
Figure 8: Our results show some overlap but some differences with those of Coinfinder when run on the same
clonal complex (CC1). (A) Significant coevolution score network, with score cutoff at the 97.3rd percentile.
(B) Coinfinder network, with the p-value of the interaction as a proxy for interaction strength, and the
phylogenetic signal score D reported as node size (largest is more phylogenetically independent). Node color
corresponds to component in the coevolution-score network (A). Nodes in (B) that are not in (A) are labeled
as component 0.
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show much weaker interaction. One potential explanation could involve a linkage of cadmium resistance to348

survival in wastewater as a transmission mechanism [Amirsoleimani et al., 2021, e.g.].349

One major question about the mechanism of genetic interaction that is generally difficult to achieve350

without extremely thorough genome assembly annotation is the distinction between interactions between351

linked genes—which would imply a single gain/loss event—versus interactions due to unlinked genes, which352

would imply multiple gain/loss events. Outside of analyzing known operons, this distinction is impossible to353

properly interrogate in most cases without comparing the specific alignment of each genome simultaneously,354

which is intractable for large datasets. For unlinked genes, a major question is if there is a consistent order355

in which the gain/loss events occur within a pair of interacting genes. For instance, among genes that356

interact with antibiotic resistance genes, we would expect potentiating genes or mutations to tend to be357

acquired before the resistance gene, and compensatory genes or mutations to be acquired after. While we358

cannot address this question with our pair-based approach, it may be possible to extend it by using local359

phylogenies to infer the order of gains and losses.360

The Staphopia database is compiled from public data; sampling biases in these data will therefore be361

preserved in Staphopia. One major such bias is the overabundance of MRSA (methicillin-resistant) vs.362

MSSA (methicillin-sensitive) strains due to the important clinical relevance of certain MRSA strains. This363

bias could potentially inflate the importance of the SCCmec cassette. Two aspects of our method can364

mitigate this bias. First, by downweighting bushes by their size, we avoid the score being dominated by365

a recent well-sampled branch of the tree. Second, by splitting up some of our analyses by clonal complex366

and then tracking interactions that occur consistently across clonal complexes, we mitigate effects of uneven367

sampling in clonal complexes. The only true solution to this bias, however, would be to design studies that368

deeply sampled genomes in a way that somehow reflected the underlying population structure of S. aureus369

and reduced biases away from strains with particular antibiotic resistance and virulence characteristics. The370

problem with this solution is that we do not know the actual underlying population structure, so perhaps371

more scattershot metagenomic sampling will provide an alternative set of differently-biased samples for372

comparison.373

A major limitation of compiling and analyzing genomic data from multiple sources is inconsistencies374

with gene annotation. Potentially incomplete, ambiguous, or mismatched annotation reduces the power of375

methods like the one presented here to detect interactions, and we see that it can also produce spurious376

interactions. However, it is worth noting that one of the advantages of a database like Staphopia in the first377

place is more consistent annotation, with genomes annotated at the same time using the same software or378

database. In this work, we limited ourselves to only those genes that were annotated in Staphopia by way of379

being assigned a “name” in the standard sense (like “mecA”). This technique is effective at quickly obtaining380

broad-scale results, but analyses on a finer scale would require additional steps to mitigate this limitation.381

The ability to discover and investigate interactions between genes in bacteria will only increase with the382

increase in the accessibility of large amounts of data provided by databases such as Staphopia. With more383

data, we may be able to discover more interactions with smaller signals, or interactions that are strong but384

rare. We constructed our method specifically to be able to keep up with this progress. Methods such as385

ours, coupled with databases such as Staphopia, will allow both the study of broad-scale patterns of bacterial386

evolution as well as providing more focused results for future study.387
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A Sample sizes for each clonal complex.488

Figure S1 displays the sample sizes for each clonal complex in this dataset, both prior to and after removal489

of samples that were identical across both the core genome and in accessory gene presence/absence.490
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Figure S1: The total number of public samples per clonal complex in Staphopia (“Full”), as well as the total
number of samples obtained after removing samples that were identical across both the core genome and
accessory gene presence/absence (“Distinct”).

B Distance scales and number of close pairs for each clonal com-491

plex492

For our data, the individual clonal complexes varied as to the scale of divergence they comprised. Table S1493

displays the distance cutoffs and number of close pairs used in our analyses of individual clonal complexes.494

Figure S2 displays the pairwise distance distributions for all distinct samples in each clonal complex,495

along with the distances cutoffs from Table S1.496

C Statistical test for significance497

Because the coevolution score only records events that affirmatively contribute, it is possible for pairs of genes498

that individually vary frequently across the set of samples to accumulate a substantial score by chance. To test499
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Clonal Complex Distance Cutoff No. Close Pairs

CC97 4.98 × 10−5 5125
CC93 3.84 × 10−5 4847
CC15 2.13 × 10−5 4368
CC1 9.96 × 10−6 4211
CC45 8.54 × 10−6 4177
CC30 1.42 × 10−6 3566
CC5 0 4397
CC8 0 5000
CC22 0 5000

Table S1: Core genome distance cutoffs and number of close pairs for each clonal complex. For CC8 and
CC22, the close pairs were downsampled to reach the target number of 5000 due to the fact that there were
more than 5000 pairs of samples that were identical in the core genome. Distances are fraction of divergent
bases in the core genome.
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Figure S2: Pairwise nucleotide divergence in the core genome of Staphopia samples, where all zero values
were excluded. (A) Linear divergence scale. (B) Log divergence scale. Distance cutoffs used to find close
pairs are given by vertical dashed lines.

for this, for each gene in each clonal complex, we first compute the number of presence/absence discordances500

that gene has across all close pairs. Then, for each pair of genes, we use Fisher’s Exact Test to see if the501

number of joint discordances (i.e. if both genes are discordant for the same close pair) is significantly greater502

than would be expected by chance. We use the most conservative multiple testing correction (the Bonferroni503

correction) with α = 0.05 to obtain significant interactions.504

D Score vs. correlation for all clonal complexes505

Figure S3 displays coevolution score vs. correlation for each clonal complex. The patterns seen in Figure 3506

are consistent across the clonal complexes.507
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Figure S3: Coevolution score vs. correlation for each clonal complex. The sign of the score indicates its
polarity. The color of a hexagonal bin represents the log of the number of data points in that bin. The
coevolution score highlights only a small fraction of the highly correlated pairs of genes, as well as some pairs
that do not have a high overall correlation.

E Positive Bias when close pairs are not all disjoint508

If close pairs share samples between them, they are no longer independent. This effect is particularly strong509

in bushes, where each sample is in n close pairs, where n is the size of the bush. This dependence may affect510

the balance of positive and negative polarities among the scores. To properly estimate whether or not genetic511

interactions are biased towards positive association, we must correct for potential positive bias due to this512

dependence. We correct for this bias by (for the purposes of this portion of the analysis only) re-computing513

the coevolution score using only disjoint sets of close pairs, so that no close pair shares a sample with another514

close pair.515

To create sets of independent close pairs for the purposes of detecting the prevalence of positive inter-516

actions, we randomly chose one representative close pair for each bush, computed the scores across those517

selected disjoint sets of close pairs, and repeated that process 100 times. We then noted for each gene pair if518

its positive score was bigger than its negative score more often across these 100 replicates. If so, that inter-519

action was labeled “positive”. We fit a Bernoulli distribution to the distribution of these positive labels. The520

probability parameter of this distribution represents the probability that a particular interaction is positive.521

F Example phylogenetic tree for CC97522

Figure S4 displays the phylogenetic tree for CC1, the clonal complex with the largest sample size in Staphopia.523

The bushy structure is clearly seen, with the vast majority of samples belonging to a handful of very-recently-524

diverged bushes.525

G Gene annotation526

We used the gene names provided by Staphopia for gene annotation. However, due to the fact that Staphopia527

is a collection of publicly-available datasets with no consistent curation, it is possible that a particular gene528

does not have its name category filled out.529

For each gene name in Staphopia, we found the corresponding gene product annotations. The gene530

product is the highest level of annotation for a gene in Staphopia that includes some information about the531

gene itself (other possible annotations are NCBI locus tag and product ID, both of which are narrower). We532

then found all instances of the gene product in Staphopia, and tabulated the number of those instances that533

were unnamed. If there exist unnamed instances of the same gene, and the gene product is known, then534
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Figure S4: The phylogenetic tree of CC97 consists of bushes of very closely-related samples separated by
long branches. This bushy structure makes the specific relationships between samples within a bush subject
to resolution error. Colors distinguish separate bushes for close pairs at distance cutoff 5 × 10−5. Samples
not included in a close pair are not colored.

these instances would appear in this set. Table S2 lists all the genes that have any other instance of their535

gene product that occurs without a name. There are 144 such genes.536

For each gene product in Table S2, we observed the distribution of lengths of all genes corresponding to537

that product, separated by name. If the distribution of gene lengths with no name clearly matched that of538

a named gene, we renamed the genes with no name after that name. The genes affected by this were: add,539

ahs2, AHS2, alr, apbC, arcB, aspC, blaR1, chrR, coa, hadL, hmrA, hyuA, lytA, map, metN, polA, prfC,540

radC, sdrD, sdrE, sph, strH, ugl, yidD, ykuR, and yoaB. This adjustment is likely to turn absences into541

presences, which means genes that may have had substantial positive and negative relationships may find542

the negative relationships spurious due to lack of annotation.543

In addition, if the length distribution of a gene product subsumed that for a named gene, we added that544

gene product to our list of “genes” in order to make sure we do not miss a gene due to poor annotation. The545

genes affected by these were: atsA, chuR, dctP, dld, hysA, int, nhaC, paaK, relA, sotB, tadA, tagE, tetR,546

traA, and ybgI. These adjustments do not affect results for the named genes, but introduce additional tests547

of association with the corresponding gene products.548

Table S2: All named genes whose products also corresponded to
unnamed genes in Staphopia. Note that the “%2C”s are present
in the database text.

Gene Product Total Unnamed

abcA ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
add Adenosine deaminase 1033 3
aes Alpha/beta hydrolase fold-3 domain-containing protein 128698 42846
ahs2 allophanate hydrolase subunit 2 85882 42904
AHS2 allophanate hydrolase subunit 2 85882 42904
aldH putative aldehyde dehydrogenase 85931 43004
alr Alanine racemase 3 1
ami N-acetylmuramoyl-L-alanine amidase 119954 85755
ansA Alpha/beta hydrolase fold-3 domain-containing protein 128698 42846
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Table S2: All named genes whose products also corresponded to
unnamed genes in Staphopia. Note that the “%2C”s are present
in the database text.

Gene Product Total Unnamed

apbC Iron-sulfur cluster carrier protein 3 2
appD oligopeptide ABC transporter ATP-binding protein 9603 4605
arcB Delta(1)-pyrroline-2-carboxylate reductase 3 1
aspC Aspartate aminotransferase 41 3
atsA Arylsulfatase 50 49
bglG BglG family transcriptional antiterminator 44432 43442
blaR1 beta-lactamase regulatory protein 38829 26408
bsmA Glycine/sarcosine N-methyltransferase 626 625
butA putative short chain dehydrogenase 86973 44009
chrR Chromate reductase 104 11
chuR Anaerobic sulfatase-maturating enzyme 10 8
clpP ATP-dependent Clp protease proteolytic subunit 73025 29964
coa staphylocoagulase 35495 10470
comC Type 4 prepilin-like proteins leader peptide-processing enzyme 42580 42577
cycA D-serine/D-alanine/glycine transporter 17083 17082
czrB cation diffusion facilitator family transporter 86086 42959
dctP Solute-binding protein 110 72
dld D-lactate dehydrogenase 42906 42899
efb fibrinogen-binding protein 78059 35499
fccA Fumarate reductase flavoprotein subunit 21 2
fhuB iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C membrane protein 182954 42935
frdA Fumarate reductase flavoprotein subunit 21 2
gcvH glycine cleavage system H protein 85666 42761
gerCC iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C membrane protein 182954 42935
glcT transcriptional antiterminator 89456 46399
glgA Glycogen synthase 74 56
glnR MerR family transcriptional regulator 175151 132241
glpQ glycerophosphoryl diester phosphodiesterase 85818 42940
glxK glycerate kinase 85911 42896
graR winged helix family two component transcriptional regulator 267914 47894
gtfA Sucrose phosphorylase 4 2
hadL (S)-2-haloacid dehalogenase 46 42
hisC histidinol-phosphate aminotransferase 86012 42888
hmrA peptidase%2C M20/M25/M40 family 86273 43131
hsdR type-I restriction-modification system restriction endonuclease subunit 44955 1690
hssR winged helix family two component transcriptional regulator 267914 47894
hssS integral membrane sensor signal transduction histidine kinase 220005 48252
htsC iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C membrane protein 182954 42935
hysA hyaluronate lyase 2 55143 11133
hyuA D-hydantoinase 7 2
ifcA Fumarate reductase flavoprotein subunit 21 2
int pathogenicity island protein%2C integrase 72059 62243
kdpE winged helix family two component transcriptional regulator 267914 47894
ldhA D-lactate dehydrogenase 42906 42899
lpd Dihydrolipoyl dehydrogenase 18 13
lpdG Dihydrolipoyl dehydrogenase 18 13
lpl1 staphylococcal tandem lipoprotein 363146 136451
lpl2 staphylococcal tandem lipoprotein 363146 136451
lpl3 staphylococcal tandem lipoprotein 363146 136451
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Table S2: All named genes whose products also corresponded to
unnamed genes in Staphopia. Note that the “%2C”s are present
in the database text.

Gene Product Total Unnamed

lplA1 lipoyltransferase and lipoate-protein ligase 85755 42945
lplA2 lipoate-protein ligase A family protein 85770 42843
lysP APC family amino acid-polyamine-organocation transporter 300245 257410
lytA Autolysin 22 3
map major histocompatibility complex class II analog protein%2C Map 42741 9248
metB bifunctional cystathionine gamma-lyase/gamma-synthase 129631 86040
metN DL-methionine transporter ATP-binding subunit 86036 42939
mntA ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
mntB ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
mntC ABC superfamily ATP binding cassette transporter%2C binding protein 302216 259195
mreB ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
msrR cell envelope transcriptional attenuator 129179 86248
nhaC putative Na+/H+ antiporter 43441 642
nrdG anaerobic ribonucleoside-triphosphate reductase activating protein 85471 42678
nuc thermonuclease precursor family protein 45215 3403
nudC NADH pyrophosphatase 42926 42896
opp-1B oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
opp-1C oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
opp-1D oligopeptide ABC superfamily ATP binding cassette transporter%2C ABC protein 191127 77985
opp-1F ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
opp-2B oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
opp-2C oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
oppB oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
oppC oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
oppD oligopeptide ABC superfamily ATP binding cassette transporter%2C ABC protein 191127 77985
oppF oligopeptide ABC superfamily ATP binding cassette transporter%2C ABC protein 191127 77985
paaK Phenylacetate-coenzyme A ligase 5 4
pacL Calcium-transporting ATPase 9 5
pbp2 glycosyl transferase family protein 218553 132538
pemK PemK-like growth inhibitor protein 2395 484
polA DNA-directed DNA polymerase I 42990 6760
potB binding-protein-dependent transport system inner membrane protein 214672 128793
potC binding-protein-dependent transport system inner membrane protein 214672 128793
prfC peptide chain release factor 3 42967 13177
radC DNA repair protein RadC 32602 3
recQ ATP-dependent DNA helicase 86539 43013
relA GTP pyrophosphokinase 85947 85945
rimL GNAT family acetyltransferase 365821 322862
saeR winged helix family two component transcriptional regulator 267914 47894
saeS integral membrane sensor signal transduction histidine kinase 220005 48252
sarA staphylococcal accessory regulator family protein 86280 647
sarV staphylococcal accessory regulator family protein 86280 647
sbnD MFS family major facilitator transporter 195311 152543
sdrD Ser-Asp rich fibrinogen/bone sialoprotein-binding protein SdrD 33598 18226
sdrE Ser-Asp rich fibrinogen/bone sialoprotein-binding protein SdrE 52391 37588
set12 superantigen-like protein 409945 236718
set15 superantigen-like protein 409945 236718
set6 superantigen-like protein 409945 236718
set7 superantigen-like protein 409945 236718
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Table S2: All named genes whose products also corresponded to
unnamed genes in Staphopia. Note that the “%2C”s are present
in the database text.

Gene Product Total Unnamed

set8 superantigen-like protein 409945 236718
sirA iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C binding protein 85726 43011
sirB iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C membrane protein 182954 42935
sotB sugar efflux transporter 40197 40192
sph Oleate hydratase 3 1
sqr Sulfide-quinone reductase 11 5
srrA winged helix family two component transcriptional regulator 267914 47894
srrB integral membrane sensor signal transduction histidine kinase 220005 48252
ssb ssDNA-binding protein 65729 16557
ssb Single-stranded DNA-binding protein 76 69
sspB glycoside hydrolase family protein 116907 74125
stbD addiction module antitoxin%2C Axe family 71619 37920
strH Beta-N-acetylhexosaminidase 57 40
sufB ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
sufC ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
sufD ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
tadA tRNA-specific adenosine deaminase 42952 42951
tagE Poly(glycerol-phosphate) alpha-glucosyltransferase 42959 42958
tagG teichoic acid ABC superfamily ATP binding cassette transporter%2C membrane protein 85904 42835
tetR TetR family transcriptional regulator 150900 95994
traA Pilin 4 3
trxA thioredoxin 174163 128683
ugl Unsaturated chondroitin disaccharide hydrolase 93 8
ushA 5’-nucleotidase 42977 4
uvrC glycosyl transferase family protein 218553 132538
vraS integral membrane sensor signal transduction histidine kinase 220005 48252
yacO TrmH family RNA methyltransferase 86100 43140
ybgI GTP cyclohydrolase 1 type 2 7 6
yfbB acyl-CoA thioester hydrolase 86121 42955
yggX putative Fe(2+)-trafficking protein 2 1
yidD Putative membrane protein insertion efficiency factor 42893 42532
ykoC ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
ykoD ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
ykuR N-acetyldiaminopimelate deacetylase 9 5
yloB Calcium-transporting ATPase 9 5
yoaB Calcium-transporting ATPase 1 14 11
yqfL Putative pyruvate%2C phosphate dikinase regulatory protein 43157 3

H Coevolution score does not systematically depend on the choice549

of distance cutoff550

To study how the choice of distance cutoff affected the coevolution score, we computed the coevolution score551

for each clonal complex for each gene pair across a range of distance cutoffs, chosen such that for each clonal552

complex separately, the number of close pairs used ranged from 1000 to 10,000 in intervals of 1000. We chose553

the distance cutoff that results from using 5000 close pairs for Table S1.554

Figure S5 displays the scores as a function of distance cutoff for clonal complex CC15. The scores for555

23

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2022. ; https://doi.org/10.1101/2022.03.14.484367doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484367
http://creativecommons.org/licenses/by-nc-nd/4.0/


individual gene interactions are connected by lines. While specific rank order may change, in general, the556

large scores remain large and the small scores remain small across the range of distance cutoffs. The distance557

cutoff we have chosen may be conservative by this analysis.558
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Figure S5: The choice of the distance cutoff does not systematically affect the coevolution score, and the
highest scores remain high across a wide range of cutoffs. For gene pairs whose maximum score across these
cutoffs is at least 3, points that correspond to the same gene pair are connected by lines. All other gene
pairs are represented in the hexagonal heatmap. The dashed line depicts the cutoff for 5000 close pairs used.
These gene pairs are from clonal complex CC15.

I Full-dataset analysis559

Because scales of divergence vary dramatically between clonal complexes (Figure S2), simply choosing a560

single distance cutoff using all nonredundant samples from the dataset will bias the set of chosen samples561

towards dramatic overrepresentation of some clonal complexes but not others. Choosing a larger distance562

cutoff leads to a more representative sample (Figure S6).563

On the other hand, choosing a larger distance threshold results in an enormous number of close pairs564

that render the procedure to compute coevolution scores computationally intensive. To combat this problem,565

we chose a compromise distance threshold of 0.0005 (vertical line in Figure S6). In choosing this distance566

threshold, we did not consider CC5, CC8, or CC22; these clonal complexes had many samples that were567

identical in the core sequence. For the other clonal complexes, we found that there were approximately 18568

million close pairs at this distance cutoff, resulting in approximately 1.8 million per clonal complex. For569

CC5, CC8, and CC22, we randomly sampled 1.8 million close pairs each from the set of close pairs that were570

below the distance cutoff, resulting in a total of approximately 23.4 million close pairs. From this total set571

of close pairs, we randomly sampled 40,000 to serve as our set of close pairs for the full dataset analysis.572
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Figure S6: Choosing a core-genome distance cutoff across the whole Staphopia dataset overrepresents some
clonal complexes and underrepresents others. The y-axis represents the ratio of the fraction of samples
in each clonal complex below the corresponding distance cutoff to the fraction of samples in each clonal
complex in the whole dataset. Excluded from this set of clonal complexes are CC5, CC8, and CC22, which
have substantial numbers of samples that are identical in the core genome. The vertical line represents the
distance cutoff chosen for the full dataset analysis.
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