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Abstract 

 

As of March 2022, there have been over 450 million reported SARS-CoV-2 cases 

worldwide, and more than 4 billion people have received their primary series of a COVID-19 

vaccine. In order to longitudinally track SARS-CoV-2 antibody levels in people after vaccination 

or infection, a large-scale COVID-19 sero-surveillance progam entitled SPARTA (SeroPrevalence 

and Respiratory Tract Assessment) was established early in the pandemic. Anti-RBD antibody 

levels were tracked in more than 1,000 people. There was no significant decrease in antibody 

levels during the first 14 months after infection in unvaccinated participants, however, significant 

waning of antibody levels was observed following vaccination, regardless of previous infection 

status. Moreover, participants who were pre-immune to SARS-CoV-2 prior to vaccination 

seroconverted to significantly higher antibody levels, and antibodies were maintained at 

significantly higher levels than in previously infected, unvaccinated participants. This pattern was 

entirely due to differences in the magnitude of the initial seroconversion event, and the rate of 

antibody waning was not significantly different based on the pre-immune status. Participants who 

received a third (booster) dose of an mRNA vaccine not only increased their anti-RBD antibody 

levels ~14-fold, but they also had ~3 times more anti-RBD antibodies compared to the peak of 

their antibody levels after receiving their primary vaccine series. In order to ascertain whether the 

presence of serum antibodies is important for long-term seroprotection, PBMCs from 13 

participants who lost all detectable circulating antibodies after vaccination or infection were 

differentiated into memory cells in vitro. There was a significant recall of memory B cells in the 

absence of serum antibodies in 70% of the vaccinated participants, but not in any of the infected 

participants. Therefore, there is a strong connection between anti-RBD antibody levels and the 

effectiveness of memory B cell recall.  
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Introduction 

In late 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the 

causative agent of COVID-19, emerged in Wuhan, China, and quickly spread across the world 

resulting in the ongoing COVID-19 pandemic1. As the virus continues to evolve and adapt to 

humans, several viral variants of concern have emerged, and most likely, new variants will 

continue to emerge in the future that could result in severe human disease2. 

Antibody-mediated immunity is essential in order to mount a systemic immune response 

against SARS-CoV-2. The receptor binding domain (RBD) located on the tip of the spike 

glycoprotein is one of the major targets of neutralizing antibodies3,4. The virus uses the spike 

protein to bind to the ACE2 receptors on the surface of host cells in order to gain cell entry3,4. 

Therefore, several COVID-19 vaccines were developed based on the spike protein as an 

immunogen5,6. The Pfizer-BioNTech BNT162b2 and the Moderna mRNA-1273 vaccines both 

contain mRNA coding for the full-length spike protein5,6. These vaccines are administered 

intramuscularly as two doses 21 or 28 days apart respectively5,6. A third, single-dose viral vector 

vaccine by Janssen also received emergency use authorization in the U.S.7,8. A individual is 

considered fully vaccinated 14 days after they completed the primary vaccine series5,9. 

Anti-spike antibodies increase significantly following vaccination10,11. However, there is a 

significant drop in antibody levels within the first few months following vaccination12–14. In order to 

keep the level of circulating antibodies high, a third (booster) dose of the Pfizer-BioNTech and 

Moderna vaccines was approved in the U.S. during the second half of 202115. While all Pfizer-

BioNTech vaccine doses – including the third (booster) dose – contain 30 µg mRNA, the primary 

Moderna vaccine series contain 100 µg, and the booster dose contains only 50 µg5,9,15,16. 

Besides humoral immunity, cellular immunity is also essential for long term protection 

against infection17,18. Memory B cells and long lived plasma cells created due to infection or 

vaccination can be recalled in the event of a repeat encounter, yielding a faster and more robust 

antibody response17. The relationship between the levels of circulating and memory recall 

response is an underexplored area of SARS-CoV-2 immunology research. 

In 2020, SPARTA (SARS SeroPrevalence and Respiratory Tract Assessment), a study 

funded by the U.S. National Institutes of Health (NIH) was initiated to understand if immunity 

elicited following infection with SARS-CoV-2 or vaccination with COVID-19 vaccines provides 

protection against future infection and symptomatic disease10. The goals were 1) to investigate 

the level and duration of protection afforded by natural infection following SARS-CoV-2 infection, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2022. ; https://doi.org/10.1101/2022.03.16.484099doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.16.484099
http://creativecommons.org/licenses/by/4.0/


 4 

2) to assess immunological risk factors for infection outcome and examine immune responses to 

infection across the disease spectrum, and 3) to study the immune effectiveness of COVID-19 

vaccines in both pre-immune and immunologically naïve participants. Participants were located 

at several sites in three U.S. states and represented a diverse cohort that provided a real-time 

snapshot into the progression of immune responses during the pandemic. To date, ~3,800 

participants have provided serum, peripheral blood cells, and saliva at multiple timepoints. 

One of the goals of this study was to examine the rate of antibody waning in a large cohort 

of people infected with SARS-CoV-2 and/or vaccinated with a commercial COVID-19 vaccine, as 

well as to discover differences in trends associated with antibody levels based on vaccination, 

infection, and pre-immunity. In addition, in order to ascertain whether the presence of serum 

antibodies is necessary for a robust recall response, peripheral blood mononuclear cells (PBMCs) 

were collected and differentiated into memory B cell in vitro from 13 individuals. These 13 

participants had an initial antibody response induced by vaccination or infection, but their antibody 

levels subsequently declined to undetectable levels. In the absence of serological protection, the 

de novo memory B cell recall response was analyzed in these participants. 
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Materials and Methods 

SPARTA participants 

Eligible participants between 18 and 90 years old were enrolled starting in April 2020 with 

written informed consent in Athens and Augusta, GA, Memphis, TN, and Los Angeles, CA. The 

study procedures, informed consent, and data collection documents were reviewed and approved 

by the WIRB Copernicus Group Institutional Review Board (WCG IRB #202029060). Of the 

~3,800 SPARTA enrolled participants, 1,081 were randomly selected to be included in this study 

(Table S1). 68.5% of them identified as females, and 31.4% as males. The average age was 44.9 

years (median age = 44 years old, SD = 17.2 years). 86.1% of the cohort identified as White, 

7.3% as Black/African American, 4.1% as Asian, and 1.6% as multiple races. 8.1% of the 

participants were Hispanic. The range of BMI was between 17.5 and 95.5, with an average BMI 

of 28.5 (median BMI = 27.2, SD = 6.8). 

 

Enzyme-linked immunosorbent assay (ELISA) 

ELISA assays were performed as previously described10. Briefly, Immulon® 4HBX 

(Thermo Fisher Scientific, Waltham, MA, USA) or Costar EIA/RIA (Corning, Corning, NY, USA) 

plates were coated with 100 ng/well of recombinant SARS-CoV-2 RBD protein, incubated with 

heat inactivated serum samples at a starting dilution of 1:50 and then further serially diluted 3-

fold19. IgG antibodies were detected using horseradish peroxidase (HRP)-conjugated goat anti-

human IgG detection antibody (Southern Biotech, Birmingham, AL, USA) at a 1:4,000 dilution and 

colorimetric development was accomplished using 100 μL of 0.1% 2,2'-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) (ABTS, Bioworld, Dublin, OH, USA) solution with 0.05% 

H2O2 for 18 minutes at 37C. The reaction was terminated with 50μL of 1% (w/v) SDS (VWR 

International, Radnor, PA, USA). Colorimetric absorbance was measured at 414nm using a 

PowerWaveXS plate reader (Biotek, Winooski, VT, USA). All samples and controls were run in 

duplicate, and the mean of the two blank-adjusted optical density (OD) values were used in 

downstream analyses. IgG equivalent concentrations were calculated based on a 7-point 

standard curve generated by a human IgG reference protein from plasma (Athens Research and 

Technology, Athens, GA, USA), and verified on each plate using human sera of known 

concentrations. 
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Viral neutralization assay 

Viral neutralization (VN) assays were performed in a Biosafety Level 3 (BSL-3) laboratory 

as previously described10. The USA-WA1/2020 SARS-CoV-2 strain (100 TCID50/50µl; NCBI 

accession number: PRJNA717311) was co-incubated with serially diluted serum samples for 1 

hour at 37°C and then added to a monolayer of Vero E6 cells. The plates were observed after 72 

hours for cytopathic effects (CPEs). The VN endpoint titer was determined as the reciprocal of 

the highest dilution that completely inhibited CPE formation. All neutralization titers were 

represented as the average of the three replicates. 

 

In vitro differentiation 

PBMCs were differentiated into memory B cells by incubating them with 500 ng/mL R848 

(Invivogen, San Diego, CA, USA) and 5 ng/mL rIL-2 (R&D, Minneapolis, MN, USA) for 7 days at 

37˚C in 5% CO2 as previously described20. The conditioned cell culture supernatants were serially 

diluted to assess total and antigen-specific IgG antibody levels by ELISA. Total (non-antigen-

specific) IgG levels were assessed to confirm that the in vitro differentiation was successful and 

B cells were actually recalled de novo. Antigen-specific IgG levels to SARS-CoV-2 RBD, and full-

length spike protein, as well as pandemic influenza strain A/H1N1/California/2009 (Cal/09) were 

also measured, along with spike-specific IgA and IgM levels. 

 

Direct ex vivo B cell immune cell phenotyping  

Cryopreserved cells were thawed by diluting them in 10 mL pre-warmed complete B cell 

media (RPMI + 5% FBS + 1% Pen/Strep) in the presence of DNAse (20 µg/mL) and spun at 500 

x g for 10 min. Supernatants were carefully removed, and the cells were counted and rested at 

2x106 cells/mL for 3 hours. After resting, cells were washed again in complete B cell media and 

1x106 cells were resuspended in 50 µl of PBS containing LIVE/DEAD (Thermo Scientific) and 

human FC block (1:50, Biolegend), and incubated for 20 min at room temperature (RT). After 

incubation, cells were topped with 150 µl of PBS with 2% FBS (FACS buffer) and spun 500 x g 

for 4 min. The supernatant was removed and the antibody mix containing the surface antibodies 

was added to the cells and incubated for 30 min at RT in the dark (Figure S1). Following surface 

staining, cells were washed twice with FACS buffer and resuspended in a final volume of 200 µL. 

Samples were acquired on Agilent NovoCyte Quanteon and analyzed using FlowJo v10.2. 
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Statistical analysis 

Comparison of the four groups (naïve unvaccinated, infected unvaccinated, naïve vaccinated, 

infected vaccinated) based on previous infection and vaccination as well as different timepoints 

were investigated by one-way ANOVA and paired t tests using GraphPad Prism 9.3.1 (RRID: 

SCR_002798). In order to compare the slopes of the four groups, the antibody concentrations 

were log transformed, and the slopes after a linear regression analysis were compared by 

ANOVA. Statistical significance was denoted as *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001. 

p>0.05 was considered not significant (ns). Participants infected or vaccinated during the course 

of the study had their relevant timepoints included in multiple categories. For naïve unvaccinated 

participants, their changes in antibody titer were tracked starting with their earliest available 

timepoint. For infected unvaccinated participants, tracking started two weeks (0.5 months) after 

positive COVID nucleic acid amplification test (NAAT) or symptom onset; while for vaccinated 

participants (regardless of pre-immunity), tracking started two weeks (0.5 months) after receiving 

the complete primary series of vaccines to allow time for seroconversion. Completing the primary 

series is defined as having received two doses of the Pfizer-BioNTech or the Moderna vaccines 

or one dose of Johnson & Johnson’s Janssen vaccine. 
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Results 

 In order to track and compare the changes in anti-RBD IgG antibody levels, the anti-RBD 

IgG antibody concentrations of 1,081 participants were tracked, based on a total of 3,970 

individual timepoints (Figure 1, Table S1). Participants were broken up into four distinct 

categories: 1) The naïve, unvaccinated group (n=418) included participants who were never 

infected with the SARS-CoV-2 virus or vaccinated. 2) The infected, unvaccinated group (n=306) 

comprised of participants who had a confirmed SARS-CoV-2 infection either by NAAT, rapid 

antigen test, or a combination of COVID-19-specific symptoms followed by a corresponding 

significant rise in anti-RBD antibodies. 3) The naïve, vaccinated group (n=515) encompasses 

participants who were never infected with the SARS-CoV-2 virus but received their primary 

vaccine series. 4) The infected, vaccinated group (n=303) consists of participants who were pre-

immune to the SARS-CoV-2 virus at the time of their vaccination and received their primary 

vaccine series. 
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Figure 1: Differential waning of RBD-binding IgG antibody levels based on vaccination and 

infection status. Naïve unvaccinated (n=418) and infected unvaccinated (n=306) show no 

change in antibody levels over time (p>0.05); naïve, vaccinated participants (n=515) and infected, 

vaccinated participants (n=303) both show significant waning over the time (****p<0.0001). The 

antibody level of the naïve unvaccinated group was always lower than the other groups 

(****p<0.0001); the infected vaccinated group was always higher than any other group (*p<0.05); 

naïve, vaccinated group is higher than infected, unvaccinated group for the first 4 months after 

vaccination (**p<0.0014). The rate of decay was only significantly different between the 

vaccinated and infected groups (****p<0.0001) but not between the two vaccinated (p=0.7762) 

and the two unvaccinated groups (p=0.9476). Number of months start with the time of reception 

of the primary vaccines series for the vaccinated groups, time of infection for the infected 

unvaccinated group, and the first available timepoint for the naïve unvaccinated group. 

 

The naïve, unvaccinated participants had antibody levels (mean = 0.4 µg/mL) that were 

below the experimentally determined concentration threshold and did not significantly change 

over time (p=0.19) (Figure 1)10. Participants who were infected but unvaccinated seroconverted 

with an average initial IgG antibody level of 4 µg/mL. There was no significant waning of antibody 

levels in these participants (p=0.3169) over the first 14 months following infection (mean 

concentration across all timepoints = 3.6 µg/mL). There was a much greater initial mean antibody 

level (44.8 µg/mL), in naïve vaccinated participants, however, this concentration significantly 

decreased (****p<0.0001) each month for the first 6 months. The infected vaccinated group 

initially seroconverted even higher (mean = 86 µg/mL), however, the antibody level experienced 

significant waning (****p<0.0001), each month for the first 5 months (Figure 1). 

The anti-RBD IgG antibody concentrations of the naïve unvaccinated group were 

significantly lower than the antibody concentrations observed in any of the other three groups at 

all timepoints (****p<0.0001) (Figure 1). Participants who were infected and then vaccinated had 

significantly higher antibody levels than participants in the other three groups (***p<0.001 

compared to infected unvaccinated and naïve unvaccinated groups, *p<0.05 compared to naïve 

vaccinated group). Naïve participants who were vaccinated had significantly higher anti-RBD 

antibody concentrations compared to unvaccinated participants who were previously infected for 

the first four months (****p<0.0001 for the first three months, **p=0.0014 during the fourth month) 

and no longer showed a significant difference beyond that timepoint (Figure 1). The slopes of 

each of the four groups were significantly different from every other group (****p<0.0001) with the 

exception of the two unvaccinated groups (p=0.9476) and the two vaccinated groups (p=0.7762). 

Out of the 1,081 participants randomly selected for the longitudinal serum analysis, the 

antibody responses of participants who received two base mRNA vaccinations and an mRNA 
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booster vaccine dose were assessed in 306 participants (Figure 2). Most of the participants 

received a homologous booster (227 Pfizer-BioNTech and 55 Moderna), but 24 received a 

heterologous booster vaccine dose (13 with Pfizer base + Moderna booster, 11 Moderna base + 

Pfizer booster). On average, participants experienced a 14-fold increase in their antibody levels 

compared to their last pre-boost timepoint (****p<0.0001), reaching a mean antibody 

concentration of 119.2 µg/mL (Figure 2). Moreover, their antibody levels were also on average 3 

times higher than initially 2-4 weeks after receiving their second base vaccine dose 

(****p<0.0001), which was on average 39.8 µg/mL and remained significantly higher for the first 

3 months (**p=0.0012). After the reception of the booster dose, significant waning was observed 

(****p<0.0001 between the first and second month, *p<0.05 between the second and third month), 

but the antibody levels were still significantly higher 5 months after the booster compared to the 

level immediately preceding the booster (**p=0.0067). 

 

Figure 2: Response to 3rd dose of mRNA vaccines (n=306). Significant increase in anti-RBD 

IgG antibody level was observed between the last available pre-booster timepoint and the 

timepoint within the first month after the booster (****p<0.0001). The difference between the 

timepoint 2-4 weeks after the second dose and the timepoint within the first month after the 

booster was also significant (****p<0.0001). Month to month antibody decay is significant for the 

first 3 months after the booster, at which point the antibody level was still significantly higher than 

2-4 weeks after the second dose (**p=0.0012). 
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Out of the entire cohort, a total of 25 participants were identified who at some point during 

the study tested positive for RBD-binding IgG antibodies due to vaccination or infection, but have 

waned below the threshold into the negative range on a later timepoint (Figure 3A, Table S2). In 

order to confirm that these participant have in fact lost seroprotective status, viral neutralization 

tests using infectious SARS-CoV-2 USA-WA1/2020 strain were performed. Out of the 25 

candidates, 12 either had non-detectable neutralization at the pre-waned timepoint (false positive 

by ELISA) or still had some level of neutralization potential on the post-waned timepoint (false 

negative by ELISA) (Figure 3B). The other 13 participants demonstrated some level of 

neutralization at their pre-waned timepoints but no neutralization at their post-waned timepoint, 

confirming the ELISA results that the participants have in fact lost their pre-existing seroprotection 

(Figure 3B). Serum collected from the post-waned timepoint from these 13 participants (10 post-

vaccination and 3 post-infection) underwent in vitro differentiation, wherein the PBMCs were 

stimulated by recombinant IL-2 and R848 to induce a cellular memory recall response. In addition, 

two normal converters (CVI-004 and P-073) – participants who seroconverted after vaccination 

as expected – and four non-converters – participants who never experienced a significant 

increase in antibody levels after vaccination or infection – were also included as controls. The 

normal converters had a significant level of total IgG, Cal/09 IgG, RBD IgG, and spike IgG 

antibodies, while the non-converters only had a significant level of total IgG antibodies, signifying 

that the experiment was successful at eliciting a de novo antibody response (Table 1). Of the 10 

participants participants who lost seroprotected status post-vaccination, 7 had a significant recall 

response against RBD and spike, while the other 3 did not (Table 1). Two of those three also 

showed no significant Cal/09 antibody levels. None of the 3 participants who lost seroprotected 

status post-infection demonstrated a significant recall response against RBD or spike, while 2/3 

showed a significant Cal/09 response (Table 1). 
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Figure 3: Loss of antibody protected status based on (A) antibody binding, and (B) viral 

neutralization in waned participants. All 25 participants demonstrated a loss of anti-RBD 

binding antibodies (A), but only 13 showed a loss of neutralization potential (B), signified by an 

initial non-0 neutralization endpoint titer and an endpoint titer of 0 at the post-waned timepoint. 
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Table 1: Memory B cell recall response in participants who lost their seropositive status 

after vaccination or infection. Differentiated PBMC supernatants from the post-waned 

timepoints were tested for total IgG antibody levels, as well as IgG antibodies specific to 

A/H1N1/California/2009 pandemic influenza strain. Normal responders seroconverted as 

expected, non-responders failed to seroconvert after vaccination, lost seroprotection groups 

initially seroconverted after vaccination or infection but later lost seroprotective status as shown 

by a lack of both RBD-binding and SARS-CoV-2 neutralizing antibodies. 

 

Due to limited availability of PBMCs, B cell immunophenotyping could only be performed 

on 7 participants who waned post-vaccination (Table S3). 6 of the 7 were from participants who 

showed a significant SARS-CoV-2-specific memory recall, while the seventh (CVI-732) lacked all 

antigen-specific B cells after in vitro stimulation. While 20.4% of CD19+ CD20+ cells were memory 

B cells in the first 6 participants raging from 7% to 21% of IgG+ cells (median = 11.7%), CVI-732 

demonstrated no detectable CD19+ B cells by flow cytometry (Table S3). 
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Discussion 

 A few months after the World Health Organization declared the global COVID-19 

pandemic in the spring of 202021, participants were enrolled in the SPARTA program and tracked 

for immune responses elicited by SARS-CoV-2 infection. Longitudinal samples were collected 

from over 1,000 participants prior to and after infection and subsequently following vaccination. 

The data in this report analyzes the immune responses prior to the omicron variant wave that 

began in December 2021. 

There was a stark difference in the waning of antibody levels in vaccinated versus infected 

participants. While infection-induced antibody levels were ~10-fold lower than vaccinated 

participants, there was no significant waning over the next 14 months after infection. While 

vaccination-induced antibody levels measured 2-4 weeks post-vacination were significantly 

higher than infection-induced antibodies, they waned quickly, eventually asymptoting to levels 

similar to participants who were infected, but not vaccinated. Thus, the difference between the 

antibody levels in infected participants regardless of vaccination status is only apparent in the 

primary response and diminishes in the following months. Participants who were both infected 

and vaccinated had significantly higher antibody levels than infected unvaccinated participants 

for over 10 months. In contrast, participants who were never infected with SARS-CoV-2 before 

vaccination had significantly higher antibody levels compared to infected but unvaccinated 

participants for only the first 4 months following vaccination. The most robust antibody levels were 

reached and maintained by participants who were infected prior to vaccination. However, there 

was no significant difference between the rate of waning between the naïve vaccinated and the 

infected vaccinated groups, suggesting that pre-immunity does not significantly affect the rate of 

the waning of antibodies after vaccination. Thus, the differences between the two vaccinated 

groups were entirely due to the higher level of initial seroconversion amongst pre-immune 

participants. As the half-life of human IgG antibodies is 2-4 weeks, it is evident that the level of 

waning is proportionally related to the antibody level, and as their antibody levels dwindle, they 

asymptote instead of continuing to decline in a linear fashion22,23. 

Antibody waning following mRNA vaccination has been previously reported24–27, and 

booster vaccine doses were approved in order to help to keep circulating antibody levels high. 

However, antibody waning may not be relevant, since a high level of circulating antibodies is not 

necessary for an effective B memory recall response13,28,29. In order to explore this dichotomy, 

this study assessed the effect of administering a 3rd mRNA vaccine dose on antibody levels, and 
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well as the B cell memory recall response in participants with undetectable levels of anti-SARS-

CoV-2 antibody levels following initial presence of antibodies after vaccination. 

Participants who received a booster vaccination had a 14-fold increase in anti-RBD 

antibody levels, and their post-booster antibody levels were 3 times higher than it was after 

receiving their second dose. This suggests that not only do boosters effectively increase the 

quantity of circulating serum antibodies, but they also generally provide more antibodies capable 

of binding to the RBD region of the spike protein. While there is still significant waning following 

the booster dose, antibody levels stay higher for a longer period of time. 

Memory B cell recall occurs in the vast majority of SARS-CoV-2 vaccinated and 

convalescent individuals30–33. While the waning of antibody levels is natural due to the short half-

life of antibodies22,23, concerns were raised about what happens to a very specific subset of 

participants who had a blunted serological response demonstrated by significantly lower initial 

antibody concentrations after vaccination (*p=0.026; mean for cohort = 44.8 µg/mL, mean for 

subset = 11.77 µg/mL). This subset of participants subsequently wane below the level of 

seroprotection13. In order to explore the effectiveness of B cell memory recall in the absence of 

detectable circulating antibodies, the SARS-CoV-2 spike-specific recall response in differentiated 

PBMCs from participants who lost their seroprotected antibody levels after vaccination or infection 

was assessed. Though the anti-RBD ELISA had a sensitivity and specificity of 96%10, most of 

these participants were close to the threshold and had a higher likelihood of being categorized as 

false positive or false negative. In order to verify that they did indeed possess protective 

antibodies, which later declined to undetectable levels, VN assays were performed in order to 

confirm seroprotected status. While analysis of binding antibody levels is useful and highly 

correlated with neutralization titers10,34–36, VN assays using naturally occurring infectious SARS-

CoV-2 is useful to assess not only the ability of antibodies to bind a small portion of the virus but 

also to quantify all antibodies capable of preventing cytopathic effects elicited by the entire live 

virus, creating a more realistic in vitro model. 

The 13 participants whose anti-RBD antibodies declined below the threshold of protection 

based on ELISA also lost their previous ability to neutralize virus (Table S2). In addition, two 

normal vaccine responders and four who never seroconverted after vaccination were included as 

controls. After in vitro PBMC stimulation with IL-2 and R848, all normal responders were able to 

recall SARS-CoV-2-specific antibodies, while the non-responders did not have a significant 

SARS-CoV-2 antigen-specific recall, but still produced non-specific IgG antibodies de novo (Table 

1). Three of the four non-responders had autoimmune conditions or were taking 
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immunosuppressant medication (Table S2). Of the 13 participants who lost previously existing 

seroprotected status, 10 initially seroconverted due to vaccination, while the other three initially 

seroconverted due to a SARS-CoV-2 infection. All three had asymptomatic infections. None of 

the 3 previously infected and only 7 out of 10 vaccinated participants showed a significant SARS-

CoV-2-specific recall response. B cell immunophenotyping confirmed that 6 of the participants 

who had a robust memory recall had a significant number of IgG+ memory B cells (Table S3). On 

the other hand CVI-732, a non-responder taking the corticosteroid medication Prednisone37, as 

well as the anti-CD20 monoclonal therapy rituximab38,39 for rheumatoid arthritis, had no antigen-

specific antibody recall post-stimulation and no detectable B cells by flow cytometry (Table 1, 

Table S2, Table S3). Future studies will focus on the effect immunosuppressants and autoimmune 

conditions have on serological and cellular responses. 

There have been reports of blunted recall response after infection with coronaviruses in 

previous studies. One such study from 2011 detected no memory B cells in any of the 23 people 

who recovered from SARS-CoV infection, while a memory T cells response was present in more 

than half40. Another study found that SARS-CoV-2 may blunt the germinal center response due 

to a block in Bcl-6+ TFH cell differentiation, an increase in T-bet+ TH1 cells, and aberrantly high 

TNF-α levels, causing a diminished recall response41. Our finding that antibody recall to Cal/09 

was also absent in all non-responders and in some who lost seroprotection to SARS-CoV-2 

suggests that while the overall IgG recall is substantial, the antigen-specific recall response in 

these participants is blunted not only against SARS-CoV-2 but also the Cal/09 pandemic influenza 

strain, perhaps due to overall lower level of total IgG antibodies (Table 1). 

 One of the limitations of this study is that we relied on accurate reporting of demographic 

information, comorbidities, previous SARS-CoV-2 testing and symptoms, and vaccine information 

by the participants. While the sample size for each of the four infected/vaccinated groups 

compared is robust, not all timepoints were available for all participants. Only participants who 

were convalescent prior to vaccination were reported in the infected vaccinated group, 

participants who had breakthrough infections after vaccination will be included in a future study. 

The sample size for the in vitro differentiation experiment was low due to the uncommon nature 

of losing seroprotective status amongst our participants. All participants who lost their confirmed 

seroprotected status were included in the analysis; future studies are necessary to strengthen our 

findings with additional participants. 

 In conclusion, vaccinated groups seroconverted to higher antibody levels and experienced 

significant antibody waning regardless of pre-immunity. In contrast, infected unvaccinated 
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participants had no significant waning during the first 14 months after infection. The rate of 

antibody waning was not significantly different between pre-immune and immunologically naïve 

participants. Antibody levels are greatly increased by the administration of a booster dose, to a 

level 3-fold higher than their previous peak antibody level 2-4 weeks after the second dose. 

Memory B cell recall responses were absent in all infected and 30% of vaccinated participants 

who lost seroprotected status. Thus, the relationship between circulating anti-SARS-CoV-2 

antibody levels and B cell memory recall may be more tightly linked than expected. Therefore, 

maintaining high circulating antibody levels by administering booster doses could be a highly 

effective way to counteract antibody waning and to avoid excessive waning of antibody levels. 
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Table S1: List of participants whose antibody levels were longitudinally tracked. 

 

Table S2: List of participants whose memory recall response was measured. 

 

Table S3: Frequency and number of B cells indicated by direct ex vivo B cell immune cell 

phenotyping. 

 

Figure S1: Memory B cell gating strategy. 
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