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Abstract 
Artificial Intelligence (AI) can support diagnostic workflows in oncology by aiding diagnosis and providing 

biomarkers. AI applications are therefore expected to evolve from academic prototypes to commercial 

products in the coming years. However, AI applications are vulnerable to adversarial attacks, such as 

malicious interference with test data aiming to cause misclassifications. Therefore, it is essential for the 

use of AI-based diagnostic devices to secure them against such attacks before widespread use. 

Unfortunately, no resistant systems exist in computational pathology so far.  

To address this problem, we investigate the susceptibility of convolutional neural networks (CNNs) to 

multiple types of white- and black-box attacks. We demonstrate that both attacks can easily confuse CNNs 

in clinically relevant pathology tasks and impair classification performance. Classical adversarially robust 

training and dual batch normalization (DBN) are possible mitigation strategies but require precise 

knowledge of the type of attack used in the inference.  

We demonstrate that vision transformers (ViTs) perform equally well compared to CNNs at baseline and 

are orders of magnitude more robust to different types of white-box and black-box attacks. At a mechanistic 

level, we show that this is associated with a more robust latent representation of clinically relevant 

categories in ViTs compared to CNNs.  

Our results are in line with previous theoretical studies. We show that ViTs are robust learners in 

computational pathology. This implies that large-scale rollout of AI models in computational pathology 

should rely on ViTs rather than CNN-based classifiers to provide inherent protection against adversaries.  
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Introduction 
Artificial intelligence (AI) with deep neural networks can extract clinically relevant information from digitized 

pathological slides of cancer.1,2 Over the last several years, hundreds of studies have shown that 

diagnostic, prognostic, and predictive models can achieve accuracy which is comparable with gold 

standard methods.3–6 Most studies investigate applications in cancer diagnostics and treatment, where 

pathological diagnosis is a cornerstone and slides are ubiquitous.7–9 It is widely expected that AI systems 

will increasingly be used in clinical practice for cancer diagnostics and biomarker identification over the 

coming years.10,11 Ultimately, such AI systems have the potential not only to make existing workflows more 

efficient, but also enable physicians to recommend improved treatment strategies for cancer patients.12–14 
 

Considering this, it is crucial to ensure that the AI systems are robust before they are used in diagnostic 

routines. AI systems should be resilient to subtle changes in input data and yield a stable performance, 

even when the input signal is noisy. In particular, this includes adversarial attacks to the input signal, i.e. 

wilful modifications to the input data by a malicious actor. Adversarial attacks are a vulnerability of AI 

systems which is a concern in many domains.15 The most common of these attack types are called white-

box attacks. In such attacks, the adversary has full access to the model’s parameters.16 In contrast, black-

box attacks hide the original model from the attacker. Adversarial changes to the original data are usually 

undetectable to the human eye but are disruptive enough to cause AI models to misclassify samples.  

 

Cybersecurity is highly relevant for development and regulation of software in healthcare.17 AI systems in 

healthcare are particularly vulnerable to adversarial attacks.18 This poses a significant security risk: 

predictions of AI systems in healthcare have potentially major clinical implications, and misclassifications 

in clinical decision-support systems could have lethal consequences for patients. Thus, AI systems in 

healthcare should be particularly robust against any attacks. Yet, in computational pathology, only very 

few studies have explored adversarial attacks.19 To date, no established strategy has been developed to 

make AI systems in the field of digital pathology robust against such attacks. The development of attack-

resistant AI systems in pathology is therefore an urgent clinical need, which should ideally be resolved 

before these systems are widely deployed in diagnostic routine. 

 

To date, convolutional neural networks (CNNs) are by far the most used type of deep neural network in 

digital pathology.20 CNNs are capable of capturing high-level features such as edges from input data by 

applying various kernels throughout the training process. As of late 2020, vision transformers (ViTs) have 

emerged as an alternative to CNNs. ViTs use lower-dimensional linear embeddings of the flattened small 

patches extracted from the original image as an input to a transformer encoder.21 Unlike CNNs, ViTs are 

not biased toward translation-invariance and locally restricted receptive fields.22 Instead, their attention 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.15.484515doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484515
http://creativecommons.org/licenses/by/4.0/


4 

mechanism allows them to learn distal as well as local relationships. Although ViTs have outperformed 

CNNs in some non-medical prediction tasks, the uptake of this technology is slow in medical imaging. To 

date, only very few studies have investigated the use of ViTs in computational pathology.23,24 Technical 

studies have described improved robustness of ViTs to adversarial changes to the input data, but this has 

not been explored in medical applications.25–27 

 

In this study, we investigated the robustness of CNNs in computational pathology toward different attacks 

and compared these results to the robustness of ViTs. Additionally, we trained robust models and 

evaluated their performances against the white- and black-box attacks. We analyzed the attack structure 

for both models and investigated the reasons behind their performances. We validated our results in two 

clinically relevant classification tasks in independent patient cohorts. 
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Materials and Methods 

Ethics statement 

This study was performed in accordance with the Declaration of Helsinki. We performed a retrospective 

analysis of anonymized patient samples. In addition to publicly available data from “The Cancer Genome 

Atlas” (TCGA, https://portal.gdc.cancer.gov), we used a renal cell carcinoma dataset by the University of 

Aachen, Germany (ethics board of Aachen University Hospital, No. EK315/19) and a gastric cancer 

dataset by the University of Bern (ethics board at the University of Bern, Switzerland, no. 200/14). This 

study adheres to the MI-CLAIM 28 checklist (Suppl. Table 1). 

Patient cohorts 
We collected digital whole slide images (WSI) of H&E-stained tissue slides of renal cell carcinoma (RCC) 

from two patient cohorts: TCGA-RCC (N=897 patients, Suppl. Figure 1A), which was used as a training 

set and AACHEN-RCC (N=249, Suppl. Figure 1B), which was used as a test set. The objective was to 

predict RCC subtypes: clear cell (ccRCC), chromophobe (chRCC), and papillary (papRCC). In addition, 

we obtained H&E-stained slides of gastric cancer from two patient cohorts: TCGA-GASTRIC (N=191 

patients, Suppl. Figure 1C) for training, and BERN-GASTRIC (N=249 patients, Suppl. Figure 1D)29 for 

testing. The objective was to predict the two major subtypes: intestinal and diffuse, according to the Laurén 

classification. Samples with mixed or indeterminate subtype were excluded. Ground truth labels were 

obtained from the original pathology report. 

Image preprocessing 

We tessellated the WSI into tiles (512 px edge length at 0.5 µm per pixel) which were color-normalized 

with the Macenko method.30 No manual annotations were used. Background and blurry tiles were identified 

by having an average edge ratio smaller than 4, using the canny edge detection method, and were 

removed.23 For each experiment, we selected 100 random tiles from each WSI. We used a classical weakly 

supervised prediction workflow31,32 in which each tile inherited the ground truth label from the WSI and tile-

level predictions were averaged over the WSI at inference. Before each training run, the total number of 

tiles per class was equalized by random downsampling.2  

Experimental design 

First, we trained deep learning models on categorical prediction tasks on the training cohort and validated 

the performance on the test cohort. We used two Deep Learning models, ResNet5033, a convolutional 

neural network (CNN), and Vision transformers (ViT).34 Then, we assessed the susceptibility of the trained 
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models towards white- and black-box adversarial attacks. Finally, we evaluated mitigation strategies 

against adversarial attacks. One strategy was to attack the images in the training cohort, termed 

adversarially robust training. The other strategy, specific to CNNs, was to use dual batch normalization, 

as introduced by Han et al. 35. 

Implementation and analysis of adversarial attacks 

For an image !	belonging to class #! , an adversarial attack perturbs ! in such a way that the image is 

misclassified as #" , % ≠ '. We used four common types of attacks: (1) Fast Gradient Sign Method (FGSM)36–

38, a single-step gradient-based white-box attack; (2) Projected Gradient Descent (PGD)39, a multi-step 

gradient-based white-box attack with attack strength (; (3) Fast Adaptive boundary (FAB)40, a more generic 

type of gradient-based white-box attack; and (4) Square attack41, a black-box attack which places square-

shaped updates at random positions on the input image. To measure which amount of noise is detectable 

by humans, we randomly selected three tiles from the AACHEN-RCC data set and attacked each of them 

with PGD with 50 attack strengths (0 to 0.5). We presented these tiles to a blinded human observer 

(medical doctor) who subjectively classified the images as “no noise detectable” and “noise detectable”. 

Subsequently, we determined the detection threshold by fitting a logistic regression model to the data. 

This analysis was run separately for noise generated with PGD on a ResNet and a ViT model. To visualize 

the adversarial noise, we subtracted the perturbed image from the original image, clipped at the 10+ℎ and 

90+ℎ quantile for each color channel and scaled between 0 and 255. In addition, we visualized the latent 

space of deep layer activations of CNNs and ViTs. The activation feature vectors of ResNet50 (1 × 2048) 
and ViT (1 × 768) were reduced to (1 × 2)	by Principal Component Analysis (PCA), and each component 

was scaled between 0 and 1. To quantify the separation between multiple classes in this latent space, we 

calculated the Euclidean distance42 between all points of each class to the center of the corresponding 

classes and between the centers of classes.  

Statistics 

The main statistical endpoint was the patient-wise micro-averaged area under the receiver operating curve 

(AUROC). 95% confidence intervals were obtained by 1000-fold bootstrapping based on sampling with 

replacement. The test data set remained the same for the experiments between different models. All 

experiments were repeated five times with different random seeds. We reported the mean AUROC with 

standard deviation (SD) and median AUROC with interquartile range (IQR = 6#$%& 	− 	6'$%&). Two-sided 

unpaired t-tests were used to compare sets of AUROCs between different deep learning models for the 

same experimental condition. No correction for multiple testing was applied. Furthermore, we calculated 

the attack success rate (ASR) using the predefined thresholds 0.3, 0.5, and 0.7. The ASR quantified the 

effectiveness of an attack by calculating the degree of misclassification: if the prediction score for the 
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perturbed image changed more than the threshold, the attack was deemed successful. The ASR was 

calculated for 50 randomly selected tiles per class from the AACHEN-RCC set. 

Code availability 

All source codes are publicly available: for image preprocessing43, codes are available at 

https://github.com/KatherLab/preProcessing; for the baseline image analysis23, codes are available at 

https://github.com/KatherLab/HIA and for adversarial attacks, codes are available at https://github.com/ 

KatherLab/Pathology_Adversarial. Additional details are available in the Supplementary Methods. 
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Results 

CNN and ViT perform equally well on clinically relevant classification tasks 

Prediction of pathological subtypes of renal cell carcinoma (RCC) into clear cell (ccRCC), chromophobe 

(chRCC), and papillary (papRCC) is a widely studied task.23,44 We trained ResNet, a convolutional neural 

network (CNN, Figure 1A) and a ViT (Figure 1B) on this task in TCGA-RCC (N=897 patients, Suppl. 

Figure 1A). The resulting classifiers performed well on the external test set AACHEN-RCC (N=249, Suppl. 

Figure 1B), reaching a mean area under the receiver operating curve (AUROC) of 0.960 [± 0.009]. ViT 

reached a comparable AUROC of 0.958 [± 0.010] (Figure 1C, Suppl. Table 2), which was not significantly 

different from the ResNet (p=0.98). The image tiles which were assigned the highest scores showed typical 

patterns for each subtype, demonstrating that ResNet and ViT can learn relevant patterns and generalize 

to an external validation cohort (Figure 1D). In addition, we evaluated the baseline performance of CNN 

and ViT on subtyping of gastric cancer.32,45 When trained on the TCGA-GASTRIC cohort (N=191 patients, 

Suppl. Figure 1C) and tested on the BERN cohort (N=249 patients, Suppl. Figure 1D), CNN and ViT 

achieved mean AUROCs of 0.782 [± 0.014] and 0.768 [±0.015] respectively (Figure 1E, Suppl. Table 

2). Again, the highest scoring tiles showed morphological patterns which are representative for the diffuse 

and intestinal subtype (Figure 1F).46,47 Together, these data are in line with previous evidence23 and show 

that CNNs and ViTs perform equally well for classification tasks in our experimental pipeline. 

CNNs are susceptible to white-box adversarial attacks 

We attacked CNNs with adversarial attacks (Figure 2A), evaluating white-box and black-box attacks 

(Figure 2B). By default, we used the most commonly used gradient-based attack Projected Gradient 

Descent (PGD), and additionally tested three other types of adversarial attacks (Fast Gradient Sign 

Method [FGSM], Fast Adaptive boundary [FAB], and Square attacks, Figure 2C). We found that with an 

increasing attack strength ɛ, the amount of visible noise on the images increased (Figure 2D). We 

quantified this in a blinded observer study and found that the detection threshold for adversarial attacks 

was ɛ=0.19 for ResNet models and ɛ=0.13 for ViT (Suppl. Table 3, Suppl. Figure 2A-B). With increasing 

attack strength, the classifier performance on the test set decreased. Specifically, we attacked with PGD 

with a low (ɛ = 0.25e-3), medium (ɛ = 0.75e-3) and high (ɛ = 1.50e-3) attack strength. The AUROC for 

RCC subtyping dropped from a baseline of 0.960 to 0.919, 0.749, and 0.429 (Figure 3A, Suppl. Table 4). 

Similarly, when attacked with FGSM, the AUROC for RCC subtyping dropped from a baseline of 0.960 to 

0.943, 0.893, and 0.782 (Suppl. Table 5). For the secondary classification task, subtyping of gastric 

cancer, the CNN models were even more susceptible to adversarial attacks. Here, the PGD completely 

degraded classification performance. The AUROC reached by the CNN dropped from a baseline of 0.782 
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to 0.380, 0.029 and 0.000 for the images attacked with low, medium and high ɛ (Figure 3B, Suppl. Table 

6). Together, these data show that CNNs are highly susceptible to adversarial attacks in computational 

pathology 

Adversarially robust training partially hardens CNNs 

We subsequently investigated two possible mitigation strategies to rescue CNN performance. First, we 

evaluated adversarially robust training, in which PGD is applied to the training dataset so that the CNN 

can learn to ignore the noise patterns. Although training a CNN with PGD-attacked images (ɛ = 0.005) 

slightly reduced the RCC classification performance from at baseline from 0.960 to 0.953 (Suppl. Table 

2) it improved the model’s robustness to attacks. For the PGD attack at inference, this adversarially 

robustly trained CNN yielded an average AUROC of 0.950, 0.943, and 0.931 for low, medium and high ɛ, 

respectively (Figure 3A, Suppl. Table 7). FGSM-attack at inference resulted in 0.952, 0.949, and 0.943 

(Table1, Suppl. Table 8) for RCC classification. Second, we investigated if the effect of adversarially 

robust training of CNNs could be enhanced by using a dedicated technique, dual-batch-normalized (DBN). 

The baseline performance of this model was an AUROC of 0.942 [± 0.022] (p = 0.35) for RCC 

classification, which was not significantly inferior to the original model (Suppl. Table 2). For both attack 

types, DBN-CNN conveyed good protection at inference, but did not beat the normal adversarially robust 

training (Figure 3A, Suppl. Table 7, Suppl. Table 8).  

In the secondary prediction task, adversarially robust training slightly lowered the classification accuracy 

at baseline (on non-attacked images) from 0.782 [± 0.014] to 0.736 [± 0.01], but mitigated the vulnerability 

to attack, resulting in AUROCs of 0.724, 0.698, and 0.662 for low, medium and high ɛ (Suppl. Table 9). 

Together, these data show that the attackability of CNNs can be partly mitigated by adversarially robust 

training. Dual batch normalization (DBN) did not convey any additional robustness to CNNs.  

ViTs are inherently robust adversarial attacks 

We attacked ViTs with adversarial attacks and found that they were relatively robust against PGD and 

FGSM without any adversarial pretraining and without any modifications to the architecture. For low, 

medium and high PGD attack strengths in RCC classification, ViT AUROCs were slightly reduced from a 

baseline 0.958 to 0.944, 0.908 and 0.827 (Suppl. Table 4), but ViT was significantly more robust than 

Resnet (p = 0.06, 0.04, and 0.01). Similarly, for FGSM, AUROCs were slightly reduced from a baseline of 

0.958 to 0.952, 0.937, and 0.926 (Suppl. Table 5). Also for FGSM, ViT was significantly more robust than 

ResNet (p = 0.23, 0.04, and 0.05). For the secondary prediction task of gastric cancer subtyping, the 

baseline performance was lower for all classifiers when compared to RCC (Figure 3B). Also in this task, 

ViTs were significantly more robust to attacks than ResNet (p <= 0.01 for low, medium and high attack 

strength, Suppl. Table 6). Training a ViT in an adversarially robust way slightly reduced the baseline 
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performance for RCC classification from 0.958 [± 0.01] to 0.937 [± 0.007] (Figure 3A), and reduced the 

performance of ViT under a low-intensity PGD attack from 0.944 [± 0.011] to 0.932 [± 0.008]. However, 

for medium and high intensity attacks, adversarially robust training was beneficial for ViTs, slightly 

increasing the AUROC from 0.908 [± 0.015] to 0.921 [± 0.01] and from 0.827 [± 0.032] to 0.903 [± 

0.016], respectively (Suppl. Table 4, Suppl. Table 7). Similarly, in the gastric cancer classification task, 

adversarially robust training hardened ViTs: they only slightly reduced their baseline AUROC of 0.737 to 

0.725, 0.698, and 0.657 under low, medium and high-intensity attacks, respectively (Suppl. Table 9). 

Next, we investigated whether the improved higher robustness of ViTs compared to CNNs extended 

beyond to another type of white-box attack, FAB, as well as a black-box attack, the Square attack. To this 

end, we selected 150 tiles from the RCC subtyping task and calculated the attack success rate (ASR) for 

nine experimental conditions: a liberal, a medium and a strict evaluation criterion, for a wide range of attack 

intensities with ɛ = 0.005, ɛ = 0.01 and ɛ = 0.2 (Table 1). For all four types of attacks, in baseline models 

and adversarially trained models, ViTs had the lower (better) ASR in the majority of experiments. For 

baseline models, ViT outperformed ResNet 9:0 (FGSM), 5:4 (PGD), 9:0 (Square) and 7:2 (FAB). For 

adversarially trained models, the margin was smaller, but ViT still outperformed ResNet in all experiments: 

9:0 (FGSM), 5:4 (PGD), 9:0 (Square) and 7:2 (FAB) (Table 1).  

To identify potential reasons for this higher robustness of ViTs towards adversarial attacks, we analyzed 

the adversarial noise obtained with white-box attacks on ViTs and ResNets (Suppl. Figure 3A). 

Quantitatively, we found that the magnitude of the gradients was consistently lower for ViT than for ResNet. 

Qualitatively, in ViT, there is a clear patch partition boundary alignment while ResNet patterns are more 

spatially incoherent (Suppl. Figure 3B). We hypothesize that this reflects the patch-based nature of ViTs, 

which causes learned features to contain less low-level information such as lines and edges from an input 

image and therefore making them less sensitive to high-frequency perturbations. In addition, we analyzed 

the structure of the latent space of the deep layer activations in ResNet and ViT. We found that for the 

original images in the RCC classification tasks, the instances in the classes were visually more clearly 

separated for ViT than for the CNN (Figure 3C). This was confirmed in the more difficult task of gastric 

cancer subtyping, in which also a clearer separation was seen (Figure 3D). Quantitatively, the instances 

within a given class were aggregated more tightly in the ViT latent space, and the distance between the 

centers of the classes were larger (Suppl. Table 10). When we attack the images with ɛ = 0.05 and used 

the baseline model to extract the features, the differences were even more pronounced: the ResNet latent 

space was more de-clustered than the ViT latent space (Figure 3C-D). We conclude that the high 

robustness of ViT towards white-box adversarial attacks when compared with CNN is associated with a 

better separation of distinct classes in the latent space.  
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Discussion 
Medical software can be a target of cyberattacks, which have the potential to cause significant harm.17 

Adversarial attacks can manipulate AI systems into giving false predictions.18 The number of AI systems 

used in healthcare is massively increasing.48 A particularly relevant domain of application is computational 

pathology, where AI systems have been shown to solve clinically relevant questions in the last few years.3 

Based on these academic developments, AI products will likely enter the market in the near future. This 

process offers potential benefits in terms of efficiency and resource savings for diagnostic stakeholders, 

while at the same time offering the possibility of improved biomarkers for cancer patients. However, during 

this potential large-scale rollout of AI systems, it is important to ensure cybersecurity.49 

 

Here, we show that CNNs in computational pathology are susceptible to adversarial attacks far below the 

human perception threshold. We show that existing mitigation strategies such as adversarial training and 

DBN do not provide universal mitigation. Addressing this issue, we explored the potential of ViTs to confer 

adversarial robustness to AI models. We show that ViTs perform on par with CNNs at baseline, and that 

they seem inherently more robust against adversarial attacks. Although no AI models are universally and 

fully attack-proof, our study demonstrates that ViTs seem much more robust against common white-box 

and black-box attack types, and that this is associated with a more robust behavior of the latent space 

compared to CNNs. Our findings add to a list of theoretical benefits of ViTs over CNNs and provide an 

argument to use ViTs as the core technology for AI products in computational pathology. Also, our findings 

are in line with studies in non-medical domains which analyzed robustness of ViTs in technical benchmark 

tasks.50,51  

 

A limitation of our study is the restriction to cancer use cases and classification tasks. A more difficult task 

such as predicting the response to therapy would have even more severe clinical implications and could 

not even be directly checked by a pathologist (as could the diagnostic classification tasks used in the 

study), since negative consequences for prognostic misclassifications have a time delay. Future work 

should also address other types of adversarial attacks, such as physical-world attacks15 or one-pixel 

attacks.52 The uptake of newer AI models, such as text-image models, could also open vulnerabilities 

towards new types of adversarial attacks.53 As multiple AI systems are nearing the diagnostic market, 

hardening these tools against established and emerging adversarial attacks should be a priority for the 

computational pathology research community in academia and industry.18 
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Figures 

 
Figure 1: Cancer subtyping with Deep Learning. (A) Image classification with ResNet, (B) with a Vision 
Transformer (ViT). (C) Area under the receiver operating curve (AUROC) for subtyping of renal cell carcinoma 
(RCC) into clear cell (cc), chromophobe (ch) and papillary (pap). The box shows the median and quartiles of five 
repetitions (points) and the whiskers expand to the rest of the distribution. (D) Representative highly scoring image 
tiles for RCC, as selected by ResNet and ViT. (E) AUROC for subtyping of gastric cancer. (F) Highly scoring image 
tiles for gastric cancer, as selected by ResNet and ViT. 
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Figure 2: Adversarial attacks on computational pathology. (A) Adversarial attacks add noise to the image and 
flip the classification of renal cell carcinoma (RCC) subtyping into clear cell (cc), chromophobe (ch) and papillary 
(pap). The model’s prediction confidence is shown on each image. (B) Experimental design for the baseline (normal) 
training, white-box and black-box attacks and for adversarially robust training. (C) Different attack algorithms yield 
different noise patterns. We used the Fast Gradient Sign Method (FGSM), Projected Gradient Descent (PGD), Fast 
Adaptive boundary (FAB) and Square attacks. (D) The attack strength ɛ increases the amount of noise which is 
added to the image. The average threshold for human perception is ɛ=0.19 for ResNet. 
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Figure 3: Vision Transformers are more robust to adversarial attacks than convolutional neural networks. 
(A) Micro-averaged AUROC for ResNet and ViT under PGD attack for RCC subtyping without (left) and with (right) 
adversarially robust training. Epsilon * 10E-3. (B) AUROC for ResNet and ViT for gastric cancer subtyping. ɛ * 10e-
3. (C) First two principal components of the latent space of ResNet and ViT before (original) and after attack 
(perturbed) for RCC subtyping, for 150 highest-scoring image tiles. ViT has a better separation of the clusters before 
the attack and its latent space retains its structure better after the attack. (D) Latent space for the gastric cancer 
subtyping problem.
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Tables 
ɛ T, t Normal models Adversarially trained models 

FGSM PGD Square FAB FGSM PGD Square FAB 

ResNet ViT ResNet ViT ResNet ViT ResNet ViT ResNet ViT ResNet ViT ResNet ViT ResNet ViT 

0.005 

T=0.3 73.3 % 15.3 % 77.3 % 71.3 % 32.0% 0.00 % 34.7 % 16.7 % 0.00% 0.00% 4.00 % 2.00 % 0.00% 0.00% 0.70 % 0.00% 

T=0.5 52.7 % 0.70 % 60.7 % 33.3 % 10.7 % 0.00 % 10.0 % 2.00 % 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

T=0.7 33.3 % 0.00 % 46.7 % 10.7 % 0.00 % 0.00 % 0.00 % 0.00 % 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

t [sec] 7 10 42 45 1068 4154 796 772 11 14 31 48 3656 5100 704 707 

0.010 

T=0.3 75.3% 44.7 % 77.3 % 83.3 % 40.0 % 4.70% 34.7 % 28.0 % 2.70 % 2.00 % 28.7 % 22.0 % 0.00% 0.00% 6.70 % 3.30 % 

T=0.5 54.7 % 12.7 % 61.3 % 64.0 % 18.0 % 0.00 % 10.7 % 9.30 % 0.00% 0.00% 9.30 % 2.70 % 0.00% 0.00% 0.00% 0.00% 

T=0.7 42.7 % 2.70 % 47.3 % 39.3 % 1.30 % 0.00 % 0.00 % 0.00 % 0.00% 0.00% 0.70 % 0.00 % 0.00% 0.00% 0.00% 0.00% 

t [sec] 8 10 49 45 422 3359 796 766 7 9 41 45 600 4712 737 707 

0.200 

T=0.3 74.7 % 65.3 % 77.3 % 84.0 % 54.0 % 42.7% 34.7 % 30.7 % 68.0 % 56.0 % 88.7 % 86.0 % 38.7 % 32.7 % 25.3 % 23.3 % 

T=0.5 56.0 % 38.0 % 62.7 % 69.3 % 50.0 % 25.3 % 10.0 % 12.0 % 40.7 % 28.7 % 78.7 % 63.3 % 23.3 % 16.7 % 6.70 % 6.70 % 

T=0.7 44.0 % 17.3 % 52.0 % 47.3 % 39.3 % 1.30 % 0.00 % 0.00 % 20.0 % 6.00 % 48.7 % 34.7 % 8.00 % 1.30 % 0.00 % 0.00 % 

t [sec] 7 7 43 40 7 18 787 643 7 7 40 39 8 59 734 589 

N winners 0 9 4 5 0 9 2 7 5 9 2 9 6 9 6 9 
Table 1: ViTs are more robust to adversarial attacks than ResNets, as measured by the Attack Success Rate (ASR), for the RCC 
classification task. The threshold T is the amount by which the model’s predictions have to be shifted to consider an attack successful. T=0.3 
is a liberal threshold and T=0.7 is a strict threshold. The computation time t is the time needed to apply the attack to 150 tiles. For pairwise 
comparisons between ResNet and ViT for the same experimental condition, the one with the lower (better) ASR is printed in bold. The bold 
digits are summed up for each column in the “N winners” row. In this experiment, 150 randomly selected tiles from AACHEN-RCC were used 
(same tiles for all experiments).
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