoculum densities to optimize community Shannon diversity.    214 

To further optimize the endpoint Shannon diversity of the 10-member community, we used a 215 
model-guided design-test-learn (DTL) cycle to modulate the inoculum densities of each species 216 
(Fig. 3a). The iterative DTL approach uses models, trained on community composition data 217 
collected in previous cycles, to guide the design of experimental conditions for the subsequent 218 

cycle25. The “design” step was initiated with the construction of an experimental design matrix. 219 
Inoculum density values were assigned to the levels of the matrix using model predictions when 220 
possible. The “test” step used automated liquid handling to array the designed inocula conditions 221 

(Methods). Community cultures were grown to approximately stationary phase, and species 222 
abundances were analyzed using multiplexed NGS (Methods). The “learn” step inferred 223 
parameters from experimental data and evaluated the predictive capability of the statistical 224 
models. 225 

The assignment of inoculum density values to the levels of the DoE design matrix for the 226 
first community inoculum experiment was guided by the CSLE model (Fig. 2a,d). We used 227 

optimization to solve for a set of initial conditions that maximized the predicted Shannon diversity 228 

(Fig. 2f). This set of initial conditions was used as a central reference point (“center-point”), 229 

representing the “medium” level for all species, around which the rest of the experimental design 230 

was constructed (Fig. 3a). These designs were constructed for the dual purpose of identifying a 231 

high diversity condition and collecting structured training data to improve the model’s predictive 232 
ability.  233 

Community compositions varied widely as a function of the experimental design conditions 234 

(Fig. 3c, DTL 1), confirming that inoculum density was a useful control point for manipulating 235 
community assembly. Despite a modest monoculture growth rate and carrying capacity (Fig. 2b, 236 

S1c), ER overgrew in many conditions (Fig. 3c, light purple). The CSLE model had 237 
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underpredicted ER in the test community grown from an even inoculum (Fig. 2d), suggesting that 238 
ER benefits from positive inter-species interactions that were not captured in the CSLE model.  239 

 
Figure 3. Tuning species inoculum densities to optimize community Shannon diversity in a design-
test-learn cycle.  a Schematic illustrating the design-test-learn (DTL) cycle for maximizing community 
diversity as a function of species inocula. The “center point” of each experimental design corresponds to the 
inoculum (colored circles) predicted to yield the highest community Shannon diversity. DTL 1 center point 
is predicted with the CSLE model, thereby exploiting monoculture growth data to design the first community 
experiment. Subsequent DTL cycle center points are predicted according to inoculum regression models 
(IR, Table S1), which are trained on community data collected during the DTL process. Scale-up of the 
culture is performed for potential bioprocessing applications (bottom left). b Categorial scatter plot of center 
point inoculum conditions for each DTL cycle, which are informed by model predictions when possible 
(Methods). For visualization, species are sorted by the magnitude of the difference between the log 
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transformed inoculum densities of the first and last DTL cycles. The dotted line indicates the even inoculum 
baseline condition. Full design matrices are shown in Supplementary Data 3. c Stacked bar plots of endpoint 
community compositions for each DTL cycle, sorted left to right by community Shannon diversity. Stacked 
bars and error bars represent mean and 1 s.d. of the mean of biological replicates (n=3), respectively, for 
each condition; all replicates are shown in Fig. S13.  d Scatter plot of the experimentally measured absolute 
abundance of each species versus the linear regression models’ predictions of endpoint species absolute 
abundance on the test set. The model was trained on community composition measurements from the first 
two DTL cycles. The dependent variable is the endpoint species abundance, and the independent variables 
are the initial OD600 of each species from the inoculum design matrix. Pearson correlation coefficient (rho), 
and p-value (P) are shown. The validation (out-of-fold) predictions with species-specific correlation 
coefficients are shown in Fig S6.  e Distributions of Shannon diversities calculated from the mean 
composition of biological replicates (n=3) for conditions of each DTL cycle (blue circles). Red line in each 
box denotes the median, upper and lower edges denote 75th and 25th percentiles, respectively, and whiskers 
denote range of non-outlier datapoints. Dashed line indicates maximum possible Shannon diversity for a 
10-member community.  Dotted line indicates the diversity from even inoculum in the optimized medium 
(Fig. 1i). f Stacked bar plot of the community composition from media optimization (Fig. 1) and inoculum 
optimization (Fig. 3). Species composition (stacked bars, left-axis) and Shannon diversities as calculated 
from mean of species abundances (gray solid bar); diamonds show diversities calculated from individual 
sets of biological replicates (right-axis), and all biological replicates are shown in Fig. S14. Even inoculum 
and baseline medium (pre-optimization) are indicated with (-), while (+) indicates that the community 
resulted from media or inoculum optimization in this study.  g Scatter plot of the log transform of inoculum 
densities predicted by the CSLE model (DTL1 center point levels) vs. the experimentally identified best 
inoculum (condition yielding highest diversity after three DTL cycles).  Pearson correlation is calculated 
between the logarithm of the inoculum densities.  h Stacked bar plot of species relative abundance of the 
10-member community cultured in a 200 uL microtiter plate versus a 100 mL flask, bar height and error bars 
represent mean and 1 s.d. of 3 biological replicates, all biological replicates are plotted in Fig. S14. 
 240 
Consequently, the CSLE model overpredicted the initial density of ER, which in turn resulted in 241 
overgrowth in the community.  242 

This community data to was leveraged to quantify inter-species interactions beyond global 243 
competition. Regression models with linear, quadratic, and interaction terms (IR1, Table S1) were 244 
trained to predict the absolute abundance of each species in the community from the inoculum 245 
values of the experimental design (Methods). After the first DTL cycle, the inoculum regression 246 

models accurately predicted half of the species (Pearson rho > 0.7, P < 1e-6, Fig. S7a). However, 247 
three species (CA, EL and PC) with predictive models displayed low overall growth (average 248 

relative abundance less than 2.5% across design conditions, Fig. 3c “DTL1”,). As such, these 249 
models were not practically useful, since predicting maximum diversity (i.e., 10% relative 250 

abundance) would result in significant extrapolation of the model.   251 
In DTL 2, the new center point inoculum value for species that were poorly predicted or 252 

displayed low overall growth was qualitatively determined based on community data. If a species 253 

tended to overgrow (ER) in the previous cycle, the new center point value was set at the previous 254 

cycle’s low value. By contrast, if a species tended to undergrow (BL, CA, DL, EL, PC and PJ), its 255 
new center point value was set to the previous high value (Fig. S8, Methods). We performed 256 

model-guided optimization of the inoculum values to maximize the predicted Shannon diversity 257 
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for species that were accurately predicted by the model and displayed substantial growth 258 
(Methods).  259 

These optimized values were used as the center point values for DTL 2 (Methods). In DTL 260 
2, most species were well-represented, and ER was present at a lower abundance in the 261 

community than in DTL 1 (Fig. 3c). The median community diversity was substantially higher in 262 

DTL 2 than DTL 1, indicating that data obtained in DTL 1 were informative for enhancing Shannon 263 
diversity (Fig. 3e). Inoculum regression models were re-trained on community composition data 264 

from both DTL 1 and 2 (IR2, Table S1), and the models accurately predicted the absolute 265 

abundance of all species except BL during cross validation (Pearson rho > 0.70, P < 1e-8, S7b). 266 

Further, the model accurately predicted test communities that were withheld from the training and 267 

validation process (Fig. 3d, Pearson rho=0.84, P=2.5e-14). 268 
To determine if the Shannon diversity could be enhanced further, we used optimization 269 

techniques using the nine predictive regression models to determine a new inoculum center point 270 
for DTL 3. The high and low levels probed a smaller design space than previous cycles reflecting 271 
higher confidence based on the substantial improvement in Shannon diversity in DTL 2.  Since 272 

BL consistently undergrew and was poorly predicted, its inoculum density was set to a maximum 273 
designated value (Methods). Despite having the largest inoculum and high monoculture fitness, 274 
BL was low abundance in DTL 3, indicating that BL was inhibited by other members of the 275 
community (Fig. 3c). Notably, the beneficial species FP was higher abundance in DTL 3 276 

communities than in the community inoculated with an even inoculum (Fig. 3f)46–48. Overall, the 277 
highest Shannon diversity condition was identified in DTL 3, representing 91% of the maximum 278 
possible value for a 10-member community (Fig. 3e,f). This was a substantial improvement from 279 

the already high 80% of the maximum diversity achieved by medium optimization alone (Fig. 3f).    280 
The set of inoculum densities that yielded the highest Shannon diversity in DTL 3 was 281 

correlated to the CLSE optimized inoculum prediction (Pearson rho between logarithm of 282 

inoculum values = 0.66, P = 0.039, Fig. 3g).  Further, for half of the species, inocula for the highest 283 
diversity condition were within three-fold of the CSLE predicted values (Figs. 2f, 3b). These data 284 

show the CSLE model prediction was a useful starting point for the DTL cycle, as it substantially 285 

narrowed the inoculum design space that yielded assembly of a highly diverse community.  286 
Biomanufacturing of microbial communities in a real-world setting would require (1) 287 

robustness of endpoint community composition to technical variability in species inocula, (2) 288 

translation to production-scale equipment, and (3) viability of organisms harvested at the 289 
endpoint. Despite the four-fold variation in inoculum in DTL 3, the coefficient of variation of the 290 

endpoint Shannon diversity across design conditions was less than 6% (Fig. 3e). This 291 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.14.484355doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484355
http://creativecommons.org/licenses/by-nc-nd/4.0/


demonstrates that our process was robust to variation in species inocula. The community 292 
compositions in 200 uL and 100 mL batch cultures were similar, demonstrating that a 500-fold 293 

difference in batch culture scale did not substantially alter community assembly (Fig. 3h, Pearson 294 
rho=0.96, P=8e-6).  To evaluate the viability of species in the endpoint community cultures, we 295 

transferred a small aliquot (25-fold volume/volume dilution) of the communities measured at the 296 

endpoint into fresh media and grew them to approximately stationary phase (Methods). All 297 
species in all conditions yielded greater than three-fold increase in absolute abundance during 298 

the second passage, demonstrating that these species were viable (Fig. S9f).   299 

 300 

Model-guided design of microbial community dynamics   301 

Positive and negative inter-species interactions are major determinants of microbial community 302 
assembly25,49. Therefore, we constructed a dynamic ecological model that captured specific inter-303 

species interactions (Fig. 2d,e). The generalized Lotka-Volterra (gLV) model (Methods, equation 304 
13) is a set of coupled ordinary differential equations that describes a specie’s growth dynamics 305 
as a function of its basal growth rate and interactions with each constituent community member. 306 

This model has accurately predicted complex community dynamics, and its interpretable 307 
parameters have revealed significant inter-species interactions25,29,49.   308 

We trained a gLV model on monoculture kinetics and community stationary phase 309 
measurements (including three additional passaging timepoints of DTL1 and one additional 310 

passaging timepoint of DTL3) to characterize the communities over longer timescales (Figs. 2b, 311 
3c, S9b-e, Methods)17,49,50. To minimize overfitting of model parameters to the data, we 312 
implemented L1 regularization with cross-validation (Methods, Fig. S10a). The gLV model was 313 

predictive of randomly withheld training data (Pearson rho=0.91, P=3e-83, Fig. S10b). In the 314 
inferred parameter set, BH positively impacted the growth of ER (Fig. S10c,d). This result is 315 

consistent with the underprediction of ER by the CSLE model, in which species interact only via 316 

competition (Fig. 2d). This suggests that the overgrowth of ER in DTL 1 may be a result of the 317 
high inoculum densities of ER and BH in comparison to the relatively low inoculum densities of 318 

several species (BU, CA, DL and PC) with which ER competes (aER_j < -0.25) (Figs. 3c, S10a). 319 

BH, an acetogen, has been shown to enhance the growth of a similar butyrate producing Firmicute 320 
species via metabolite cross feeding51. BL received negative interactions from all species 321 

excluding PJ, and these interactions summed to the largest negative value among all species 322 

(Fig. S10e). This suggested that the persistent low abundance of BL, despite its robust 323 
monoculture growth and high inoculum densities, can be attributed to the aggregate effect of 324 

many negative interactions in the inter-species interaction network. 325 
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Figure 4 Model-guided design of high and low temporal variability of species composition.  a 
Schematic of the experimental workflow where the generalized Lotka-Volterra (gLV, Methods, equation 13) 
model is trained on monoculture and 10-member community passaging timepoint data (Methods).  The gLV 
model is used to design sub-communities (3-to-9-members) that display low temporal variability of species 
composition across four simulated passages. Optimization techniques are used to solve for passage 1 initial 
conditions (i.e., inocula) that maximize the ratio of the summed Shannon diversities to summed Euclidean 
distances between consecutive stationary phase timepoint measurements (Methods, equation 14, 15). 
Based on this metric, a set of communities were selected for experimental characterization. b Categorial 
scatter plot of the changes in community composition between passages for DTL1 training data (Fig. S9a-
c), designed low, and designed high temporal variability communities. Data points denote Euclidean 
distances between stationary phase community compositions (mean of n=3 biological replicates with outlier 
detection, Methods) of consecutive passages (Methods, equation 14). Box plot red central line denotes 
median, upper and lower edges denote 75th and 25th percentiles, respectively, whiskers denote range of 
non-outlier datapoints, and red “+” denotes outlier. Unpaired, two sample t-test is used to calculate p-value 
between groups of communities. c,d Stacked bar plots of gLV model predictions of stationary phase species 
composition (top row), experimental measurements (middle row), and inferred gLV inter-species interaction 
networks (bottom row) for a set of high (c) and low (d) temporal variability sub-communities. Species color 
legend follows node labels. Each subplot denotes the relative species abundance at stationary phase of 
the four passages; for experimental data bar height and error bars denote mean and 1 s.d. of biological 
replicates (n=3 with outlier detection, Methods). Solid and dashed edges indicate negative and positive 
inter-species interaction parameters (𝑎!%), respectively. Edge width is proportional to the magnitude of the 
inter-species interaction parameter and node size is proportional to the specific growth rate parameters in 
the gLV model (𝜇!). All biological replicates and omission of 5 cross-contaminated replicates are indicated 
in Fig S14. 
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We designed low and high temporal variability sub-communities over the timescale of four 326 
passages to evaluate whether the gLV model could predict distinct classes of dynamic longer-327 

term behaviors. Communities with low temporal variability in community composition could be 328 
useful to reduce the frequency of species takeover and/or extinction during dynamic bioprocess 329 

strategies, such as fed-batch or continuous cultures, which are commonly used to improve 330 

production efficiency52–54. Temporal variability was defined as the sum of the Euclidean distances 331 
of the relative species abundance between adjacent passages (Methods, equation 14).  Low 332 

temporal variability communities were identified by maximizing an objective function of the ratio 333 

of the Shannon diversity to the Euclidean distance across passages (Methods, equation 15). We 334 

used optimization techniques to maximize this objective function across a wide range of initial 335 

conditions for all possible (967 total) 3–9-member sub-communities. Notably, among the 967 336 
optimal solutions, only 33 sets of initial conditions displayed unique endpoint species 337 

compositions within a small numerical tolerance (Fig. S11).  We selected a subset of higher 338 
diversity unique solutions for experimental validation that represented all species. To determine 339 
if the model could distinguish between low and high temporal variability behaviors, we included 340 

three representative communities with predicted high temporal variability (i.e., high Euclidean 341 
distances) (Methods).  342 

Consistent with the model prediction, communities designed for low temporal variability 343 
had significantly lower Euclidean distances between passages than communities designed for 344 

high temporal variability (p=8e-6, unpaired t-test) (Fig. 4b). In addition, the model accurately 345 
predicted several qualitative characteristics of the high temporal variability communities, including 346 
the highest abundance species at each endpoint (Fig. 4c). The model forecasted that FP is 347 

outcompeted (greater than 10-fold lower relative abundance in final passage than the initial 348 
passage) in the two high-temporal variability communities containing FP (Fig. 4c). Notably, the 349 

model also identified a low temporal variability subcommunity (Fig. 4d, BH-EL-FP) in which FP 350 

persisted at a constant relative abundance over passages two through four. BL persisted at a 351 
constant relative abundance across the last three passages when cultured with BU and CA (Fig. 352 

4d, BU-BL-CA). By contrast, BL displayed low relative abundance in the first passage and high 353 

relative abundance in later passages of the 10-member community training data (Fig. 3c, S9e). 354 
The model predicted four sub-communities in which at least three species persisted at relatively 355 

constant relative abundance for at least three passages (BH-EL-FP, BL-BU-CA, CA-EL-ER-PJ, 356 

and BU-CA-EL). This demonstrates the gLV model can be used to design communities that 357 
display species coexistence over longer timescales.  358 
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The gLV model trained on monoculture and 10-member community data was moderately 359 
predictive of the absolute species abundance in the experimentally characterized 2-4 member 360 

communities (Pearson rho=0.56, P=9.6e-10, Fig. S12). The unexplained variance in the dataset 361 
could be attributed to differences in species richness in the training (10-species) and test data (2-362 

4 species)25,55. In sum, these data demonstrate that the gLV model can guide the design of 363 

communities that exploit inter-species interactions to support the persistence of lower fitness 364 
species over longer timescales, as well as mitigate overgrowth of high fitness species. Therefore, 365 

the gLV model informed by variation in inoculum densities of constituent community members of 366 

a fixed community size was useful in the prediction and design of community temporal behaviors. 367 
 368 
DISCUSSION 369 
We demonstrate that, despite their complexity, microbial communities are engineerable systems 370 
that respond predictably to changes in media formulation and inoculum densities. We develop a 371 
data-driven dynamic and statistical modeling framework for tuning these control inputs to optimize 372 

the endpoint Shannon diversity of a synthetic human gut community. Using this approach, we 373 
increased the Shannon diversity of a representative 10-member synthetic gut community from 374 

53% to 91% of its maximum possible value (Fig. 3f). Our DoE and ecological modeling 375 
approaches map control inputs to community composition without the need for characterizing 376 
detailed biochemical mechanisms (e.g., specific metabolic pathways or metabolites mediating 377 
inter-species interactions). As such, the workflow can be generalized to a wide range of 378 

communities. Future work could examine effects of monoculture versus community production of 379 
live microbial therapeutics on strain engraftment in the host. Since the ecology of the community 380 
culture restricts species to their most favorable niches, and can even recapitulate in vivo functional 381 
profiles, therapeutic communities produced via community culture could be better primed to 382 

colonize the competitive gut environment than those produced in monoculture56–58. 383 

Our designed media and inoculum conditions yield similar community composition at 500-384 
fold volumetric scale up, suggesting that lab-scale results could translate to production. Though 385 

community dynamics are complex, our culture strategy is simple (static, batch culture, no pH 386 

control), thus reducing the number of key scale-up parameters. We note that we maintained 387 
equivalent headspace gas composition and surface-to-volume ratio during scale up; future studies 388 

could confirm whether these are important parameters for anaerobic community scale up. Overall, 389 
this efficient, scalable blueprint for designing community assembly should help to alleviate the 390 

production bottleneck that limits manufacturing of therapeutic communities at clinical, commercial, 391 

and global health scales. 392 
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In each stage, we exploit high-throughput, monoculture experiments to first understand 393 
the “parts” of our ecosystem, and show that this information is useful for guiding community 394 

design. We demonstrate that maximizing monoculture-diversity substantially increases 395 
community diversity (Fig. 1h,i), and that major trends in community assembly can be explained 396 

by constraining monoculture kinetic models with an upper limit on total growth (Fig. 2). Model-397 

guided prediction of community assembly from monoculture kinetics allowed us to achieve our 398 
design objectives while limiting the number of community measurements. Due to the DNA 399 

sequencing pipeline required to analyze species-level composition, community experiments are 400 

laborious in comparison to their fully-automated monoculture counterparts. Monoculture-informed 401 

prediction of a narrowed initial design space resulted in identification of a high diversity condition 402 

within three design-test-learn cycles (Fig. 3h).  403 
This ability to rationally inform community experiments with high-throughput monoculture 404 

data should make our approach useful for larger communities, potentially even up to 100 405 
members59. As species richness increases, the degree of metabolic similarity among species 406 
would increase (i.e., metabolic redundancy), leading to potential challenges in identifying specific 407 

nutrients that can tune the growth of individual species in the community. However, media design 408 
variables could be selected to favor resources such as fibers, peptones, and mucins, which have 409 
been shown to support high richness cultures from stool sample inocula57,60. In addition, the ability 410 
to control the endpoint abundance of each species as a function of its initial density may decrease 411 

due to enhanced strength of ecological competition. In this case, our computational modeling and 412 
optimization workflow could be modified to identify optimal strategies for partitioning a high 413 
richness community into a minimal number of sub-communities that enable control of species via 414 

media factors and inocula.  415 
One limitation of our approach was that inoculum density was an insufficient control point 416 

for BL, which was subjected to a disproportionate number of strong negative interactions in the 417 

community (Fig 3c). Despite the robust growth of BL in monoculture (Fig. 2b) and a high inoculum 418 
density (Fig. 3b), this species did not grow well in communities (Fig. 3c). To address this 419 

limitation, future efforts could use dynamic modeling to leverage multiple inoculation timings as 420 

an additional control point for community composition. Design of species-specific inoculation 421 
timings would allow for precise manipulation of inter-species interactions over time. In the simplest 422 

case, a species that does not grow well in communities due to negative interactions could be 423 

given a “head start” by inoculating at an earlier timepoint.  Further, a “temporary support 424 
community” could be designed to boost the initial growth of a low fitness species prior to 425 
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inoculating the remaining community members at a later timepoint. Similar approaches could be 426 
used to control an organism that tends to overgrow. 427 

As a proof of concept that inter-species interactions can be leveraged to design temporal 428 
behaviors, we used a data-driven generalized Lotka-Volterra (gLV) model to guide the design of 429 

communities with low variability of species composition over time (Fig. 4). We note that our 430 

implementation of the gLV model describes batch culture growth (including stationary phase) with 431 
non-equilibrium trajectories. Endpoint community composition of batch culture was predicted 432 

quite accurately as a function of initial conditions by fitting these transient dynamics to 433 

experimental data (Fig. S9b). By contrast, theoretical analyses of the gLV model tend to focus on 434 

long-term behaviors (e.g. stable steady-states or limit cycles), to which many different initial 435 

conditions converge61. This nuance between our data-driven implementation and most ecological 436 
analyses illustrates that in spite of the constrained long-term behaviors of the gLV model, it is 437 

useful for designing specific community compositions as a function of initial conditions. 438 
Defined microbial communities hold significant promise for many applications including 439 

agriculture, biofuels, and medicine62.  We developed a general control strategy for complex 440 

microbial communities and applied these strategies to address the challenge of manufacturing 441 
defined human gut communities for therapeutic applications. Beyond therapeutic community 442 
production, our method will be broadly useful for defined microbial community bioprocesses. For 443 
example, in metabolic engineering applications wherein designed pathways are distributed 444 

among distinct community members to exploit division-of-labor, our method could be applied to 445 
tune community member proportions and thus optimize metabolite product yields54,63. Eventually, 446 
the ability to identify influential control parameters for steering microbial community composition 447 

and functions could be used to modulate an unhealthy patient’s microbiome towards a healthy 448 
state.  For instance, mirroring media component manipulation, changes in diet are well 449 

documented to shape gut microbiome composition. It was also recently shown that dosage 450 

strength (i.e. inoculum density) was a critical factor in the successful redesign of the first phase 451 
three clinical trial of a donor-derived live microbial therapeutic for treating recurrent C. difficile 452 

infection27,64,65. Overall, initial species densities, environmental resources, and inter-species 453 

interactions are key design parameters for engineering microbial community dynamics, from 454 
community bioprocessing to potentially designing an ecological restoration of a dysbiotic gut 455 

microbiome. 456 

 457 
458 
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METHODS 459 
 460 

Strain maintenance, precultures, and growth media 461 
The following methods are adapted Hromada 2021, Clark 2021 and Venturelli 201825,28,66.  All 462 

anaerobic culturing was carried out in a custom anaerobic chamber (Coy Laboratory Products, 463 

Inc) with an atmosphere of 2.5 ± 0.5% H2, 15 ± 1% CO2 and balance N2. All prepared media, 464 

stock solutions, and materials were placed in the chamber at least overnight before use to 465 

equilibrate with the chamber atmosphere. The strains used in this work were obtained from the 466 
sources listed in Supplementary File 1 and permanent stocks of each were stored in 25% glycerol 467 

at −80 °C. Batches of single-use glycerol stocks were produced for each strain by first growing a 468 

culture from the permanent stock in anaerobic basal broth (ABB) media (HiMedia or Oxoid) to 469 
stationary phase, mixing the culture in an equal volume of 50% glycerol, and aliquoting 400 μL 470 
into Matrix Tubes (ThermoFisher) for storage at −80 °C. Quality control for each batch of single-471 
use glycerol stocks included (1) plating a sample of the aliquoted mixture onto LB media (Sigma-472 

Aldrich) for incubation at 37 °C in ambient air to detect aerobic contaminants and (2) next-473 
generation DNA sequencing of 16S rDNA isolated from pellets of the aliquoted mixture to verify 474 
the identity of the organism (Illumina). For each experiment, precultures of each species were 475 
prepared by thawing a single-use glycerol stock and combining the inoculation volume and media 476 

listed in Supplementary File 1 to a total volume of 5 mL for stationary incubation at 37 °C. 477 
Incubation times are also listed in Supplementary File 1.  Prior to inoculating starter cultures, the 478 
workspace and pipettes were cleaned with Spor-klenz (STERIS), and again with 70% ethanol 479 

between strain inoculations.  A clean Kim-wipe (Kimberly-Clark) was held above the workspace 480 
to check for air currents from equipment fans that could lead to cross contaminations, and 481 
equipment was turned off or rearranged as needed.  Anaerobic work was conducted in a spatially 482 

linear workflow from cleanest to least clean materials (e.g.) tips, clean reagents, cell containing 483 
media, then trash, as ordered from dominant to non-dominant hand.  Motions above open, sterile 484 

containers is restricted to minimum necessary actions.   485 

 486 
Genomic DNA extraction, DNA library preparation, sequencing, primer design, and data analysis 487 

DNA extraction, library preparation, and sequencing were performed according to methods 488 

described in Hromada 2021 and Clark 202125,66.  In brief, cell pellets from about 150 uL of culture 489 
were stored at -80C following experiments.  Genomic DNA was extracted using a 96-well plate 490 

adaption of the DNeasy protocol (Qiagen).  Genomic DNA was normalized to 1 ng/uL in molecular 491 

grade water, and stored at -20C.  Dual-indexed primers for multiplexed amplicon sequencing of 492 
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the v3-v4 region of the 16S gene were designed as described previously, and arrayed in 96-well, 493 
skirted PCR plates (Thomas Scientific) using an acoustic liquid handling robot (Echo LabCyte).  494 

Genomic DNA and PCR master mix were added to primer plates and amplified prior to sequencing 495 
on an Illumina MiSeq platform.   496 

 Sequencing data were analyzed as described in Hromada 2021.  In brief, basespace 497 

Sequencing Hub’s FastQ Generation demultiplexed the indices and generated FastQ files.  Paired 498 
reads were merged using PEAR (Paired-End reAd mergeR) v0.9.0 (Zhang et al, 2014)67.  Reads 499 

were mapped to a reference database of species used in this study, using the mothur v1.40.5, 500 

and the Wang method (Wang et al, 2007; Schloss et al, 2009)68,69. Relative abundance was 501 

calculated by dividing the read counts mapped to each organism by the total reads in the sample. 502 

Absolute abundance was calculated by multiplying the relative abundance of an organism by the 503 
OD600 of the sample. Samples were excluded from further analysis if > 1% of the reads were 504 

assigned to a species not expected to be in the community (indicating contamination). 505 
 506 
Monoculture media screening experiment 507 

The media screening experiment was designed to improve monoculture-diversity (equation 4) on 508 
DM38, a chemically defined medium developed in our laboratory, and referenced as the 509 
“baseline” medium in the text. Supplementary File 2 contains the medium and stock solution 510 
recipes referenced in this section.  A four-factor, two-level half factorial screening design with 511 

appended center point condition was constructed in JMP 15 (SAS institute).  “High” absolute 512 
design levels for sugar mixture, amino acid mixture, and pH variables (these are key components 513 
in DM38) were set at their respective DM38 concentrations.  Yeast extract (sterile filtered, not 514 

autoclaved) was included to support monoculture growth of F. prausntitzii, as keenly observed by 515 
D’Hoe et al 41.  “Low” design levels were set at 0 g/L for sugars, amino acids, and yeast extract, 516 

and 5.7 for pH (according to generally reported ranges for the human large intestine70).  Stock 517 

solutions of sugars, amino acid mixture, and yeast extract were prepared at 20x v/v of their target 518 
“high” concentrations, and sterile filtered.  The nine media were arrayed according to the 519 

experimental design in 2mL deep-well blocks (Nest), using a Tecan Evo liquid handling robot to 520 

aliquot the appropriate volume of 20x stocks into 1.4x base medium.  The final concentration was 521 
brought to 1x using sterile water.  The deep well blocks, containing ten sets of the media 522 

experimental design, were inoculated from the ten precultures to a 600nm optical density value 523 

of 0.01.  Optical density was measured using 200 uL of sample in a Tecan F200 plate reader in 524 
standard clear, flat bottom 96-well microplates (Grenier).  Inoculation volumes were calculated as 525 

Volume(inoc) = Volume(well)*0.01 OD / (Preculture OD).  Inoculation was performed from a sterile 526 
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trough with a multichannel pipette.  Four 200 uL replicates were mixed and aliquoted to sterile, 527 
clear, flat bottomed, 96-well microplates (Grenier), covered with a transparent seal (Breath EZ, 528 

Diversified Biotech), and incubated at 37c in the Tecan Evo incubator.  Automated OD600 529 
measurements were recorded every two hours for about 60 hours with a Tecan F200 plate reader.   530 

 531 

Modeling monoculture growth  532 
Model-guided optimization of community Shannon diversity (equations 1,2) was performed by 533 

modeling monoculture growth response (3) on various media. “Monoculture-diversity” (equations 534 

4,5) was used as a proxy function for Shannon diversity, enabling a monoculture-based approach 535 

for manipulating community Shannon diversity. 536 
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 555 
 556 

Monoculture timeseries growth data from the media screening experiment was fit with logistic 557 
differential equations (equation 3), and the carrying capacity parameter was used as a readout of 558 

growth response.  Carrying capacity serves as a “smoothed,” time independent maximum growth 559 

value.  Smoothing is required because raw data may contain outlier values due to condensation 560 
on the transparent plate seal or other technical variability.  If computational resources or expertise 561 

are limited, the growth response could also be taken as the maximum value of a smoothed 562 

timeseries (e.g. after applying a running average filter).  The baseline of the OD600 timeseries 563 

data was computationally “blanked” (i.e. normalized) to the known inoculum density by subtracting 564 

the difference between the time-zero measured value and known inoculum from the entire 565 
timeseries.  Each fitting was performed independently using bounded, nonlinear regression with 566 

MATLAB’s “fmincon” function, which returns the logistic parameter set (𝜇, 𝐾) that minimizes the 567 
sum of squared errors between the model predictions and the experimental data.  All timeseries 568 

were truncated to 30 hours to remove death phases. Outlier detection was performed by 569 
comparing the z-score of the mean OD600 across replicates, to omit replicates that did not grow. 570 
 Multivariate polynomial regression models (equation 6) were fit to predict each specie’s 571 
carrying capacity parameter (growth response) as a function of the scaled media design matrix 572 

(predictors).  573 
 574 
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We note that although the model is a multivariate polynomial function of the design variables, the 586 
regression is linear with respect to the parameters, as the higher order predictors are treated as 587 

“new” variables whose value is calculated prior to regression.  The polynomial structure (equation 588 
6) contained main effects (X1), quadratic main effects (X1

2), and both second and third order 589 

interaction terms (X1*X2 and X1*X2*X3).  The double and triple sum terms in this equation represent 590 

the upper triangular matrix of unique two-factor interaction parameters and three-dimensional 591 
upper triangular matrix of third order interaction parameters (X1*X2=X2*X1 so only one of these 592 

predictor terms should be included).  The estimation of quadratic terms is contingent on the 593 

inclusion of a center point condition in the otherwise two-level experimental design.  Because the 594 

models are data limited, elastic net regularization and nested cross validation were performed to 595 

reduce overfitting.  The elastic net and regularization coefficient hyperparameters were selected 596 
using a “grid search” approach, and MATLAB’s “lasso” function.  For each species, the 9-condition 597 

dataset (9x16 predictor matrix and 9x1 growth response vector) was partitioned into all nine 598 
possible combinations of eight conditions (rows) using MATLAB’s “crossvalind” function (first 599 
partitioning).  The “lasso” function is called with the cross-validation argument, wherein it internally 600 

performs a second round of leave-one-out cross validation to identify the regularization and elastic 601 
net coefficients (hyperparameters) that minimize the out-of-fold mean sum of squared errors for 602 
the “internal” cross validation sets.  Only the hyperparameters, but not the regression parameters, 603 
are returned at this stage.  The Lasso function is then called again without the cross-validation 604 

arguments, receiving the previously identified hyperparameters as arguments to find a best fit 605 
parameter set for the “first partitioning” of the original dataset.  This is performed for each partition 606 
of the original dataset, such that each regression model is an ensemble model with nine 607 

parameter sets, each corresponding to one “leave-one-out” partitioning of the data.  Each 608 
parameter set has its own, independently identified hyperparameters, such that none of the 609 

hyperparameters are biased by training on the entirety of the dataset.  The models are validated 610 

by making “out-of-fold predictions”, meaning using the parameters trained on each of the nine 611 
partitions of eight datapoints to predict the one datapoint that is not contained in that partition.  612 

When the models are called to make a new prediction (e.g. for the optimization script), the nine 613 

predictions of the “ensemble” are averaged to a scalar value. 614 
 615 

Media optimization  616 

A constrained optimization problem was solved using MATLAB’s “fmincon” function to solve for 617 
the concentration profile of sugar mixture, amino acid mixture, yeast extract, and pH that 618 

maximized the monoculture-diversity (equations 6, 7, and 8).   619 
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 626 
The upper and lower bound arguments to the “fmincon” function are set such to constrain the 627 

solution within the original experimental design levels (sugars between 0 and 9.45 g/L, yeast 628 
extract between 0 and 2 g/L, amino acids between 0 and 10.7 g/L, and pH between 5.7 and 6.7).  629 
The function is initialized with a random guess of the sugars, amino acids, yeast extract, and pH 630 

concentrations.  The “objective function” references the received concentration inputs and calls 631 
the linear regression models to make a prediction of each specie’s carrying capacity from this set 632 
of media component concentrations.  From these ten carrying capacity predictions, the predicted 633 

monoculture-diversity is calculated.  The “fmincon” function then iteratively solves for the single 634 
concentration of the resources that maximizes the predicted monoculture diversity, using the 635 
default interior point algorithm.   636 

 637 
Monoculture growth kinetics over a range of inoculum densities 638 
Deep well blocks (96-well, 2mL, Nest)  were filled with 1000uL of the optimized medium.  Species 639 

were precultured and inoculated into each of the first ten wells of the first row of the block at a 640 
density of .01 OD600 as previously described.  A multichannel pipet was used to mix and perform 641 

six 10-fold volume/volume serial dilutions of the first row down the rows of the plate.  Three 642 

replicate 96-well microtiter plates with 200uL in each well were aliquoted from the deep well block 643 
and covered with a transparent seal, breathable seal. Plates were incubated and timeseries 644 

OD600 was recorded as previously described.   645 

 Timeseries data from inoculum conditions that did not result in reproducible growth were 646 
omitted from the dataset, and data was normalized as previously described. The low inoculum 647 

densities resulted in growth curves that “appeared” to have a long lag phase, but were much more 648 
likely to be in exponential growth phase at a biomass density that was far below the limit of 649 

detection of the plate reader.  The exponential and stationary phase data from each specie’s set 650 
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growth curves was isolated as values greater than the assumed 0.05 lower limit of detection for 651 
the plate reader.  The true limit of detection of the reader is .001, but data below ~.05 has high 652 

signal-to-noise ratios for automated microbial growth.  As such, the “measured” initial conditions 653 
were omitted from the dataset, as they generally reflected the low limit of detection of the 654 

platereader.  Nonlinear regression was used to solve for the single logistic parameter set (𝜇, 𝐾) 655 

and the set of initial conditions (one for each growth curve in the set) that minimized the sum of 656 

squared errors between the model predictions and the exponential phase data.  A vector of two 657 
logistic parameters and one-to-six initial conditions (depending on how many dilutions grew 658 

reproducibly) was passed as variables to the “fmincon” solver.  The objective function then parsed 659 

the vector into initial conditions and ODE parameters, then called an ODE solver to generate 660 
model predictions.  The value of the objective function is the sum of mean squared errors between 661 

the model predictions and the exponential phase data for all growth curves in the set.  The 662 
“fmincon” function returns the vector of parameters and initial conditions that minimize the 663 
objective function.  The computationally fitted initial conditions were plotted in log-log space 664 

against the experimental initial conditions, and a first order linear regression was performed to 665 
map the log transformed experimental initial conditions to the log transformed, computationally 666 
fitted initial conditions, using sets of values that fell in the linear range.   667 
  668 

Design of the first community inoculum density experiment (DTL1) 669 
The experimental design chosen for the first inoculum screening was a nine-factor, three-level 670 

definitive screening design71.  These designs have three levels for each variable, improving 671 
estimation of the quadratic effects that are likely important for approximating the endpoint of 672 
exponential microbial growth with a polynomial function.  The scaled design matrix was 673 
constructed in JMP 15.  Inoculum concentrations were assigned to the scaled experimental 674 

design levels using solutions from the constrained system of logistic equations model. The 675 

constrained system of logistic equations was simulated in MATLAB, using the growth rate and 676 

carrying capacity parameters as fitted to monoculture data (described in the previous section).   677 
 678 
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𝑋}<,! − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑒𝑛𝑑𝑝𝑜𝑖𝑛𝑡	𝑎𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒	𝑜𝑓	𝑠𝑝𝑒𝑐𝑖𝑒𝑠	"𝑖" 687 

 688 

The community carrying capacity parameter Kcomm was taken as the maximum OD600 of a full 689 

community culture inoculated from an even inoculum (all species inoculated to .001 OD600).  To 690 

find the set of initial conditions that maximized the Shannon diversity of the CSLE model at steady 691 

state, a constrained optimization problem was solved with MATLAB’s “fmincon” function. The 692 
variables optimized by the “fmincon” solver consisted of the set of all species’ initial conditions.  693 

The objective function internally maps these initial conditions to the computational space 694 
equivalent (using the linear regression functions previously described), and simulates community 695 
growth by calling a CSLE ODE function.  The “fmincon” solver solves for the set of initial conditions 696 

that maximize the Shannon diversity (equation 1) of the steady state population abundances using 697 
the default interior point algorithm. 698 
 699 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒	𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛	𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑖𝑛𝑔	𝑆ℎ𝑎𝑛𝑛𝑜𝑛	𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦	𝑜𝑓	𝐶𝑆𝐿𝐸	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 700 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 q− ; 𝑋}<,&',! ln 𝑋}<,&',!

)*+#!+,

!-.

r						(10) 701 

Xi?,@A,B − predicted	endpoint	fractional	abundance	of	species	"i" by the CSLE model 702 

 703 
 The initial condition solutions are constrained by lower bounds of the experimental inoculum 704 

conditions that did not grow, such that the solver does not return initial condition that are too low 705 
to use in practice (an issue that can arise when modeling populations as continuous numerical 706 

variables).  The total inoculum is constrained using a linear inequality argument such that the sum 707 

of all initial conditions did not exceed 0.02 (F. prausnitzii was fixed at 0.01; the sum of the other 708 
nine species was constrained to below 0.01).  The high inoculum level for each species was 709 

solved for by fixing all other species’ initial conditions at the maximum diversity solution (center 710 

point), then finding the initial condition for that species which yielded a 3.3-fold higher steady state 711 
abundance than the center point condition.  Specifically, “fmincon” was called to minimize the 712 

squared error between the simulation and 3.3 times the steady state abundance of that specie’s 713 
maximum diversity solution as a function of that species initial condition.  This was iteratively 714 
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performed to find all species’ “high” initial condition levels for the experimental design.  The low 715 
levels were set symmetrically to the “high” levels in log space, (e.g. the center point was multiplied 716 

and divided by the same x-fold factor), such that a CSLE simulation of the experimental design 717 
conditions predicted maximum diversity at the center point, and an approximate a 10-fold range 718 

of steady state abundances of each species occurred between “high” and “low” design levels.  719 

This approach accounts for the fact that a species with a very fast exponential growth rate will 720 
likely need a much larger perturbation (in comparison to a species with a low exponential growth 721 

rate) to its initial condition to achieve a similar change in the endpoint growth. 722 

   723 

Community inoculum density experiments 724 

Experimental designs were arrayed with a Tecan Evoware liquid handling robot.  Before 725 
inoculation, precultures were centrifuged at 4000 rpm, 7.5 minutes in a Sorvall ST 16R centrifuge 726 

(Thermo Scientific).  Anaerobically, the supernatant was decanted, the pellet was dry-vortexed, 727 
and resuspended in fresh optimized medium using a serological pipette (Drummond).  Two 24-728 
well blocks were used to array various densities of the precultures.  The top row contained a high-729 

density preculture, the second row contained a mid-density preculture, and the third row contained 730 
a low-density preculture.  The concentration of the high-density preculture well for each species 731 
was calculated by finding the number of ten-fold dilutions of the measured preculture OD which 732 
resulted in the smallest inoculation volume greater than 7 uL.  In other words, we calculated the 733 

lowest volume that can be accurately pipetted by the robot to inoculate the deep well block to its 734 
target “high” experimental level.  For example, if species A grew to a preculture OD of .2 and was 735 
to be inoculated to a target “high” level of .0001 in a volume of 700 uL, then the high-density 736 

preculture well would contain a hundred-fold dilution of the preculture (.002 OD600), such that 737 
“high” experimental condition would be inoculated with V = .0001 OD * 700 uL / (.002) =  35 uL.  738 

This strategy was implemented because any volume less than 7 uL could not be pipetted 739 

accurately, while larger inoculum volumes would quickly accumulate and result in a scenario 740 
where the sum of all species’ inoculum volumes exceeds the target culture volume.  The “mid” 741 

and “low” preculture wells were filled by diluting the “high” preculture well by the same x-fold ratio 742 

of the high to center point design levels (and equivalently the ratio between the center point and 743 
low levels).  Two serial dilutions at this ratio were performed from high to mid, and mid to low 744 

preculture wells for each species, such that each specie’s high, center point, and low design levels 745 

were inoculated with a constant volume from the high, mid, and low preculture wells, respectively.  746 
A 200 uL aliquot of the inoculated deep well block was transferred to a 200 uL microplate, covered 747 

with a breathable seal, and incubated in the Tecan F200 plater reader at 37C.  Labware and 748 
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culture conditions were consistent between monospecies and coculture, as it should be noted 749 
that differences in labware geometries, particularly surface to volume ratios, can affect anaerobic 750 

microbial growth dynamics.  Optical density measurements were recorded at 28 +/- 1 hour in the 751 
platereader. 150 uL of the endpoint culture was transferred to a sterile 1mL deep well block and 752 

centrifuged at 2400xg for 10 minutes.  The supernatant was removed, and the pellet was stored 753 

at -80c.  20 uL of the supernatant was used to measure pH using a spectrophotometric phenol 754 
red assay, as described in Clark 202125.   755 

 756 

Design of subsequent inoculum experiments 757 

Linear regression was used to fit polynomial models (equation 11) to predict each specie’s 758 

community abundance from the inoculum design matrix, using the nested cross validation 759 
approach detailed in the media design methods section.   760 

 761 

𝐼𝑛𝑜𝑐𝑢𝑙𝑢𝑚	𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛	𝑀𝑜𝑑𝑒𝑙𝑠	(𝐼𝑅) ∶	762 
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𝑋> − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟𝑠	(𝑑𝑒𝑠𝑖𝑔𝑛𝑒𝑑	𝑖𝑛𝑜𝑐𝑢𝑙𝑢𝑚	𝑣𝑎𝑙𝑢𝑒𝑠) 766 

𝛽/0.2. −𝑚𝑎𝑖𝑛	𝑒𝑓𝑓𝑒𝑐𝑡𝑠	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 767 

𝛽/
4.2. − 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐	𝑚𝑎𝑖𝑛	𝑒𝑓𝑓𝑒𝑐𝑡𝑠	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 768 

𝛽*6.7.5 − 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 769 

 770 

 771 
The inoculum design matrix was log10 transformed to scale the values prior to fitting.  The models 772 

trained on cycles 1+2 community data were evaluated on withheld test data (5 of 59 total 773 
conditions) to demonstrate predictivity of the approach (Fig 3B).  Replicates were averaged prior 774 

to fitting to avoid biasing test/validation data with conditions contained in training data.  Validation 775 

predictions and Pearson correlation coefficients for both cycles’ models are shown in 776 
supplemental materials.  Models that were deemed predictive were used in a multi-objective 777 

optimization problem (equation 12, details in following paragraph) to predict an updated center 778 
point for the new experimental design.  Any desired target composition (not only even endpoint, 779 

i.e. maximum diversity) can be designed with this approach by updating this target vector with the 780 

desired endpoint abundances.  Species whose models were not deemed predictive were adjusted 781 
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using a rational “frameshift” strategy (a graphical representation is provided in supplemental 782 
figures).  The “frameshift” involves selection of new design level absolute setpoints as follows: if 783 

a species overgrew (saturated response) in the previous experiment, the new center point level 784 
is set at the previous low level.  If a species undergrew (non-measurable or very low growth in 785 

comparison to other species), its updated center point inoculum level is set at the previous “high” 786 

level.  These new center point levels were thus equivalent to the extrema of the previous design 787 
space, and could be used as inputs to the regression models (without forcing the models to 788 

extrapolate beyond the bounds of training data).  We note that the DTL process could probably 789 

be carried out using only the “frameshift” strategy to approach a design goal.  The magnitude of 790 

the levels (x-fold of center point) were maintained between cycles one and two, unless the total 791 

range between high and low exceeded two orders of magnitude, in which case it was constrained 792 
to two orders of magnitude.  In cycle three, the experimental design was modified to a twelve-run 793 

Placket-Burman screening with center point, with levels set at two-fold above and below center 794 
point.  This adjustment of the levels initially informed by the CSLE model (cycle 1 levels) is a 795 
qualitative decision that reflects the purpose of the designs.  Cycle one had large magnitude levels 796 

because it was meant to explore a large design space.  Cycle two levels were constrained to two 797 
orders of magnitude or less to balance searching the design space with the probability of finding 798 
a high diversity condition.  Cycle three levels were constrained to only two-fold because the 799 
purpose of the design was to demonstrate the robustness of a high confidence prediction to small 800 

variations, rather than to explore the design space and gather data for further model training.   801 
A constrained multi-objective optimization problem was solved to minimize the error 802 

between target abundances and regression model predictions.  This objective function is a more 803 

strict definition of maximizing Shannon diversity at a particular total species abundance, and was 804 
chosen because maximizing the Shannon diversity can return very low total growth solutions.  805 

Additionally, it is also a more flexible approach, as it allows the user to define an exact target 806 

community composition.  We targeted an even endpoint abundance for each organism of 807 
magnitude (average community OD) / (# of species), where the average community OD was the 808 

average endpoint OD across all the conditions of the previous experiment.   809 

 810 
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 815 
Passaging experiments  816 

A serial subculture is performed by mixing well and diluting 20 uL of the endpoint community 817 
culture into 500 uL of fresh medium (25-fold v/v).  The new culture is then aliquoted (200 uL) into 818 

a microplate and incubated as previously described.  This process was performed three times for 819 

the first inoculum design (DLT cycle 1) and once for DTL cycle 2.  The data is available in 820 
supplemental materials.     821 

 822 

Generalized Lotka-Volterra model training and validation 823 

The parameters of a generalized Lotka-Volterra (gLV) model were fit to monoculture timeseries 824 

data and 10-member community initial and stationary phase data.   825 
 826 
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 833 
 834 
The training data additionally included three passages of the first inoculum screening and one 835 
passage of the third, passaging method is described in the previous paragraph.  The passages 836 

were treated as independent experiments with initial conditions calculated from the previous 837 

culture’s endpoint abundances divided by the 25 (corresponding to the volumetric dilution 838 
performed to inoculate).  The gLV model was fit to experimental data using MATLAB’s “fmincon” 839 

solver to minimize a cost function as a function of the model parameter values.  The cost function 840 
consisted of the sum of squared errors between the model predictions and data, with an L1 841 

regularization penalty to minimize overfitting, as previously described28.  The upper bounds for 842 

growth rate terms 𝜇!, self interaction terms 𝑎!!, and interspecies interaction terms 𝑎!",!G", were 3, 843 

10, and 0, respectively.  The lower bounds for these quantities were 0, -10, and -10, respectively.  844 
Self-interaction terms must be non-positive and growth rate terms must be non-negative to avoid 845 

divergence and maintain biological meaning.  The “MaxFunctionEvaluation” and “MaxIterations” 846 
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arguments for “fmincon” were both set to “Inf” via the “optimoptions” function to allow the solver 847 
sufficient time to converge.  The solver was initialized with the monoculture growth rates, 848 

monoculture derived self-interaction terms, and zeros as respective initial guesses for the gLV 849 
growth rates, gLV self-interaction terms, and gLV interspecies interaction terms.  Zero is a logical 850 

initial guess for unknown parameters subject to L1 regularization, which pushes poorly 851 

constrained parameters towards zero.  The community data was randomly partitioned into test 852 
and training+validation datasets consisting of 10% and 90% of the data, respectively, using 853 

MATLAB’s “randsample” function.  Monoculture data was not included in validation or test sets 854 

because it is collected at high-resolution time intervals, and thus not as strong of a challenge to 855 

the model’s predictivity as community data.  The regularization coefficient was found by scanning 856 

a logarithmic range of values and identifying the value that corresponded to the lowest averaged 857 
sum of squared errors across out-of-fold predictions (5-fold cross validation, training+validation 858 

data partitioned using MATLAB’s “crossvalind” function).  A best-fit parameter set was then re-859 
fitted to the training+validation dataset using the identified regularization coefficient.  The model 860 
was evaluated for predictivity on the randomly withheld test data.  The parameter value heatmap, 861 

histogram and, predicted vs. measured scatter plot are shown in supplemental materials Fig S10.   862 
 863 
Design of temporal variability in subcommunities 864 
The best-fit gLV model was used to design communities with low temporal variability over the 865 

course of four simulated passages.  For all 967 possible 3-to-9-member subcommunities (i.e. sum 866 
of 10 choose k for k=3 to 9), a constrained optimization problem was solved to minimize an 867 
objective function as a function of the initial conditions of the species present in the subcommunity.   868 
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Species absence in subcommunities were simulated by forcing both upper and lower bounds of 879 
the omitted species’ population sizes to zero.  Initial condition solutions were bounded between 880 

zero and 0.01 simulated OD600 for species present in a subcommunity.    The endpoint 881 
compositions of resulting from all initial condition solutions were sorted into unique results using 882 

MATLAB’s “uniquetol” function (within a numerical tolerance of 0.05 for each species).  Nine of 883 

these communities were chosen for experimental validation on the qualitative criteria of having all 884 
species present in the set of subcommunities.  These nine communities were of size 2-4 885 

members.  As a comparison, we designed four-member high temporal variability subcommunities 886 

by maximizing the product, rather than the ratio, of the diversity and distance terms in equation 887 

15.  The nine low temporal variability subcommunities and three high temporal subcommunities 888 

were inoculated at densities according to the computational predictions.  These inoculum 889 
conditions spanned orders of magnitude with no symmetry between conditions.  The following 890 

strategy was used to inoculate these conditions: an “inoculum” 96-well 2mL deep well block was 891 
prepared in which each species’ preculture material was diluted to 0.1 in row one.  Tenfold serial 892 
dilutions were then performed such that preculture material was available for pipetting at a range 893 

of .1 to 10-5 OD600.  The liquid handling robot was assigned to aspirate from whichever well would 894 
result in the smallest aspiration volume greater than 7 uL, for each species in each condition.  The 895 
culture was incubated, passaged, and sampled as previously described.   896 
 897 

Data Exclusion 898 
The following replicates were omitted from NGS analysis due to cross-contamination of >1% of 899 
total reads and/or low total sequencing reads <10% of average: Fig S14d.i passage 2 replicate 1 900 

and passage 4 replicate 3, Fig S14d.vi replicate 2 passages 2-4. The following growth curve 901 
replicates were omitted from logistic analysis in Fig. 1b due to lack of growth or suspected 902 

contamination, using a z-score threshold of 1.5: BH M5 r1, BH M8 r4, BL M9 r4, BU M3 r1, CA 903 

M1 r1, EL M1 r1, ER M1 r1, ER M2 r1, ER M3 r1, FP M3 r4, FP M6 r1, and PC M8 r4. In total, 12 904 
of the 360 replicates across 10 species, 9 media, and 4 replicates were omitted, no more than 905 

one replicate was omitted per species/media condition.   906 
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Data Availability  907 
The processed sequencing data and raw optical density data for all experiments are deposited in 908 

a Github Repository (https://github.com/bryceconnors/DesignOfCommunityDiversity), which will 909 
be made public upon publication. Raw DNA sequencing data will be made available via Zenodo 910 

prior to publication. 911 

 912 
Code Availability 913 

Code will be available from GitHub upon publication 914 

(https://github.com/bryceconnors/DesignOfCommunityDiversity). Data analysis scripts utilize 915 

MATLAB R2020a. Python 3 is used for processing sequencing data. In brief, the data and 916 

analyses are organized into sub-folders corresponding to each experiment, each of which 917 
contains a ReadMe file. Analysis scripts are contained in "modeling" sub-folders, and load raw or 918 

processed data from the "rawData" sub-folders. The "02_ReadMe" file contains instructions for 919 
navigating to sections of scripts that produce the plots in the figure panels. 920 
  921 
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