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Abstract12

Bacterial genomes exhibit widespread horizontal gene transfer, resulting in highly variable genome content13

that complicates the inference of genetic interactions. In this study, we develop a method for detecting14

coevolving genes from large datasets of bacterial genomes that we call a “coevolution score”. The method15

is based on pairwise comparisons of closely related individuals, analogous to a pedigree study in eukaryotic16

populations. This approach avoids the need for an accurate phylogenetic tree and allows very large datasets17

to be analyzed for signatures of recent coevolution. We apply our method to all of the more than 3 million18

pairs of genes from the entire annotated Staphylococcus aureus accessory genome of 2,756 annotated genes19

using a database of over 40,000 whole genomes. We find many pairs of genes that that appear to be gained20

or lost in a coordinated manner, as well as pairs where the gain of one gene is associated with the loss of the21

other. These pairs form networks of dozens of rapidly coevolving genes, primarily consisting of genes involved22

in metal resistance, virulence, mechanisms of horizontal gene transfer, and antibiotic resistance, particularly23

the SCCmec complex. Our results reflect the fact that the evolution of many bacterial pathogens since24

the middle of the twentieth century has largely been driven by antibiotic resistance gene gain, and in the25

case of S. aureus the SCCmec complex is the most prominent of these elements driving the evolution of26

resistance. The frequent coincidence of these gene gain or loss events suggests that S. aureus switch between27

antibiotic-resistant niches and antibiotic-susceptible ones. While we focus on gene gain and loss, our method28

can also detect genes which tend to acquire substitutions in tandem or, in datasets that include phenotypic29

information, genotype-phenotype or phenotype-phenotype coevolution.30

Introduction31

Interactions between genes are a major part of evolution, but they are fundamentally difficult to study due32

to the combinatorial explosion of the number of possible interactions [Phillips, 2008, Mackay, 2014]. In33

bacteria, widespread horizontal gene transfer creates a much wider range of potential genetic backgrounds34

and genetic interactions [Arnold et al., 2018]. Detecting gene-gene interactions without performing large35

numbers of assays requires the development of computational techniques that can handle the necessary36

volume of genomic data to find signatures in natural genetic diversity.37

Methods for finding interactions at the level of genes generally perform Genome-Wide Association Studies38

(or GWAS) to detect relationships between genes and phenotypes. This approach has been widely used in39

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2022. ; https://doi.org/10.1101/2022.03.14.484367doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484367
http://creativecommons.org/licenses/by-nc-nd/4.0/


human populations, and while there have been successes (the first of which was Klein et al. [2005]; see Welter40

et al. [2014]), GWAS inference in humans is often complicated by the existence of population structure—41

systematic differences in allele frequencies among subgroups in a population [e.g. Pritchard and Donnelly,42

2001, Barton et al., 2019]. This is even more of a problem in bacterial populations, which often have43

stronger population structure due to their limited and biased recombination [Read and Massey, 2014, Chen44

and Shapiro, 2015, Power et al., 2017].45

There are several existing approaches to detect genotype-phenotype associations in bacteria, the earliest46

of which are reviewed in Read and Massey [2014]. The software PLINK [Purcell et al., 2007], which is47

frequently used in human GWAS studies, has also been applied to bacterial datasets [Chewapreecha et al.,48

2014, Laabei et al., 2014, Power et al., 2016]. Approaches developed specifically for bacteria include those49

based on regression [Lees et al., 2016, Earle et al., 2016, Lees et al., 2018, Saber and Shapiro, 2020] and those50

based on phylogenetic convergence [Chen and Shapiro, 2015]. Techniques that explicitly take phylogenetic51

information into account fare better in highly clonal bacterial systems [Earle et al., 2016, Saber and Shapiro,52

2020].53

Methods that use phylogenetic convergence are based on homoplasic events on a phylogeny. The package54

hogwash [Saund and Snitkin, 2020] implements two methods based on ancestral state reconstruction: phyC55

(introduced by Farhat et al. [2013]) and a more stringent method that was introduced by Hall [2014]. The56

package treeWAS [Collins and Didelot, 2018] pairs ancestral state reconstruction with simulation given a57

homoplasy distribution to compute three different tests of association: one that is only uses leaf data and58

is equivalent to the method proposed by Sheppard et al. [2013], one that is equivalent to phyC [Farhat59

et al., 2013], and one that is novel and takes into account co-occurance times along the tree. Finally, Scoary60

[Brynildsrud et al., 2016], uses the method of pairwise comparisons [Maddison, 2000] to find the minimum61

number of necessary independent co-emergences of two genes given a phylogeny and evaluates association62

based on this number. These methods are generally computationally demanding, and indeed were left out63

of a recent simulation study comparing various bacterial GWAS techniques precisely for this reason [Saber64

and Shapiro, 2020].65

While in principle all current published GWAS-style methods could be used to broadly detect gene-66

gene interactions (by treating the presence or absence of a gene as a “phenotype”), they are in general67

not built for comparing multiple sets of genes against each other simultaneously and running them for68

pairwise comparisons of large numbers of genes becomes prohibitively slow. (For instance, it would take69

treeWAS about 1,200 hours to run on a dataset of the size we consider if split the gene pairs into 5 batches.)70

Another approach is to specifically design methods for detecting interactions between genes via co-occurrence.71

Pantagruel [Lassalle et al., 2019] estimates gene trees and evaluates the co-incidence of events on gene trees72

under a species tree. CoPAP [Cohen et al., 2012, 2013] simulates gain and loss events for pairs of genes73

along a phylogeny under various coevolutionary models. Liu et al. [2018] use a maximum likelihood method74

developed by Pagel [1994] to identify genes that have related gain and loss patterns. Most of these approaches75

use specified evolutionary models, which can become unwieldy over large datasets as tree size grows. The76

recent method Coinfinder [Whelan et al., 2020] avoids using a full phylogenetic simulation or likelihood77

analysis by computing the existing phylogenetic statistic of lineage independence D [Fritz and Purvis, 2010]78

along with a simple statistic of co-incidence to determine putative gene-gene interactions.79

Here, we introduce a new method for finding associations between genes in bacterial populations, specif-80

ically tailored to accommodate datasets with greater than 1,000 samples, by sidestepping a full phylogenetic81

analysis entirely. This method, which we call DeCoTUR (Detecting Coevolving Traits Using Relatives), is82

based on the idea that the clearest signal of biological association is that closely related individuals will83

differ in their gene presence-absence states in the same way. In our approach, we first identify pairs of closely84

related individuals. We then find pairs of genes for which, when one gene is gained or lost between a pair of85

closely related individuals, the other gene is frequently gained or lost as well. We apply our method to the86

Staphopia database [Petit III and Read, 2018]—which contains over 40,000 publicly available Staphylococcus87

aureus genomes—to detect correlated gain and loss between pairs of accessory genes. The number of such co-88

incident gain/loss events determines a gene pair’s “coevolution score”. We test for interactions by comparing89

this coevolution score to what would be expected if the two genes were gained and lost independently. With90

this method, we find interactions between genes involved in a wide variety of functions, including antibiotic91

resistance, virulence, pathogenicity, phage interactions, mobile genetic elements, and others. The majority of92

these interactions are positive associations, i.e., pairs of genes that are gained and lost together, rather than93
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substituting for each other. The bias towards positive interactions as well as many of the specific interacting94

pairs are consistent across genetic backgrounds. We find many interactions between closely linked genes that95

are likely co-transferred, particularly among genes related to antibiotic resistance. We also find interactions96

between genes that are not closely linked, especially among genes related to virulence. The coevolution of97

these pairs is likely to involve multiple transfer events and be driven by epistasis or correlated selection across98

environments. Finally, we introduce the R package decotur that allows the computation of our coevolution99

score.100

Methods101

Data102

We downloaded all public samples from the Staphopia database [Petit III and Read, 2018], for a total of103

42,949 samples. We used the core genome of shared genes determined by Petit III and Read [2018] to104

compute nucleotide divergences between the samples and we removed 10,308 samples that were identical in105

core genome sequence and accessory genome composition to at least one other sample. We used each sample’s106

multi-locus sequence type (MLST, provided by Staphopia) and the publicly-available pubMLST database107

(https://pubmlst.org/saureus/) to determine its clonal complex (CC). We then performed all subsequent108

gene-interaction analyses on each clonal complex separately to study the effect of different backgrounds109

on associations, as well as a combined analysis using a subset of samples from all clonal complexes (see110

Appendix I for details). We also computed coevolution scores among antibiotic resistance phenotypes across111

the whole database obtained from ARIBA predictions [Hunt et al., 2017] in Staphopia.112

Of the 42,949 public samples in Staphopia, 612 had a sequence type of 0 and were unable to be mapped113

to a clonal complex. These sequences were added into a “Other” category, along with all sequences that114

had a known sequence type but no assigned clonal complex. See Figure S1 for sample sizes for each clonal115

complex.116

Finding close pairs of individuals117

We determined closely-related (i.e. “close”) pairs of samples based on the distribution of distances in a118

pairwise distance matrix—computed using Hamming distances on the concatenated core genome—of all119

considered samples. This procedure requires a choice of distance cutoff, with pairs of samples whose pairwise120

distance is below this cutoff are considered to be “close”. In principle, this cutoff can be tuned to whatever121

scale is of interest, or to match the number of close pairs to the available computational power. We chose122

cutoffs that resulted in (approximately) 5,000 close pairs for each clonal complex (Table S1) after a pre-123

liminary analysis that demonstrated that this number was within a range that yielded relatively consistent124

results across different cutoffs (Figure S5).125

Filtering genes126

For each analysis, we only include genes which have at least two of the less frequent state (presence or127

absence) in the set of samples used in close pairs. These are the only genes with sufficient presence-absence128

polymorphism to potentially show a signal of coevolution.129

Additionally, previous work has found that the splitting up of gene families dilutes the signal of genetic130

association with antibiotic resistance phentoypes [Wheeler et al., 2019], and we attempted to mitigate this131

problem by considering gene “presence” to be the presence of at least one annotation with a particular gene132

name. For example, in CC1, the gene mecA is present in 730 samples out of 1995. In 729 out of those 730133

samples, it is present in a single copy, but one sample has two copies. For the purposes of this analysis, we134

treat those two copies as a single “presence” of mecA for that sample.135

Computing the coevolution score136

Here we will outline how we test for coevolution between a specific pair of genes, gene 1 and gene 2. To137

compute the coevolution score, we test each pair of closely related individuals i and j for evidence of138
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coevolution. Most pairs of close relatives will necessarily be uninformative: for each gene, they will either139

both have the gene or both lack it, simply by virtue of being closely related. But for genes that are frequently140

gained and lost, there will be some pairs of close relatives that differ in the focal genes, and these are the141

pairs that can contribute to the score. Let Pn,k be an indicator variable for the presence of gene n in142

individual k, e.g., P1,i = 1 if individual i has gene 1 and 0 otherwise. If one individual has both genes and143

the other individual has neither, i.e., (P1,i, P1,j , P2,i, P2,j) = (1, 0, 1, 0) or (0, 1, 0, 1), then we add +1 to the144

score representing a positive association between the genes. Conversely, if one individual has only one gene145

and the other individual has only the other, i.e., (P1,i, P1,j , P2,i, P2,j) = (1, 0, 0, 1) or (0, 1, 1, 0), then we add146

+1 to the score representing a negative association between the genes. We compute two separate scores, one147

for each of these two types of associations. Figure 1 provides an example situation which illustrates how the148

score focuses on recent co-incident evolutionary events (represented by the red samples in Figure 1), while149

omitting older evolutionary events.150

Gene 1 Gene 2A Gene 1 Gene 2B

Figure 1: Two examples of the coevolution score computation for a pair of genes (left and right trees in
each panel). (A) an example with all disjoint close pairs. (B) An example with an unresolved polytomy
“bush,” in which all individuals present are close pairs with each other. The vertical dashed lines indicate
the distance cutoffs used to determine close pairs. Filled squares indicate presence of a gene, empty squares
indicate its absence. Dashed boxes indicate individuals that are in close pairs with each other. In both (A)
and (B), there is exactly one close pair of individuals (in red) that is polymorphic for both genes, indicating
recent gain/loss, so only that close pair contributes to the score. The genes differ in the same way (the top
red individual has neither gene, the bottom red individual has both), so this contributes to the positive score
for the gene pair. In (A), the single close pair contributes a value of 1 to the positive score. In (B), this close
pair is part of a bush of

(
4
2

)
= 6 close pairs, so it contributes only 1

6 to the positive score. The more ancient
event that produced the difference between the top clade (where both genes are present in all individuals)
and the bottom clade (where both genes are mostly absent) does not contribute to the score. Note that our
method does not actually use the trees, only which pairs of individuals are closely related.

The phylogenies of clonal complexes in S. aureus often feature multiple clusters of extremely closely151

related individuals that form “bushes” in which it is difficult to tell which samples are most closely related152

(see Figure S4), and for which the specific tree structure may not be difficult to infer accurately. Rather153

than trying to resolve these bushes, we adjust the value of the contribution for each close pair based on the154

size of the bush it comes from. Specifically, we partition all the samples into groups where two samples are155

in the same group if they form a close pair. If pair k is in a group with nk total pairs, then we divide the156

contribution of that pair to the score by nk. In other words, the maximum total contribution of each bush157

to the score is 1. This is a very conservative estimate of the amount of coevolution in bushes; it treats a158

bush as if it were an unresolved polytomy and ignores any tree structure inside the bush that may otherwise159

indicate a coevolutionary signal. In Figure 1B, there are three bushes, two of size 2 and one of size 4. Only160

the size 4 bush contributes to the score, and the contribution to the score of that bush is 1/6, as one of161
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the six close pairs in that bush (the red pair) contains a pattern that contributes to the score. Contrast162

this to the situation in Figure 1A, in which the only bush that contributes to the score is of size 2, so its163

contribution is 1.164

Because our method is based on genetic diversity, it necessarily has the most power to detect coevolution165

among genes that are at intermediate frequencies. But because we focus on recent/ongoing evolution, the166

power to detect coevolution does not just depend only on the frequency of a gene in the sample, but also167

on its distribution. For genes that are essentially exclusively clonally inherited and whose polymorphism168

corresponds to a deep split in the phylogeny, we do not expect to find a signal, while we have the most power169

to detect coevolution among genes that are frequently lost or gained via horizontal gene transfer and widely170

distributed among clades.171

Genes that are frequently gained and lost can purely by chance generate a nonzero score. To test for this,172

we found the total number of discordances between close pairs for each gene. We then used Fisher’s Exact173

Test to determine if polarized discordances (i.e. discordances that contribute to the positive or negative174

score) are enriched in any given pair of genes. Pairs of genes that meet a Bonferroni-corrected significance175

cutoff in this test were kept as statistically significant. Around 33% of our nonzero scores for each clonal176

complex (166,443 out of 497,772) had a Bonferroni-corrected p-value < 0.05. See Appendix C for details.177

This approach is somewhat liberal, as for a given distance cutoff, some close pairs of individuals will have178

a genetic distance close to the cutoff and therefore be more likely just by chance to differ at both genes179

than pairs of individuals that are much closer. In practice, however, we use very tight distance cutoffs180

so that there is limited variation in genetic distances among close pairs, and we expect this effect to be181

minor. In datasets with more variation in genetic distance among close pairs, one could use a slightly more182

sophisticated approach by calculating the rates of gene gain and loss relative to the core mutation rate and183

use that to determine statistical significance.184

To construct interaction networks such as those in Figures 2 and 6, we chose a coevolution score threshold;185

if two genes have a score above this threshold, we drew a link between them with the weight being the score.186

These score thresholds were chosen primarily for visualization purposes, but they were always chosen from187

the extreme high end of the score distribution.188

Detecting positive bias189

In the absence of bushes, we have equal power to detect both polarities. But the presence of bushes leads to190

a bias towards inferring positive interactions (see Appendix E). This bias generally only affects gene pairs191

with significant contributions from both positive and negative interactions, but to measure the overall distri-192

bution of positive and negative interactions—including small ones—we eliminated the bushes by randomly193

subsampling a single close pair from each bush and computing the score using only those close pairs, and194

then repeated this process 100 times to achieve 100 independent replicates for the same gene pair. A positive195

interaction has more positive scores than negative scores across these replicates; a negative interaction has196

fewer. We then used the resulting distribution of positive and negative interactions to infer the probability197

of positive polarity in Figure 4 (see Appendix E for details).198

Results199

Gene-gene interactions range from individual operons to complex webs200

Throughout all clonal complexes, we consistently find some of the strongest signals of coevolution among201

genes related to resistance to antibiotics and metals; mobile genetic elements; and genes that influence202

virulence and toxicity, by e.g. producing a toxin, being involved in biofilm formation, or regulation. But203

the coevolution networks also include many genes whose functions do not obviously pertain to any of the204

aforementioned functions. Figure 2 provides an example of such an interaction network obtained from a full-205

dataset analysis, using only interactions in approximately the top 0.01% of scores that passed the significance206

test outlined in Appendix E. The procedure for obtaining this full-dataset analysis is outlined in Appendix I.207

There are five notable large clusters of interactions in Figure 2. The largest contains all of the major208

genes contained in the SCCmec cassette, a non-SCCmec operon that also confers beta-lactam resistance209

(blaZ and blaR1 ), a cadmium resistance operon (cadD and cadX )—reflecting a known plasmid interaction210
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[McCarthy and Lindsay, 2012]—and genes that are involved in plasmid replication (pre, rep, and repA). The211

next largest is a collection of virulence genes, including toxin-producing genes (lukE, lukD, essD, esxD, esaC,212

and esxB), endopeptidases that are regulated by arg (splB/C/E ), and capsule genes (cap8H/I/J/K ). There213

are two other virulence-based clusters, one of which has a negative interaction with norB, which confers214

quinolone resistance. The other virulence-based cluster also contains genes involved in DNA metabolism215

(recT, rusA, and ssb2 ). Finally, the large major cluster contains virulence genes, antibiotic resistance genes,216

and bacteriocin genes (specifically, the lantibiotic nisin). There are also six smaller clusters of genes of217

varying function. These interactions paint a picture of recent genetic coevolution in S. aureus that focuses218

on host-pathogen interaction in all of its many facets.219

We also note that a handful of interactions seen in Figure 2 are artifacts of annotation. In particular,220

spoU and trmH are two names for the same gene. In addition, opp3C and opp3F refer to specific alleles of221

oppC and oppF. The “negative” interactions between spoU and spoU/trmH, opp3C and oppC, and opp3F222

and oppF are all due to the fact that some studies use one name and some studies use another. This223

inconsistency is a challenge for any large-scale analysis of genomic content; fortunately it is frequently easy224

to spot in results like these.225
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Figure 2: Gene-gene coevolution network for the top 65 significant gene pairs in the full dataset, with
nodes colored by gene function, edge color indicating the strength of the inferred interaction, and edge
type indicating the polarity of the interaction. A small handful of kinds of genes that are all frequently
horizontally transferred—primarily relating to resistance, virulence, or gene transfer itself—tend to dominate
the interaction network.

Coevolution score differs substantially from correlation226

An easy-to-compute first pass at attempting to detect genetic interactions is to compute the correlations227

between presence-absence vectors for pairs of genes, without performing any phylogenetic correction. Figure 3228
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Figure 3: (A) Coevolution scores vs. correlation for CC15. The sign of the score indicates its polarity. The
color of a hexagonal bin represents the log of the number of data points in that bin. The coevolution score
highlights only a small fraction of the highly correlated pairs of genes, as well as some pairs that do not
have a high overall correlation. (B) Interactions between a pair of genes come from multiple sample groups,
and different interactions between pairs of genes come from different sample groups. Each x-y coordinate
of this heatmap is a sample pair in CC15. The color of each coordinate corresponds to whether that pair
contributes to a positive association, a negative association, or not at all (either because it is not a close
pair or because it is a close pair but there is no discordance in gene presence/absence). The top part of the
matrix corresponds to the cadD/cadX gene pair, and the bottom part corresponds to the clfB/fnbA gene
pair (labeled in (A)). For both gene pairs, multiple separate groups of closely related individuals contribute
to the coevolution score. Different pairs of individuals contribute to the coevolution scores of the two gene
pairs.

compares our coevolution score with this correlation for each pair of genes for samples in CC15, and Figure S3229

shows this comparison for each clonal complex.230

Overall, there is an association between the two measures, as is to be expected: all gene presence-absence231

configurations that contribute to the coevolution score also contribute to correlation. But the converse is not232

true, and indeed, most highly correlated pairs of genes have modest coevolution scores; in other words, most233

correlation appears to be phylogenetic. Thus, coevolution score can be used to filter out the vast numbers234

of highly correlated gene pairs to focus on the few currently or recently coevolving ones. There are few gene235

pairs that have high coevolution score but low correlation. This is because the coevolution score is driven236

by exceptional events (double gene gains or losses between extremely closely related individuals). Even a237

handful of such events can provide a clear signature of coevolution, while being too rare to produce a strong238

correlation. The fact that these high-score, low-correlation pairs of genes are rare suggests that ancient,239

long-term evolution is concordant with recent, short-term evolution.240

Two high scores in CC15 in Figure 3A are between cadD-cadX, two genes involved in cadmium resistance241

that are found on SCCmec, and between clfB -fnbA, two genes that are involved in cell surface adherence and242

host colonization. We chose these two pairs to compare because they represent a high-score, high-correlation243

pair (cadD/cadX ) and a high-score, low-correlation pair (clfB/fnbA). Figure 3B shows all samples that244

contributed to the scores for each of these pairs. The samples in CC15 are the rows and columns of the245

matrix, and each square represents a pair of samples. Close pairs of samples are shown in the darker gray246

squares and are colored by their contribution to the score. For each of these two pairs of genes, contributions247

come from multiple different groups of close pairs, and these groups contribute different amounts for the248

different interactions.249
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Figure 4: The majority of interactions between coevolving genes are positive. (A) Distribution of positive
and negative associations for each pair of genes in the full dataset analysis. Black dots are the top 50 scores.
(B) Bars show the estimated probability that the interaction between a pair of genes that are strongly
coevolving in the listed clonal complex is positive, i.e., that gain (loss) of one of the genes in the pair is
positively associated with gain (loss) of the other gene (see Methods and Appendix E for details). Error
bars are the standard error of the probability estimate.

.

Our method can detect both positive coevolution (e.g., where the gain of one gene is associated with251

the gain of the other) and negative coevolution (e.g., where the gain of one gene is associated with the252

loss of the other). Because we measure both positive and negative interactions for the same pairs of genes253

separately, we can identify pairs of genes that have strong positive interactions in some parts of the tree254

and strong negative interactions in other parts of the tree. In general, we would expect this effect to occur255

more frequently for larger sampling scales (i.e. multiple clonal complexes or a large clonal complex) and less256

frequently for smaller sampling scales (a single, small clonal complex). Figure 4A shows that in a full-dataset257

analysis, while the strongest interactions are primarily confined to mostly-positive or mostly-negative, there258

are some interactions of notable magnitude with contributions from both. Figure 4B displays the probability259

that an interaction is positive for each clonal complex, correcting for bush-induced positive bias (see Methods260

and Appendix E). We find that positive interactions are significantly more likely than negative interactions261

in all clonal complexes (Figure 4).262

Strong interactions are consistent across backgrounds263

Each clonal complex reflects a different “path” of evolution for S. aureus, potentially facing different envi-264

ronments and different selective pressures. To determine whether the same interactions consistently appear265

across the clonal complexes, we tabulated the number of times each interaction appeared in the top 5% of266

scores for each clonal complex. We then compared the distribution of the number of clonal complexes for267

which each interaction appeared in the top 5% to a null distribution where the top 5% was chosen randomly268

from the set of interactions for each clonal complex independently. This null distribution is a binomial269

distribution with probability 5% conditional on one success.270

Figure 5 plots these two distributions. The observed distribution has many more interactions that are271

strong in > 5 clonal complexes (and fewer that are strong in < 5) than would be expected if the interactions272

were independent across clonal complexes. Thus, strong interactions are more likely to be strong across273

clonal complexes, and so these interactions are consistent across clonal complexes.274

Figure 6 displays the 28 significant interactions that are in the top 5% of scores in at least 7 clonal275

complexes. These interactions can be divided into 8 disjoint groups: the SCCmec cassette, one biofilm-276

related virulence group, two toxin-related virulence groups, one bacteriocin group, one antiseptic resistance277
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Figure 5: There are a substantial number of significant interactions that appear in the majority clonal
complexes at the 95th percentile or higher. This figure plots, per interaction, how many clonal complexes
that interaction is above the 95th percentile in score for that clonal complex against a null distribution that
is binomial with success rate 5%.

group, one beta-lactam and cadmium resistance group, and one group with genes that are involved in various278

DNA activities (replication, recombination, restriction).279

Antibiotic resistance phenotypes fall into two sets of interactions280

Our coevolution score is not restricted to gene presence/absence and can be applied to any binary trait. We281

initially applied the score to SNPs, but found that accessory genes had more interesting evolutionary patterns282

in this dataset. We can also apply our method to binary phenotypes, such as the presence or absence of283

antibiotic resistance. Staphopia predicts antibiotic resistance phenotypes using ARIBA [Hunt et al., 2017].284

For each sample in the full-dataset analysis, we computed coevolution scores for these predicted antibiotic285

resistance phenotypes. Figure 7 displays a heatmap of the significant interactions and significant pairwise286

correlations for these phenotypes. Note the the coevolution scores as scaled so that the highest magnitude287

is one and the lowest magnitude is zero.288

There is a strong positive interaction cluster between both beta-lactam resistance phenotypes, MLS,289

aminoglycoside, trimethoprim, tetracycline, and phenicol resistance. The two strongest interactions are be-290

tween aminoglycoside and MLS resistance and between SCCmec and non-SCCmec beta-lactam resistance.291

Fosfomycin resistance appears to strongly negatively interact with the other resistances. Finally, the remain-292

ing resistance phenotypes form a peripheral, weakly interacting group. These phenotypes are also in general293

much rarer than those in the beta-lactam interaction group, so their signal is limited.294

The high-scoring group also has high correlation, but fosfomycin resistance has a clear negative signal295

with the coevolution score and no clear signal with correlation. Five of the peripheral resistance phenotypes296

are strongly correlated with each other, but have very little signal with the coevolution score.297
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Comparison with Coinfinder298

To compare our method with that of Coinfinder, we ran Coinfinder on CC97. Figure 8 compares an interac-299

tion network produced by Coinfinder with one produced by our method for this clonal complex. One major300

distinction between our method and that of Coinfinder is that we use the genetic distance cutoff as a way301

to avoid having to deal with the phylogeny, whereas Coinfinder handles phylogeny-induced correlations by302

presenting Fritz and Purvis [2010]’s D statistic as metadata for their interaction network. However, the phy-303

logenetic statistic D used by Coinfinder uses some of the same ideas that we use in motivating our score: in304

particular, situations that maximize D (i.e. all sister taxa differ in gene presence/absence) are necessary but305

not sufficient for maximizing our score (which also takes coincident difference between genes into account).306

Our use of the distance cutoff eliminates the major computationally difficult step of Coinfinder—computing307

D for each gene using the whole tree—at the cost of only looking at recent events.308

Figure 8 compares an interaction network obtained using our method with Coinfinder’s default method.309

We used a score cutoff of the 97.3rd percentile to obtain 83 interacting genes, which is close to the 84310

interacting genes obtained by Coinfinder. While there are significant overlaps, implying that some signals311

are detected by both methods, there are also substantial differences in the results of the two methods. In312

particular, both methods detect many of the same genes as interacting, but the underlying network structure313

is very different and communities are not preserved across methods. This lack of coherent community314

structure in Coinfinder may be due to the fact that there is no sense of interaction “weight” (only a p-value),315

and so Coinfinder reports many more interactions that are potentially weak, which would obscure community316

structure in the interaction network.317

Discussion318

We have presented a new method for detecting interactions between genes in large bacterial datasets, using319

pairwise divergence in the core genome to find closely-related pairs of organisms and finding pairs of genes320

that differ within the same close pairs. We applied this method to Staphopia, a dataset of more than 42,000321

genomes of Staphylococcus aureus, to a find a network of accessory genes that are being gained and lost322

together.323

The gene interactions that our method detects present an interconnected picture of various ways in324

which S. aureus interacts with its environment. Along with antibiotic resistance genes, we found substantial325

interaction with genes that promote virulence and pathogenicity—ranging from host colonization to toxin326

production—as well as genes that code for resistance to metals and genes that are involved in plasmid327

replication , bacteriocins, and DNA metabolism. Our results suggest that recent gene-gene coevolution in328

S. aureus is a complex, interconnected web in which horizontal gene transfer allows lineages to rapidly acquire329

a suite of traits involved in pathogenicity, including antibiotic resistance, host colonization, and competition330

with other bacteria.331

The gene interactions we detected were frequently, but not universally, conserved across different clonal332

complexes. The different environments that different clonal complexes have recently encountered may lead333

to differences in the effects of various genes on other genes through different selection pressures and different334

pleiotropic effects. Also, differences in horizontal gene transfer between clonal complexes may have led to335

different opportunities for interaction. Studying the differences in clonal complexes with respect to genetic336

interactions and horizontal gene transfer may reveal important information about recent S. aureus evolution.337

We found that most interactions between pairs of genes are positive, with the presence of one gene338

correlated with the presence of the other, rather than anti-correlated. This is similar to the result found339

by Hall et al. [2021] using a different method (Coinfinder) in a different system (E. coli), suggesting that it340

may be a general pattern. Both of these results support the idea that HGT-based evolution is driven more341

by the collection of genes that work well together as opposed to the sorting of a diverse set of genes that342

are interchangeable. Of course, selection may favor linking such sets of genes into operons, which will then343

facilitate their co-transfer and strengthen the pattern of positive associations.344

One of the more unexpected results we found was cadmium resistance’s frequent strong coevolution345

with antibiotic resistance. It is not obvious why these genes should have such a strong signal across clonal346

complexes, especially considering that there are other genes that are also frequently found in SCCmec that347
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Figure 8: Our results show some overlap but some differences with those of Coinfinder when run on the same
clonal complex (CC1). (A) Significant coevolution score network, with score cutoff at the 97.3rd percentile.
(B) Coinfinder network, with the p-value of the interaction as a proxy for interaction strength, and the
phylogenetic signal score D reported as node size (largest is more phylogenetically independent). Node color
corresponds to component in the coevolution-score network (A). Nodes in (B) that are not in (A) are labeled
as component 0.
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show much weaker interaction. One potential explanation could involve a linkage of cadmium resistance to348

survival in wastewater as a transmission mechanism [Amirsoleimani et al., 2021, e.g.].349

One major question about the mechanism of genetic interaction that is generally difficult to achieve350

without extremely thorough genome assembly annotation is the distinction between interactions between351

linked genes—which would imply a single gain/loss event—versus interactions due to unlinked genes, which352

would imply multiple gain/loss events. Outside of analyzing known operons, this distinction is impossible to353

properly interrogate in most cases without comparing the specific alignment of each genome simultaneously,354

which is intractable for large datasets. For unlinked genes, a major question is if there is a consistent order355

in which the gain/loss events occur within a pair of interacting genes. For instance, among genes that356

interact with antibiotic resistance genes, we would expect potentiating genes or mutations to tend to be357

acquired before the resistance gene, and compensatory genes or mutations to be acquired after. While we358

cannot address this question with our pair-based approach, it may be possible to extend it by using local359

phylogenies to infer the order of gains and losses.360

The Staphopia database is compiled from public data; sampling biases in these data will therefore be361

preserved in Staphopia. One major such bias is the overabundance of MRSA (methicillin-resistant) vs.362

MSSA (methicillin-sensitive) strains due to the important clinical relevance of certain MRSA strains. This363

bias could potentially inflate the importance of the SCCmec cassette. Two aspects of our method can364

mitigate this bias. First, by downweighting bushes by their size, we avoid the score being dominated by365

a recent well-sampled branch of the tree. Second, by splitting up some of our analyses by clonal complex366

and then tracking interactions that occur consistently across clonal complexes, we mitigate effects of uneven367

sampling in clonal complexes. The only true solution to this bias, however, would be to design studies that368

deeply sampled genomes in a way that somehow reflected the underlying population structure of S. aureus369

and reduced biases away from strains with particular antibiotic resistance and virulence characteristics. The370

problem with this solution is that we do not know the actual underlying population structure, so perhaps371

more scattershot metagenomic sampling will provide an alternative set of differently-biased samples for372

comparison.373

A major limitation of compiling and analyzing genomic data from multiple sources is inconsistencies374

with gene annotation. Potentially incomplete, ambiguous, or mismatched annotation reduces the power of375

methods like the one presented here to detect interactions, and we see that it can also produce spurious376

interactions. However, it is worth noting that one of the advantages of a database like Staphopia in the first377

place is more consistent annotation, with genomes annotated at the same time using the same software or378

database. In this work, we limited ourselves to only those genes that were annotated in Staphopia by way of379

being assigned a “name” in the standard sense (like “mecA”). This technique is effective at quickly obtaining380

broad-scale results, but analyses on a finer scale would require additional steps to mitigate this limitation.381

The ability to discover and investigate interactions between genes in bacteria will only increase with the382

increase in the accessibility of large amounts of data provided by databases such as Staphopia. With more383

data, we may be able to discover more interactions with smaller signals, or interactions that are strong but384

rare. We constructed our method specifically to be able to keep up with this progress. Methods such as385

ours, coupled with databases such as Staphopia, will allow both the study of broad-scale patterns of bacterial386

evolution as well as providing more focused results for future study.387
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A Sample sizes for each clonal complex.488

Figure S1 displays the sample sizes for each clonal complex in this dataset, both prior to and after removal489

of samples that were identical across both the core genome and in accessory gene presence/absence.490
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Figure S1: The total number of public samples per clonal complex in Staphopia (“Full”), as well as the total
number of samples obtained after removing samples that were identical across both the core genome and
accessory gene presence/absence (“Distinct”).

B Distance scales and number of close pairs for each clonal com-491

plex492

For our data, the individual clonal complexes varied as to the scale of divergence they comprised. Table S1493

displays the distance cutoffs and number of close pairs used in our analyses of individual clonal complexes.494

Figure S2 displays the pairwise distance distributions for all distinct samples in each clonal complex,495

along with the distances cutoffs from Table S1.496

C Statistical test for significance497

Because the coevolution score only records events that affirmatively contribute, it is possible for pairs of genes498

that individually vary frequently across the set of samples to accumulate a substantial score by chance. To test499
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Clonal Complex Distance Cutoff No. Close Pairs

CC97 4.98 × 10−5 5125
CC93 3.84 × 10−5 4847
CC15 2.13 × 10−5 4368
CC1 9.96 × 10−6 4211
CC45 8.54 × 10−6 4177
CC30 1.42 × 10−6 3566
CC5 0 4397
CC8 0 5000
CC22 0 5000

Table S1: Core genome distance cutoffs and number of close pairs for each clonal complex. For CC8 and
CC22, the close pairs were downsampled to reach the target number of 5000 due to the fact that there were
more than 5000 pairs of samples that were identical in the core genome. Distances are fraction of divergent
bases in the core genome.
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Figure S2: Pairwise nucleotide divergence in the core genome of Staphopia samples, where all zero values
were excluded. (A) Linear divergence scale. (B) Log divergence scale. Distance cutoffs used to find close
pairs are given by vertical dashed lines.

for this, for each gene in each clonal complex, we first compute the number of presence/absence discordances500

that gene has across all close pairs. Then, for each pair of genes, we use Fisher’s Exact Test to see if the501

number of joint discordances (i.e. if both genes are discordant for the same close pair) is significantly greater502

than would be expected by chance. We use the most conservative multiple testing correction (the Bonferroni503

correction) with α = 0.05 to obtain significant interactions.504

D Score vs. correlation for all clonal complexes505

Figure S3 displays coevolution score vs. correlation for each clonal complex. The patterns seen in Figure 3506

are consistent across the clonal complexes.507
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Figure S3: Coevolution score vs. correlation for each clonal complex. The sign of the score indicates its
polarity. The color of a hexagonal bin represents the log of the number of data points in that bin. The
coevolution score highlights only a small fraction of the highly correlated pairs of genes, as well as some pairs
that do not have a high overall correlation.

E Positive Bias when close pairs are not all disjoint508

If close pairs share samples between them, they are no longer independent. This effect is particularly strong509

in bushes, where each sample is in n close pairs, where n is the size of the bush. This dependence may affect510

the balance of positive and negative polarities among the scores. To properly estimate whether or not genetic511

interactions are biased towards positive association, we must correct for potential positive bias due to this512

dependence. We correct for this bias by (for the purposes of this portion of the analysis only) re-computing513

the coevolution score using only disjoint sets of close pairs, so that no close pair shares a sample with another514

close pair.515

To create sets of independent close pairs for the purposes of detecting the prevalence of positive inter-516

actions, we randomly chose one representative close pair for each bush, computed the scores across those517

selected disjoint sets of close pairs, and repeated that process 100 times. We then noted for each gene pair if518

its positive score was bigger than its negative score more often across these 100 replicates. If so, that inter-519

action was labeled “positive”. We fit a Bernoulli distribution to the distribution of these positive labels. The520

probability parameter of this distribution represents the probability that a particular interaction is positive.521

F Example phylogenetic tree for CC97522

Figure S4 displays the phylogenetic tree for CC1, the clonal complex with the largest sample size in Staphopia.523

The bushy structure is clearly seen, with the vast majority of samples belonging to a handful of very-recently-524

diverged bushes.525

G Gene annotation526

We used the gene names provided by Staphopia for gene annotation. However, due to the fact that Staphopia527

is a collection of publicly-available datasets with no consistent curation, it is possible that a particular gene528

does not have its name category filled out.529

For each gene name in Staphopia, we found the corresponding gene product annotations. The gene530

product is the highest level of annotation for a gene in Staphopia that includes some information about the531

gene itself (other possible annotations are NCBI locus tag and product ID, both of which are narrower). We532

then found all instances of the gene product in Staphopia, and tabulated the number of those instances that533

were unnamed. If there exist unnamed instances of the same gene, and the gene product is known, then534
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Figure S4: The phylogenetic tree of CC97 consists of bushes of very closely-related samples separated by
long branches. This bushy structure makes the specific relationships between samples within a bush subject
to resolution error. Colors distinguish separate bushes for close pairs at distance cutoff 5 × 10−5. Samples
not included in a close pair are not colored.

these instances would appear in this set. Table S2 lists all the genes that have any other instance of their535

gene product that occurs without a name. There are 144 such genes.536

For each gene product in Table S2, we observed the distribution of lengths of all genes corresponding to537

that product, separated by name. If the distribution of gene lengths with no name clearly matched that of538

a named gene, we renamed the genes with no name after that name. The genes affected by this were: add,539

ahs2, AHS2, alr, apbC, arcB, aspC, blaR1, chrR, coa, hadL, hmrA, hyuA, lytA, map, metN, polA, prfC,540

radC, sdrD, sdrE, sph, strH, ugl, yidD, ykuR, and yoaB. This adjustment is likely to turn absences into541

presences, which means genes that may have had substantial positive and negative relationships may find542

the negative relationships spurious due to lack of annotation.543

In addition, if the length distribution of a gene product subsumed that for a named gene, we added that544

gene product to our list of “genes” in order to make sure we do not miss a gene due to poor annotation. The545

genes affected by these were: atsA, chuR, dctP, dld, hysA, int, nhaC, paaK, relA, sotB, tadA, tagE, tetR,546

traA, and ybgI. These adjustments do not affect results for the named genes, but introduce additional tests547

of association with the corresponding gene products.548

Table S2: All named genes whose products also corresponded to
unnamed genes in Staphopia. Note that the “%2C”s are present
in the database text.

Gene Product Total Unnamed

abcA ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
add Adenosine deaminase 1033 3
aes Alpha/beta hydrolase fold-3 domain-containing protein 128698 42846
ahs2 allophanate hydrolase subunit 2 85882 42904
AHS2 allophanate hydrolase subunit 2 85882 42904
aldH putative aldehyde dehydrogenase 85931 43004
alr Alanine racemase 3 1
ami N-acetylmuramoyl-L-alanine amidase 119954 85755
ansA Alpha/beta hydrolase fold-3 domain-containing protein 128698 42846
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Table S2: All named genes whose products also corresponded to
unnamed genes in Staphopia. Note that the “%2C”s are present
in the database text.

Gene Product Total Unnamed

apbC Iron-sulfur cluster carrier protein 3 2
appD oligopeptide ABC transporter ATP-binding protein 9603 4605
arcB Delta(1)-pyrroline-2-carboxylate reductase 3 1
aspC Aspartate aminotransferase 41 3
atsA Arylsulfatase 50 49
bglG BglG family transcriptional antiterminator 44432 43442
blaR1 beta-lactamase regulatory protein 38829 26408
bsmA Glycine/sarcosine N-methyltransferase 626 625
butA putative short chain dehydrogenase 86973 44009
chrR Chromate reductase 104 11
chuR Anaerobic sulfatase-maturating enzyme 10 8
clpP ATP-dependent Clp protease proteolytic subunit 73025 29964
coa staphylocoagulase 35495 10470
comC Type 4 prepilin-like proteins leader peptide-processing enzyme 42580 42577
cycA D-serine/D-alanine/glycine transporter 17083 17082
czrB cation diffusion facilitator family transporter 86086 42959
dctP Solute-binding protein 110 72
dld D-lactate dehydrogenase 42906 42899
efb fibrinogen-binding protein 78059 35499
fccA Fumarate reductase flavoprotein subunit 21 2
fhuB iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C membrane protein 182954 42935
frdA Fumarate reductase flavoprotein subunit 21 2
gcvH glycine cleavage system H protein 85666 42761
gerCC iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C membrane protein 182954 42935
glcT transcriptional antiterminator 89456 46399
glgA Glycogen synthase 74 56
glnR MerR family transcriptional regulator 175151 132241
glpQ glycerophosphoryl diester phosphodiesterase 85818 42940
glxK glycerate kinase 85911 42896
graR winged helix family two component transcriptional regulator 267914 47894
gtfA Sucrose phosphorylase 4 2
hadL (S)-2-haloacid dehalogenase 46 42
hisC histidinol-phosphate aminotransferase 86012 42888
hmrA peptidase%2C M20/M25/M40 family 86273 43131
hsdR type-I restriction-modification system restriction endonuclease subunit 44955 1690
hssR winged helix family two component transcriptional regulator 267914 47894
hssS integral membrane sensor signal transduction histidine kinase 220005 48252
htsC iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C membrane protein 182954 42935
hysA hyaluronate lyase 2 55143 11133
hyuA D-hydantoinase 7 2
ifcA Fumarate reductase flavoprotein subunit 21 2
int pathogenicity island protein%2C integrase 72059 62243
kdpE winged helix family two component transcriptional regulator 267914 47894
ldhA D-lactate dehydrogenase 42906 42899
lpd Dihydrolipoyl dehydrogenase 18 13
lpdG Dihydrolipoyl dehydrogenase 18 13
lpl1 staphylococcal tandem lipoprotein 363146 136451
lpl2 staphylococcal tandem lipoprotein 363146 136451
lpl3 staphylococcal tandem lipoprotein 363146 136451
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Table S2: All named genes whose products also corresponded to
unnamed genes in Staphopia. Note that the “%2C”s are present
in the database text.

Gene Product Total Unnamed

lplA1 lipoyltransferase and lipoate-protein ligase 85755 42945
lplA2 lipoate-protein ligase A family protein 85770 42843
lysP APC family amino acid-polyamine-organocation transporter 300245 257410
lytA Autolysin 22 3
map major histocompatibility complex class II analog protein%2C Map 42741 9248
metB bifunctional cystathionine gamma-lyase/gamma-synthase 129631 86040
metN DL-methionine transporter ATP-binding subunit 86036 42939
mntA ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
mntB ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
mntC ABC superfamily ATP binding cassette transporter%2C binding protein 302216 259195
mreB ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
msrR cell envelope transcriptional attenuator 129179 86248
nhaC putative Na+/H+ antiporter 43441 642
nrdG anaerobic ribonucleoside-triphosphate reductase activating protein 85471 42678
nuc thermonuclease precursor family protein 45215 3403
nudC NADH pyrophosphatase 42926 42896
opp-1B oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
opp-1C oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
opp-1D oligopeptide ABC superfamily ATP binding cassette transporter%2C ABC protein 191127 77985
opp-1F ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
opp-2B oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
opp-2C oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
oppB oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
oppC oligopeptide ABC superfamily ATP binding cassette transporter%2C membrane protein 342901 81193
oppD oligopeptide ABC superfamily ATP binding cassette transporter%2C ABC protein 191127 77985
oppF oligopeptide ABC superfamily ATP binding cassette transporter%2C ABC protein 191127 77985
paaK Phenylacetate-coenzyme A ligase 5 4
pacL Calcium-transporting ATPase 9 5
pbp2 glycosyl transferase family protein 218553 132538
pemK PemK-like growth inhibitor protein 2395 484
polA DNA-directed DNA polymerase I 42990 6760
potB binding-protein-dependent transport system inner membrane protein 214672 128793
potC binding-protein-dependent transport system inner membrane protein 214672 128793
prfC peptide chain release factor 3 42967 13177
radC DNA repair protein RadC 32602 3
recQ ATP-dependent DNA helicase 86539 43013
relA GTP pyrophosphokinase 85947 85945
rimL GNAT family acetyltransferase 365821 322862
saeR winged helix family two component transcriptional regulator 267914 47894
saeS integral membrane sensor signal transduction histidine kinase 220005 48252
sarA staphylococcal accessory regulator family protein 86280 647
sarV staphylococcal accessory regulator family protein 86280 647
sbnD MFS family major facilitator transporter 195311 152543
sdrD Ser-Asp rich fibrinogen/bone sialoprotein-binding protein SdrD 33598 18226
sdrE Ser-Asp rich fibrinogen/bone sialoprotein-binding protein SdrE 52391 37588
set12 superantigen-like protein 409945 236718
set15 superantigen-like protein 409945 236718
set6 superantigen-like protein 409945 236718
set7 superantigen-like protein 409945 236718
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Table S2: All named genes whose products also corresponded to
unnamed genes in Staphopia. Note that the “%2C”s are present
in the database text.

Gene Product Total Unnamed

set8 superantigen-like protein 409945 236718
sirA iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C binding protein 85726 43011
sirB iron (Fe3+) ABC superfamily ATP binding cassette transporter%2C membrane protein 182954 42935
sotB sugar efflux transporter 40197 40192
sph Oleate hydratase 3 1
sqr Sulfide-quinone reductase 11 5
srrA winged helix family two component transcriptional regulator 267914 47894
srrB integral membrane sensor signal transduction histidine kinase 220005 48252
ssb ssDNA-binding protein 65729 16557
ssb Single-stranded DNA-binding protein 76 69
sspB glycoside hydrolase family protein 116907 74125
stbD addiction module antitoxin%2C Axe family 71619 37920
strH Beta-N-acetylhexosaminidase 57 40
sufB ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
sufC ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
sufD ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
tadA tRNA-specific adenosine deaminase 42952 42951
tagE Poly(glycerol-phosphate) alpha-glucosyltransferase 42959 42958
tagG teichoic acid ABC superfamily ATP binding cassette transporter%2C membrane protein 85904 42835
tetR TetR family transcriptional regulator 150900 95994
traA Pilin 4 3
trxA thioredoxin 174163 128683
ugl Unsaturated chondroitin disaccharide hydrolase 93 8
ushA 5’-nucleotidase 42977 4
uvrC glycosyl transferase family protein 218553 132538
vraS integral membrane sensor signal transduction histidine kinase 220005 48252
yacO TrmH family RNA methyltransferase 86100 43140
ybgI GTP cyclohydrolase 1 type 2 7 6
yfbB acyl-CoA thioester hydrolase 86121 42955
yggX putative Fe(2+)-trafficking protein 2 1
yidD Putative membrane protein insertion efficiency factor 42893 42532
ykoC ABC superfamily ATP binding cassette transporter%2C membrane protein 512538 298021
ykoD ABC superfamily ATP binding cassette transporter%2C ABC protein 857136 641621
ykuR N-acetyldiaminopimelate deacetylase 9 5
yloB Calcium-transporting ATPase 9 5
yoaB Calcium-transporting ATPase 1 14 11
yqfL Putative pyruvate%2C phosphate dikinase regulatory protein 43157 3

H Coevolution score does not systematically depend on the choice549

of distance cutoff550

To study how the choice of distance cutoff affected the coevolution score, we computed the coevolution score551

for each clonal complex for each gene pair across a range of distance cutoffs, chosen such that for each clonal552

complex separately, the number of close pairs used ranged from 1000 to 10,000 in intervals of 1000. We chose553

the distance cutoff that results from using 5000 close pairs for Table S1.554

Figure S5 displays the scores as a function of distance cutoff for clonal complex CC15. The scores for555
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individual gene interactions are connected by lines. While specific rank order may change, in general, the556

large scores remain large and the small scores remain small across the range of distance cutoffs. The distance557

cutoff we have chosen may be conservative by this analysis.558
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Figure S5: The choice of the distance cutoff does not systematically affect the coevolution score, and the
highest scores remain high across a wide range of cutoffs. For gene pairs whose maximum score across these
cutoffs is at least 3, points that correspond to the same gene pair are connected by lines. All other gene
pairs are represented in the hexagonal heatmap. The dashed line depicts the cutoff for 5000 close pairs used.
These gene pairs are from clonal complex CC15.

I Full-dataset analysis559

Because scales of divergence vary dramatically between clonal complexes (Figure S2), simply choosing a560

single distance cutoff using all nonredundant samples from the dataset will bias the set of chosen samples561

towards dramatic overrepresentation of some clonal complexes but not others. Choosing a larger distance562

cutoff leads to a more representative sample (Figure S6).563

On the other hand, choosing a larger distance threshold results in an enormous number of close pairs564

that render the procedure to compute coevolution scores computationally intensive. To combat this problem,565

we chose a compromise distance threshold of 0.0005 (vertical line in Figure S6). In choosing this distance566

threshold, we did not consider CC5, CC8, or CC22; these clonal complexes had many samples that were567

identical in the core sequence. For the other clonal complexes, we found that there were approximately 18568

million close pairs at this distance cutoff, resulting in approximately 1.8 million per clonal complex. For569

CC5, CC8, and CC22, we randomly sampled 1.8 million close pairs each from the set of close pairs that were570

below the distance cutoff, resulting in a total of approximately 23.4 million close pairs. From this total set571

of close pairs, we randomly sampled 40,000 to serve as our set of close pairs for the full dataset analysis.572
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Figure S6: Choosing a core-genome distance cutoff across the whole Staphopia dataset overrepresents some
clonal complexes and underrepresents others. The y-axis represents the ratio of the fraction of samples
in each clonal complex below the corresponding distance cutoff to the fraction of samples in each clonal
complex in the whole dataset. Excluded from this set of clonal complexes are CC5, CC8, and CC22, which
have substantial numbers of samples that are identical in the core genome. The vertical line represents the
distance cutoff chosen for the full dataset analysis.

25

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 15, 2022. ; https://doi.org/10.1101/2022.03.14.484367doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.14.484367
http://creativecommons.org/licenses/by-nc-nd/4.0/

