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Abstract:

Many studies have provided insights into the immune response to COVID-19; however, little
is known about the immunological changes and immune signaling occurring during
COVID-19 resolution. Individual heterogeneity and variable disease resolution timelines
obscure unifying immune characteristics. Here, we collected and profiled >200 longitudinal
peripheral blood samples from patients hospitalized with COVID-19, with other respiratory
infections, and healthy individuals, using mass cytometry to measure immune cells and
signaling states at single cell resolution. COVID-19 patients showed a unique immune
composition and an early, coordinated and elevated immune cell signaling profile, which
correlated with early hospital discharge. Intra-patient time course analysis tied to clinically
relevant events of recovery revealed a conserved set of immunological processes that
accompany, and are unique to, disease resolution and discharge. This immunological
process, together with additional changes in CD4 regulatory T cells and basophils,
accompanies recovery from respiratory failure and is associated with better clinical
outcomes at the time of admission. Our work elucidates the biological timeline of immune
recovery from COVID-19 and provides insights into the fundamental processes of COVID-19
resolution in hospitalized patients.
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Introduction:

SARS-CoV-2 and the resulting disease COVID-19 has resulted in over 244,000,000
infected individuals and more than 4,900,000 deaths globally as of October 28th, 2021
(World Health Organization 2021b). Most people infected with SARS-CoV-2 are
asymptomatic or experience mild flu-like symptoms. In a prospective study of adults
confirmed with SARS-CoV2, 91% of patients were asymptomatic or were outpatients with
mild illness, while only 9% required inpatient care (Logue et al. 2021). These patients can
develop severe disease, including pneumonia, acute respiratory distress syndrome (ARDS),
or multiple organ failure, and often require supplemental oxygen support or, in the most
critical cases, mechanical ventilation. Although a small percentage of all infected patients
succumb to the disease (1.3%) (Centers for Disease Control and Prevention 2021), the
majority of hospitalized patients are able to successfully combat and clear the infection.
Many studies have focused on features defining the subset of patients who ultimately
succumb to disease, however, it is also essential to profile a successful resolution and
identify conserved immune features during this interval to understand the majority of patient
responses.

The immunopathology of COVID-19 has broadly been characterized by lymphopenia,
lymphocyte dysfunction, abnormalities of innate immune cells, and increased cytokine
production (Mathew et al. 2020; Mann et al. 2020; Lucas et al. 2020; Yang et al. 2020). Early
observations of serum cytokine levels in COVID-19 patients revealed high levels of
circulating IL-6, generating the hypothesis of an IL-6 driven cytokine storm and resulting
immunopathology (Moore and June 2020; Yang et al. 2020). Analysis of clinical trials using
IL-6 neutralizing therapies demonstrate appreciable clinical benefits with additional benefits
observed in patients receiving additional corticosteroid treatment suggesting modulation of
immune signaling and immune cell activation has clinical implications for disease escalation
and resolution (Rosas et al. 2021; Tsai et al. 2020; WHO Rapid Evidence Appraisal for
COVID-19 Therapies (REACT) Working Group et al. 2021). Additionally, insufficient type I
interferon (IFN) signaling and autoantibodies that inhibit type I IFN have been linked to a
subset of severe cases of COVID-19, suggesting that type I immune responses and IFN
signaling are likely protective (Combes et al. 2021; Wang et al. 2021; van der Wijst et al.
2021; Chang et al. 2021; Q. Zhang et al. 2020; Asano et al. 2021). High serum cytokine
levels along with observations of broad immunological misfiring have been observed across
patient subsets, indicating a delicate balance between productive and destructive immune
responses and suggesting the importance of evaluating immune cell signaling. However, it
remains unclear what, if any, immune cell signaling is protective and how immune cell
signaling dynamics change over time in patients who resolve or fail to resolve COVID-19.

While many studies have made significant contributions to our understanding of the
immune system and its relation to COVID-19, most analytical approaches are
cross-sectional and describe the immunological differences between COVID-19 severity
groups defined by clinical metrics, such as the WHO score. In comparison, longitudinal
studies are uniquely capable of assessing changes in the immune response during disease
progression or resolution over time. Elucidating the immunological events that accompany
successful disease resolution is essential to inform the management of patient care and
contextualize the deviations from successful resolution that characterize the most severe
disease cases. Because the infection timeline is highly variable, and human immunological
responses are diverse, understanding immunological dynamics during this specific recovery
period requires longitudinal monitoring and high-dimensional data from a large cohort of
patients.
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Here, we investigated intra-patient immunological changes across clinically relevant
time points to identify changes in immune responses that accompany effective COVID-19
resolution. We obtained longitudinal peripheral blood samples (n = 230) from hospitalized
COVID-19 patients, SARS-CoV-2 negative ventilated patients, and healthy individuals. To
investigate changes in immune cell signaling states over time, we utilized mass cytometry
with a unique panel of antibodies specific for immune cell phenotyping and for measuring
phosphorylated cell signaling proteins. We identified distinct immune cell composition and
signaling states in COVID-19 patients compared to COVID-19 negative patients and healthy
individuals. Additionally, we discovered a conserved and coordinated immune response that
accompanies COVID-19 resolution and hospital discharge. Furthermore, these and other
features were relevant to resolution of the most severe mechanically ventilated patients, and
these immune cell states correlated with better clinical outcomes at time of admission. Our
findings indicate that, although patients have heterogeneous immunological baselines and
highly variable disease courses, there exists a core immunological trajectory that defines
recovery from severe SARS-CoV-2 infection. Our results provide a working model of a
successful immune response trajectory among patients with COVID-19 requiring
hospitalization, deviations from which are associated with extended hospitalization and
mortality.

Results:

Longitudinal peripheral blood sampling from hospitalized COVID-19 positive and
negative patients

To investigate the composition of circulating immune cells and the cell signaling states that
characterize SARS-COV-2 infections and distinguish it from other respiratory infections, we
collected longitudinal peripheral blood (PB) samples from COVID-19 patients and COVID-19
negative patients (PCR negative for SARS-COV-2) admitted to UCSF Medical Center and
Zuckerberg San Francisco General Hospital. PB samples and corresponding patient
demographics and clinical parameters, e.g. World Health Organization (WHO) severity
scores (World Health Organization 2021a), ventilation duration, and hospital length of stay,
were collected throughout inpatient care (Table S1 and S2). PB samples from healthy
individuals (n = 11) were obtained as controls (Table S3). All samples were processed,
stained, and analyzed by mass cytometry to quantify the expression of 30 protein markers
and 14 phosphorylated signaling molecules (Table S4). Samples that met our quality control
standards (methods) were normalized across batches to obtain our final cohort of 230
samples; 205 samples from 81 COVID-19 patients, 14 samples from 7 COVID-19 negative
patients, and single samples from each of 11 healthy individuals (Figure 1A and S1A).
COVID-19 patients were classified into COVID-19 severity groups based on their WHO
score at day of sampling (3: mild, 4: moderate, 5-6-7: severe) (World Health Organization
2021a). Based on the phenotypic markers in our antibody panel, we manually gated 38
canonical immune cell populations (Figure S1B) and evaluated immune cell population
frequencies, protein expression patterns, and immune cell signaling pathways specific to
COVID-19 course escalation and resolution.

Unique immune cell compositions between COVID-19 patients, COVID-19 negative
patients, and healthy individuals on day of admission

First, we characterized the immunological landscape of COVID-19 patients, COVID-19
negative patients (critically ill, mechanically ventilated controls), and healthy individuals to
assess immunological signatures that may be unique to COVID-19 at day of admission (day
0; D0). Dimensionality reduction by t-SNE using only phenotypic markers revealed distinct
immune cell compositions between COVID-19 positive, COVID-19 negative, and healthy
individuals (Figure 1B). Consistent with previous studies, COVID-19 patients exhibited a
significantly different immune cell composition compared to healthy individuals, with
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significant frequency changes across almost all manually gated immune cell populations
(Figure 1C) (Mathew et al. 2020). To determine modules of immune changes, we evaluated
if distinct immune cell populations correlate with each other as well as with patient
demographics or clinical parameters. We found a coordinated adaptive immune response in
which several T cell subsets and B cell frequencies were positively correlated with one
another (Figure 1D). In contrast, the innate arm demonstrated a dichotomous relationship,
with neutrophil and monocyte frequencies being anti-correlated. Additionally, monocyte
frequencies at day 0 were positively correlated with T cell subsets and negatively correlated
with ventilation duration (Figure 1D), suggesting there may be a coordinated immune
response associated with better clinical outcome.

Monocyte and neutrophil composition reveal unique compartmental shifts in innate
immune arm of COVID-19 infection

Large shifts in innate immune compartments were evident between COVID-19 patients,
patients with other respiratory infections, and healthy controls (Figure 1B); therefore, we
further investigated the composition of neutrophils and monocytes. While neutrophil
frequency was not significantly different between COVID-19 patients and the healthy
individuals (Figure 1C and S1C), we found that a variety of proteins were altered in their
expression on neutrophils across groups. Neutrophils from COVID-19 patients exhibited
significantly increased expression of CD11c, CD14, CD16, and PD-L1, suggesting a highly
activated and inflammatory neutrophil phenotype in COVID-19 patients (Figure 1E).
Additionally, while the frequency of all monocytes was comparable between groups (Figure
1C), composition of monocyte subsets (defined as classical, intermediate, and non-classical)
was significantly different between patients with COVID-19 and other respiratory infections
compared to healthy individuals. Patients exhibited a significant increase in the frequency of
intermediate monocytes along with a relative decrease in classical monocytes (Figure 1F).

Cross-sectional analysis of COVID-19 severity groups reveals few immunological
features that distinguish severity states, requiring a new approach to evaluating
immune trajectories in our patient cohort.

Having established the major differences between COVID-19 patients, COVID-19 negative
patients, and healthy individuals at D0, we turned to evaluate the immunological differences
between COVID-19 severity groups across time (Figure S1D). Surprisingly, we found no
significant differences between severity groups at D0 and only few population differences at
D4 and D7 (Figure S1E and S1F). Within each severity group, comparisons across time
showed that plasmablasts contract from D0 to D7 in the majority of severe COVID-19
patients (Figure S1G), while CD4 activated T cells are upregulated from D0 to D7 in mild
COVID-19 patients (Figure S1H). The paucity of differences between severity groups
suggested that perhaps significant variability exists in the timing of disease escalation and
resolution across individuals and therefore the immunological processes that mediate these
changes over time.

Early, coordinated, and activated immune cell signaling states in COVID-19 patients

To gain insights into key immune cell signaling modules associated with COVID-19, we
measured the phosphorylation state of 14 signaling molecules across all immune cell
subsets (Figure 2A). First, we evaluated the median level of phosphorylated signaling
proteins across all CD45+ hematopoietic PB cells in COVID-19 positive, COVID-19 negative,
and healthy individuals at D0. Differential expression analysis revealed five signaling
molecules (pSTAT1, pPLCg2, pZAP70/pSyk, pCREB, and pSTAT3) that were upregulated in
COVID-19 patients compared to healthy individuals (Figure 2B). To determine if a specific
cell type was driving the higher signaling state in COVID-19 patients, we evaluated the
median phosphorylation state of the respective signaling molecules within all manually gated
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immune cell subsets. We found significantly higher median signaling across the majority of
cell subsets, showing that immune cell signaling states are coordinated across most cell
types simultaneously and not driven by signaling within a specific cell type (Figure S2A).

To investigate coordinated signaling modules in CD45+ cells, we correlated the expression
of signaling molecules at D0. For COVID-19 patients, we observed a coordinated positive
signaling response (Figure 2C), while this coordination was absent in patients with other
respiratory infections or sepsis (Figure 2D). Additionally, we correlated signaling molecule
expression to hospital length of stay and ventilation duration (Figure 2C) and found
significant negative correlations between these parameters and levels of pSTAT3 (Figure 2E)
and pSTAT6 (Figure 2F), suggesting that higher pSTAT3 and pSTAT6 signaling at time of
admission corresponds to better clinical outcomes. Finally, we evaluated signaling
differences within and across severity groups at D0, D4, and D7, but observed no significant
changes (Figure S2B and S2C).

Conserved immunological processes and changes in cell signaling states accompany
disease resolution and discharge

Although cross-sectional analysis can provide insights into the immunological state of
COVID-19 patients and severity groups, the natural heterogeneity of patient immune
responses and significant differences in their disease time courses may obscure
immunological processes that mediate recovery. Therefore, we aimed to identify conserved
changes within patients, over time, that are tied to clinically relevant outcomes. Given that
the majority of our patients successfully recovered from the infection, albeit after differing
lengths of hospitalization, we investigated immunological changes that occurred within
patients from time of admission (tp1) to time of discharge (tp2) from the hospital (n = 32)
(Figure 3A and S3A). For this analysis, we included patients who were discharged within 30
days of admission across all disease severity states at time of enrollment, allowing us to
identify conserved features among all COVID-19 patients who successfully recover. A variety
of immune cell subsets significantly changed in frequency between tp1 and tp2 (Figure 3B).
Monocytes as well as activated CD4 and CD8 T cells significantly increased at the time of
discharge (tp2) as patients resolved the infection (Figure 3C). Conversely, neutrophils and
conventional type 1 dendritic cells (cDC1s) significantly decreased in frequency by time of
discharge (Figure 3C). For most COVID-19 patients, the overall composition of immune cells
became more similar to that of healthy individuals at the time of discharge compared to the
time of enrollment (Figure 3D). However, some immune cell populations exhibited deviations
away from healthy at the time of discharge, most notably activated CD4 and CD8 T cells
(CD38+ HLA-DR+) as well as monocytes (Figure 3E). This indicates that the immune state
at the time of discharge is characterized by the restoration of certain elements of the immune
response that were perturbed early in infection alongside a continued immunological process
that proceeds past the time patients stabilize for discharge.

Patients who successfully resolve COVID-19 have robust pan-hematopoietic signaling
and cytotoxic activated T cells at day 0

To obtain more granular insights into the immunological perturbations that accompany
COVID-19 recovery, we evaluated phenotypic changes and signaling dynamics within
immune cell populations that changed during disease resolution. We focused on cell
populations whose frequencies move away from levels observed in healthy controls,
indicating they continue to have a dynamic response during infection resolution. Activated
CD4 and CD8 T cells exhibited a reduction in the expression of GranzymeB and CD45RA as
patients transition from early infection to discharge (Figure 3F and S3B), consistent with a
transition from more activated effector cells to more of a memory phenotype. Interestingly,
we also observed a significant change in the phenotype of circulating monocytes, which
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expressed high levels of PD-L1 at time of admission but higher levels of CD4, CD11c, and
HLA-DR at time of discharge (Figure 3G, 3H, and S3B). Similarly, we observed a reduction
in PD-L1 expression on neutrophils at time of discharge (Figure S3B).

We then analyzed the median values of phosphorylated signaling molecules within the
relevant immune cell subtypes to evaluate changes in cell signaling during this resolution
phase. A variety of cell signaling proteins were significantly downregulated within the key
immune cell populations at time of discharge (Figure 3I). Several signaling molecules
changed in a coordinated fashion across different immune cell types (e.g. pTBK1, pERK,
and pSTAT3), with the broadest signaling changes observed in activated CD8 T cells and
monocyte subsets (Figure 3I and 3J). These observations are consistent with previous
studies describing the relationship between IL-6 expression and pSTAT3 signaling and
subsequent upregulation of PD-L1 in monocytes (Figure 3F and 3K) (W. Zhang et al. 2020).
Although signaling trajectories trended in the same direction among most patients (Figure
S3C), we did not observe a clear trend towards healthy individuals (Figure S3D), likely
explained by the expression variability and difficulty of measuring signaling molecules in rare
populations of healthy cohorts e.g. activated CD8 T cells (Figure 3E). Taken together, our
results suggest that a coordinated set of changes in immune cell abundances and signaling
states occur in patients who successfully resolve COVID-19.

Immune features associated with COVID-19 resolution are absent in patients who are
hospitalized for more than 30 days or die from COVID-19

To determine if the immune features identified in the resolution phase are specific to patient
recovery, we analyzed patients who had delayed disease resolution, i.e. who remained
hospitalized for more than 30 days (“late discharge”; n = 6 patients) or who died from
COVID-19 (“ultimately deceased”; n = 5 patients) (Figure 4A and S4A). First, we evaluated
the immune cell population changes occurring within these patients over a similar period
from the time of admission, but found no significant changing populations for either group
(Figure S4B). We asked if the lack of immune remodeling between these timepoints was due
to a reflection of an insufficient initial response or, alternatively, a sustained immune
response that failed to resolve. In fact, both baseline immune cell frequencies at the time of
admission and the magnitude of their changes were different, though in different ways for
different elements of the immune response (Figure 4B, S4C, S4D, and S4E). In deceased
patients, neutrophil frequencies were excessively elevated at both tp1 and tp2, while
monocytes started at a lower frequency and failed to reach levels comparable to resolving
patients (Figure 4B and S4F). Activated CD8 T cells were present at similar abundances
across groups at the time of admission but became much more abundant in late discharge
and ultimately deceased patients (Figure 4B and 4C). In contrast, activated CD4 T cells were
already more elevated in late discharge and ultimately deceased patients at the time of
admission and became even more elevated over time (Figure 4B). An increase in the
abundance of cDC1s was notably absent in ultimately deceased patients at the time of
admission, while they were substantially more elevated in late discharge patients (Figure
4B).

Elevated cell signaling at time of admission is associated with COVID-19 resolution

Next, we evaluated signaling dynamics in late discharge and ultimately deceased patients to
determine if observed changes in cell frequencies were accompanied by dysfunctional
signaling. In contrast to patients resolving COVID-19 in <30 days, which exhibited consistent
changes from high to low signaling states over time, we observed no significant changes for
late discharged and ultimately deceased patients (Figure 4D, S4G, S4H, and S4I). Instead,
these patients exhibited discoordinate signaling directionality in activated CD8 T cells (Figure
4E), a complete lack of pS6 signaling in cDC1 cells (Figure 4E), and less signaling at tp1
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across monocyte subsets (Figure 4F). Interestingly, when the late discharged patients are
within 30 days of discharge, the trajectory of several immune resolution features, e.g.
monocytes, neutrophils, and signaling molecules, resembles the recovery trajectories in
patients hospitalized <30 days, suggesting that the resolution phase engages in these
patients as well before they are discharged (Figure 4G and S4K). Taken together, these
results indicate that late discharge and ultimately deceased patients exhibit reduced immune
cell signaling at the time of hospitalization. While some of these cell signaling pathways
became elevated at later time points in these patients, others were not changing at all.
Furthermore, these results suggest that the immune processes observed during resolution
through discharge are specific to a successful response against COVID-19.

Core immune resolution features characterize COVID-19 patients recovering from
ventilation

Having established immune features that accompany COVID-19 resolution among our entire
patient cohort, we next examined the immunological changes within only the most severe
patients who required mechanical ventilation (Figure S5A). We analyzed immunological
changes between three key time points; the first time point after a patient was intubated
(tp1), the last time point before they were extubated (tp2), and the first time point after a
patient was successfully extubated (tp3) (Figure 5A). This allowed us to evaluate the
immunological dynamics that occur during ventilation (tp1 vs tp2), and during successful
recovery from intubation (tp1 vs tp3). First, we analyzed the within-patient immune cell
frequency changes between tp1 and tp3 (n = 9, S5B). Consistent with patients resolving
COVID-19, monocytes and activated CD4 and CD8 T cells significantly increased in
frequency, while neutrophil frequency decreased during ventilation resolution (Figure 5B and
5C). Additionally, ventilation resolution was characterized by an increase of CD4 regulatory T
cells (Tregs) and basophils at time of recovery (Figure 5B). These changes collectively were
associated with a coordinated trajectory of recovery from tp1 to tp3 (Figure 5D). Despite
these coordinated changes, patients did not return to an immune composition comparable to
healthy donors, indicating that the time of extubation remains an active immunological phase
of disease resolution from the most severe form of COVID-19. Some key immune cell
populations that remain different from healthy controls included both activated CD4 and CD8
T cells as well as Tregs (Figure 5E and S5C). Of these changes, only the observed increase
in activated CD8 T cells was apparent within patients during intubation (tp1 vs tp2),
suggesting that additional dynamic changes are specific to the resolution of severe
COVID-19 (Figure S5D and S5E).

COVID-19 ventilation recovery is associated with T cell and monocyte phenotypic
changes and a transition from pSTAT to pCREB dominated signaling

Next, we further analyzed changes in immune cell activation and cell signaling dynamics that
accompany ventilation resolution. Consistent with recovery trajectories in patients resolving
COVID-19, activated CD8 T cells expressed higher levels of HLA-DR and lower levels of
CCR7 at the time of extubation (Figure 5F), while neutrophils expressed lower levels of
PD-L1 (Figure S5F). Additionally, while there was no difference in monocyte subset
frequencies (Figure S5G), non-classical (CD16+) monocytes exhibited a shift from a CD64+
PD-L1+ phenotype during ventilation to a CD4+ CD11c+ HLA-DR+ activated monocyte
phenotype at the time of extubation (Figure 5G, 5H, and 5I). CD64+ expression on
non-classical monocytes were incrementally decreased between tp1 and tp3 demonstrating
a progressive downregulation during the resolution phase (Figure 5I).

Cell signaling states also changed markedly from the time of intubation to the time of
extubation. During early time points of mechanical ventilation (tp1), higher levels of pSTAT1,
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pSTAT3, and pSTAT5 signaling was evident in CD4 Tregs, basophils, and activated CD8 T
cells (Figure 5J, 5K, 5L, and S5H). Conversely, pCREB signaling was significantly increased
after extubation (tp3) in CD4 Tregs and non-classical monocytes (Figure 5J, 5K, 5L, and
S5H), suggesting there is a transition from inflammatory cytokine signaling response to
pro-survival signaling within these cells, specifically. Visualizing these signaling trajectories in
PCA space revealed a coordinated trajectory of immune cell signaling that accompanies
extubation across patients (Figure 5M), though signaling states remained distinct from those
in healthy individuals (Figure S5I). Taken together, our analyses identify a conserved set of
immunological processes that are consistent among patients who recovered from
mechanical ventilation as a result of COVID-19, elucidating an additional layer of
immunological changes that are unique to these patients compared to recovery in patients
who did not require mechanical ventilation.

Core immune resolution features define patients with better clinical outcomes at time
of admission

Having identified a signature of immune remodeling during COVID-19 recovery, we next
investigated if the early presence of these features were associated with better patient
outcomes. We evaluated the immune composition of severe COVID-19 patients before or on
the day they were ventilated (vent, n = 13) and compared it to the immunological state at
time of admission (D0) for patients who never required ventilation (no vent, n = 50) (Figure
6A and S6A). Differential abundance analysis of immune cell frequencies revealed higher
frequencies of monocytes and CD4 Tregs, as well as decreased neutrophil frequencies, in
patients who never required ventilation (Figure 6B and 6C). Similar results were obtained
when exclusively analyzing samples collected prior to ventilation (vent, n = 8) (Figure S6B
and S6C). Patients who never required ventilation exhibited an immune state more similar to
those of the healthy controls (Figure S6D). While monocytes were significantly
downregulated at time of admission in patients who required ventilation, we observed a
consistent increase from time of intubation to time of discharge with the highest incline
occurring right after time of extubation (Figure 6D). The opposite directionality was observed
for neutrophils (Figure 6D). Interestingly, CD4 Tregs, which are known to play a role in ARDS
resolution and pulmonary recovery, demonstrate a gradual increase in frequency during
patient intubation followed by the steepest increase after extubation (Mock et al. 2014;
Garibaldi et al. 2013) (Figure S6E). Additionally, the phenotype of monocytes in patients who
never require ventilation resembles the activated monocyte subset identified during
discharge and ventilation recovery, expressing significantly higher levels of CD4 and CD11c
(Figure S6F and S6G). Furthermore, basophil and CD4 Treg signaling states that were
identified during ventilation resolution were already significantly higher in patients who
required ventilation at time of admission (Figure 6E and S6H) and consistently decreased
during ventilation (Figure 6F). Taken together, our results show a set of conserved core
immune features that accompany disease resolution with additional features that identify
patients who recover from ventilation (Figure 6G). These ventilation specific features are
significantly different at time of admission between patients who will require mechanical
ventilation and those that never require ventilation, and thus associated with poorer clinical
outcomes (Figure S6I).

Discussion:

Human immunology studies are inherently challenging because of the variability in
baseline immune cell compositions, heterogeneity in immune responses, and difficulty in
collecting longitudinal samples to track individuals over time. Because of the urgency to
understand and respond to COVID-19, this cohort of patients provided a unique opportunity
to recruit, study, and analyze a large number of individuals responding to the same infection
over a finite period of time (April 2020 - April 2021). Since individuals recover from their
infection across a variable amount of time, these studies highlight the benefit of longitudinal
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analysis anchored on key clinical events in the disease process. This analytical approach
revealed the unifying trends among patients that define clinically relevant events such as
discharge from the hospital or extubation after mechanical ventilation, regardless of initial
disease severity or time to recovery.

Our findings are consistent with several recent reports of immune responses to
COVID-19 while contributing a new understanding of the immunological processes that
accompany disease recovery, including changes in immune cell signaling states. Although
some studies have suggested that early intervention to modulate immune hyperactivation
may be beneficial in severe COVID-19 (Lucas et al. 2020), these data indicate that early
immune cell signaling, particularly pSTAT3 and pSTAT6, correlates with shorter
hospitalization and ventilation duration. This indicates that an early robust immune response,
driven by pSTAT signaling, and subsequent contraction during recovery may be beneficial to
resolve COVID-19. In patients who require mechanical ventilation, additional immunological
processes involving increased Tregs and basophils also accompany recovery in addition to
the core recovery trajectory observed in patients who did not require ventilation. Additionally
in our analysis, the STAT1 pathway downstream of type I IFN signaling was not differentially
activated between patients with different disease severities. Instead, our study identified that
many signaling pathways are activated simultaneously at the time of hospitalization,
consistent with a recent report of concordant production of cytokines associated with type 1,
2, and 3 immune responses in patients with severe COVID-19 (Lucas et al. 2020). Despite
the importance of B cells to generate SARS-CoV-2 neutralizing antibodies (Lucas et al.
2021), interestingly, our work did not identify changes in circulating B cells associated with
the recovery trajectory. This finding aligns with the clinical observation that B cell deficient
patients or patients with agammaglobulinemia can recover from COVID-19 (Bange et al.
2021; Soresina et al. 2020), and suggests that B cells may play a role in contributing to
immunological memory as compared to the resolution of severe COVID19. Our work
identified regulatory T cells as significantly changing only in patients who require ventilation,
starting at significantly lower frequencies than in patients who never require ventilation
support but gradually progressing to a steep increase after extubation. These findings are
consistent with their critical role in pulmonary repair and ARDs recovery and specifically
identify them as mediators in recovery from severe COVID-19 (Mock et al. 2014; Garibaldi et
al. 2013).

Overall, our study provides an understanding of the core immunological changes that
accompany disease recovery from severe COVID-19 and provides a foundational model of a
successful anti-SARS-CoV-2 immune response. This working model of a recovering immune
response trajectory provides a benchmark to contextualize divergent immune processes
during poor disease outcomes in immunosuppressed or immunocompromised patients,
long-haul COVID-19 patients, pediatric patients with MIS-C, or response to new variants. By
elucidating a conserved trajectory of successful recovery, this study also nominates key
immunological processes that could be targeted to enable recovery of severe disease in
COVID-19 patients and perhaps other acute respiratory infections.
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Methods:

Human subjects

Patients, or a designated surrogate, provided informed consent to participate in the study.
The study is approved by the UCSF Institutional Review Board: IRB 20-30497.

Clinical study design and patient cohort

Clinical study was designed and implemented according to the IMPACC study ((Null et al.
2021)). Patients were recruited from UCSF hospital system and Zuckerberg San Francisco
General Hospital and they, or a designated surrogate, provided informed consent to
participate in the study. Patients with presumed COVID-19 were enrolled within three days of
hospital admission and peripheral blood samples were collected under a protocol approved
by the UCSF Institutional Review Board (IRB 20-30497). Patients with confirmed positive
SARS-CoV-2 polymerase chain reaction (PCR) were designated as COVID-19 positive
cohort (n = 81) and patients without confirmed SARS-CoV-2 PCR were designated
COVID-19 negative (n = 7). Healthy donors (n = 11) were recruited (IRB 19-27147) for a
single peripheral blood time point and consisted of unexposed patients in a similar age range
as the hospitalized cohort. Clinical data and peripheral blood samples were collected at time
of enrollment and throughout hospitalization (mainly on days 4, 7, 14, 21, and 28). If
escalation of care was required, samples were collected within 24 and 96 hours of care
escalation.

COVID-19 Clinical severity classification

All COVID-19 patients in this study were admitted into the UCSF hospital system and
remained there for the duration of our study. By definition, all in-patients reflect a World
Health Organization (WHO) COVID-19 severity score of 3 or greater. Patient severity was
determined by the clinical team to reflect the WHO COVID-19 severity scoring at each
clinical time point throughout in-patient treatment. Based on WHO stratifications (World
Health Organization 2021a) and consulting with the treating physician teams, our study
combined WHO score 5, 6, and 7 into the most severe clinical group. WHO scores of 3 and
4 correspond to Mild and Moderate groups, respectively.

Peripheral blood sample collection and processing
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Blood samples were collected in one EDTA tube and processed within 6 hours of collection.
Whole blood was divided in 540 µL aliquotes then fixed by addition of 756 µL of SmartTube
Stabilizer from SmartTube Inc (Fisher Sci. Cat# 501351692). After gentle mixing at room
temperature for 10 mins, the samples were transferred to labeled cryovials and immediately
carried to −80°C for long term storage.

Sample Thawing and filtering

Samples were subsequently thawed after being placed 10 min into a 4˚C refrigerator then
incubated for 15 min in a room temperature water bath. After filtering with 70µm Cell Strainer
(Celltreat, Cat# 229483) and washing in 45 ml Milli-Q H2O, samples were counted and
barcoded.

Antibodies and staining procedure

The source for all mass cytometry antibodies can be found in Supplementary Table 1.
Antibodies were conjugated to their associated metals with MaxPar X8 labeling reagent kits
(Fluidigm) according to manufacturer instructions, diluted with Candor PBS Antibody
Stabilization solution (Candor Bioscience, CAT#130 050) supplemented with 0.02% sodium
azide, and filtered through an UltrafreeMC 0.1-mm centrifugation filter (Millipore) before
storage at 4º C. To reduce tube-to-tube pipetting variations, part of the signaling antibody
panel came from lyophilized antibody cocktail, made at Stanford University as previously
described ((Han et al. 2018)). Surface and intracellular master antibody cocktails were made
and kept at -80º C in order to stain up to 600 samples.

Mass-tag cellular barcoding

Prior to antibody staining, mass tag cellular barcoding of prepared samples was performed
by incubating cells with distinct combinations of isotopically-purified palladium ions chelated
by isothiocyanobenzyl-EDTA as previously described ((Zunder et al. 2015)). After counting,
1*106 cells from aliquot were barcoded with distinct combinations of stable Pd isotopes for
15 min at room temperature on a shaker in Maxpar Barcode Perm Buffer (Fluidigm,
cat#201057). Cells were washed twice with cell staining media (PBS with 0.5% BSA and
0.02% NaN3), and pooled into a single 15 ml tube.

Mass cytometry staining

Barcoded cells were stained with Fc Receptor Blocking Solution (BioLegend, Cat#422302)
at 20 mg/ml for 5 min at RT on a shaker. Surface antibody cocktail is then added with a 500
ul final reaction volume for 30 min at RT on a shaker. Following staining, cells were washed
twice with cell staining media. Before intracellular staining, cells were permeabilized for 10
min with methanol at 4ºC. Methanol is then removed by washing the cells 2 times with cells
staining media. Intracellular cocktail is then added to the cells in 500 uL final reaction volume
for 1 hour at RT on a shaker. Cells were washed twice in cell staining media to remove
antibodies excess and then stained with 1mL of 1:4000 191/193Ir Iridium intercalator
solution (Fluidigm,Cat#201192B ) diluted in PBS with 4% PFA overnight. Before mass
cytometry run, cells were washed once with cell staining media, and twice with Cell
Acquisition Solution (Fluidigm, Cat# 201240).

Mass Cytometry
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Mass cytometry samples were diluted in Cell Acquisition Solution containing bead standards
(Fluidigm, Cat#201078) to approximately 106 cells/mL and then analyzed on a Helios mass
cytometer (Fluidigm) equilibrated with Cell Acquisition Solution. Approximately 0.5x106 cell
events were collected for each sample at an even rate of 400–500 events/second.

Data normalization and de-barcoding

Bead standard data normalization and de-barcoding of the pooled samples into their
respective conditions was performed using the R package from the PICI institute available at
https://github.com/ParkerICI/premessa.

Quality control inclusion and exclusion criteria

In order to ensure high quality sample collection, processing, and staining across the cohort
we developed a set of inclusion criteria required for each sample to be used in our data
analysis. We processed and ran CyTOF on 498 peripheral blood samples. After debarcoding
and normalization, samples were uploaded to Cell Engine to assess adequate staining and
cell number. Each barcode plate was run with a healthy PB control sample aliquoted from
two healthy donors to validate staining and for normalization between barcode plates. If the
control PB sample failed to stain the major immune cell populations (T cell, B cell,
granulocytes, monocytes), no samples from that barcode plate were included. Individual
samples were then assessed for CD45+ composition (>50% CD45+ staining required), cell
abundance (>5,000 cells per sample required), and representation of the major immune cell
populations (T cell, B cell, granulocytes, monocytes). 230 samples passed QC and were
used in the batch normalization.

QUANTIFICATION AND STATISTICAL ANALYSIS

Batch normalization

All manually gated immune cells (CD45+) from samples meeting our inclusion criteria (n =
230) were downloaded as FCS files from cellEngine. Premessa (Gherardini 2021)
(https://github.com/ParkerICI/premessa) and cytofCore (R. Bruggner and M. Linderman and
R. Finck 2021) (https://github.com/nolanlab/cytofCore) were used to harmonize panels
between runs, and CytoNorm (Van Gassen 2021) (https://github.com/saeyslab/CytoNorm)
were utilized to correct for batch effect. All markers were used for batch effect normalization,
except for Ki-67, which failed for several CyTOF runs and were excluded in the final data.
Samples were separately normalized to control 1 and 2, and subsequently combined into
one final data set of normalized FCS files.

Manual gating

Batch effect normalized FCS files were uploaded to Cell Engine for manual gating. Major
immune cell populations were identified based on prior gating strategy (Allen et al. 2020). T
cell subsets were further identified based on phenotypic markers specified in prior
publication that suggested these specific subtypes could play a role in COVID-19 severity
(Mathew et al. 2020).

t-SNE visualization
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The multiparameter dimensionality reduction method t-distributed stochastic neighbor
embedding (t-SNE) was employed to visualize major shifts in immune distribution between
COVID-19 positive, COVID-19 negative, and healthy individuals. CD45+ immune cells from
healthy peripheral blood samples were compared to day 0 (D0) peripheral blood samples
from COVID-9 positive and negative individuals and respective groups were concatenated
into a single FSC file which was then used in the t-SNE algorithm on Cell Engine
(cellengine.com). Only phenotypic markers were used as analysis channels and no
phospho-signaling channels were input into the t-SNE visualization. The default settings for
t-SNE plot were utilized and a default of 90 nearest neighbors (k) was used. Manually gated
immune cell populations were used to color the t-SNE plot to identify representative immune
populations on the plot.

Defining groups and samples
For intra-patient resolution analyses, we defined three different groups; patients who were
discharged within 30 days of enrollment in the study (<30 days), patients who were
discharged after 30 days of enrollment in the study (>30 days), and patients who died. For
patients who were discharged <30 days, the last sample (tp2) had to be obtained within 7
days of discharge. For patients who were discharged >30 days and patients who died, the
last sample (tp2) had to be obtained within 50 days of discharge. For all groups, the first
sample (tp1) had to be obtained within 14 days of enrollment. For intra-patient ventilation
recovery analysis, samples had to be obtained within 7 days of the point of interest, e.g.
going on a ventilator / coming off a ventilator. For all comparisons; if multiple samples fulfilled
the requirements, we used the sample closest to the event of interest. The number of
patients and specific sampling timepoints used for each analysis are illustrated in the
supplementary figures.

Statistical analysis
All statistical tests were performed in R (Team and Others 2013; RStudio Team 2016). The
non-parametric Wilcoxon rank sum test was utilized to compare immune population
frequencies, median protein expression values, and median signaling molecule values
between groups of interest. For intra-patient analysis, we used the paired Wilcoxon rank sum
test. For multiple testing corrections, we applied Benjamini-Hochberg correction and
statistical differences were declared significant at FDR < 0.1. When multiple testing was not
applied, statistical differences were declared significant at P < 0.05. Most of the plots were
produced with the R package ggplot2 (Wickham 2016).
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Figure Legends

Figure 1: COVID-19 immune phenotype and composition is highly divergent from
healthy individuals and has unique features compared to other severe respiratory
infections.
A) Overview of cohort. Patients were admitted to the hospital and enrolled in the study at D0.
Peripheral blood samples were collected throughout the duration of stay. Corresponding
clinical parameters and WHO scores were documented. 205 samples from 81 COVID-19
positive patients were included in the final cohort. Additionally, 14 samples from 7 COVID-19
negative patients with other respiratory diseases and 11 healthy individuals were included in
the study. B) t-SNE plot of all patient samples at D0 (n = 83) using phenotypic markers
colored by major immune cell populations. Upper right panel: t-SNE plot of healthy samples
(n = 11); middle right panel: t-SNE plot of COVID-19 negative samples (n = 6); lower right
panel: t-SNE plot of COVID-19 positive samples (n = 66). C) Immune cell population
abundance at D0 in COVID-19 positive (+), COVID-19 negative (-) patients, and healthy
individuals (H). P-values obtained by Wilcoxon Rank Sum Test, followed by
Benjamini-Hochberg correction with FDR < 0.1. D) Correlation between cell population
abundance at D0 and clinical outcomes, e.g. ventilation duration (vent_duration) and hospital
length of stay (hosp_los) for COVID-19+ patients. Correlation estimates are obtained by
Pearson correlation. E) Protein expression on neutrophils (F) in COVID-19 positive (COV+),
COVID-19 negative (COV-) patients, and healthy controls at D0 (Wilcoxon Rank Sum Test,
Benjamini-Hochberg correction with FDR < 0.1). F) Frequency of monocyte subsets in
COVID-19 positive (COV+), COVID-19 negative (COV-) patients, and healthy controls at D0.
P-values obtained by Wilcoxon Rank Sum Test.

Figure 2: Early coordinated immune signaling defines COVID-19 patients with high
pSTAT3 and pSTAT6 associated with favorable clinical outcomes
A) Signaling schematic. Stars denote phosphorylated signaling molecules that are measured
in the CyTOF panel. B) Expression of signaling molecules in CD45+ CD235a/b-negative
peripheral blood immune cells at D0 in COVID-19 positive (+), COVID-19 negative (-)
patients, and healthy individuals (H). P-values obtained by Wilcoxon Rank Sum Test,
followed by Benjamini-Hochberg correction with FDR < 0.1. C+D) Correlation between
signaling molecule expressions at D0 and clinical outcomes, e.g. ventilation duration
(vent_duration) and hospital length of stay (hosp_los) for COVID-19+ patients (C) and
COVID-19- patients (D). Correlation estimates are obtained by Pearson correlation. E+F)
Correlation between pSTAT3 (E) or pSTAT6 (F) signaling at D0 and hospital length of stay or
ventilation duration. Correlation estimates and p-values are obtained by Pearson correlation.

Figure 3: Conserved immunological processes accompany COVID-19 resolution and
hospital discharge
A) Illustration of intra-patient analysis from admission to discharge for patients who are
successfully discharged from the hospital within 30 days of admission (n = 32). B) Paired
differential expression analysis of immune cell populations between the first (tp1) and
second (tp2) timepoints illustrated in 3A (paired Wilcoxon Rank Sum Test). The log2 fold
changes (tp2 vs tp1) are plotted against the negative log10(p-values). Colors indicate if cell
populations are significantly down- (blue) or upregulated (purple) from tp1 to tp2 or not
differentially expressed (FALSE, grey) after Benjamini-Hochberg correction, FDR < 0.1. C)
Frequency of monocytes, neutrophils, cDC1, and CD8 activated T cells at tp1 and tp2. Lines
connect samples from the same patient. P-values obtained by paired Wilcoxon Rank Sum
Test. CD8 activated T cells and cDC1 cells are shown as a percentage of parent populations
(e.g. CD8 T cells and dendritic cells, respectively), while monocytes and neutrophils are
shown as a percentage of all cells. D) Principal component analysis of significant immune
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cell subsets in 3B for tp1, tp2, and healthy controls. Immune cell directionality and
contribution to PCA space denoted on right (top). Summary ellipsoid of tp1, tp2, and healthy
patients in PCA space on right (bottom). E) Population frequencies of significant immune cell
subsets in 3B for tp1, tp2, and healthy controls. Stars indicate median value for each group.
Cell populations are highlighted in green if tp2 is closer to healthy than tp1, and highlighted
in yellow if tp2 is moving away from healthy. F+G) Protein expression on CD8- and CD4
activated T cells (F) and on monocyte subsets (G) at tp1 and tp2. Mean protein expression
values have been log10 transformed, scaled, and centered on heatmap. Bars indicate mean
protein expression across all samples. Only significant proteins are shown (Wilcoxon Rank
Sum Test, Benjamini-Hochberg correction with FDR < 0.1). H) Scatter plots of CD11c and
HLA-DR expression on non-classical monocytes in patient 1344 at D0 (top) and D7 (bottom).
I) Expression of signaling molecules in significant immune cell subsets in 3B at tp1 and tp2.
Median signaling expression values have been centered on heatmap. Only significant
signaling molecules are shown (Wilcoxon Rank Sum Test, Benjamini-Hochberg correction
with FDR < 0.1). J) Expression of pTBK1 in CD8 activated T cells, and pSTAT3 expression
in CD8 activated T cells and classical monocytes at tp1 and tp2. Lines connect samples from
the same patient. P-values obtained by paired Wilcoxon Rank Sum Test. K) Expression of
PDL1 on non-classical monocytes at tp1 and tp2. Lines connect samples from the same
patient. P-values obtained by paired Wilcoxon Rank Sum Test.

Figure 4: Immune features associated with COVID-19 resolution are absent in patients
who are discharged late or die from COVID-19
A) Illustration of intra-patient analysis of patients who are hospitalized for >30 days (n = 6)
and patients who die (n = 5). B) Median cell population frequencies at tp1 (red) and tp2
(blue) for patients who are discharged <30 days, >30 days, and deceased. C)
Representative scatter plots of activated CD8 T cells (defined by CD38 and HLA-DR
expression), at tp1 (left) and tp2 (right) for patients who are discharged <30 days, >30 days,
and deceased. D) Magnitude of change illustrated by log2FC*-log10(pvalue) of signaling
molecules (identified in Figure 3I) for patients who are discharged within 30 days (<30 days,
green), discharged after 30 days (>30 days, blue), and die (red). P-values obtained by paired
Wilcoxon Rank Sum Test. E+F) Median signaling molecule expression at tp1 (red) and tp2
(blue) for patients who are discharged <30 days, >30 days, and deceased. G) Monocyte
frequencies (left plots) and CD8 activated pERK expressions (right plots) relative to time to
discharge in all samples from patients who are discharged <30 days (n = 142 samples) or
>30 days (n = 30 samples). Black lines connect samples from the same patient. Blue lines
and grey shadows represent the best fitted smooth line and 95% confidence interval. Dotted
lines intersect the x-axis at day 30.

Figure 5: Recovery from severe COVID-19 requires core immune resolution features
and additional regulatory T cell and basophil upregulation
A) Illustration of intra-patient analysis of ventilated patients. Three timepoints are
considered: tp1 (first sample after a patient has been put on a ventilator), tp2 (last sample
before the patient is removed from a ventilator), and tp3 (first sample after a patient is
successfully removed from ventilation support). B) Paired differential expression analysis of
immune cell populations between the first (tp1) and third (tp3) timepoints illustrated in 5A
(paired Wilcoxon Rank Sum Test). The log2 fold changes (tp3 vs tp1) are plotted against the
negative log10(p-values). Colors indicate if cell populations are significantly down- (blue) or
upregulated (purple) from tp1 to tp3 or not differentially expressed (FALSE, grey) after
Benjamini-Hochberg correction, FDR < 0.1. C) Frequency of monocytes, neutrophils, CD4
Treg, and CD8 activated T cells at tp1 and tp3. Lines connect samples from the same
patient. P-values obtained by paired Wilcoxon Rank Sum Test. CD8 activated T cells are
shown as a percentage of parent population (e.g. CD8 T cells), while monocytes,
neutrophils, and CD4 Tregs are shown as a percentage of all cells. D) Principal component
analysis of significant immune cell subsets in 5B for tp1, tp3, and healthy controls. Immune
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cell directionality and contribution to PCA space denoted on the right. E) Population
frequencies of significant immune cell subsets in 3B for tp1, tp3, and healthy controls. Stars
indicate median value for each group. Cell populations are highlighted in green if tp3 is
closer to healthy than tp1, and highlighted in yellow if tp3 is moving away from healthy. F+G)
Protein expression on CD8 activated T cells (F) and on monocyte subsets (G) at tp1 and tp3.
Mean protein expression values have been log10 transformed, scaled, and centered on
heatmap. Bars indicate mean protein expression across all samples. Only significant
proteins are shown (Wilcoxon Rank Sum Test, Benjamini-Hochberg correction with FDR <
0.1). H) Expression of PDL1 on non-classical monocytes at tp1 and tp3. Lines connect
samples from the same patient. P-values obtained by paired Wilcoxon Rank Sum Test. I)
Left: Scatter plots of CD11c and HLA-DR expression on non-classical monocytes in patient
1276 at D0 (tp1, top) and D28 (tp3, bottom). Right: Expression of CD64 on non-classical
monocytes for patient 1279 from D0 (tp1) to D28 (tp3). J) Expression of signaling molecules
in significant immune cell subsets in 5B at tp1 and tp3. Median signaling expression values
have been centered on heatmap. Only significant signaling molecules are shown (Wilcoxon
Rank Sum Test, Benjamini-Hochberg correction with FDR < 0.1). K) Expression of pSTAT1
(left) and pCREB (right) in CD4 Tregs at tp1 (blue) and tp3 (orange) for representative
patients. L) Expression of pSTAT1 and pCREB in CD4 Tregs at tp1 and tp3. Lines connect
samples from the same patient. P-values obtained by paired Wilcoxon Rank Sum Test. M)
Principal component analysis of significant signaling molecules in 5I for tp1, tp3, and healthy
controls. Immune cell directionality and contribution to PCA space denoted on the right.

Figure 6: Core immune resolution features define patients with better clinical
outcomes at time of admission
A) Illustration of inter-patient analysis of ventilated patients (vent, n = 13) vs patients who are
never ventilated (no vent, n = 50). For ventilated patients, the latest sample before the
patient is put on a ventilator is used. For non-ventilated patients, D0 is used. B) Differential
expression analysis of immune cell populations between ventilated and non-ventilated
patients illustrated in 6A (Wilcoxon Rank Sum Test). The log2 fold changes (vent vs no vent)
are plotted against the negative log10(p-values). Colors indicate if cell populations are
significantly down- (blue) or upregulated (purple) for vent vs no vent or not differentially
expressed (FALSE, grey) after Benjamini-Hochberg correction, FDR < 0.1. C) Frequency of
monocytes, neutrophils, CD4 Tregs, and CD8 EM3 T cells in vent and no vent patients.
P-values obtained by Wilcoxon Rank Sum Test. CD8 EM3 T cells parent population (e.g.
CD8 T cells), while monocytes, neutrophils, and CD4 Tregs are shown as a percentage of all
cells. D) Monocyte (left plots) and neutrophil (right plots) frequencies relative to intubation /
extubation in all samples from ventilated patients. Black lines connect samples from the
same patient. Blue lines and grey shadows represent the best fitted smooth line and 95%
confidence interval. Dotted lines intersect the x-axis at day of intubation / extubation. E)
Expression of pSTAT3 and pPLCg2 in basophils in non-ventilated and ventilated patients as
well as healthy individuals. P-values obtained by Wilcoxon Rank Sum Test. F) Expression of
pSTAT5 in CD4 Tregs relative to intubation / extubation in all samples from ventilated
patients. G) Graphical summary depicting the trajectories of key immune features involved in
COVID-19 resolution and ventilation recovery.

Supplemental Tables
Supplemental table 1: Patient demographics and clinical parameters, e.g.
WHO score at time of sampling, max WHO score, hospital length of stay, ventilation
duration, etc. (patient_demographics.xlsx)

Supplemental table 2: Summary of patient demographics
(Patient_demographics_summary.xlsx)
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Supplemental table 3: Healthy individuals demographics (healthy_demographics.xlsx) 

Supplemental table 4: Antibody panel (antibody_panel.xlsx)
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Supplemental figure 1
A) All patient samples included in study (220 samples from 89 patients). COVID-19 patients shown in black and COVID-19 negative patients in blue. Points 
indicate sample timepoint and are coloured according to WHO score. Green points indicate the day of discharge, while triangles indicate patients that died. 
B) Gating strategy for manual immune cell gates. C) Frequency of neutrophils in COVID-19 positive (COV+), COVID-19 negative (COV-) patients, and 
healthy controls at D0. P-values obtained by Wilcoxon Rank Sum Test. D) Number of samples at each time point (D0, D4, and D7) for each COVID-19 
severity group and for COVID-19 negative patients. E) Differential expression analysis of immune cell populations between COVID-19 severity groups and 
COVID-19 negative patients at D0. The log2 fold changes are plotted against the negative log10(p-values). P-values obtained by Wilcoxon Rank Sum Test. 
Colors indicate if cell populations are significantly down- (blue) or upregulated (purple) or not differentially expressed (FALSE, grey) after Benjamini-Hoch-
berg correction, FDR < 0.1. F) Immune cell population abundance at D0, D4, and D7 in COVID-19 patients divided into severity groups based on their 
WHO score, as well as in COVID-19 negative patients, and healthy individuals at D0. P-values obtained by Wilcoxon Rank Sum Test, followed by Benjami-
ni-Hochberg correction with FDR < 0.1. Immune cell populations that are significantly different after BH correction (across time points within groups or 
cross-sectional at the same time point between groups) are highlighted with coloured boxes corresponding to the time point and group of comparison. All 
comparisons between patients and healthy individuals at D0 are illustrated with p-values in main figure 1C. G+H) Frequency of B cell plasmablasts (G) and 
CD4 activated T cells (H) in patients suffering from severe and mild disease, respectively. P-values obtained by Wilcoxon Rank Sum Test. 
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Supplemental figure 2
A) Expression of significant changing signaling molecules from 2B in all CD45+ cell population subsets at D0 in COVID-19 
patients and healthy individuals. Median expression values have been centered on heatmap. P-values obtained by Wilcoxon 
Rank Sum Test, followed by Benjamini-Hochberg correction with FDR < 0.1. B) Median signaling molecule values at D0, D4, 
and D7 in COVID-19 patients divided into severity groups based on their WHO score, as well as in COVID-19 negative 
patients, and healthy individuals at D0. C) Specific comparisons from S1B. P-values obtained by Wilcoxon Rank Sum Test.
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Supplemental Figure 3 
A) Samples used for intra-patient analysis in Figure 3 of patients that are discharged from the hospital within 30 days of 
admission (n = 32). Points indicate sample timepoint and are coloured according to WHO score. Green points indicate the day 
of discharge. B) Paired differential expression analysis of protein expression on monocyte subsets, neutrophil, CD8- and CD4 
activated T cells between the first (tp1) and second (tp2) timepoints illustrated in 3A (paired Wilcoxon Rank Sum Test). The 
log2 fold changes (tp2 vs tp1) are plotted against the negative log10(p-values). Colors indicate if cell populations are signifi-
cantly down- (blue) or upregulated (purple) from tp1 to tp2 or not differentially expressed (FALSE, grey) after Benjamini-Hoch-
berg correction, FDR < 0.1. C) Principal component analysis of significant signaling molecules in 3I for tp1, tp2, and healthy 
controls. D) Expression of signaling molecules (from 3I and S3C) for tp1, tp2, and healthy controls. Stars indicate median 
value for each group.
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H.

Supplemental Figure 4
A) Samples used for intra-patient analysis in Figure 4 of patients that are discharged after 30 days (left, n = 6) and patients that die (right, n = 5). Points indicate 
sample timepoint and are coloured according to WHO score. Green points indicate the day of discharge. B) Paired differential expression analysis of immune cell 
populations between the first (tp1) and second (tp2) timepoints illustrated in 4A (paired Wilcoxon Rank Sum Test). The log2 fold changes (tp2 vs tp1) are plotted 
against the negative log10(p-values). Colors indicate if cell populations are significantly down- (blue) or upregulated (purple) from tp1 to tp2 or not differentially 
expressed (FALSE, grey) after Benjamini-Hochberg correction, FDR < 0.1. C) Median cell population frequencies at tp1 (red) and tp2 (blue) for patients that are 
discharged <30 days, >30 days, and deceased. D+E) Cell population frequencies at tp1 (D) and tp2 (E) for patients that are discharged <30 days, >30 days, and 
deceased.  F) Frequency of monocytes at tp1 and tp2 for patients that are discharged after 30 days or die. Lines connect samples from the same patient. P-values 
obtained by paired Wilcoxon Rank Sum Test. G) Median expression of signaling molecules at tp1 (red) and tp2 (blue) for patients that are discharged <30 days, 
>30 days, and deceased. H+I) Expression of signaling molecules at tp1 (H) and tp2 (I) for patients that are discharged <30 days, >30 days, and deceased. J) 
Expression of pSTAT3 in activated CD8 T cells (left) and pERK in non-classical monocytes (right) at tp1 (blue) and tp2 (orange) for representative patients that are 
discharged <30 days, >30 days, and deceased. K) Neutrophil frequencies (left plots) and CD8 activated pSTAT5 expressions (right plots) relative to time to 
discharge in all samples from patients who are discharged <30 days (n = 142 samples) or >30 days (n = 30 samples). Black lines connect samples from the same 
patient. Blue lines and grey shadow represent the best fitted smooth line and 95% confidence interval. 
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Supplemental Figure 5:
A) All samples for patients that have been put on a ventilator. Dark blue points indicate when a patient is put on a ventilator. Light blue points indicate when a 

patient is taken off a ventilator. B) Samples used for intra-patient analysis between tp1 and tp3 in Figure 5 of patients that have been put on a ventilator (n = 9). 

Points indicate sample timepoint and are coloured according to WHO score. Dark blue points indicate when a patient is put on a ventilator. Light blue points 

indicate when a patient is taken off a ventilator. C) Frequencies of CD4 Tregs and Basophils at tp1, tp3, and in healthy controls. P-values obtained by Wilcoxon 

Rank Sum Test. D) Samples used for intra-patient analysis between tp1 and tp2 in Figure 5 for patients that have been put on a ventilator (n = 11). Points indicate 

sample timepoint and are coloured according to WHO score. Dark blue points indicate when a patient is put on a ventilator. Light blue points indicate when a 

patient is taken off a ventilator. E) Paired differential expression analysis of immune cell populations between the first (tp1) and second (tp2) timepoints illustrated 

in 5A (paired Wilcoxon Rank Sum Test). The log2 fold changes (tp2 vs tp1) are plotted against the negative log10(p-values). Colors indicate if cell populations are 

significantly down- (blue) or upregulated (purple) from tp1 to tp2 or not differentially expressed (FALSE, grey) after Benjamini-Hochberg correction, FDR < 0.1. F) 
Paired differential expression analysis of protein expression on neutrophils between the first (tp1) and third (tp3) timepoints illustrated in 5A (paired Wilcoxon Rank 

Sum Test). The log2 fold changes (tp3 vs tp1) are plotted against the negative log10(p-values). Colors indicate if cell populations are significantly down- (blue) or 

upregulated (purple) from tp1 to tp3 or not differentially expressed (FALSE, grey) after Benjamini-Hochberg correction, FDR < 0.1. G) Frequencies of monocyte 

subsets at tp1 and tp3. P-values obtained by paired Wilcoxon Rank Sum Test. H) Expression of pSTAT3 in Basophils and pCREB in non-classical monocytes at 

tp1 and tp3. Lines connect samples from the same patient. P-values obtained by paired Wilcoxon Rank Sum Test. I) Expression of signaling molecules in 5M for 

tp1, tp2, and healthy controls. Stars indicate median value for each group.
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Supplemental Figure 6: 
A) Samples used for inter-patient analysis in Figure 6. For ventilated patients (n = 13), the latest sample before the patient is put on a ventilator or, if available, 
the sample at the day of ventilation is used. For non-ventilated patients (n = 50), D0 is used. B) Samples obtained prior to ventilation (n = 8). C) Differential 
expression analysis of immune cell populations between ventilated (from S6B) and non-ventilated patients (from S6A) (Wilcoxon Rank Sum Test). The log2 fold 
changes (vent vs no vent) are plotted against the negative log10(p-values). Colors indicate if cell populations are significantly down- (blue) or upregulated 
(purple) for vent vs no vent or not differentially expressed (FALSE, grey) after Benjamini-Hochberg correction, FDR < 0.1. D) Population frequencies of significant 
immune cell subsets in 6B for ventilated-, non-ventilated patients, and healthy controls. Stars indicate median value for each group. Cell populations are 
highlighted in green if non-ventilated patients are closer to healthy controls than ventilated patients. E) CD4 Treg frequencies relative to intubation / extubation in 
all samples from ventilated patients. Black lines connect samples from the same patient. Blue lines and grey shadows represent the best fitted smooth line and 
95% confidence interval. Dotted lines intersect the x-axis at day of intubation / extubation. F) Protein expression on monocyte subsets in ventilated- and 
non-ventilated patients. Mean protein expression values have been log10 transformed, scaled, and centered on heatmap. Bars indicate mean protein expression 
across all samples. Only significant proteins are shown (Wilcoxon Rank Sum Test, Benjamini-Hochberg correction with FDR < 0.1). G) Scatter plots of CD11c and 
HLA-DR expression on intermediate (left) and classical monocytes (right) in representative patients. H) Expression of pSTAT5 in CD4 Tregs in non-ventilated and 
ventilated patients as well as healthy individuals. P-values obtained by Wilcoxon Rank Sum Test. I) Significantly changing immune cell populations (black text) 
and signaling molecules (purple) accompanying discharge (green), ventilation resolution (orange), and better clinical outcome (blue).

10

20

30

40

50

No vent VentHealthy

P = 0.0029 P = 0.017

P = 0.12

C
D

4 
Tr

eg
 

pS
TA

T5
 e

xp
.

B

WHO
3
4
5
6
7
Healthy

Discharge Ventilation resolution

Better clinical outcome
(vent vs no vent)

Monocytes
Neutrophils

CD4 CM
CD4 EM1
CD4 naive
CD4 act.
CD8 act.

NK CD16 neg
NK CD16 pos

CD4
CD4 Tregs
CD8 EM2

CD8

CD4 EMRA
CD8 EM1

CD8 EMRA

cDC
cDC1
cDC2

B memory

Basophils

CD8 EM3
gdT cells

CD4 Treg pSTAT5
Basophil pSTAT3
Basophil pPLCg2

Classical monocyte pSTAT3

Intermediate monocyte pSTAT3

Classical monocyte pERK

Non-classical monocyte pERK

CD4 EM1 pTBK1

NK CD16 neg IkBa CD8 act. IkBa
CD8 EMRA pTBK1

cDC1 pS6

CD8 act. pSTAT3
CD8 act. pS6

CD8 act. pSTAT5

CD8 act. pERK
CD8 act. pTBK1
CD4 act. pTBK1

Non-classical monocyte pP38
Non-classical monocyte pCREB

CD8 EM2 IkBa
CD8 act. pSTAT1

CD4 Treg pSTAT1
CD4 Treg pCREB

Basophil pZAP70
Basophil pERK

Vent

12
17

12
18

12
50

12
64

12
75

12
90

12
92

13
20

0

5

10

Patient ID

WHO
3
4
5
6
7

Deceased
FALSE
TRUE

On vent
Vent statusD

ay

C

Monocytes

dendriticNK

CD4CD8 CD4 Treg

gdTcell Basophil

Neutrophil

CD4 CM
CD4 EM2NK CD16neg

NK CD16pos

0

1

2

3

4

-1 0 1

-L
og

10
(P

-v
al

ue
)

Log2 FC (Vent vs No vent)

Padj < 0.1
a

a

a

FALSE
Up
Down

GE

Monocytes
CD4 Treg

gdTcell
Neutrophil

CD4
CD8 EM2
CD8 EM3

NK CD16neg
NK CD16pos

0 25 50 75 100
Frequency (%)

Vent

Healthy
No Vent

grp

No vent ~ healthy

D

Samples
(n = 63)

Classical CD4

Intermediate CD4

Classical CD11c

Intermediate CD11c

01

log10(exp)

*
*
*
*

Z-scores

-0.2
-0.1
0
0.1
0.2

-log10(pvalue)

1
0.1
0.01
0.001

padj < 0.1*

No v
en

t

ve
nt

pv
al

ue

M
on

oc
yt

e 
pr

ot
ei

n 
ex

pr
es

si
on

Intermediate monocytes
1328 Day 0 (no vent) 1398 Day 0 (vent)

C
D

11
c

HLADR

1328 Day 0 (no vent) 1398 Day 0 (vent)
Classical monocytes

H

F

0

1

2

3

4

−30−20−10010

C
D

4 
Tr

eg
s 

(%
)

0

1

2

3

4

−2002040

C
D

4 
Tr

eg
s 

(%
)

off venton vent

Time to intubation (Days) Time to extubation (Days)

WHO
3
4
5
6
7

I

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 16, 2022. ; https://doi.org/10.1101/2022.03.15.484467doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484467
http://creativecommons.org/licenses/by-nd/4.0/

	COMET Paper
	COMET Figure Legends
	Main_figures
	Supp_figures

