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Abstract 26 

Tuberculosis has severe impacts in both humans and animals. Understanding the genetic basis 27 

of survival of both Mycobacterium tuberculosis, the human adapted species, and 28 

Mycobacterium bovis, the animal adapted species is crucial to deciphering the biology of both 29 

pathogens. There are several studies that identify the genes required for survival of M. 30 

tuberculosis in vivo using mouse models, however, there are currently no studies probing the 31 

genetic basis of survival of M. bovis in vivo. In this study we utilise transposon insertion 32 

sequencing in M. bovis to determine the genes required for survival in cattle. We identify 33 

genes encoding established mycobacterial virulence functions such as the ESX-1 secretion 34 

system, PDIM synthesis, mycobactin synthesis and cholesterol catabolism that are required 35 

in vivo. We show that, as in M. tuberculosis, phoPR is required by M. bovis in vivo despite the 36 

known defect in signalling through this system. Comparison to studies performed in glycerol 37 

adapted species such as M. bovis BCG and M. tuberculosis suggests that there are differences 38 

in the requirement for genes involved in cholesterol import (mce4 operon), oxidation (hsd) 39 

and detoxification (cyp125). We report good correlation with existing mycobacterial virulence 40 

functions, but also find several novel virulence factors, including genes involved in protein 41 

mannosylation, aspartate metabolism and glycerol-phosphate metabolism. These findings 42 

further extend our knowledge of the genetic basis of survival in vivo in bacteria that cause 43 

tuberculosis and provide insight for the development of novel diagnostics and therapeutics.  44 

 45 
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Importance 49 

This is the first report of the genetic requirements of an animal adapted member of the MTBC 50 

in a natural host. M. bovis has devastating impacts in cattle and bovine tuberculosis is a 51 

considerable economic, animal welfare and public health concern. The data highlight the 52 

importance of mycobacterial cholesterol catabolism and identifies several new virulence 53 

factors. Additionally, the work informs the development of novel differential diagnostics and 54 

therapeutics for TB in both human and animal populations.  55 

 56 

Introduction 57 

Bacteria belonging to the Mycobacterium tuberculosis complex (MTBC) have devastating 58 

impacts in both animal and human populations. Mycobacterium bovis, an animal adapted 59 

member of the MTBC and one of the main causative agents of bovine tuberculosis (bTB), 60 

remains endemic in some high-income settings despite the implementation of a test and 61 

slaughter policy. In low- and middle-income settings, the presence of bTB in livestock 62 

combined with the absence of rigorous control measures contributes to the risk of zoonotic 63 

transmission (1, 2). Control measures based on cattle vaccination utilise the live attenuated 64 

vaccine M. bovis BCG but the efficacy of this vaccine still remains low in field situations (3, 4). 65 

In addition to vaccines, the development of diagnostic tools for the identification of infected 66 

individuals is crucial for the management of transmission. Currently, vaccination with M. bovis 67 

BCG sensitises animals to the diagnostic tuberculin skin test, therefore, sensitive and specific 68 

differentiating diagnostic strategies are a current imperative (5, 6).  69 

The increased accessibility of whole genome fitness screens has allowed the assessment of 70 

the impacts of the loss of gene function on bacterial survival (7). Such screens have been 71 
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invaluable in identifying novel drug targets or candidates for the generation of new live 72 

attenuated vaccines in a number of bacterial pathogens, including M. tuberculosis (8–13). 73 

Studies utilising whole genome transposon mutagenesis screens to examine gene fitness in 74 

vivo in M. tuberculosis have been limited to mouse models (8, 9, 13). These models do not 75 

faithfully replicate the granulomatous pathology associated with TB, nor do mice contain the 76 

same repertoire of CD1 molecules expressed by bovine T cells required to present 77 

mycobacterial lipid antigens (14). Whole genome transposon mutagenesis screens utilising 78 

non-human primates are limited because screening is restricted to smaller mutant pools (15). 79 

To date, transposon insertion sequencing (Tn-seq) based studies in the context of bTB in cattle 80 

have only been performed using  M. bovis BCG strains (16, 17). 81 

In this study we use Tn-seq to determine the genes required for survival of M. bovis directly 82 

in cattle. We show that genes involved in the biosynthesis of phthiocerol dimycocerosates 83 

(PDIMs), the ESX-1 secretion system, cholesterol catabolism, and mycobactin biosynthesis are 84 

essential for survival in cattle, corroborating current knowledge of gene essentiality in 85 

members of the MTBC (8, 9, 13, 16, 17). We identify differences in the requirement for genes 86 

involved in cholesterol transport and oxidation in the fully virulent M. bovis strain. We also 87 

identify several novel genes required for survival in vivo that have not been previously 88 

described in members of the MTBC.  89 

 90 

 91 
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Results and Discussion 94 

Generation and sequencing of the input library.  95 

We generated a transposon library in M. bovis AF2122/97 using the MycomarT7 phagemid 96 

system as previously described (18, 19). Sequencing of the input library showed that 97 

transposon insertions were evenly distributed around the genome and 27,751 of the possible 98 

73,536 thymine–adenine dinucleotide (TA) sites contained an insertion representing a 99 

saturation density of ~38% (Supplementary Figure S1 and Supplementary Table S1 -input 100 

library). The M. bovis AF2122/97 genome has 3,989 coding sequences and insertions were 101 

obtained in 3,319 of these, therefore the input library contained insertions in 83% of the total 102 

coding sequences.  103 

 104 

Mycobacterium bovis specific immune responses were observed in cattle  105 

Twenty-four clinically healthy calves of approximately 6 months of age were inoculated with 106 

the library through the endobronchial route. Infection was monitored by IFN-γ release assay 107 

(IGRA) at the time of inoculation and 2 weeks post infection. M. bovis specific immune 108 

responses were observed for all study animals at 2 weeks post infection (Figure 1A and B). 109 

Each animal presented very low background of circulating IFN-γ together with a statistically 110 

significant increase in IFN-γ release in response to PPD-B compared to PPD-A antigens (Figure 111 

1C; *** p ≤ 0.001). This indicates that infection with the library was successfully established 112 

in the cattle.  113 

 114 
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 119 

 120 

Figure 1. bTB specific IFN-gamma release in cattle infected with the M. bovis Tn-library. 121 
Blood was collected from all 24 animals on the day of infection and 2 weeks later. No response 122 
was detected to either PPD-A or PPD-B antigen stimulation prior to infection (Figure 1A and 123 
Figure 1B, week 0). All animals presented a significant and specific response to PPD-B 124 
compared to PPD-A as determined by a paired T-test using GraphPad Prism (Figure 1C). *** 125 
p ≤ 0.001 126 
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Pathology associated with infection was greater in the lung and thoracic lymph nodes 131 

Animals were culled at 6 weeks post infection. Lung sections and upper (head and neck) and 132 

lower (thoracic) respiratory tract associated lymph nodes were examined for gross lesions. 133 

Lesions typical of M. bovis infection were observed in the tissues examined. Pathology scores 134 

are shown in Figure 2A. Greater pathology was observed in lung and thoracic lymph nodes 135 

compared to the head and neck lymph nodes.  136 

 137 

Higher bacterial loads were associated with the lung and thoracic lymph nodes  138 

Bacterial counts were highest in lesions derived from the lung compared to those from the 139 

thoracic lymph nodes and head and neck lymph nodes (Figure 2B). The lowest bacterial counts 140 

were observed within the head and neck lymph nodes. However, this was not significant when 141 

compared to thoracic lymph nodes. The volume of each macerate varied depending on lesion 142 

size. Considering macerate volume, average bacterial loads of 107, 106 and 105 were 143 

recovered from lesions from samples of the lungs, thoracic lymph nodes and head and neck 144 

lymph nodes, respectively. 145 

 146 

 147 
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 153 

 154 

 155 

156 
Figure 2. Tissue pathology and bacterial load in tissue sites. Six weeks after infection 157 
animals were subjected to post-mortem examination. Gross pathology and evidence of TB-158 
like granulomas lesions were scored. Data presented is the mean across animals of the total 159 
scores for each tissue group from 24 animals +/- the standard deviation. Lung and thoracic 160 
lymph nodes were observed to contain the highest pathology compared to head and neck 161 
lymph nodes (Figure 2A). For bacterial load estimation, aliquots of macerates were plated 162 
onto modified 7H11 agar containing kanamycin. Colonies were counted after 3-4 weeks 163 
growth. Data are presented as mean CFU/ml per collected tissue group +/- standard 164 
deviation. Lung tissue contained the highest bacterial burden compared to thoracic and head 165 
and neck lymph nodes as determined by one-way ANOVA analysis using GraphPad Prism 166 
(Figure 2b).  *** p ≤ 0.001, ** p = 0.002, *p=0.01 167 

 168 
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Recovery and sequencing of in vivo selected transposon libraries 171 

In order to recover the Tn library from harvested tissue ~ 105 -106 CFU from lungs and thoracic 172 

lymph nodes were plated onto several 140 mm modified 7H11 plates containing kanamycin 173 

to minimize competition between mutants. Samples from 4 cattle were lost due to fungal 174 

contamination, therefore the samples processed represent samples from 20 cattle. Lung 175 

samples were plated from all 20 animals and thoracic lymph nodes samples were plated from 176 

6 cattle. Bacteria were grown for 4-6 weeks before harvesting for genomic DNA extraction 177 

and subsequent sequencing (see Supplementary Table S1 for assignation of sequencing files 178 

to samples). The diversities of the output libraries were compared to the input library for each 179 

sample (Supplementary Figure S2 and Table S1). On average, libraries recovered from lung 180 

lesions from 20 different cattle contained 14,456 unique mutants and those recovered from 181 

the thoracic lymph nodes contained an average of 16,210 unique mutants. Given that the 182 

input library contained 27,751 unique mutants this represented a loss of diversity of ~ 40-183 

50%. Good coverage of coding sequences (CDSs) was maintained as the output libraries still 184 

contained insertions in (on average) 68-70% of the open reading frames.  185 

Comparison of the read counts between the input and output libraries allowed a 186 

measurement of the impact of the insertion on the survival of mutants in cattle. The results 187 

are represented as a mean log2 fold-change in the output compared with the input for each 188 

gene. The entire dataset is shown in supplementary Table S4 and a volcano plot from the 189 

lungs and thoracic lymph node of two representative animals is shown in Supplementary 190 

Figure S3. Comparison of the mean log2 fold-change between lung and lymph node samples 191 

showed good correlation (Spearman’s rho = 0.88, p-value <2.2e-16) (Supplementary Figure 192 

S4). TRANSIT resampling was performed to compare the composition of the mutant 193 
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population in the lungs and thoracic lymph nodes of paired cattle, it was also applied to 194 

compare all the thoracic lymph nodes with the lungs of all cattle samples. No statistically 195 

significant differences were observed indicating that there were no differences in mutant 196 

composition between the tissue sites.  197 

No insertion mutants were significantly over-represented in the output library in any of the 198 

animals. Although interestingly, insertions in MB0025, a gene that is unique to M. bovis 199 

appeared to improve growth in cattle as mean log2 fold-changes of +3.9 (lungs) and +4.2 200 

(lymph nodes) were observed; however, significance criteria were not met in any of the 201 

animals. In order to define a list of attenuating mutations, we used a similar approach to that 202 

used in a previous study with an M. bovis BCG library in cattle (16). Insertions in genes were 203 

defined as attenuating if they had log2 fold-change of -1.5 or below and an adjusted p-value 204 

of <0.05 in at least half of the animals (Table S4, significant in 50% of cattle tab). When using 205 

these criteria, there were 141 genes where insertions caused significant attenuation in the 206 

lungs or the thoracic lymph nodes, 20 genes that reached significance only in the lungs (shown 207 

in red) and 16 genes that reached significance only in the thoracic lymph nodes (shown in 208 

green). Of the 141 genes, 109 had been previously described as being required in vivo in M. 209 

tuberculosis H37Rv in mouse models through the use of whole genome Tn screens 210 

representing ~77% overlap with the previous literature (8, 9, 13).  211 

 212 

 213 
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Comparison with mutations known to cause attenuation in the MTBC 217 

Insertions in the RD1 encoded ESX-1 type VII secretion system secreting virulence factors and 218 

immunodominant antigens EsxA (CFP-10) and EsxB (ESAT-6) are expected to cause 219 

attenuation (20). The impacts of insertions in this region are summarised in Figure 3 but are 220 

also available in Supplementary Table S4 (RD regions tab) and Supplementary Figure S5. 221 

Insertions in genes encoding the structural components of the apparatus (eccB1, eccCa1, 222 

eccCb1, eccD1) were severely attenuating (log2 fold-change -6 to -9). Insertions in eccA1, 223 

which also codes for a structural component of the apparatus, were less impactful (log2 fold-224 

changes of -2 to -3) despite good insertion saturation in this gene. This is supported by the 225 

work of others who have shown that deletion of eccA1 in Mycobacterium marinum leads to 226 

only a partial secretion defect (21). There were no impacts seen due to insertions in accessory 227 

genes espJ, espK and espH. The lack of attenuation seen in espK mutants is supported by other 228 

studies showing that this gene is dispensable for secretion through the apparatus and is not 229 

required for virulence of M. bovis in guinea pigs (22, 23). Insertions in esxA and esxB resulted 230 

in severe attenuation (log2 fold-change of -6) but this did not reach significance cut-offs (adj. 231 

p=<0.05) in any of the cattle. This is likely to be due to the small number of TAs in these genes 232 

which makes it challenging to measure mutant frequency. 233 

 234 

 235 
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 240 
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 242 

 243 

Figure 3. Fold-changes caused by transposon insertions in the ESX-1 secretion system in the 244 
lungs and lymph nodes of infected cattle. Asterisks indicate that genes had an adjusted p-245 
value of <0.05 in at least half of the animals. The genes are grouped according to function as 246 
indicated by the colour scheme. The log2 fold-change are indicated on a yellow to red scale 247 
and present as a dot in the centre of the gene.  248 
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The highest levels of attenuation seen were in genes involved in the synthesis of the cell wall 253 

virulence lipids PDIMs (ppsABCDE and mas with log2 fold-changes of ~-10 commonly seen). 254 

PDIM synthesis is well known to be required for the survival of M. tuberculosis and M. bovis 255 

in mice and guinea pigs (24, 25). Insertions in genes involved in the synthesis of PDIMs were 256 

the most under-represented (log2 fold-changes of -8 to -10) in the output library (Figure 4, 257 

Supplementary Table S4, mycolipids tab). MmpL7 is involved in PDIM transport and there is 258 

evidence that it is phosphorylated by the serine-threonine kinase PknD (26). PknD-MmpL7 259 

interactions are thought to be perturbed in M. bovis as pknD is split into two coding sequences 260 

in the bovine pathogen by a frameshift mutation (27). The data presented here suggest that 261 

MmpL7 still functions despite the frameshift mutation. 262 

Iron restriction is thought to be a mechanism by which the host responds to mycobacterial 263 

infection, although different cellular compartments may be more restrictive than others (28). 264 

Insertion in many of the genes involved in mycobactin synthesis (Mb2406-Mb2398, mbtJ-265 

mbtH) were attenuating in cattle (Figure 4, Supplementary Table S4, mycobactin synthesis 266 

tab). As mycobactin is required for the acquisition of iron, this confirms that, like other 267 

members of the MTBC, needs to scavenge iron from the host for survival (13, 16).  268 

 269 
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 279 

 280 

Figure 4. Violin plot of normalised log2 fold changes in gene insertions recovered from 281 
bovine lung or thoracic lymph node tissue samples in selected gene groups. Black bars 282 
indicate overall median of normalized log2 fold-change among genes in grouping. White bars 283 
indicate mean log2 fold-change for each gene in the group across all samples in either lung or 284 
lymph node tissue 285 

 286 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.15.484275doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484275
http://creativecommons.org/licenses/by-nc-nd/4.0/


The role of the cholesterol catabolism in M. tuberculosis is well documented and it is required 287 

for both energy generation and manipulation of the immune response (29–31). Cholesterol 288 

uptake is mediated by the Mce4 transporter coded by the mce4 operon Rv3492c-Rv3501c 289 

(Mb3522c-MB3531c) (32, 33). It has been suggested that an alternative cholesterol 290 

acquisition pathway operates in M. bovis BCG Danish as, unlike insertions in genes in the 291 

down-stream catabolic pathway, insertions in the mce4 operon do not result in attenuation 292 

in this strain (16). In contrast, our study shows that cholesterol transport via the Mce4 293 

transporter is required in M. bovis (Figure 4, Supplementary Table S4 -cholesterol catabolism 294 

tab, Figure 5). This corroborates work performed in M. tuberculosis, where Mce4 has been 295 

shown to be required for growth in chronically infected mice (9, 32). Propionyl-coA generated 296 

from the catabolism of cholesterol is toxic and detoxification mechanisms include 297 

incorporation into PDIMs (34, 35). The observation that BCG Danish contains a lower amount 298 

of PDIMs compared to BCG Pasteur (16) suggests a correlation between Mce4 mediated 299 

cholesterol transport and PDIM synthesis and previous studies have demonstrated an 300 

increase in PDIM biosynthesis as a result of mce4 over-expression (36). PDIMs biosynthesis 301 

genes are over-expressed in M. bovis compared to M. tuberculosis (27) and comparison of 302 

our dataset with Tn-seq studies performed in M. tuberculosis (9) indicates an over-reliance of 303 

M. bovis on cholesterol transport through the Mce4 transporter (Figure 5).  304 

 305 

 306 

 307 

 308 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.15.484275doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484275
http://creativecommons.org/licenses/by-nc-nd/4.0/


 309 

Figure 5. Comparison of reported log2 fold-change in M. bovis, M. bovis BCG and Mtb 310 
transposon insertion sequencing experiments for orthologous genes in the cholesterol 311 
catabolic pathway.  Greatest attenuation (most negative log2 fold-change) is coloured by 312 
darkest red. Studies used for comparison include Mendum et al., (24) and Bellarose et al., (9). 313 
Grey bars represent genes for which there is no information as they were either ES or GD in 314 
input library or had less than 5 insertions in any TA site in any sample (input and all output).  315 
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Early stages of cholesterol catabolism involve the oxidation of cholesterol to cholestenone, a 317 

reaction catalysed by the 3β-hydroxysteroid dehydrogenase (hsd) encoded by 318 

Rv1106c/Mb1136c (37). The cytochrome P450 Cyp125 (Mb3575c/Rv3545c) is required for the 319 

subsequent detoxification of cholestenone (38). Insertions in both hsd and cyp125 in M. bovis 320 

were severely attenuating with log2 fold-changes of ~-5 to -7 (Supplementary Table S4 - 321 

cholesterol catabolism tab, Figure 5). Previous studies have shown that these genes are not 322 

required for the survival of M. tuberculosis in macrophages or in guinea pigs and this is 323 

thought to be due to the availability of other carbon sources, including glycolytic substrates, 324 

in vivo (37, 39–43). M. bovis is more restricted in metabolic capabilities and is unable to 325 

generate energy from glycolytic intermediates, largely due to a disrupted pyruvate kinase 326 

encoded by pykA (44, 45). The essentiality of hsd and cyp125 during infection for M. bovis but 327 

not M. tuberculosis supports the hypothesis of an over-reliance of M. bovis on cholesterol. 328 

Given the potential for the use of host cholesterol metabolites as diagnostic biomarkers, this 329 

observation might have applications in the development of differential diagnostics (46). 330 

 331 

Genes that are differentially expressed between Mycobacterium bovis and Mycobacterium 332 

tuberculosis.  333 

Several studies have identified key expression differences between M. bovis and M. 334 

tuberculosis  (27, 47, 48). We examined the dataset for insights on the role of differentially 335 

expressed genes and transcriptional regulators during infection. One important regulatory 336 

system in M. tuberculosis is the two-component regulatory system PhoPR and deletions in 337 

the phoPR genes alongside fadD26 are attenuating mutations in the live vaccine MTBVAC (49–338 

51). Our data show that insertions in both phoPR and fadD26 were severely attenuating with 339 

log2 fold-changes of -6 to -9 (Figure 6, Supplementary Table S4, phoPR regulon tab and 340 
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mycolipids tab). This reinforces the role of this system in virulence, despite the presence of a 341 

single nucleotide polymorphism (SNP) in the sensor kinase phoR that impacts signalling 342 

through the system in M. bovis (52). Signal potentiation via phoR is required for secretion of 343 

ESAT-6 through the ESX-1 secretory system and M. bovis is known to have compensatory 344 

mutations elsewhere in the genome, e.g. in the espACD operon, that restores ESAT-6 345 

secretion in the face of a deficient signalling system (49, 52, 53). Our data also show that Tn 346 

insertions in espA of the espACD operon (required for ESAT-6 secretion) and in mprA, a 347 

transcriptional regulator of that operon (54) were severely attenuating (log2 fold-changes -7 348 

to -9), emphasising the relevance of ESAT-6 as a virulence factor.  349 

Studies comparing differences in expression during in vitro growth between M. bovis and M. 350 

tuberculosis show that genes involved in sulfolipid (SL-1) biosynthesis are expressed at lower 351 

levels in M. bovis compared to M. tuberculosis (27, 47). Interestingly, insertions in genes 352 

involved in SL-1 biosynthesis (Mb3850-Mb3856) are not attenuating in vivo (Supplementary 353 

File S4, mycolipids tab), reinforcing the lack of importance of SL-1 for M. bovis in vivo, at least 354 

at the stages of infection studied here.  355 

One of the most highly attenuating insertions occurred in Mb0222/Rv0216 (log2 fold change 356 

–8 to -9). This gene has been shown to be highly (> 10-fold) over-expressed in M. bovis 357 

compared with M. tuberculosis but the physiological function of this gene is not currently 358 

known. The secreted antigens MPB70 and MPB83, encoded by Mb2900 and Mb2898 are also 359 

over-expressed in M. bovis and play a role in host-specific immune responses, however, 360 

insertions in these genes did not cause attenuation in vivo in our dataset (55). 361 

 362 

 363 
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 378 

Figure 6. Fold-changes caused by transposon insertions in phoP, phoR and fadD26 in the 379 
lungs and lymph nodes of infected cattle. Samples with adjusted p-values (BH-fdr corrected) 380 
< 0.05 are indicated with purple points. 381 
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Novel attenuating mutations 390 

We identified 32 genes that were required for survival of M. bovis in cattle that had not been 391 

previously described as being essential in vivo through transposon mutagenesis screens of M. 392 

tuberculosis in mouse models (8, 9, 13) (see Supplementary Table 4, Significant in 50% of 393 

cattle tab). While writing this publication, a large scale Tn-seq study that utilised over 120 M. 394 

tuberculosis libraries and several diverse mouse genotypes (the collaborative cross mouse 395 

panel (56)) showed that the panel of genes required for the survival of M. tuberculosis in vivo 396 

is much larger than previously reported (57). A direct comparison of our dataset with the 397 

study by Smith et al., revealed that a further 13 genes were shown to be required in at least 398 

one mouse strain in that study. A summary set of the remaining 19 genes is given in 399 

Supplementary Table 4, Not in Mtb Tn-seqs tab. Some of these genes have been shown to be 400 

attenuated in the mouse model in M. tuberculosis through the use of single mutants (58–61).  401 

 402 

Included in this list are genes required for phenolic glycolipid synthesis (Figure 7). Insertions 403 

in Mb2971c/Rv2947c (pks15/1) and in Mb2972c/Rv2948c (fadD22) were attenuating in M. 404 

bovis but these genes are not required in vivo in M. tuberculosis, including in the extended 405 

panel of mouse genotypes (8, 9, 13, 57). Both pks15/1 and fadD22 are involved in the early 406 

stages of synthesis of phenolic glycolipids (PGLs) and are involved in virulence (62). The 407 

requirement for these genes in M. bovis but not in M. tuberculosis is consistent with the 408 

observation that the Tn-seq studies in M. tuberculosis are often carried out using lineage 4 409 

strains (H37Rv and CDC1551) that harbour a frameshift mutation in the pks15/1 gene, which 410 

renders them unable to synthesise PGLs. This removes the requirement for these genes in 411 
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vivo in lineage 4 strains of M. tuberculosis. pks15/1 has been previously reported to be 412 

required for survival of M. bovis in a guinea pig model of infection (63).  413 

 414 

The list also includes genes that are involved in post-translational modifications such as 415 

glycosylation. Rv1002c is thought to add mannose groups to secreted proteins and over-416 

expression of this protein in M. smegmatis was recently shown to enhance survival in vivo 417 

and inhibit pro-inflammatory cytokine production (64). The substrates of this protein 418 

mannosyltransferase are thought to be several secreted lipoproteins, including LpqW which 419 

is involved in the insertion of the virulence lipid LAM at the mycobacterial cell surface (64, 420 

65).  421 

 422 

 423 

 424 

 425 

 426 

 427 

 428 

 429 

 430 

 431 
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 433 

 434 

 435 

 436 

Figure 7. Fold-changes caused by transposon insertions in pks15/1, fadD22, Rv1002c, aspC 437 
and glpD2 in the lungs and lymph nodes of infected cattle. Samples with adjusted p-values 438 
(BH-fdr corrected) < 0.05 are indicated with purple points. 439 
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Finally, this list includes two genes (aspC and glpD2) that are essential in vitro in M. 440 

tuberculosis but not in M. bovis (10, 11, 18, 66). Information regarding aspC and glpD2 from 441 

Tn-seq approaches is likely to be lacking in M. tuberculosis because Tn mutants will not be 442 

represented in the input pool. The absence of insertion mutants in these genes in the most 443 

recent large-scale M. tuberculosis Tn-seq study supports this (57). One of these genes 444 

MB0344c/Rv0337c (aspC) is an aspartate aminotransferase involved in the utilisation of 445 

amino acids (aspartate) as a nitrogen source (67). The other gene Mb3303c/Rv3302c (glpD2) 446 

is a membrane bound glycerol-phosphate dehydrogenase. In Escherichia coli, glpD2 is an 447 

essential enzyme, functioning at the central junction of respiration, glycolysis, and 448 

phospholipid biosynthesis and catalyses the oxidation of dihydroxyacetone phosphate 449 

(DHAP) from glycerol-3-phosphate resulting in the donation of electrons to the electron 450 

transport chain (68). Its essentiality in vitro in M. tuberculosis might be explained by the usage 451 

of glycerol during in vitro growth in this species. The contribution of the membrane bound 452 

glpD2 in donation of electrons to the electron transport chain, has been suggested but not 453 

yet explored in the MTBC (69). Given the interest in the electron transport chain as a 454 

chemotherapeutic target in M. tuberculosis, the data presented here suggests that inhibition 455 

of glpD2 might be a fruitful approach in the development of new drugs for the treatment of 456 

TB in humans (70).  The role of this gene in M. bovis in vivo is perhaps surprising, given the 457 

disruptions in glycerol phosphate uptake and pathways that phosphorylate glycerol in M. 458 

bovis AF2122/97 (71). However, M. tuberculosis is thought to engage in catabolism of 459 

membrane derived glycerophospholipids which may be a potential source of glycerol-3-460 

phosphate in members of the complex (72).  461 

 462 
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Materials and Methods 463 

Bacterial strains and culture methods 464 

M. bovis strain AF2122/97 was maintained on modified Middlebrook 7H11 (BD DifcoTM) 465 

medium (73). Liquid cultures of M. bovis were grown in Middlebrook 7H9 media (BD DifcoTM) 466 

containing 75 mM sodium pyruvate, 0.05% v/v Tween®80 and 10% Middlebrook albumin-467 

dextrose-catalase (ADC) (BBL BD Biosciences). Kanamycin at 25 µg/ml was used for selection 468 

where appropriate.  469 

 470 

Generation of input transposon mutant library and preparation of the inoculum 471 

Transposon libraries in M. bovis were generated as previously described using the 472 

MycomarT7 phagemid system as per Majumdar et al with modifications (19). Approximately 473 

66,000 kanamycin resistant transductants were scraped and homogenised in 7H9 medium 474 

and stored frozen at -80°C in 1 ml aliquots. CFU counting was performed on the homogenised 475 

culture to inform inoculum dosage.  476 

 477 

Cattle Infection  478 

Experiments were carried out according to the UK Animal (Scientific Procedures) Act 1986 479 

under project license PPL70/7737. Ethical permission was obtained from the APHA Animal 480 

Welfare Ethical Review Body (AWERB) (UK Home Office PCD number 70/6905). All animal 481 

infections were carried out within the APHA large animal biocontainment level 3 facility. 482 

Twenty-four Holstein-Friesian crosses of 6 months of age were sourced from an officially TB-483 

free herd. An infectious dose of 7 x 104 CFU was targeted for the “input” library,  allowing 484 
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each mutant to be represented in the library ~ 2.5-fold. Retrospective counting of the 485 

inoculum revealed the actual inoculum for infection contained 4 x 104 CFU. The inoculum was 486 

delivered endobronchially in 2 ml of 7H9 medium. In brief, animals were sedated with xylazine 487 

(Rompun® 2%, Bayer, France) according to the manufacturer’s instructions (0.2 mL/100 kg, IV 488 

route) prior to the insertion of an endoscope through the nasal cavity into the trachea for 489 

delivery of the inoculum through a 1.8 mm internal diameter cannula (Veterinary Endoscopy 490 

Services, U.K.) above the bronchial opening to the cardiac lobe and the main bifurcation 491 

between left and right lobes.  492 

 493 

Infection Monitoring with the IFN-γ release Assay (IGRA) 494 

Blood was collected by jugular venepuncture from animals on the day of the infectious 495 

challenge and two weeks after infection. Heparinized whole blood (250 μl) was incubated 496 

with purified protein derivative (PPD) from M. avium (PPD-A) or PPD from M. bovis (PPD-B) 497 

(Prionics™) respectively at 25 IU and 30 IU final. Pokeweed mitogen was used as the positive 498 

control at 10 µg/mL and a medium-only negative control. After 24 h incubation in 5% (v/v) 499 

CO2, 95% humidity, 37 °C atmosphere bloods were centrifuged (400 × g for 5 min); 120 µl of 500 

supernatant was removed and stored at −80 °C for subsequent IFN-γ quantification using the 501 

BOVIGAM® kit (Prionics™) in accordance with the manufacturer’s instructions. 502 

 503 

Collection of tissues and gross pathology scores  504 

Six weeks after the initial infection animals were subjected to post-mortem examination. 505 

Initially the experiment was designed with two time points; an early time point (6 weeks) and 506 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.15.484275doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484275
http://creativecommons.org/licenses/by-nc-nd/4.0/


a later time point of 8 weeks. However, due to the unexpected high-levels of pathology seen 507 

at the earlier time-points all animals were culled at 6 weeks. Gross pathology and evidence of 508 

TB-like granulomas lesions was scored using a modified methodology to that previously 509 

described in (74). Tissue from head and neck lymph nodes (from the right and left sub-510 

mandibular lymph nodes, the right and left medial retropharyngeal lymph nodes), thoracic 511 

lymph nodes (the right and left bronchial lymph nodes, the cranial tracheobronchial lymph 512 

nodes, the cranial and caudal mediastinal lymph nodes) and from lung lesions, was collected 513 

into sterile containers and frozen at −80 °C until further processing. Frozen tissues were 514 

thawed and homogenised in PBS using a Seward Stomacher Paddle Blender. 515 

 516 

Recovery of the output transposon mutant library from tissues  517 

Tissue macerates collected from study animals were thawed at room temperature, diluted in 518 

PBS and plated on modified 7H11 agar to determine bacterial loads.  Colony counts were 519 

performed after 3-4 weeks growth. For recovery of the library from tissue macerates ~105-520 

106 CFU were plated from lung lesions and thoracic lymph node lesions onto modified 7H11 521 

media containing 25 µg/ml kanamycin.  The colonies were plated over several 140 mm petri 522 

dishes to minimise competition between mutants. The colonies were harvested after 4-6 523 

weeks growth and genomic DNA extracted.  524 

 525 

Genomic DNA extraction 526 

Genomic DNA from the input and recovered libraries was isolated by an extended bead 527 

beating procedure with detergent-based lysis, phenol-chloroform DNA extraction and 528 
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precipitation as previously described (18). DNA quality was assessed by nano-spectrometry 529 

(DeNovix) and gel electrophoresis and quantified by Qubit analysis using the Broad Range 530 

Assay Kit (ThermoScientific). 531 

 532 

Library preparation for transposon directed insertion sequencing 533 

DNA (2 µg) was resuspended in 50 µL distilled water and sheared to approximately 550 bp 534 

fragments using a S220 focussed-ultrasonicator (Covaris), according to the manufacturer’s 535 

protocol. Fragmented DNA was repaired using NEBNext blunt-end repair kit (New England 536 

Biolabs) and purified using Monarch PCR clean-up kit (NEB). Blunted DNA was A-tailed using 537 

NEBNext dA-tailing kit (NEB) and column purified. Custom transposon sequencing adaptors 538 

(Supplementary Table S3) were generated by heating an equimolar mix of Com_AdaptorPt1 539 

primer and Com_AdaptorPt2 (P7+index) primers to 95°C for 5 min, followed by cooling by 1°C 540 

every 40 s to a final temperature of 4°C in a thermocycler. Adaptors were ligated to A-tailed 541 

library fragments using NEBNext quick ligase kit. Transposon-containing fragments were 542 

enriched by PCR using ComP7 primer (10 µM) and an equimolar mix of primers P5-IR2a-d 543 

primer (10 µM) in a reaction with 50 ng of adaptor ligated template and Phusion DNA 544 

polymerase (NEB) in a thermocycler with the following program 98°C 3 min; 4 cycles of 98°C 545 

20s, 70°C 20s, 72°C 1 min; 20 cycles of 98°C 20s, 67°C 20s, 72°C 1 min; 72°C 3 min. Transposon-546 

enriched libraries were subsequently purified with AMPureXP  beads (Beckman), pooled 547 

together and further purified using AMPure XP beads.  548 

 549 

 550 
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Data analysis  551 

Indexed libraries were combined, spiked with 20% PhiX, and sequenced on the Illumina Hiseq 552 

3000 platform, using v2 chemistry, generating single-end reads of 250 bp.  Raw .fastq 553 

sequencing files were analysed for quality and pre-processed using the TRANSIT TPP tool (75) 554 

set to default ‘Sassetti’ protocol, in order to remove transposon tags and adapter sequences, 555 

and to map reads using BWA-mem to TA sites to the M. bovis AF2122/97 genome 556 

(NC_002945.3). The TRANSIT ‘tnseq_stats’ tool was run on each sample to assess insertion 557 

density, skew, kurtosis and potential amplification bias. 558 

The M. bovis AF2122/97 genome was scanned for the non-permissive Himar1 transposon 559 

insertion motif ('SGNTANCS', where S is either G or C and N is any base) as previously 560 

described [10]. 6605 sites were identified as non-permissive (approximately 9% of total TA 561 

sites) and excluded from resampling analysis. A custom annotation, ‘.prot-table’ for TRANSIT, 562 

was created from the M. bovis AF2122/97 annotation file (NCBI Accession Number LT708304, 563 

version LT708304.1).  TRANSIT HMM was run on the input library using the default 564 

normalisation (TTR) with LOESS correction for genomic position bias. Each TA site was 565 

assigned an essentiality state and genes were assigned an essentiality call based on the 566 

assigned state of the TA sites within annotated gene boundaries. 567 

Resampling between the input library and each of the output sample libraries was performed 568 

independently using the TRANSIT resampling algorithm and the complete prot-table. TTR 569 

normalisation was used for 23 of the samples, and betageom normalisation for the three 570 

samples with skew of greater than 50. The initial resampling output files were evaluated to 571 

identify genes with very few, or no, reads at any TA site within the gene boundaries in both 572 

the input library and output sample libraries. Genes with no read counts greater than 4 at any 573 
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TA site, in any sample, and with a sum of all reads at any TA site across the 26 samples less 574 

than 55, were flagged. Essential and unchanged genes were removed from the prot-table 575 

prior to further evaluation. Resampling was further limited to protein-coding genes. 576 

Resampling was re-run for each sample using the attenuated prot-table and an edited 577 

TRANSIT resampling script to return the left-tail p-value, as the data were expected to reflect 578 

attenuation. All p-values were corrected for multiple testing with FDR adjustment. 579 

All analysis and plots were performed using R and R packages, tidyverse and circlize (76–78). 580 

Orthologous TB genes were obtained from supplementary data files published by Malone et 581 

al, 2018 (27). All scripts, prot-tables and insertion files are available at 582 

https://github.com/jenjane118/Mbovis_in-vivo_Tnseq, DOI:10.5281/zenodo.6354151. 583 

Sequencing files (.fastq) are deposited in SRA (Bioproject ID: PRJNA816175, Submission ID: 584 

SUB11067380) 585 
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Figure Legends 887 

Figure 1. bTB specific IFN-gamma release in cattle infected with the M. bovis Tn-library. 888 

Blood was collected from all 24 animals on the day of infection and 2 weeks later. No response 889 

was detected to either PPD-A or PPD-B antigen stimulation prior to infection (Figure 1A and 890 

Figure 1B, week 0). All animals presented a significant and specific response to PPD-B 891 

compared to PPD-A as determined by a paired T-test using GraphPad Prism (Figure 1C). *** 892 

p ≤ 0.001 893 

 894 

Figure 2. Tissue pathology and bacterial load in tissue sites. Six weeks after infection 895 

animals were subjected to post-mortem examination. Gross pathology and evidence of TB-896 

like granulomas lesions were scored. Data presented is the mean across animals of the total 897 

scores for each tissue group from 24 animals +/- the standard deviation. Lung and thoracic 898 

lymph nodes were observed to contain the highest pathology compared to head and neck 899 

lymph nodes (Figure 2A). For bacterial load estimation, aliquots of macerates were plated 900 

onto modified 7H11 agar containing kanamycin. Colonies were counted after 3-4 weeks 901 

growth. Data are presented as mean CFU/ml per collected tissue group +/- standard 902 

deviation. Lung tissue contained the highest bacterial burden compared to thoracic and head 903 

and neck lymph nodes as determined by one-way ANOVA analysis using GraphPad Prism 904 

(Figure 2b).  *** p ≤ 0.001, ** p = 0.002, *p=0.01 905 

 906 

Figure 3. Fold-changes caused by transposon insertions in the ESX-1 secretion system in the 907 

lungs and lymph nodes of infected cattle. Asterisks indicate that genes had an adjusted p-908 
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value of <0.05 in at least half of the animals. The genes are grouped according to function as 909 

indicated by the colour scheme. The log2 fold-change are indicated on a yellow to red scale 910 

and present as a dot in the centre of the gene.    911 

 912 

Figure 4. Violin plot of normalised log2 fold changes in gene insertions recovered from 913 

bovine lung or thoracic lymph node tissue samples in selected gene groups. Black bars 914 

indicate overall median of normalized log2 fold-change among genes in grouping. White bars 915 

indicate mean log2 fold-change for each gene in the group across all samples in either lung or 916 

lymph node tissue 917 

 918 

Figure 5. Comparison of reported log2 fold-change in M. bovis, M. bovis BCG and Mtb 919 

transposon insertion sequencing experiments for orthologous genes in the cholesterol 920 

catabolic pathway.  Greatest attenuation (most negative log2 fold-change) is coloured by 921 

darkest red. Studies used for comparison include Mendum et al., (24) and Bellarose et al., (9). 922 

Grey bars represent genes for which there is no information as they were either ES or GD in 923 

input library or had less than 5 insertions in any TA site in any sample (input and all output).  924 

 925 

Figure 6. Fold-changes caused by transposon insertions in phoP, phoR and fadD26 in the 926 

lungs and lymph nodes of infected cattle. Samples with adjusted p-values (BH-fdr corrected) 927 

< 0.05 are indicated with purple points. 928 

 929 
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