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Abstract 15 

Understanding the size of animals' home ranges is vital for studies in ecology and conservation. Trapping 16 

datasets are an important source of information when targeting the biodiversity of an area, inconspicuous 17 

species, or high numbers of individuals in contrast to more expensive telemetry-based methods such as 18 

radio- or GPS-collaring. Currently, studies relying on trapping lack an evaluation of the performance of 19 

existing home range estimation procedures comparable to those developed for telemetry. Using animal 20 

movement simulations, we evaluate three variables reflecting the trade-offs faced by ecologists when 21 

designing a trapping study, 1) the number of observations obtained per individual, 2) the trap density and 22 

3) the proportion of the home range area falling inside of the trapping grid. We compare the performance 23 

of five estimators on these conditions, four commonly used (AKDE, KDE, MCP, LoCoH) and a possible 24 

alternative for situations with low trap density or high number of observations (bicubic interpolation). We 25 

further test suggested benefits of using asymptotic models (Michaelis-Menten and monomolecular) to 26 

assess the total home range area when information obtained per individual is scarce, as this situation 27 

might be common in trapping datasets. In addition, we propose sorting the observations based on the 28 

distance between locations to improve the performance of asymptotic models’ estimates. Using the 29 

results of the different procedures we constructed a generalized additive model (GAM) that allows 30 

predicting the bias in home range size under the different scenarios investigated. Our results show that 31 

the proportion of the area covered by the trapping grid and the number of observations were the most 32 

important factors predicting the accuracy and reliability of the estimates. The use of asymptotic models 33 

helped obtaining an accurate estimation at lower sample sizes and this effect was further improved by 34 

distance-ordering. The autocorrelation informed KDE was the estimator performing best under most 35 

conditions evaluated. Nevertheless, bicubic interpolation can be an alternative under common trapping 36 

conditions with low density of traps and low area covered. We provide the current results to the 37 

constructed GAM as a prospective tool for ecologists planning a new study or with already collected 38 
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datasets that aim at assessing the potential biases in their estimates. Reliable and accurate home range 39 

estimates using trapping data can optimize monetary costs of home range studies, potentially enlarging 40 

the span of species, researchers and questions studied in ecology and conservation. 41 
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Introduction 43 

Home ranges have been defined as "...the area traversed by the individual in its normal activities of food 44 

gathering, mating, and caring for young" (Burt 1943). The intensity of resource use and competition, the 45 

amount of gene flow, the mating system and social structure, and the spread of information and diseases 46 

might all be inferred through animals’ space use (Mueller and Fagan 2008, Schick et al. 2008, Dammhahn 47 

and Kappeler 2008, Nathan et al. 2008). Knowledge on a species’ use of space is therefore at the core of 48 

understanding biodiversity and design effective conservation measures  (Law and Dickman 1998, Allen 49 

and Singh 2016, Oppel et al. 2018).  50 

Although the ecological definition of the home range is not specific to any data type nor estimator, the 51 

accurate estimation of home ranges is challenged by mismatches between the methods’ assumptions and 52 

the nature of the data collected (Hayne 1949, Andrzejewski 2002, Powell and Mitchell 2012, Noonan et 53 

al. 2019, Wszola et al. 2019, Fleming et al. 2019). During the last century, an extensive body of literature 54 

has been directed to describe and quantify biases arising from methods used (see e.g., Hayne 1949, 1950, 55 

Worton 1989, Harris et al. 1990, Seaman et al. 1999, Andrzejewski 2002, Laver and Kelly 2008, Fleming et 56 

al. 2018, 2019). Comparisons of different estimators for home ranges have suggested strengths of each 57 

under different conditions (e.g., sample size, the time between measurements and autocorrelation) 58 

(Hayne 1949, Van Winkle 1975, Rose 1982, Worton 1987, Plotz et al. 2016, Halbrook and Petach 2018, 59 

Noonan et al. 2019, Vieira et al. 2019). Further spatial and temporal heterogeneities have also been 60 

investigated (e.g., ecotypes, physical boundaries) and shown to have an effect  (Ouellette and Cardille 61 

2011, Halbrook and Petach 2018, Wszola et al. 2019). The (mis)match between weaknesses and strengths 62 

of estimators and data collected is therefore a major potential source of error in home range estimates 63 

that needs to be evaluated (Hayne 1949, Van Winkle 1975, Worton 1989, Seaman et al. 1999, Kie et al. 64 

2010, Powell and Mitchell 2012, Fleming and Calabrese 2017, Halbrook and Petach 2018, Fleming et al. 65 

2019).  66 
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Several authors have suggested that if animals exhibit site fidelity (e.g. Ebersole, 1980; Halbrook & Petach, 67 

2018; Heupel, Simpfendorfer, & Hueter, 2004; Powell, Zimmerman, & Seaman, 1997; Reid & 68 

Weatherhead, 1988; Spencer, Cameron, & Swihart, 1990), the information on space use obtained should 69 

follow a saturation curve (Harris et al. 1990, Haines et al. 2009, Soanes et al. 2013, Leo et al. 2016, 70 

Halbrook and Petach 2018, Wszola et al. 2019). Deviations from this saturation may thus indicate that i) 71 

the animals being monitored are not range-resident (e.g., (Morato et al. 2016)), or ii) the individual has 72 

been monitored for too short of a period for the range-resident behavior to be observable (Fleming et al. 73 

2014). The latter problem represents a key challenge that can bias home range estimates and any 74 

subsequent hypothesis testing, or decision making. Modelling the saturation curve can allow estimating 75 

the true home range even if the information is still incomplete (e.g., (Soanes et al. 2013, Leo et al. 2016, 76 

Halbrook and Petach 2018)), thus offering the possibility of reducing the amount of data needed for 77 

accurate estimates. Nevertheless, most empirical studies do not make use of asymptotic models perhaps 78 

because a thorough examination of the performance of this type of analyses is lacking. 79 

The mentioned limitations and mismatches between the methods used for obtention of information and 80 

description of space use in animals might be even more pronounced in trapping-based studies. While 81 

trapping studies were once predominant in home range estimation (Mohr 1947, Hayne 1949, 82 

Andrzejewski 2002), they have decayed in the last decades in favor of newer, more accurate and reliable 83 

technologies based on radiotracking or GPS (Innes and Skipworth 1983, Ward 1984, Bergstrom 1988, 84 

Ribble et al. 2002, Gil-Sánchez et al. 2011, Kays et al. 2015). Trapping studies suffer most importantly from 85 

extreme uncertainty on the information obtained per individual which usually consists of few observations 86 

(Dammhahn and Kappeler 2005, Lira and Fernandez 2009, Gil-Sánchez et al. 2011, Kane et al. 2015, 87 

Kumbhojkar et al. 2020). Unlike for telemetry data, where temporal autocorrelation is the predominate 88 

source of bias for home range estimation (Noonan et al. 2019, Silva et al. 2022), small sample sizes are a 89 

key consideration. All home range estimators are sensitive to sample size (Schoener 1981, Fleming et al. 90 
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2019). Thus, the reliability of information on home ranges coming from trapping studies is often uncertain 91 

and an evaluation of the necessary conditions for accuracy and reliability are needed. 92 

In addition to the low number of observations, the size of the trapping grid and its emplacement relative 93 

to the center of an individual’s home range can also impact the measurements in trapping studies (Rajska-94 

Jurgiel 2001, Lukacs et al. 2005, Bondrup-Nielsen 2011, Sun et al. 2014). Due to a lack of understanding 95 

on the biases and limitations of carrying home range analyses with trapping data, researchers with 96 

trapping datasets face extreme uncertainty on the error of their estimates and might even dismiss 97 

conducting home range analyses altogether (Fig. 1). This situation can bias the knowledge on movement 98 

ecology to only those species that can be monitored via telemetry. Trapping data harbor enormous 99 

potential for home range analysis due to the range of species that can be studied and the reduced 100 

budgetary constraints. For instance, camera- or live-trapping can be used to study animals that are too 101 

small to carry a telemetry or GPS collar. Moreover, with the average all-in cost of tracking an animal being 102 

ca. $10,000 USD (Thomas et al. 2011), collars are expensive, reducing the number of individuals and 103 

species that can be monitored at a given location. In addition, the costs of telemetry-based methods might 104 

set a boundary to the economic background of institutions or researchers in movement ecology. If 105 

trapping based studies prove more reliable than previously thought they could enlarge the scope of 106 

researchers, species and time of monitoring helping improve general knowledge on movement ecology 107 

essential for fundamental and applied science. 108 

To fill the current gap in knowledge on trapping datasets for home range analyses we conducted a 109 

thorough evaluation of their accuracy under a vast array of conditions in a set of simulations. We 110 

evaluated the performance of five estimators, two kernel based (autocorrelated kernel density estimation 111 

AKDE, and traditional KDE), a polygon-based (minimum convex polygon MCP) and its generalization (local 112 

convex hull LoCoH) and an interpolation-based method (bicubic interpolation BicubIt). Moreover, we 113 
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evaluated the performance of two asymptotic model predictions (Michaelis-Menten MicMen and 114 

Monomolecular MonMol) as they have been suggested to help when information is incomplete, a 115 

common situation for trapping datasets. In addition, we evaluated these asymptotic models on two 116 

conditions for ordering the observations, time-ordered and distance-ordered as we suspected that the 117 

latter could improve their predictions. The combinations of all mentioned variables were evaluated under 118 

three key parameters for designing a trapping study: the trap density, the effective sample size, and the 119 

proportion of the home range covered by the trapping grid. These measures correspond to the amount 120 

of effort and money invested in a study based on animal captures and can impact the estimates of home 121 

range size. Our analyses thus may point to optimal investments for describing animal home ranges in 122 

studies relying on animal trapping, representing an important tool for ecologists that aim at study 123 

movement using trap data. 124 

Material and Methods 125 

Simulating animal movements and trapping 126 

We simulated home ranges with a circular area of 100 Hectares and a uniform distribution probability for 127 

observing the animal across it. We simulated movement for 100 individuals moving within this type of 128 

home range without any autocorrelation (i.e., using a I.I.D. movement model), as trap data are likely to 129 

be free from meaningful autocorrelation. To capture the individuals, we generated a series of trapping 130 

grids with varying densities measured as number of traps in each line of the grid per home range radius 131 

(ranging from 2 to 42 over intervals of 10, see Fig. 2). Each trapping grid was placed with its center at 132 

different distances from the center of the home range creating a coverage ranging from 20 to 100% (see 133 

Fig. 2). We considered an animal captured if an observation fell within 200m of a trap (approx. 134 

corresponds to 20m for small animals with home ranges of 1Ha). We chose this measure to simulate the 135 

attraction of baiting in real-world scenarios with live trapping but can also be understood as a metric of 136 

visibility for camera traps. Finally, for each individual in each condition of trap density and area covered 137 
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we simulated positions until it was captured 2000 times. The scripts necessary to reproduce these 138 

simulations will be provided when published in a peer-review journal. 139 

Fitting estimators and asymptotic models  140 

Incremental analyses: home range area as a function of the number of observations 141 

For each dataset we decided a set of ticks between 2 and 2000 observations on which to conduct the 142 

estimates of home ranges. The interval between ticks increased progressively as we expected redundancy 143 

in information because of the asymptotic behavior of spatial variance for range-resident animals. Based 144 

on these observation number ticks we performed two orderings of the locations for each individual. The 145 

first corresponds to standard use in home range analyses, with observations ordered by time (time-146 

ordered hereafter). The second one was achieved by taking each subset of observations from the time 147 

ordered dataset and reordering based on distance using farthest point sampling (Fig. 3). Farthest point 148 

sampling allows reordering the data, with each point being followed by its corresponding farthest point 149 

in the dataset based on Euclidean distances, excluding computed points already used. By doing so, while 150 

for each number of observations both the time ordered and the distance ordered dataset contained the 151 

same exact records of space positions, the distance ordered included most information on space use 152 

within the first observations (Fig. 3).  153 

For each dataset we calculated the home range area incrementally. For the time-ordered dataset this 154 

incremental analysis corresponded to calculate the home range area at each tick (Areai), yielding a unique 155 

incrementing curve of home range area per dataset from 2 to 2000 observations. For the distance-ordered 156 

dataset a different curve ending at each tick was calculated (Fig. 3). Each tick had a different curve because 157 

each subset had different farthest points being redistributed accordingly with more information clumping 158 

in the first observations.  159 
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Home range estimators 160 

To calculate the home range areas, five estimators were used. A widely used method, the Kernel Density 161 

Estimator (KDE) was chosen as it is the most statistically efficient non-parametric density estimator. We 162 

further used a refined version of the KDE that takes autocorrelation into account (AKDE) and has further 163 

refinements for small sample sizes, irregular sampling, and measurement error (Silva et al. 2022). For KDE, 164 

an automatic bandwidth selection method was applied to each subset of the data based on bisection 165 

algorithm that finds the smallest bandwidth generating n polygons (Kie 2013). We set n to 1 to have a 166 

single continuous home range area. Two commonly used polygon-based methods, the minimum convex 167 

polygon (MCP) and its generalization, the local convex hull (LoCoh) were also used (see Supporting 168 

information, SI).  Furthermore, we explored the properties of a home range estimation based on bicubic 169 

interpolation (BicubIt). We expect this latter estimator to perform better under low trap densities as well 170 

as with very large datasets when kernel-based estimators become ineffective due to the bandwidth 171 

limiting to 0 when  𝑛 → ∞ (see SI). 172 

Asymptotic models 173 

A Michaelis-Menten model as described in (Leo et al. 2016) (eq 1) was fitted to the home range area as a 174 

function of the number of observations with automatic initial values for the rest of parameters. The 175 

Michaelis-Menten model is a saturating model that is well known in the biological sciences. A challenge 176 

with this model, however, is that the asymptote can be difficult to estimate with data (Bolker 2008). We 177 

therefore also explored the potential benefits of the monomolecular model (eq 2). The models were fitted 178 

to each tick in the single curve for the time-ordered dataset using Levenberg-Marquardt nonlinear least-179 

squares algorithm. For the distance-ordered, the models were fitted to each curve created with the 180 

observations until a given tick. The predicted asymptotes were retrieved and assigned as value for the 181 

home range area to the number of observations it used. 182 

𝐴𝑟𝑒𝑎𝑖 =
α∗𝑖

𝐵+𝑖
    eq (1) 183 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.15.484432doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484432
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 
 

𝐴𝑟𝑒𝑎𝑖 = α ∗ ( 1 − 𝑒−𝑒𝑘∗𝑖) eq (2) 184 

Evaluating the different methods for home range estimation on trapping data 185 

We transformed the areas obtained in the previous analyses to a proportion of the true 95% home-range 186 

area. Using the variables describing the estimator used, the time-ordering procedure, the asymptotic 187 

model used and the three variables for study design (number of observations, trap density and area 188 

covered) we modelled the accuracy of area estimates using a generalized additive model (GAM) in the 189 

mgcv package (Wood 2017) in R version 4.0.5 (R Core Team 2019). GAM was chosen to capture the 190 

possible complex non-linear relationships between our variables of interest and the home range area 191 

predicted. The proportion of the true area was made dependent on the number of observations, the trap 192 

density and the area covered by the trapping grid using a gaussian link function (eq. 3). Since asymptotic 193 

models can overestimate the area dramatically under low number of observations, we filtered out 194 

extreme outliers before fitting the GAM. We defined extreme outliers as those that overestimated or 195 

underestimated the true area by a factor of 10. This type of aberrant predictions can be easily detected 196 

by researchers in their datasets once some knowledge on the species is available.  197 

𝐴𝑟𝑒𝑎 = 𝐼𝑛𝑡𝑠𝑒𝑚 + 𝑓1(log10 𝑁𝑏𝑂𝑏𝑠) ⋅ 𝐼𝑛𝑡𝑠𝑒𝑚 + 𝑓2(𝑇𝑟𝑎𝑝𝐷) ⋅ 𝐼𝑛𝑡𝑠𝑒𝑚 + 𝑓3(𝐴𝑟𝑒𝑎𝐶) ⋅ 𝐼𝑛𝑡𝑠𝑒𝑚 +198 

𝑓4(log10 𝑁𝑏𝑂𝑏𝑠 ⋅ 𝑇𝑟𝑎𝑝𝐷) ⋅ 𝐼𝑛𝑡𝑠𝑒𝑚 + 𝑓5(log10 𝑁𝑏𝑂𝑏𝑠 ⋅ 𝐴𝑟𝑒𝑎𝐶) ⋅ 𝐼𝑛𝑡𝑠𝑒𝑚 + 𝑓6(𝑇𝑟𝑎𝑝𝐷 ⋅ 𝐴𝑟𝑒𝑎𝐶) ⋅199 

𝐼𝑛𝑡𝑠𝑒𝑚 + 𝑓7(log10 𝑁𝑏𝑂𝑏𝑠 ⋅ 𝑇𝑟𝑎𝑝𝐷 ⋅ 𝐴𝑟𝑒𝑎𝐶) ⋅ 𝐼𝑛𝑡𝑠𝑒𝑚 + 𝜀  eq (3)  200 

where 𝑓1−3 are smooth and 𝑓4−7  partial tensor product interaction smooth functions estimated by 201 

restricted maximum likelihood     202 

The number of observations was transformed using its base ten logarithm and the knots for the basis 203 

functions were placed according to a logarithm function in the range of observed values. Placing the knots 204 

in this way allowed to model the variation at low observation numbers when small changes are likely to 205 

induce much stronger effects than at the higher end. We included a three-way interaction as a tensor 206 
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product interaction between the number of observations, the trap density and the area covered as their 207 

effects are all conditional on each other (eq. 3). All lower-level interactions combinations and main effects 208 

of the three variables were also included as tensor product interactions and smooth terms respectively.  209 

Furthermore, a factor variable gathering the home range estimator, the asymptotic model and the 210 

sampling ordering procedure (intsem) was generated. “intsem” was included as a main effect and as a “by 211 

variable” on each smooth and tensor product interaction term. Including this smooth-by-factor 212 

interactions allowed fitting a smooth term separately for each level of “intsem”. Such flexibility was 213 

needed to capture the likely different shapes that the functions for each level and combinations of the 214 

variables of interest might have. The use of a common variable, “intsem”, reduced the computational 215 

burden of modelling the home range estimator, the asymptotic model and the sampling order procedure 216 

as separate terms. The sufficiency of the basis dimensions for each smooth term were evaluated by using 217 

the standard procedures for GAM evaluation in the mgcv package including the tests of gam.check 218 

function and the diagnostics of linear modelling assumptions. For further details on other parameters see 219 

SM.  220 

We then evaluated the accuracy and reliability of home range estimates in trapping settings using our 221 

simulations. To visually identify the parameter spaces of interest for trapping studies, predictions were 222 

considered accurate if fell within ±10% of the true area and reliable if the confidence interval had a 223 

breadth not exceeding ±20% of the estimate. For each graphic representation we described with 224 

emphasis only the values that were accurate and reliable according to the above definitions. When 225 

possible, we also described the conditions that allowed reaching accuracy instead of under- or over-226 

estimation and reliability.  227 

To produce the graphic representations summarizing the results, we predicted the home range area as a 228 

function of the two-way interactions between the number of observations and the trapping density (while 229 
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setting the area covered to 100%), between the number of observations and the area covered (setting 230 

the trap density to 2), and between the area covered and the trap density (setting the number of 231 

observations to 7) using the constructed GAM. The fixed values of low trap density and low number of 232 

observations were chosen to describe possible common situations in field studies using trapping 233 

procedures. Further graphic representations including fixed values at low, mean, and high values can be 234 

found in the SI. 235 

Results 236 

The 43 individuals simulated yielded a total number of 415,612 observations based on the combination 237 

of 5 estimators, 2 ordering procedures, 3 model types (including no model), 6 trap densities, 6 area 238 

covered proportions and 28 different number of observations. Overall, the GAM model performed 239 

satisfactorily with most residuals being close to 0 (see SI). There existed some level of heteroskedasticity 240 

with high variance characterizing the areas at low number of observations. Moreover, residuals were non-241 

normally distributed due to a positive skew resulting from i) the distribution of the response (bounded at 242 

0 but unbounded at positive infinity) and ii) high overestimated asymptotic models’ predictions at low 243 

number of observations (see SI).  244 

Interacting effects of number of observations and trap density 245 

When the trapping grid covered the home range entirely, the number of observations was the primary 246 

factor driving the accuracy of the estimates (Fig. 4 see vertical color bands and accuracy niches). The 247 

reliability of estimates also depended more strongly on the number of observations than on the trap 248 

density with an estimator-specific minimum above which estimates were consistently (Fig. 4). The 249 

estimators that conformed more strongly to the described general patterns were the two Kernel-based. 250 

The two polygon-based estimators followed in conformity, deviating from the described pattern when 251 

used with time-ordered asymptotic models where accuracy niches reacted more strongly to trap density. 252 
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BicubIt stand out from the rest by having the accuracy and reliability dependent equally on the number 253 

of observations and the trap density (Fig. 4 see diagonal color bands and lines).  254 

The two Kernel density estimators outperformed the rest with accurate estimates at 9 and 20 255 

observations (AKDE and KDE respectively). The rest underestimated the true area before ~1000 (MCP and 256 

LoCoH) and ~600 (BicubIt, only at low trap density) observations where gathered. The reliability of 257 

estimates was obtained at very low number of observations except for BicubIt where the higher the trap 258 

density the more observations were needed for a reliable estimate.  259 

Interestingly, using the asymptotic models generated accuracy and reliability patterns that had estimator-260 

specific optima generally lacking asymptotic consistency (i.e., adding more observations after the accuracy 261 

and reliability niche was attained induced its loss). The two Kernel-based methods suffered by needing 262 

more observations for an accurate estimate than when using the raw data alone, particularly at low trap 263 

densities. At higher trap densities, though, KDE benefited from using MonMol through improved accuracy 264 

of estimates at low sample sizes. MCP became unreliable when used with MicMen and never reached 265 

accuracy while MonMol allowed accurate and reliable estimates at lower number of observations. LoCoH 266 

benefitted from using MicMen by reaching reliability and accuracy at ~10 observations while using 267 

MonMol led to very limited accuracy niches. Similarly, BicubIt benefited only from MicMen and not from 268 

MonMol. MicMen allowed to have accurate and reliable predictions between 3 and 80 observations for 269 

the smallest trap densities. 270 

Distance-ordering helped through stabilization of the accuracy and reliability niches after their advent and 271 

through a higher set of conditions yielding reliable estimates. Nevertheless, this procedure only benefited 272 

accuracy with KDE by reducing the minimum number of observations and with BicubIt by expanding the 273 

range of trap densities yielding an accurate estimate.  274 
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Interacting effects of number of observations and area covered 275 

When the trap density was four traps per grid line per home range radius, increasing both observations 276 

and area covered led to higher accuracy. Reliability depended on an estimator-specific minimum number 277 

of observations above which increasing the area covered led to more reliable estimates. The accuracy of 278 

Kernel-based estimators was affected more strongly by the area covered than by the number of 279 

observations (Fig. 5, see “v” shaped accuracy niches along the x axis). The polygon-based estimators were, 280 

on the contrary, more affected by the number of observations, once a minimum area covered was 281 

attained. BicubIt offered a bimodal accuracy were the extremes of area covered tended to yield more 282 

accurate estimates. AKDE performed best, followed by KDE, BicubIt, MCP and LoCoH. AKDE was able to 283 

offer accurate and reliable estimates with 5 observations and an area covered as low as 50%, while KDE 284 

needed at least 40 observations. MCP and LoCoH were unable to offer accurate estimates while BicubIt 285 

needed the highest area covered and number of observations.  286 

Using asymptotic models offered some benefits albeit the accuracy niches were not consistent when 287 

increasing sample sizes. Accuracy niches had a “v” shape (except for BicubIt, indicating optimal values 288 

changing with the upper space in the “v” risking overestimation. AKDE and KDE benefited by lowering the 289 

minimum area covered (~30%) in order to retrieve an accurate estimation.  MCP benefited from MonMol 290 

reducing the minimum number of observations to~15, while MicMen yielded unreliable estimates. Both 291 

asymptotic models helped LoCoH achieve accurate estimates, despite only MicMen with reliability at ~15 292 

observations. BicubIt benefited from asymptotic models from increased reliability and accuracy, but more 293 

so from MicMen. Using MicMen allowed to retrieve accurate estimations at as low as 4-5 observations 294 

with both high and low area covered.  295 

Use of distance-ordering generated more consistent accuracy and reliability niches only for the polygon-296 

based methods while the others were affected idiosyncratically. AKDE was disturbed because the ctmm 297 

package algorithm did not perform consistently with reordered data generating low sample sizes used to 298 
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fit GAM (see SI). KDE with distance-ordering did not improve but rather shifted the optimal value of area 299 

covered with increasing observations. For MCP distance-ordering only improved the reliability of 300 

estimates. The use of distance-ordering allowed better estimates than the raw LoCoh without reaching 301 

our criteria. With BicubIt, using distance-ordering did not improve or hampered but changed the shape of 302 

the accuracy niche.  303 

Interacting effects of trap density and area covered 304 

When the number of observations was fixed to 7, depending on the estimator used, only the area covered, 305 

or a combination of area covered and trap density values determined the accuracy and reliability. Kernel-306 

based estimators offered reliable estimates the accuracy of which was determined solely by variation in 307 

the area covered (Fig. 6, see elongated accuracy niches along the x axis). The patterns for the remaining 308 

three estimators were more complex. Only AKDE was able to recover an accurate estimate at 309 

intermediate-high values of area covered when estimators were used alone. 310 

Using asymptotic models yielded improvements in accuracy for all estimators. AKDE improved by reducing 311 

the area covered needed for an accurate estimate (MonMol 20% to 40%; MicMen 40% to 60%; for lowest 312 

and highest trap densities respectively). KDE greatly benefitted from an increase in accuracy that achieved 313 

our criteria when the area covered was between 20 and 60% for all except the lowest and highest trap 314 

density values. The use of MonMol allowed accurate estimates at all trap densities but for a narrower 315 

range at intermediate area covered values at the lowest trap densities and to 20% at the highest trap 316 

densities. Using MicMen allowed MCP to yield reliable and accurate estimates for all area covered values 317 

at intermediate trap densities while MonMol only for two values of area covered, 50 and 70%. Asymptotic 318 

models helped increasing accuracy of LoCoH but these weren’t reliable according to our criteria. BicubIt 319 

was empowered by MicMen yielding accuracy at the smallest trap densities for 20% and 100% area 320 

covered while MonMol yielded accurate estimates only at 20% area covered.  321 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.15.484432doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484432
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

16 
 

Using distance-ordering impacted negatively AKDE impairing its reliability. KDE on the contrary benefited 322 

substantially by having more accuracy overall despite needing an increase in area covered (MicMen 40% 323 

to 80% and MonMol 60% to 100% for low and medium/large values of trap density respectively). For MCP 324 

MonMol with distance-ordering helped retrieving reliable estimates from 40% area covered and accurate 325 

at 100% area covered from medium to high values of trap density. LoCoh benefited from distance ordering 326 

by increasing reliability, but accuracy was not reached. Distance-ordering did not improve or hamper 327 

BicubIt estimates. 328 

Discussion and conclusion 329 

Our results indicate that estimators used with telemetry and GPS data can yield reliable estimates of home 330 

range size when used with trapping data. Depending on the methodology, estimators examined were able 331 

to retrieve accurate and reliable estimates even in the challenging scenarios including very low spatial 332 

resolution and reduced information per individual. Such performance indicates that, despite having gone 333 

underused in favor of more modern methodology, trapping data can continue to prove a valuable source 334 

for home range studies.  335 

Under most scenarios investigated, AKDE was able to recover an accurate estimate at lower sample sizes 336 

than the other estimators. KDE usually followed behind while MCP, LoCoH and BicubIt needed a much 337 

higher number of observations. This behavior is consistent with the accuracy of these estimators on 338 

telemetry data (Noonan et al. 2019). The use of asymptotic models helped all estimators except AKDE in 339 

reaching an accurate estimation with fewer observations. Nevertheless, counterintuitively, under most 340 

scenarios the use of asymptotic models’ predictions reduced the consistency of the reached accuracy. For 341 

example, as hypothesized by (Gautestad and Mysterud 1995), MCP (and LoCoH) needed more than 1500 342 

observations to reach the asymptote with the true home range. While using asymptotic models’ 343 

predictions helped MCP, LoCoH and BicubIt reduce by one or two orders of magnitude the number 344 
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observations needed for an accurate estimation, increasing the number of observations further led to 345 

changes in the predicted area. The use of distance ordering prior to calculating the home range areas and 346 

fitting the asymptotic models allowed both reducing the number of observations albeit more moderately, 347 

between 5 to 10 times, while maintaining consistency and attaining reliability at lower sample sizes (see 348 

SI). Thus, we suggest the use of asymptotic models in home range analyses cautiously, possibly with 349 

distance ordering and additional checks on the reliability of asymptotic estimates as developed in (Haines 350 

et al. 2009). 351 

Promisingly, accurate estimates of the home range area were obtained with as few as 3 observations per 352 

individual, a finding that could encourage movement ecologists to plan trapping studies and other 353 

researchers to exploit their existing trapping datasets for home range estimates. Our findings of accuracy 354 

and reliability of estimators for home range analyses with trapping data might offer an additional push to 355 

enlarge the range of species and researchers in home range studies. A higher diversity of species and 356 

researchers can result in new questions being addressed by a more inclusive research milieu not limited 357 

by the large budgets needed for telemetry-based monitoring. A standard metallic foldable trap for small 358 

animals might cost on the order of tens of dollars while the average, all-in cost of tracking an animal is on 359 

the order of tens of thousands of dollars (Thomas et al. 2011). Since traps can be used for several years if 360 

well maintained and are not used for a unique individual, they might turn a smaller budget into a 361 

competitive alternative.  362 

Telemetry devices are also best deployed on animals large enough to carry them or else become 363 

extremely limited by their small battery life. Although tag sizes have been rapidly decreasing, most species 364 

are still too small to be monitored by telemetry (Kays et al. 2015). Our results show how the home range 365 

area of small animals unsuited to collaring can be accurately monitored using traps. Nevertheless, 366 

trapping in wild animals is not free of costs. Traps might be disease vectors and harmful if not maintained 367 
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properly. Moreover, the psychophysiological welfare of animals should not be neglected, and the time 368 

spent in the trap minimized. Reducing the time in the trap might also improve survival because captured 369 

animals are vulnerable to predation. An alternative to live trapping could be the use of camera traps or 370 

sound recorders (Chavel et al. 2017). The considerations of trap density, number of observations and area 371 

covered all should hold if autocorrelation between detections is taken into account.  372 

Over the range of conditions examined, the proportion of the home range area covered by the trapping 373 

grid and the number of observations had a much stronger impact than the trap density. Thus, 374 

theoretically, the effort of trapping studies could be redirected to expanding the grid to encompass a 375 

greater study area instead of densifying it. However, for animals that have overlapping home ranges, 376 

reducing the trap density might lead to reduce the chances of relocating a focal individual several times. 377 

Under scarcity of traps other residents may be trapped impeding gathering enough observations per 378 

individual. To increase the number of observations per individual and the number of individuals, one could 379 

increase the number of traps on each knot of the grid, thereby slightly reducing the working time by 380 

clumping traps in space. In addition, in our simulations, traps were highly effective having a range of 381 

attraction of 200m for a home range of 1 Ha as we tried to mimic high visibility or bated traps. If traps 382 

have a lower range of action, sparsening the grid might significantly reduce the sample size per individual. 383 

Reducing the number of grid knots may also alter other properties in real-world studies. For example, 384 

having a sparser grid could lead to more individual home ranges being only partially covered, impacting 385 

the information obtained. Depending on the severity of the loss of area covered by the grid, AKDE, KDE 386 

or BicubIt should be preferred, the latter two being most performant if used with asymptotic models 387 

under the smallest area covered and sparser grids here examined. In combination with monomolecular 388 

asymptotic models, BicubIt can retrieve an accurate and reliable estimate at as low as 2-3 observations. 389 

Thus, a possibility for reducing the costs of trapping studies would be to drastically sparse the grid and 390 
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use BicubIt. This could serve for example with trapping studies using sophisticated camera traps. Further 391 

investigations on wild populations simultaneously monitored with telemetry or GPS and trapping should 392 

be conducted to confirm our findings in such challenging scenarios. We suggest studies reduce the trap 393 

density in favor of long term or more intense monitoring but ideally researchers should have a sense of 394 

the mean home range radius of the species of interest, the degree of territoriality as well as the range of 395 

attraction of the traps. By doing so, they might be able to assess the “sweet spot” between reducing the 396 

number of traps and the reliability and accuracy of the information obtained. 397 

In this study we have used the simplest type of home range, one that is circular, and the animal movement 398 

independent within it to have a first sense of how common and uncommon methods performed with 399 

trapping data. Due to the complexity and computational burden of the range of methods here used we 400 

opted for the simplest case of uncorrelated movement detections. Given that the most reliable and 401 

accurate estimator was the only one that doesn’t assume uncorrelated observations (AKDE), we suspect 402 

that adding autocorrelation to the data shouldn’t change the main conclusions of the study (i.e., that trap 403 

data contain sufficient information for home-range estimation). On scenarios with autocorrelated data, 404 

the difference between AKDE and the other estimators should broaden as the rest of estimators become 405 

impacted by the autocorrelation in the observations. Besides this, animal locations obtained with trapping 406 

methods should generally be less autocorrelated, at least for live trapping. The elapsed time between one 407 

observation and the next for the same individual should generally exceed the range crossing time. It would 408 

be important though in trapping studies to control for the time of the day since animals may repeatedly 409 

use the same locations for resting or sleeping. Thus, if traps are always set before the onset of activity, a 410 

given individual might be trapped always near the resting place generating autocorrelation. In addition, 411 

non-circular shapes of home ranges, which might be common in nature, could trigger biases in estimates 412 

(Seaman et al. 1999, Halbrook and Petach 2018). A possibility to improve the presented methodology in 413 

this context could be to tune the reference bandwidth allowing non-continuous polygons or use habitat-414 
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informed versions of KDE (Halbrook and Petach 2018). Nevertheless, these considerations might be 415 

irrelevant for conservation studies were the target might be the area that encompasses all resources used 416 

by an animal sensu (Burt 1943), even if they use linear corridors to travel between food patches or 417 

shelters. Overall, the results of the current study might offer a valuable reference to assess bias in home 418 

range analyses with trapping data. 419 

The evidence here presented can act as a useful building block for future research. Although further 420 

research might nuance the results here presented, the main finding that trapping data is a useful 421 

alternative to more expensive technology for home range size estimates is unlikely to change. The use of 422 

trapping data might enlarge the range of ideas that can be explored by broadening the scope of 423 

researchers pursuing, and species used in, home range analyses.  424 
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