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Abstract

Diffusion-weighted magnetic resonance imaging (DWI) is the only noninvasive method for quantifying microstructure and recon-
structing white-matter pathways in the living human brain. Fluctuations from multiple sources create significant additive noise in
DWI data which must be suppressed before subsequent microstructure analysis. We introduce a self-supervised learning method
for denoising DWI data, Patch2Self (P2S), which uses the entire volume to learn a full-rank locally linear denoiser for that volume.
By taking advantage of the oversampled q-space of DWI data, P2S can separate structure from noise without requiring an explicit
model for either. The setup of P2S however can be resource intensive, both in terms of running time and memory usage, as it uses
all voxels (n) from all-but-one held-in volumes (d − 1) to learn a linear mapping Φ : Rn×(d−1) 7→ Rn for denoising the held-out
volume. We exploit the redundancy imposed by P2S to alleviate its performance issues and inspect regions that influence the
noise disproportionately. Specifically we introduce P2S-sketch, which makes a two-fold contribution: (1) P2S-sketch uses matrix
sketching to perform self-supervised denoising. By solving a sub-problem on a smaller sub-space, so called, coreset, we show how
P2S can yield a significant speedup in training time while using less memory. (2) We show how the so-called statistical leverage
scores can be used to interpret the denoising of dMRI data, a process that was traditionally treated as a black-box. Our experiments
conducted on simulated and real data clearly demonstrate that P2S via matrix sketching (P2S-sketch) does not lead to any loss in
denoising quality, while yielding significant speedup and improved memory usage by training on a smaller fraction of the data.
With thorough comparisons on real and simulated data, we show that Patch2Self outperforms the current state-of-the-art methods
for DWI denoising both in terms of visual conspicuity and downstream modeling tasks. We demonstrate the effectiveness of our
approach via multiple quantitative metrics such as fiber bundle coherence, R2 via cross-validation on model fitting, mean absolute
error of DTI residuals across a cohort of sixty subjects.
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1. Introduction

Diffusion MRI (dMRI) is a 4D acquisition method that gen-
erates a series of 3D volumes each corresponding to different
gradient directions [6, 44]. Each 3D volume provides unique in-
formation about the underlying diffusion processes in the brain.5

This information is used to probe the tissue microstructure in
the living brain by modeling the signal per voxel using a variety
of biophysical models [64, 65]. This derived information can
however be corrupted due to low signal-to-noise ratio (SNR).
Multiple sources of noise are apparent in dMRI that reduce10

SNR. Furthermore, with new acquisition schemes, high-field
MR gradients [80, 61] and multi-dimensional diffusion encod-
ing strategies [71, 41] the effect of noise sources is exaggerated
and affects image conspicuity.

In the past, denoising dMRI has been tackled using a vari-15

ety of methods belonging to different classes based on the sig-
nal assumptions imposed. The first class of denoising methods
used for DWI data were extensions of techniques developed for
2D images, such as non-local means (NL-means) [17] and its
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variants [16, 12]), total variation norm minimization [46], co-20

sine transform filtering [57], empirical Bayes [3] and correla-
tion based joint filtering [79]. Some other methods take more
direct advantage of the fact that DWI measurements have a spe-
cial 4D structure, representing many acquisitions of the same
3D volume at different b-values and in different gradient direc-25

tions. Assuming that small spatial structures are more-or-less
consistent across these measurements, these methods project
to a local low-rank approximation of the data [66, 58]. The
top performing methods are overcomplete Local-PCA (LPCA)
[58] and its Marchenko-Pastur extension [81]. The current30

state-of-the-art unsupervised method for denoising DWI is the
Marchenko-Pastur PCA, which handles the choice of rank in a
principled way by thresholding based on the eigenspectrum of
the expected noise covariance matrix. Note that Marchenko-
Pastur PCA, like the classical total variation norm and NL-35

means methods, requires a noise model (via the Marchencko-
Pastur distribution) to do the denoising, either as an explicit
standard deviation and covariance as in LPCA, or implicitly in
the choice of a noise correction method [47, 76].

Self-supervised learning, as a sub-domain of unsupervised40
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learning algorithms, has been rapidly gaining traction over the
past years. Novel strategies of self-supervision are being de-
veloped and employed for different problems such as multi-
modal learning [86, 62], self-labeling [56, 48], learning se-
mantic context [19] and contrastive predictive coding [4]. De-45

noising strategies based on self-supervision have revolution-
ized image denoising performance across different scientific
domains[45, 40]. Leveraging statistical independence of noise,
first introduced in the work of Noise2Noise (N2N) [53] was
given a theoretical grounding in the work of Noise2Self by pos-50

ing it under a self-supervised framework [7]. Other approaches
similar to N2S and N2N (such as Noise2Void, etc.) were also
proposed around the same time [49, 50]. In this work, we in-
troduce Patch2Self (P2S) [29] which belongs to this same fam-
ily of algorithms and leverages the statistical independence of55

noise. P2S combines N2N and N2S and recasts the 4D self-
supervised denoising of dMRI as an image in-painting problem
[9]. Instead of holding out a part of the same 3D volume, P2S
holds out the entire 3D volume itself and learns to predict a de-
noised version of the held-out volume as a linear combination60

of the remaining 3D volumes. P2S relies on the theory of J-
invariance [7, 29] to perform the denoising, which can be seen
as a way of performing 4D image in-painting in the q-space [5].
In the case of dMRI data, denoising is typically done on a single
subject and using P2S we show how one can get state-of-the-art65

denoising performance using linear regression as its backbone
[13, 31, 75].

Self-supervised denoisers (typically making assumptions on
the noise) outperform traditional methods of denoising, but can
be computationally expensive as they do not place assumptions70

on signal properties such as sparsity, compressibility, repeti-
tion, etc. In pursuit of acquiring data at a higher resolution and
to extract detailed diffusion information, the dimensionality of
the data increases rapidly (per-volume and per-scan). More-
over, due to the advent of high-field scanners, more noise is75

induced in the signal due to the use of stronger magnetic gradi-
ents. Along with the dimensionality of a single scan, the num-
ber of scans acquired and released for analyses is also increas-
ing rapidly, requiring fast and efficient denoising algorithms for
clinical use.80

To alleviate these issues, we also introduce P2S-sketch,
which proposes the sketching of the large matrix A [29] con-
structed for training the denoiser via P2S to create a coreset.
A is constructed by vectorizing each 3D volume and concate-
nating it along the columns of A. This is called a Casorati85

matrix where each independent measurement forms a column
of A [61]. So, instead of performing the self-supervised de-
noising on the over-determined set of constraints (A ∈ Rn×d,
where n ≫ d), P2S-sketch samples and rescales the matrix to
a much smaller subset of the constraints (A ∈ Rs×d, where90

n ≫ s ≈ d). By training the self-supervised denoiser on
this much smaller induced sub-problem, we show that one can
achieve the same level of denoising performance as P2S with
a highly reduced time complexity and a much smaller memory
footprint. We show the speedup gains both via the theoretical95

complexity analysis and the empirical comparisons on simu-
lated and real datasets of different dimensionalities. To ensure

that P2S-sketch does not hamper the denoising performance,
we compare P2S-sketch against P2S on both simulated and real
data using the root mean squared error (RMSE) and the R2 met-100

rics. We also evaluate the performance on the downstream tasks
of microstructure modeling and tractography. While the sketch
size required for sketching and solving the linear system within
P2S-sketch may vary, our experiments suggest at least a 60%
redundancy in the training set. We compared the performance105

of P2S-sketch via different sketching methods such as CountS-
ketch, leverage score sampling, and the Subsampled Random-
ized Fourier Transform (SRFT). Our results show that leverage
score sampling yielded the best performance. We discuss how
leverage scores can be used for interpretability of P2S-sketch,110

revealing which regions of the data have a higher influence on
the denoising algorithm. This enables interpretability (crucial
to medical imaging) of the self-supervised denoising, which is
otherwise treated as a black-box approach. With the help of
the Rank Revealing QR (RRQR) decomposition, we also show115

how one can calibrate the optimal sketch size to construct the
coreset for P2S-sketch via a self-supervised loss.

2. Methods

In this paper, we introduce two algorithms P2S and P2S-
sketch sequentially since P2S-sketch builds on top of P2S-120

sketch. The organization of the methods is such that each al-
gorithm is preceded by the necessary preliminaries.

2.1. Patch2Self: Self-supervised Denoising of Diffusion MRI

2.1.1. Patches and Local Matrix Approximations
Patch-based self-supervision has been used to learn repre-125

sentations that are invariant to distortions [21, 20], for learn-
ing relations between patches [19], for filling in missing data
(i.e. image in-painting) [67], etc. P2S abides by a similar
patch-based approach where we learn an underlying clean sig-
nal representation that is invariant to random fluctuations in the130

observed signal. Inspired by the local matrix approximation
works presented in [52, 11], we formulate a global estimator
per 3D volume of the 4D data by training on local patches sam-
pled from the remaining volumes. This estimator function, thus
has access to local and non-local information to learn the map-135

ping between corrupted signal and true signal, similar to dictio-
nary learning [35, 74, 77, 37, 10] and non-local block match-
ing [18]. Due to the self-supervised formulation, P2S can be
viewed as a non-parametric method that regresses over patches
from all other volumes except from the one that is held-out140

for denoising. Our experiments demonstrate that a simplistic
linear-regression model can be used to denoise noisy matrices
using p-neighbourhoods and a class of J-invariant functions.

2.2. Denoising via Self-Supervised Local Approximations

Extracting 3D patches: In the first phase of P2S, we extract145

a p-neighbourhood for each voxel from the 4D DWI data. To
do so, we construct a 3D block of radius p around each voxel,
resulting in a local p-neighbourhood of dimension p × p × p.

2
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Figure 1: Depicts the workflow of Patch2Self in two phases: (A) Is the self-supervised training phase where the 4D DWI data is split into the training A∗,∗,− j and
targetA∗,0, j sets. p-neighbourhoods are extracted from each 3D volume from bothA∗,∗,− j andA∗,0, j. ΦJ is the learnt mapping by regressing over p-neighbourhoods
ofA∗,∗,− j to estimateA∗,0, j. (B) Depicts the voxel-by-voxel denoising phase where Φ̂J predicts the denoised volume Â∗,∗,∗, j fromA∗,∗,− j.

Algorithm 1 Patch2Self
Input 4D dataA of dimension l × w × h × d
for volume j = 1, 2, . . . d [where d is the number of volumes] do

for voxel k = 1, 2, . . .m [where m = lwh is the number of voxels] do
Extract a p × p × p neighbourhood of voxel k.

Flatten and concatenate each p-neighbourhood into a feature vector of length p3 ∗ n.
Stack feature vectors into a matrix of size m × (p3 × n), to get Casorati matrixA.
for volume j = 1, 2, . . . n do

Hold-out features from volume j to get a feature matrixA∗,∗,− j [m × p3 × (n − 1)]
Select the central pixels from volume j to get a target vectorA∗,0, j of dimension m.
Train a regressor Φ : A∗,∗,− j 7→ A∗,0, j.
Set the denoised volume Â∗,∗,∗, j to the unraveled output Φ̂(A∗,∗,− j).

return Denoised 4D data Â

Therefore, if the 4D DWI has n volumes {v1, . . . , vn} (each vol-
ume corresponding to a different gradient direction) and each150

3D volume has m voxels (see Fig. 1), after extracting the p-
neighbourhoods, we get a m × p × p × p × n tensor. Next, we
flatten this this tensor along the pth-dimension to obtain a repre-
sentation: m×(p3×n). Thus, we have transformed the data from
the original 4D space to obtain m samples of p3×n dimensional155

2D feature matrices, which we use for denoising.
Self-Supervised Regression: In the second phase, using the

p-neighbourhoods, P2S reformulates the problem of denoising
with a predictive approach. The goal is to iterate and denoise
each 3D volume of the noisy 4D DWI data using the following

training and prediction phases:
(i) Training: To denoise a particular volume, v j, we train the
a regression function ΦJ using p-neighbourhoods of the voxels
denoted by the set A. From the first phase, A is a set con-
taining m training samples with dimension: p3 × n. Next, we
hold out the dimension corresponding to volume v j from each
of the p-neighbourhoods and use it as a target for training the
regressor function ΦJ (shown in Fig. 1A). Therefore our train-
ing setA∗,∗,− j has dimension: m× p3 × (n− 1), where j indexes
the held out dimension of the p-neighbourhoods set. Using the
regressor function ΦJ , we use the training set A∗,∗,− j to only
predict the center voxel of the set of p-neighbourhoods in the
corresponding target set of dimension A∗,0,− j. The target set,
is therefore only an m-dimensional vector of the center voxels
of the corresponding p-neighbourhoods of volume v j. In sum-
mary, we use the localized spatial neighbourhood information
around each voxel of the set of volumes v− j, to train ΦJ for
approximating the center voxel of the target volume v j. To do
so, we propose minimizing the self-supervised loss over the de-
scribed p-neighbourhood sets as follows:

L(ΦJ) = E∥ΦJ(A∗,∗,− j) −A∗,0, j∥2 (1)

Where, ΦJ : Rp3×n 7→ R1, is trained on m samples of p-
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Figure 2: We show how Patch2Self2 works in the case of Diffusion MRI data. The Casorati MatrixA is constructed by flattening each gradient direction. A is then
sketched via a randomized algorithm to generate the smaller sketched Casorati Matrix C. The J-invariant training is then performed on C to learn Φ̂J and predict
the denoised volume.

Figure 3: (A) We depict an exemplary point-plot of the row leverage scores
computed on the Casorati matrix of a real dataset. (B) We show the axial slice
of the 3D leverage score maps computed on two example datasets. Notice that
the leverage score maps capture structured artefacts spatially correlated across
gradient directions (indicated by red arrows on the HCP 7T data).

neighbourhoods.
(ii) Predict: After training for m samples, we have now con-
structed a J-invariant regressor Φ̂J that can be used to de-160

noise the held out volume v j. To do so, p-neighbourhoods
from the set A∗,∗,− j are simply fed into Φ̂J to obtain the de-
noised p-neighbourhoods corresponding to the denoised vol-
ume Â∗,0,− j. After doing so, for each j ∈ {1 . . . n}, we unravel
the p-neighbourhoods for each volume v j ∈ {v1 . . . vn} (in Fig. 1165

as Â∗,∗,∗, j) and append them to get denoised 4D DWI data Â
(Details in 1).
J-Invariance: The reason one might expect the regressors

learned using the self-supervised loss above to be effective de-

noisers is the theory of J-invariance introduced in [7]. Con-170

sider the partition of the data into volumes, J = {v1, . . . , vn}. If
the noise in each volume is independent from the noise in each
other volume, and a denoising function Φ satisfies the property
that the output ofΦ in volume v j does not depend on the input to
Φ in volume v j, then according to Proposition 1 of [7], the sum175

over all volumes of the self-supervised losses in equation 1 will
in expectation be equal to the ground-truth loss of the denoiser
Φ, plus an additive constant. This means that J-invariant func-
tions minimizing the self-supervised loss will also minimize the
ground-truth loss. This holds by construction for our denoiser180

Φ = (Φ1, . . . ,Φn). Intuitively, each ΦJ only has access to the
signal present in the volumes other than v j, and since the noise
in those volumes is irrelevant for predicting the noise in v j, it
will learn to suppress the fluctuations due to noise while pre-
serving the signal. Note that, if linear regression is used to fit185

each ΦJ , then the final denoiser Φ is a linear function. Unlike
methods which work by thresholding the singular values ob-
tained from a local eigen-decomposition [58, 81], which pro-
duce denoised data that are locally low-rank, this mapping Φ
can be full-rank.190

Choice of Regressor: Any class of regressor can be fit in
the above method, from simple linear regression/ordinary least
squares to regularized linear models like Ridge and Lasso, to
more complex nonlinear models. Our code-base allows for the

4
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use of any regression model from [68]. Surprisingly, we found195

that linear regression performed comparably to the more so-
phisticated models, and was of course faster to train (see sup-
plement for comparisons).

Choice of Patch Radius: To determine the effect of chang-
ing the patch radius on denoising accuracy, we compute the200

Root Mean Squared Error (RMSE) between the ground truth
and P2S denoised estimates at SNR 15 (details of simulation in
supplement). For patch radius zero and one, we show the effect
at different number of volumes. The line-plot trend in supple-
ment shows that the difference in the RMSE scores between the205

two patch radii steadily decreases with an increase in number
of volumes. However, with lesser number of volumes, a bigger
patch-radius must be used. In the remainder of the text, we use
and show results with patch radius zero and linear regressors.

To summarize, leveraging the fact that each 3D volume of
the 4D data can be assumed to be an independent measure-
ment of the same underlying object, P2S proposes constructing
a large Casorati matrix wherein each column can be assumed to
be linearly independent of the other columns. P2S sets up the
self-supervised regression task so that each column is denoised
by representing it as a combination of the remaining columns.
For the sake of simplicity, we denote the self-supervised loss
of P2S in the following form for the remainder of the text:

L (ΦJ) = E
∥∥∥∥ΦJ

(
A− j

)
−A j

∥∥∥∥2
2
. Here A j refers to the voxels

corresponding to the volume that were held-out and used as tar-
get for training the rest of the voxels from the remaining 3D
volumes A− j. P2S showed that this J-invariant function was
in fact a linear map ΦJ : A− j 7→ A j that achieved the opti-
mal denoising performance. This allows re-writing the P2S as
a linear regression problem:

min
w
∥A− jw −A j∥

2
2, (2)

where A− j =
[
aT

1 . . . , a
T
n

]
∈ Rn×d−1 are the features of the de-210

sign matrix, excluding the held-out j-th column. The target for
learning ΦJ is the held out 3D volumeA j =

[
aT

1 , . . . , a
T
n

]
∈ Rn.

2.3. Coresets for Regression via Matrix Sketching
The self-supervised denoising performed in P2S relies on

least squares regression as described in Sec. Preliminaries and
Approach. Linear regression typically performed via Cholesky,
SVD or QR decomposition needs O

(
nd2
)

time. In the case
of P2S, the problem setup via the Casorati matrix A is mas-
sively over-constrained, i.e., n ≫ d, and has an added time
complexity, since the regression is performed d times given
that each volume needs to be separately denoised. Therefore,
in P2S-sketch, instead of computing the exact solution vec-
tor w∗= argminw ∥A− jw − A j∥

2
2, we propose to approximate

it using tools from randomized matrix multiplication and sub-
space embeddings. The key idea here is to solve a sub-problem
w̃ = argminw ∥SA− jw − SA j∥

2
2 such that

∥A− jw̃ −A j∥
2
2 ≤ (1 + ϵ)∥A− jw∗ −A j∥

2
2 , (3)

where ϵ is the desired level of accuracy and S ∈ Rs×n with
d ≈ s ≪ n is the so-called sketching matrix. Given the linear215

sketch SA− j of A− j, note that computing w̃ takes O(sd2) time,
which is indeed much faster than the classical computation of
w∗. Therefore, our goal is to work with a suitable S such that the
sketch SA− j can be computed efficiently and satisfies eqn. (3)
with high probability. There are several such choices for S:220

Count-sketch [14]: In this case, S is a sparse embedding matrix
with s = O(d2/ϵ) rows and has exactly one non-zero entry per
column, which is chosen randomly and set to ±1 independently.
The product SA− j can be computed in time O(nnz(A− j)). As-
suming the failure probability to be a constant, the overall run-225

ning time to compute w̃ is given by O(nnz(A− j))+ poly(d/ϵ).
Here, nnz(·) denotes the sparsity of the underlying matrix.
Fast Johnson-Lindenstrauss transformations [27, 15]: Other
choices for the sketching matrix S include structured random
matrices such as the subsampled randomized Fourier transform230

(SRFT) or the subsampled randomized Hadamard transform
(SRHT). In these cases, the sketching matrix S is typically of

the form S =
√

n
s RHD, where D ∈ Rn×n is a random diago-

nal matrix with the entries set to ±1 independently; R ∈ Rs×n

is a subset of s rows of the n × n identity matrix chosen uni-235

formly at random, independently, without replacement; and
H ∈ Rn×n is either a normalized discrete Fourier transform (for
SRFT) or a normalized Walsh-Hadamard matrix (for SRHT).
Note that both SRFT and SRHT are based on randomized linear
transformations, which can be applied rapidly to arbitrary vec-240

tors. Indeed, we can compute the matrix-matrix product SA− j

in O(nd log n) time exploiting the structure of the underlying
Fourier/Hadamard matrix; if s = O(d + log 1/ϵ log d/ϵ), then the
resulting sketching matrix satisfies eqn. (3). The overall run-
ning time is O(nd log n) + Õ(d3/ϵ2).245

Sampling-based sketching [26]: A third way of achieving a
subspace embedding that satisfies eqn. (3) is data-dependent,
and can be obtained by sampling rows of a matrix proportional
to their leverage scores ℓi = ∥Ui∗∥

2
2 for i = 1 . . . n, where

Ui∗ ∈ Rn is the i-th row of the matrix of the left singular vec-250

tors of A− j that are computed using the thin SVD of A− j. In
this context, the sketching matrix S is the so-called sampling-
and-rescaling matrix of [22] with the sampling probabilities
pi = ℓi/d, i = 1 . . . n, and the sample complexity is given by
s = O(d log d/ϵ2). We note that computing ℓi s exactly needs ac-255

cess to the matrix U which is expensive. Therefore, in practice,
approximate leverage scores also suffice and they can be ef-
ficiently computed without computing the matrix U [23, 14].
We also note that there is another line of work [2, 73] that
used sketching as a randomized preconditioner to come up with260

high precision solutions for overconstrained regression prob-
lems. However, in context of P2S-sketch, we can achieve the
desired accuracy in denoising performance, even with a sketch-
and-solve approach as discussed above. Finally, we refer the
interested reader to the surveys [85, 25, 54, 24, 60] for back-265

ground on Randomized Linear Algebra.

3. Statistical Leverage for Interpretability

In the previous section, we described how leverage scores
can be used to perform importance sampling in order to gen-
erate the coreset for P2S-sketch. Here we show how to use270
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Figure 4: Depicts (A) Noisy band-like pattern in the residual maps suppressed via P2S-sketch (indicated by a green arrow). (B) In-painting of a signal void present
in the original data and the predicted signal in the corresponding residual map (indicated by red arrows). (C) Capability of extending P2S-sketch to other organs
such as the heart (Porcine Cardiac Data). (D) Suppression of ghosting artefacts (indicated by blue arrows).

the statistical leverage scores of the underlying linear model for
interpreting areas of the data that influence the noise. From
a statistical perspective, an alternative formulation of leverage
scores are the diagonal entries of the projection matrix con-
structed to solve the linear regression [24, 55]. Typically, one275

looks at the standard deviation of the noise derived from the
models used to perform the denoising [81]. Since P2S and con-
sequently P2S-sketch are set up to denoise in a predictive set-
ting via self-supervision, we can use statistical leverage to get
a more detailed view of the factors that would influence the de-280

noising performance. In Fig. 3A, we show the leverage scores
computed on a subject from the PPMI dataset [59]. As one can
see in the plot, some voxels in the data exhibit considerably
higher statistical leverage. Voxels where an anatomical signal
from the brain is captured exhibit higher leverage when com-285

pared to the voxels in the background, which have very small
leverage scores. In Fig. 3B, we show the spatial map of lever-
age scores for two example datasets, PPMI and HCP 7T [80].
In the case of the PPMI data, we note that the regions of the
white matter, such as the corpus callosum, have higher statis-290

tical leverage compared to the rest of the brain. Strikingly, we
also see that a slanting structured pattern (indicated with red ar-
rows) appears in the leverage scores map of the HCP 7T data.
This structure can also be seen in the noise map of Fig. 4A in
the residual map. Leverage score maps of the same HCP 7T295

subject also highlighted a structured artefact at the bottom of
the axial slice (depicted as a white-dotted bounding box). It
could be a ghost or a structured artefact added to the 7T data.

4. P2S-sketch Algorithm

P2S-sketch extends the idea of P2S (see Sec. Preliminaries300

and Approach) by performing self-supervised training on core-

sets. In case of dMRI, we have d number of 3D volumes each
with dimensionality: l×w× h. Each of the volumes is flattened
to a 1D array (n = l×w×h) to form a column of the Casorati ma-
trixA ∈ Rn×d. Next, we sketch this matrixA using the sketch-305

ing matrix S(∈ Rs×n) to get a sketched Casorati matrix C = SA
(see Sec. Coresets for Regression via Matrix Sketching). We
perform a self supervised denoising on this sketched matrix C
by solving the sub-problem: minw̃ ∥C− jw − C j∥

2
2. This denois-

ing is performed on a volume-by-volume basis as proposed in310

P2S, where j corresponds to the volume held out for denois-
ing. Thus, P2S-sketch learns a linear map ΦJ : Rs×(d−1) 7→ Rs,
which is a much smaller sub-problem to solve since s ≪ n.
After the training is done, the approximate solution vector w̃
learned via ΦJ is used to predict the held out volume of A j. In315

order to predict the denoised volume, the full Casorati matrix
A− j with all rows is given as input to the function ΦJ (Algo-
rithm is further detailed in 2). In P2S-sketch, we allow switch-
ing between different sketching methods such as SRFT, lever-
age scores, and CountSketch (see Sec. Coresets for Regression320

via Matrix Sketching for details of each). Our results show
that sketching via leverage scores outperforms other sketch-
ing methods (detailed comparison in Sec. Performance Com-
parison of Sketching Methods). As per the above procedure,
P2S-sketch introduces using a new hyperparameter - the sketch325

size that needs to be tuned. We propose a J-invariant self-
supervised calibration procedure to find an optimal sketch size
s based on the QR decomposition and leverage score sketching.
Leverage scores are a univariate statistic. When two rows of
A have identical or similar leverage scores, it implies that the330

rows are highly correlated and therefore redundant in the con-
struction of the sketched Casorati matrix C. Thus, a redundancy
removal step is often useful to reduce the sketch size s while re-
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taining denoising performance. Towards that end, P2S-sketch
employs the Rank Revealing QR (RRQR) factorization [38],335

to flag such redundancies by ranking the rows of the matrix in
order of independence. In other words, highly linearly inde-
pendent rows are given priority after the RRQR has been com-
puted. In P2S-sketch, to calibrate the sketch size, we start with
s < 50% of the number of rows in A and compute the rank-340

revealing QR (RRQR) decomposition [38] of C. The RRQR
ranks the rows of C in order of importance and can be used
to remove redundant rows from the sketched matrix. Next, as
shown in Fig. 5A, we select the top k-ranked rows from C and
compute the self-supervised loss. Gradually, by increasing the345

size of k in each iteration we compute the self-supervised loss
for each iteration. The self-supervised loss for each value of k
is computed as: ∥ΦJ(A− j)−A j∥. As shown in Fig. 5B, the loss
eventually converges to a minimum with minimal change in the
denoising performance. At that point, the elbow in the error plot350

(shown by the red box) reveals the number of redundant rows
of the data, which allows us to estimate the (approximately)
optimal s.

Leverage Score Sampling Strategies: We can obtain the
sketched matrix C via leverage score sampling using the follow-355

ing two procedures: (1) Deterministically choosing top s lever-
age scores; (2) Randomized sampling based on leverage scores.
From Fig. 3A, it is evident that only a few rows of the Casorati
matrix have a very high leverage score in comparison with the
remaining ones. These rows seem to have a higher influence360

on the denoising performance. As shown in Fig. 6A, the de-
terministic selection of the highest leverage scores consistently
performs worse at all sketch sizes when compared to randomly
sampling leverage scores. To investigate this effect, we com-
pared the distribution of the rows corresponding to determin-365

istically chosen top 20K leverage scores against the randomly
sampled 20K rows. From the joint plot obtained by fitting a
kernel density estimation shown in Fig. 6B, it can be seen that
the distribution of the randomly sampled leverage scores forms
a bi-modal distribution as opposed to the uni-modal distribution370

obtained from a deterministic selection of the top 20K leverage
scores. This implies that the randomization in the sampling pro-
cedure helps denoising by using values that do not have a ”high
leverage”.

5. Results375

In this section we evaluate P2S and P2S-sketch sequentially
since the purpose of evaluation of both algorithms is different.
For P2S, we perform qualitative and quantitative comparisons
on real and simulated data. While the results on the real data are
included in the main text, the results on simulated data for P2S380

are added to the supplement for compactness and avoiding rep-
etition from [29] and P2S-sketch evaluations. To evaluate the
performance on real data, we qualitatively and quantitatively
compare the effects of P2S and P2S-sketch denoising on the
residual maps, microstructure modeling [65] and tractography385

[42]. We quantify the effect of different sketch sizes on the
speed and accuracy of the approximate solution (w̃) in compar-
ison with the P2S solution (w∗).

Algorithm 2 Patch2Self-sketch
Input 4D data X of dimension l × w × h × d
for volume j = 1, 2, . . . d [where d is the number of volumes] do

Flatten volume v j to generate a feature vector of size n [where m = l × w × h]
Stack feature vectors into a matrix of size n × d to generate the Casorati matrixA.
Construct a random matrix S based on row leverage scores ofA, s.t. S ∈ Rs×n

Compute a sketched Casorati matrix C = SA ∈ Rs×d

[Q, R, rank] = QR(C) [where QR is the rank-revealing QR decomposition]
Select top k rows of C based on the rank [via self-supervised calibration] to form the
matrix Ĉ ∈ Rk×d

for volume j = 1, 2, . . . d do
Hold-out features from volume j to get a feature matrix Ĉ∗,− j of dimension k×(d−1)
Select the target volume j to be denoised Ĉ∗, j of dimension k × 1.
Train a linear regressor Φ : Ĉ∗,− j 7→ Ĉ∗, j.
Set the denoised volume Â∗,∗,∗, j to the unraveled output Φ̂(A∗,− j).

return Denoised 4D data Â

5.1. Evaluation of P2S on in-vivo data

We compare the performance of P2S with Marchenko-Pastur390

on the Parkinson’s Progression Markers Initiative (PPMI) [59],
Stanford HARDI [72] and Sherbrooke 3-Shell [33] datasets as
shown in Fig. 6. These datasets represent different commonly
used acquisition schemes: (1) Single-Shell (PPMI, 65 gradi-
ent directions), (2) High-Angular Resolution Diffusion Imaging395

(Stanford HARDI, 160 gradient directions) and (3) Multi-Shell
(Sherbrooke 3-Shell, 193 gradient directions). For each of the
datasets, we show the axial slice of a randomly chosen 3D vol-
ume and the corresponding residuals (squared differences be-
tween the noisy data and the denoised output). Note that both,400

Marchenko-Pastur and P2S, do not show any anatomical fea-
tures in the error-residual maps, so it is likely that neither is
introducing structural artifacts. P2S produced more visually co-
herent outputs, which is important as visual inspection is part of
clinical diagnosis.405

Figure 6: Shows the comparison of denoising on 3 different types of datasets:
Parkinson’s Progression Markers Initiative (PPMI), Stanford HARDI and Sher-
brooke 3-Shell HARDI data. The denoising of P2S is compared against the
original noisy image and Marchenko-Pastur denoised data along with their cor-
responding residuals. Notice that P2S suppresses more noise and also does not
show any anatomical structure in the corresponding residual plots.
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Figure 5: (A) Iterative self-supervised calibration procedure to obtain the optimal sketch size s to be used within P2S-sketch using a RRQR decomposition. the
self-supervised loss is computed, by iteratively reducing the size of s until convergence. (B) We depict an example loss plot of the self-supervised calibration with
exemplary PPMI data.

Figure 7: (A) Depicts the Fiber to Bundle Coherency (FBC) density map
projected on the streamlines of the optic radiation bundle generated by the
probabilistic tracking algorithm. The color of the streamlines depicts the
coherency − yellow corresponding to incoherent and blue corresponding to
coherent. Notice that the number of incoherent streamlines present in the orig-
inal fiber-bundle is reduced after Marchenko-Pastur denoising. P2S denoising
further reduces spurious tracts, resulting in a cleaner representation of the fiber
bundle. (B) Quantitative comparison of the goodness-of-fit evaluated using a
cross-validation approach. Depict the scatter plots of the model predictions
obtained by fitting CSD to voxels in the corpus callosum (CC) and centrum
semiovale (CSO) for original (noisy), Marchenko-Pastur (denoised) and P2S
(denoised) data. Similarly, also show the scatter plots of predictions obtained
from DTI fitting in the same voxel locations. Top-left of each plot shows the
R2 metric computed from each model fit on the corresponding data. (C) Box-
plots quantifying the increase in R2 metric after fitting downstream DTI and
CSD models. The R2 improvements in each case are plotted by subtracting the
scores of model fitting on noisy data from R2 of fitting each denoised output.
Note that the consistency of microstructure model fitting on P2S denoised data
is higher than that obtained from Marchenko-Pastur (see 5.3 for details and sig-
nificance).

5.2. Effect of P2S on Tractography
To reconstruct white-matter pathways in the brain, one in-

tegrates orientation information of the underlying axonal bun-
dles (streamlines) obtained by decomposing the signal in each
voxel using a microstructure model [8, 65]. Noise that cor-410

rupts the acquired DWI may impact the tractography results,

leading to spurious streamlines generated by the tracking al-
gorithm. We evaluate the effects of denoising on probabilistic
tracking [34] using the Fiber Bundle Coherency (FBC) metric
[69]. To perform the probabilistic tracking, the data was first fit-415

ted with the Constant Solid Angle (CSA) model [1]. The Gener-
alized Fractional Anisotropy (GFA) metric extracted from this
fitting was used as a stopping criterion within the probabilis-
tic tracking algorithm. The fiber orientation distribution in-
formation required to perform the tracking was obtained from420

the Constrained Spherical Deconvolution (CSD) [78] model fit-
ted to the same data. In Fig. 7A, we show the effect of de-
noising on tractography for the Optic Radiation (OR) bundle
as in [69]. The OR fiber bundle, which connects the visual
cortex:V1 (calcarine sulcus) to the lateral geniculate nucleus425

(LGN), was obtained by selecting a 3×3×3 Region Of Interest
(ROI) using a seeding density of 6. After the streamlines were
generated, their coherency was measured with the local FBC
algorithm [69, 28]), with yellow-orange representing - spuri-
ous/incoherent fibers and red-blue representing valid/coherent430

fibers. In Fig, 7, OR bundle tracked from original/ raw data con-
tains 3114 streamlines, Marchenko-Pastur denoised data [81]
contains 2331 streamlines and P2S denoised data contains 1622
streamlines. P2S outperforms Marchenko-Pastur by reducing
the number of incoherent streamlines, as can be seen in the red-435

blue (depicting high coherence) coloring in Fig. 7A.

5.3. Impact of P2S on Microstructure Model Fitting

The domain of microstructure modeling employs either
mechanistic or phenomenological approaches to resolve tissue
structure at a sub-voxel scale. Fitting these models to the data is440

a hard inverse problem and often leads to degenerate parameter
estimates due to the low SNR of DWI acquisitions [64]. We
apply two of the most commonly used diffusion microstructure
models, Constrained Spherical Deconvolution (CSD) [78] and
Diffusion Tensor Imaging (DTI) [6], on raw and denosied data.445

DTI is a simpler model that captures the local diffusion infor-
mation within each voxel by modeling it in the form of a 6-
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parameter tensor. CSD is a more complex model using a spher-
ical harmonic representation of the underlying fiber orientation
distributions. In order to compare the goodness of each fit, we450

perform a k-fold cross-validation (CV) [39] at two exemplary
voxel locations, corpus callosum (CC), a single-fiber structure,
and centrum semiovale (CSO), a crossing-fiber structure. The
data is divided into k = 3 different subsets for the selected vox-
els, and data from two folds are used to fit the model, which pre-455

dicts the data on the held-out fold. The scatter plots of CV pre-
dictions against the original data are shown in Fig. 7B for those
two voxels. As measured by R2, P2S has a better goodness-of-
fit than Marchenko-Pastur by 22% for CC and 65% for CSO.
To show that P2S consistently improves model fitting across all460

voxels, in Fig. 7C we depict the improvement of the R2 met-
ric obtained from the same procedure for the axial slice (4606
voxels) of masked data (using [72] data). This was done by
simply subtracting the goodness-of-fit R2 scores of fitting noisy
data, from Marchenko-Pastur and P2S denoised data for both465

CSD and DTI models. P2S shows a significant improvement
on both DTI and CSD (two-sided t-test, p < 1e-300, Fig. 7C).
In order to evaluate the improvement of model fitting, we com-
pared the residuals after fitting the DTI model both before and
after denoising. To do so, we made use of 60 subjects from470

the LA5c cohort (30 controls and 30 schizophrenics) and com-
pared the improvement of residuals after denoising and fitting
the DTI model. As one can see via Fig. 10, P2S reduces the
residual error much more than MPPCA. The comparison was
done by computing the mean absolute error of the residuals be-475

tween the raw and denoised images to quantify the improve-
ment of model fitting after denoising. Now that we have shown
of the noise suppression of P2S, we shift the focus towards
P2S-sketch where we start with evaluating different sketching
methods and benchmark its performance against P2S. We adopt480

the same evaluation scheme as P2S [30] where we show simi-
lar performance of P2S-sketch against P2S-sketch on denoising
performance, microstructure and tractography.

Table. 1: Quantitative comparison of Raw, P2S and P2S-sketch denoised data
via MSE and R2 metrics.

5.4. Performance Comparison of Sketching Methods within
P2S-sketch485

The P2S-sketch algorithm follows a sketch-and-solve [26,
82] approach and therefore the sketch size can affect the de-
noising performance. In order to quantify this effect, we chose
a random subject from the PPMI dataset which was acquired
with a widely used 64-directions DTI protocol. A random vol-490

ume (here vol. #11) from this data was first denoised with P2S
and the solution w∗ obtained from it was treated as the opti-

mal solution. Each volume of this subject contained around
960K voxels. Starting with a sketch size of 500 samples, P2S-
sketch denoising was performed on the data with sketches com-495

puted using CountSketch, leverage score sampling and SRFT
algorithms explained in Sec. Coresets for Regression via Ma-
trix Sketching. The sketch size was then increased iteratively
until the approximate solution w̃ was numerically very close
to w∗. The relative error for each iteration and method was500

computed as: ∥w∗−w̃∥2
∥w∗∥2 .This procedure was repeated ten times

to capture the variance of denoising performance since the un-
derlying algorithms used to approximate the solution are ran-
domized. The variance with a 95% confidence interval was
plotted at each iteration (i.e., for each sketch size). We also505

compared the performance of the sketching methods with uni-
form sampling and with the deterministic choice of the rows
corresponding to the top leverage scores, for the same sketching
sizes. As shown in Fig. 6A, the variance of all the sampling al-
gorithms is reduced as the sketch size increases. Uniform sam-510

pling and deterministic leverage scores perform worse than the
randomized algorithms at each sketch size. While CountSketch
and leverage score sampling perform approximately the same,
leverage score sampling performs slightly better and offers the
added advantage of interpretability. In Fig. 6C, we also empir-515

ically compare the speedup obtained from P2S-sketch in com-
parison with P2S. This supplements our theoretical complex-
ity analysis in Sec. Coresets for Regression via Matrix Sketch-
ing. With experiments on three different datasets we note that
the speedup obtained increases as the sketch size reduces. We520

also find that the speedup obtained via P2S-sketch increases in
proportion to the dimensionality of the data. As one can see
in Fig. 6C, the speedup on the Stanford HARDI data (shape:
81 × 106 × 76 × 160) is much more than simulated (shape:
256×256××4×63) and PPMI data (shape: 116×116×72×65).525

The QR decomposition computed as a part of self-supervised
calibration in P2S-sketch does not add a significant computa-
tional overhead. The wall-clock time on an i7 CPU with 16GB
RAM for the QR decomposition took 0.0904s on a sketch-size
of 20k which amounts to 20% of the PPMI data [59] that the530

calibration was run on (see Fig.5). So if the experiment was to
be run 10 times for calibration, the QR computation would take
< 1s, as the subsequent runs would have fewer than 20k rows.

5.5. Impacts of P2S-sketch on Microstructure and Tractogra-
phy535

To estimate the underlying tissue microstructure in the liv-
ing brain one typically fits a biophysical model to each voxel of
the dMRI data to capture tissue heterogeneity. Diffusion kurto-
sis imaging (DKI) [43] is one such modeling scheme that quan-
tifies the degree of non-Gaussian diffusion. DKI is however540

sensitive to noise and can often lead to fitting degeneracy in the
derived maps. In Fig. 8A, we show that P2S alleviates this issue
by significantly reducing the failures of model fitting in the data.
We also show that P2S-sketch provides very similar estimates
of the derived DKI metrics, here, radial (RK) and mean (MK)545

kurtosis. The same HCP 7T data was used to evaluate the DKI
measures in the presence of band-like structured noise. We note
that the raw noisy data shows the banded noisy artefacts on the
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Figure 8: (A) Quantifies the effect of P2S and P2S-sketch denoising on HCP 7T data modeled using Diffusion Kurtosis (DKI). Derived Radial Kurtosis and Mean
Kurtosis metrics are shown for both P2S and P2S-sketch. (B) We compare the performance of P2S-sketch with P2S and noisy data via fiber-to-bundle coherence
quantification of the optic radiation and corpus callosum bundles. Also shows a cross-section of underlying spherical harmonic representations (FODs).

Figure 6: (A) We quantify the error variance in the approximation of the P2S-sketch solution vector when compared to P2S. Three different randomized algorithms
(CountSketch, leverage score sampling and SRFT) are compared with uniform sampling and the deterministic choice of the rows corresponding to the largest
leverage scores. (B) Joint kernel density estimate plot of the 20K voxels: randomly sampled according to leverage scores vs. deterministically chosen. (C) Shows
empirical speedup comparisons (against P2S) on three different datasets, by incrementally increasing the sketch size.

derived DKI metrics. In order to gauge the effect of denoising,
the RK and MK metrics were used to evaluate the denoising550

performance. Both P2S and P2S-sketch yield very similar re-
sults although P2S-sketch was trained on only 50K of the 61M
samples (0.083%) of the raw data (goodness of fit comparisons
in supplement). We employ the exact same procedure (with the
same parameters) described in Sec. 5.2 to compare P2S-sketch555

against P2S for effects on tractography. In Fig. 8B we show the
effect of denoising via P2S and P2S-sketch on the fiber orien-
tation distribution (FOD) plotted via the CSD model. To de-
noise via P2S-sketch, only 50K samples out of the 6M (8.3%)
samples were used in the training process. Note that both P2S560

and P2S-sketch suppress noisy lobes uncovering the underly-
ing fiber crossings. The generalized fractional anisotropy ob-
tained from the constrained solid angle algorithm [1] was used
as the stopping criterion of the probabilistic tracking. Next, the
streamlines tracking the optic radiation and corpus callosum565

bundles, obtained from noisy, P2S denoised and P2S-sketch

denoised data, were quantified using the fiber-to-bundle coher-
ence metric [69] shown in Fig. 8B. The red-yellow streamlines
depict the spurious and incoherent streamlines while the blue
ones depict the coherent and true representative streamlines.570

Since the probabilistic tracking algorithm is stochastic in na-
ture, some variability in the streamlines is expected, but both
P2S and P2S-sketch yield very similar results.

5.6. Evaluation of P2S-sketch on Simulated Data

To compare performance on simulated data, we use a strat-575

egy similar to the one proposed in P2S (see supplement)
[29, 84, 36]. The data was simulated with 2 b0 (non-dMRI)
volumes and 60 diffusion-weighted dMRI volumes. 30 of these
dMRI volumes had a b-value of 1000 s/mm2 and the remaining
30 with 2000 s/mm2. An 8-channel coil sensitivity map was580

used to add Gaussian noise to the real and imaginary part of
each channel to simulate realistic Rician noise. Sum-of-square
coil scheme was used to combine the data and the SNR was
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calculated in the white-matter of the b0 image. Altogether, six
datasets were simulated: noise-free and SNR equal to 10, 15,585

20, 25, and 30. For each SNR, we denoised the data using
P2S and P2S-sketch. We compare the denoising performance
of both algorithms qualitatively and quantitatively. We see that
both P2S and P2S-sketch yield visually very similar results as
shown in Fig. 9A. In order to quantify the difference, we com-590

pute the root mean squared error and the R2 metric between the
denoised data and the ground truth at each SNR, for both P2S
and P2S-sketch. The results are shown in Tab. 1. The denoising
performance of P2S-sketch performance very closely approxi-
mates the denoised data obtained via P2S. Both P2S and P2S-595

sketch proportionally improve their performance as the SNR
increases. This can also be seen in the scatter plots of signal
intensities from noisy data, with P2S and P2S-sketch results
shown at SNRs equal to 15 and 20 (see Fig. 9B) depicted via
P2S and P2S-sketch overlap almost perfectly.600

Figure 9: Shows (A) Qualitative comparison of denoising performance between
P2S and P2S-sketch (trained on 20K samples, i.e. 7% of the data). (B) P2S-
sketch closely approximates P2S via scatter plots at SNRs 15&20.

5.7. Noise suppression and artefact removal

Visual conspicuity of the data (i.e. image quality) is crucial
to any form of medical imaging, especially dMRI where the
images are inherently limited by SNR. While thermal noise is
known to dominate the sources of noise that corrupt the un-605

derlying signal [81], different acquisition strategies tend to in-
duce different types of artefacts that hamper the signal struc-
ture. We show that the self-supervised setup of P2S-sketch
deals with these artefacts without loss of signal correspond-
ing to anatomical structure. In Fig. 4A, we denoised a sub-610

ject HCP 7T dataset [80] using only 50K out of 61M (0.083%)
training samples obtained via leverage score sampling. Noise
mapping from this type of high-field imaging data (acquired
using 7 Tesla scanner) is still under-investigated. We show that
P2S-sketch suppressed band-like structured noise, which may615

be correlated across some volumes, but is largely uncorrelated
across all 3D volumes. One of the main motives of high-field
7T scanners is to acquire data at a much higher resolution. With
a zoomed-in cross-section in Fig. 4A, we show how P2S-sketch
uncovers much more anatomical detail without loss of informa-620

tion or contrast. Signal voids are a common issue in MRI that

occur due to certain voxels not emitting any radio-frequency
signal due to a lack of activated protons in that region [83].
Since P2S, and consequently P2S-sketch, are similar to image
in-painting [9], where an entire 3D volume is predicted as a625

combination of the rest of the volumes, this signal void can
be imputed with context learned from the rest of the volumes.
This setup resolves a unique issue for dMRI data which was
not addressed by any other denoising algorithm in the past. In
Fig. 4B we show how P2S-sketch fills the signal void present in630

the Stanford HARDI [72] data in gradient direction 33, without
removing or smoothing the signal in the rest of the image. In
Fig. 4C,D we show how P2S-sketch does not cause any signal
loss even in the presence of physiological noise (porcine car-
diac data) [32, 63] and ghost artefacts [70, 51], which are ubiq-635

uitous in MRI acquisitions. Note that in either case, P2S-sketch
strictly only suppresses noise and does not lead to signal loss
or smoothing. [In the supplement, we compare the P2S-sketch
residuals with P2S].

Figure 10: Comparison of improvement in the residuals after DTI fitting after
denoising via MPPCA and P2S. Notice that P2S reduces the residual error for
all 60 subjects used from the LA5c cohort in comparison with MPPCA.

6. Conclusions640

This paper proposes a new method for denoising dMRI data,
which is usually acquired at a low SNR, for the purpose of
improving microstructure modeling, tractography, and other
downstream tasks. We demonstrated that denoising by P2S
outperforms the state-of-the-art random-matrix-theory-based645

Marchenko-Pastur method on these subsequent analyses. To
enable broad adoption of this method by the MRI community,
we have incorporated an efficient and unit-tested implemen-
tation of Patch2Self into the widely-used open-source library
DIPY [33]. In this work we also proposed Patch2Self-sketch650

which performs self-supervised denoising using coresets con-
structed via matrix sketching, resulting in significant speedups
and reduced memory usage. Our results showed that sampling-
based sketching via leverage scores gave the best performance.
Remarkably, leverage scores can be directly used as a statistic655
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for interpreting influential regions hampering the denoising per-
formance. Patch2Self-sketch will be released as a part of DIPY
and a separate Pythonic matrix sketching package.
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Barlow twins: Self-supervised learning via redundancy reduction. arXiv
preprint arXiv:2103.03230, 2021.

14

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 18, 2022. ; https://doi.org/10.1101/2022.03.15.484539doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.15.484539
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Methods
	Patch2Self: Self-supervised Denoising of Diffusion MRI
	Patches and Local Matrix Approximations

	Denoising via Self-Supervised Local Approximations
	Coresets for Regression via Matrix Sketching

	Statistical Leverage for Interpretability
	P2S-sketch Algorithm
	Results
	Evaluation of P2S on in-vivo data
	Effect of P2S on Tractography
	Impact of P2S on Microstructure Model Fitting
	Performance Comparison of Sketching Methods within P2S-sketch
	Impacts of P2S-sketch on Microstructure and Tractography
	Evaluation of P2S-sketch on Simulated Data
	Noise suppression and artefact removal

	Conclusions

