Abstract
Reproducibility and transparency have been longstanding but significant problems for the metabolomics field. Here, we present the tidyMass project (https://www.tidymass.org/), a comprehensive computational framework that can achieve the shareable and reproducible workflow needs of data processing and analysis for LC-MS-based untargeted metabolomics. TidyMass was designed based on the following strategies to address the limitations of current tools: 1) Cross-platform utility. TidyMass can be installed on all platforms; 2) Uniformity, shareability, traceability, and reproducibility. A uniform data format has been developed, specifically designed to store and manage processed metabolomics data and processing parameters, making it possible to trace the prior analysis steps and parameters; 3) Flexibility and extensibility. The modular architecture makes tidyMass a highly flexible and extensible tool, so other users can improve it and integrate it with their own pipeline easily.
Competing Interest Statement
M.P.S. is a co-founder and member of the scientific advisory board of Personalis, Qbio, January, SensOmics, Protos, Mirvie, NiMo, Onza, and Oralome. He is also on the scientific advisory board of Danaher, Genapsys, and Jupiter. Other authors declare no conflict of interests.